KR101427075B1 - 생물학적 헴철 생산 방법 및 그에 의해 생산된 헴철 추출물을 포함하는 철분보충 조성물 - Google Patents

생물학적 헴철 생산 방법 및 그에 의해 생산된 헴철 추출물을 포함하는 철분보충 조성물 Download PDF

Info

Publication number
KR101427075B1
KR101427075B1 KR1020117006154A KR20117006154A KR101427075B1 KR 101427075 B1 KR101427075 B1 KR 101427075B1 KR 1020117006154 A KR1020117006154 A KR 1020117006154A KR 20117006154 A KR20117006154 A KR 20117006154A KR 101427075 B1 KR101427075 B1 KR 101427075B1
Authority
KR
South Korea
Prior art keywords
iron
heme
heme iron
hema
dcta
Prior art date
Application number
KR1020117006154A
Other languages
English (en)
Other versions
KR20110070977A (ko
Inventor
필 김
Original Assignee
주식회사 인트론바이오테크놀로지
가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 인트론바이오테크놀로지, 가톨릭대학교 산학협력단 filed Critical 주식회사 인트론바이오테크놀로지
Publication of KR20110070977A publication Critical patent/KR20110070977A/ko
Application granted granted Critical
Publication of KR101427075B1 publication Critical patent/KR101427075B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/182Heterocyclic compounds containing nitrogen atoms as the only ring heteroatoms in the condensed system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P9/00Preparation of organic compounds containing a metal or atom other than H, N, C, O, S or halogen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Plant Pathology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

본 발명은 미생물의 배양을 통한 생물학적 헴철(heme-iron) 생산 방법 및 그에 의해 생산된 헴철을 포함하는 철분 보충용 조성물에 관한 것이다. 본 발명은 미생물 배양을 통한 생물학적 헴철 생산방법을 제공하여, 철분 공급원으로 안전하게 이용될 수 있는 헴철 또는 헴철 추출물을 경제적으로 생산할 수 있게 한다.

Description

생물학적 헴철 생산 방법 및 그에 의해 생산된 헴철 추출물을 포함하는 철분보충 조성물{METHOD FOR PRODUCING BIOLOGICAL HEME IRON, AND IRON SUPPLEMENTING COMPOSITION CONTAINING THE HEME IRON PRODUCED BY SAME}
본 발명은 미생물의 배양을 통한 생물학적 헴철(heme-iron) 생산 방법 및 그에 의해 생산된 헴철을 포함하는 철분 보충용 조성물에 관한 것이다.
철(Fe)은 체내에서 헤모글로빈, 미오글로빈, 시토크롬, 철-황 단백질, 락토페린 및 각종 효소의 필수 성분으로 중요한 역할을 수행하는 미량 원소이다. 정상적인 성인 남자의 경우, 약 4-5 g 의 철을 포함하며, 이중 약 60% 는 순환하는 적혈구 세포에서 헤모글로빈에 결합된 형태로 존재하고, 약 11% 는 대사에서 중요한 역할을 수행하는 철 효소(iron enzyme) 의 형태로, 약 15-25% 는 페리틴(ferritin) 또는 헤모시데린(hemosiderin)과 같은 저장형으로 존재한다.
철은 체내에서 합성되는 성분이 아니기 때문에 전적으로 식품을 통한 섭취를 통해 흡수된다. 식품 중 철분은 헴철(heme-iron) 과 비-헴철(non-heme iron) 의 두 가지 형태로 존재한다. 동물성 식품의 경우 철 함량은 평균 40%가 헴철이고, 나머지 60% 가 비-헴철이며, 식물성 식품의 경우 철은 모두 비-헴철로 존재한다. 현재까지 미생물로부터 유래된 철분 공급원은 보고된 바 없다. 섭취한 식품으로부터의 철의 흡수는 식품의 종류에 따라, 구체적으로 헴철(heme-iron) 또는 비-헴철(nonheme iron) 에 따라 큰 차이가 있어서, 동물성 식품에 함유된 철의 흡수율은 10% 이상이고, 식물성 식품에 함유된 철의 흡수율은 5% 이하로 낮다. 특히, 비헴철의 흡수는 체내 철분의 저장 상태 및 아스코르브산과 같은 다른 식이 인자의 존재에 의해 영향을 받는다. 일반적으로 건강한 사람은 섭취한 철분의 5-10% 만을 흡수하는 것으로 알려져 있으며, 따라서, 철의 결핍은 전세계적으로 가장 흔한 영양 문제이다. 철의 결핍을 예방, 치료하기 위해 염화 제2철(ferric chloride), 구연산 철(ferric citrate), 젖산 철(ferrous lactate), 헴철(heme-iron) 등의 철 화합물이 식품의 철분 강화제 및 제약 원료로 사용되고 있다.
그러나, 헴철을 제외한 다른 철 화합물들은 무기철 성분으로 철 함량이 높고 경제적으로 저렴한 장점이 있으나, 생체에서 흡수율이 낮고 과잉 섭취시 철 중독을 유발할 수 있는 단점이 있어서 흡수율이 높고 부작용이 없는 유 기철 성분인 헴철의 사용량이 증가되고 있다.
헴철은 헤모글로빈과 미오글로빈 등에 함유되어 있는 성분으로서 일반적으로 도축 혈액으로부터 분리, 정제하여 생산한다. 그러나, 광우병 등과 같이 동물에서 유발될 수 있는 질병의 위험 때문에 안전성이 문제되며, 또한, 헤모글로빈 내의 헴철의 함량이 낮기 때문에 과량을 섭취해야 하고, 이에 따른 단백질 과잉의 우려가 있다. 따라서, 안전성이 높으면서 효율적으로 이용될 수 있는 헴철 제제에 대한 요구가 여전히 존재한다.
헴철은 철 원자를 함유한 포르피린(porphyrin) 복합체로서, 그의 생합성 경로가 잘 알려져 있다. 헴철은 8 개의 5-아미노레불린산(ALA)가 고리형 테트라피롤(tetrapyrrole)을 형성하는 단계, 곁사슬을 변형시키는 단계 및 환원형 철을 결합하는 단계를 포함하는 경로에 의해 합성되며, ALA 가 헴 생합성의 결정적 기질로 작용한다. 본 발명자들은 세포내 ALA 의 생산을 증가시켜서 생물학적으로 헴철을 생산할 수 있는 방법에 대한 연구를 수행하여 동물 혈액으로부터 유래된 헴철 제제의 문제점을 해소할 수 있는 본 발명을 완성하였다.
본 발명의 목적은 미생물의 배양에 의해 생물학적으로 헴철을 생산하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 생물학적으로 생산된 헴철 추출물을 유효성분으로 포함하는 철분 보충용 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 헴철을 생산하는 미생물을 제공하는 것이다.
상기와 같은 목적을 달성하기 위해, 본 발명은 헴철을 생산하는 미생물을 배양하는 단계 및 상기 배양액으로부터 헴철을 회수하는 단계를 포함하고, 상기 미생물은 ALA(5-aminolevulinic acid) 합성에 관여하는 효소의 활성이 증가되거나 또는 상기 효소를 코딩하는 유전자의 발현이 증가된 것인, 헴철의 생물학적 생산 방법을 제공한다.
본 발명의 헴철 생산 방법은 헴철을 생산하는 미생물을 배양하는 단계를 포함한다. 상기 배양 단계는 해당 미생물에 적합한 것으로 본 발명이 속하는 기술 분야에서 공지된 배지를 이용하여 수행될 수 있다. 본 발명의 방법에 의해 생산된 헴철 추출물은 철분 보충용 조성물의 유효성분으로 인간을 포함한 동물에게 제공될 수 있으므로, 상기 배지의 성분들은 식용 등급 이상인 것이 바람직할 수 있다.
본 발명의 헴철 생산 방법에서, 상기 미생물은 5-아미노레불린산(ALA) 합성에 관여하는 효소의 활성을 증가시키거나 또는 그 효소를 코딩하는 유전자의 발현을 증가시킨 미생물일 수 있다. 상기 미생물은 자연에서 스크리닝되거나 재조합에 의해 개발되거나 또는 돌연변이에 의해 제조된 것일 수 있다.
본 발명에서 '미생물'은 세균,효모,곰팡이,동식물 세포를 포함하나, 이에 한정되지 않는 세포를 의미한다.
본 발명에서 ' 재조합 벡터'는 숙주 세포에 도입되어 발현될 수 있도록 숙주 세포에서 발현되는 프로모터를 포함한 발현조절서열에 작동가능하게 연결된 목적 유전자를 포함하는 벡터를 의미한다.
본 발명의 헴철 생산 방법에서, 상기 미생물은 헴철을 생산할 수 있는 대장균 또는 사카로마이세스 세레비시애(Saccaromyces cerevisiae ) 와 같은 효모일 수 있다.
헴철은 도 1 에 도시된 경로에 따라 ALA 로부터 생합성되며, ALA 는 숙시닐 CoA 와 글리신으로부터 C4 경로에 의해 합성되거나 또는 글루타메이트, NADPH 및 글루타밀 tRNA 로부터 C5 경로에 의해 합성될 수 있다. 헴철의 생합성에서 출발 물질인 ALA 의 합성이 가장 결정적 단계로 알려져 있다. 따라서, 생물체에 의한 헴철의 생산을 증가시키는 방법 중 하나는 ALA 의 생합성에 관여하는 효소의 활성을 증가시키거나, 상기 효소를 코딩하는 유전자의 발현을 증가시켜 ALA 의 합성을 증가시키는 것이다.
본 발명의 일 구체예에서, 상기 미생물은 ALA 의 합성에 관여하는 효소, ALA 합성효소(hemA: 서열번호 7), 디카르복시산 수송체(dctA: 서열번호 8) 및 NADP-의존적 말릭 효소(maeB: 서열번호 9) 중 하나 이상을 코딩하는 유전자의 발현을 증가시킨 것일 수 있다.
본 발명의 일 구체예에서, 상기 미생물은 hemA, maeB 및 dctA 중 하나 이상을 포함하는 재조합 벡터에 의해 형질전환된 재조합 미생물일 수 있다.
본 발명의 일 구체예에서, 상기 미생물은 hemA, maeB 및 dctA 를 포함하는 재조합 벡터에 의해 형질전환되거나 또는 각각의 유전자를 포함하는 재조합 벡터에 의해 동시에 형질전환되어 모세포 대비 상기 3 개의 유전자를 과발현하는 재조합 미생물일 수 있다.
본 발명에서 '모세포(parent cell)'는 재조합 방법이나 돌연변이에 의해 변형되기 이전의 원래의 세포를 의미한다.
본 발명의 일 구체예에서, 상기 미생물의 형질전환을 위해 이용된 벡터는 자발발현벡터일 수 있다. 자발발현벡터에 의해 형질전환시키는 경우, 도입된 외래 유전자의 발현을 유도하기 위해 고가의 IPTG(isopropyl- β-D-thigalactopyranoside)와 같은 유도 물질을 별도로 사용하지 않아도 되므로 헴철의 대량 생산을 위해 유리하다.
본 발명의 일 구체예에서, 상기 미생물을 형질전환하기 위해 이용된 자발발현벡터는 람다 파아지(lamda phage) 의 L 프로모터를 포함하는 pLex 벡터일 수 있다.
본 발명의 일 구체예에서, 상기 미생물은 hemA, dctA 및 maeB 를 포함하는 재조합벡터에 의해 형질전환된 대장균 KCTC 18134P 일 수 있다.
본 발명의 헴철 생산 방법에서, 상기 헴철은 헴철을 포함하는 미생물 배양액 또는 그 추출물일 수 있다. 본 발명의 방법에서, 미생물의 배양에 의해 수득된 미생물 배양액은 미생물에 의해 생산된 헴철을 포함하므로 그 자체로 헴철의 공급원인 헴철 추출물로 이용되거나 또는 상기 배양액으로부터 헴철을 추출하는 단계를 더 수행하여 수득된 미생물 배양액의 추출물일 수 있다.
본 발명에서 '헴철 추출물'은 미생물에 의해 생산된 헴철을 포함하는 헴철 생산 미생물의 배양액 또는 그의 추출물 또는 상기 배양액으로부터 분리된 헴철을의미한다.
본 발명의 헴철 생산 방법은 상기 배양액으로부터 헴철을 회수하는 단계를 포함하며, 상기 단계는 미생물 배양액의 추출물 형태인 헴철은 미생물 배양액에서 미생물을 회수하는 단계, 상기 미생물을 재현탁시키고 파쇄하는 단계, 및 원심분리에 의해 상기 파쇄물로부터 헴철을 포함하는 상층액을 수득하는 단계를 포함할 수 있다.
본 발명의 헴철 생산 방법에서, 상기 배양액으로부터 헴철을 수득하는 단계는 상기 상층액으로부터 가열에 의한 침전, 추출 및 동결건조에 의해 헴철을 추출하는 단계를 더 포함할 수 있다.
본 발명의 일 구체예에서, 헴철은 미생물을 제거한 배양액으로부터 원심분리에 의해 수득된 상층액을 산-아세톤 혼합물로 추출하는 것에 의해 수득될 수 있다.
본 발명은 또한 hemA, maeB 및 dctA 중 하나 이상을 포함하는 재조합 벡터에 의해 형질전환된 헴철 생산 미생물의 배양물로부터 분리된 헴철 추출물을 제공한다.
본 발명의 일 구체예에서, 상기 헴철 생산 미생물은 hemA, maeB 및 dctA 를 포함하는 재조합 벡터에 의해 형질전환된 재조합 미생물일 수 있다.
본 발명의 일 구체예에서, 상기 헴철 생산 미생물은 자가발현벡터에 의해 형질전환된 미생물일 수 있다.
본 발명은 또한, 생물학적 헴철 생산 방법에 의해 생산된 헴철 추출물 및 이를 유효성분으로 포함하는 철분 보충용 조성물을 제공한다.
본 발명의 헴철 추출물은 미생물에 의해 생산된 헴철을 포함하므로, 헴철의 공급원으로 이용될 수 있다. 본 발명의 일 구체예에 따라 미생물의 배양액으로부터 제조된 헴철 추출물을 철분 공급원으로 제공받은 마우스는 혈액 중 높은 헴 함량을 갖는 것으로 확인되었다.
본 발명은 또한, ALA(5-aminolevulinic acid) 합성에 관여하는 효소의 활성이 증가되거나 또는 상기 효소를 코딩하는 유전자의 발현이 증가된, 헴철 생산 미생물을 제공한다.
본 발명의 일 구체예에서, 상기 헴철 생산 미생물은 hemA, maeB 및 dctA 중 하나 이상을 포함하는 재조합 벡터에 의해 형질전환된 재조합 미생물일 수 있다.
본 발명의 일 구체예에서, 상기 헴철 생산 미생물은 hemA, maeB 및 dctA 를 모두 포함하는 재조합 벡터에 의해 형질전환되거나 또는 각각을 포함하는 재조합 벡터에 의해 동시에 형질전환되어 모세포 대비 hemA, maeB 및 dctA 를 과발현하는 미생물일 수 있다.
본 발명의 일 구체예에서, 상기 재조합 벡터는 자가발현벡터일 수 있다.
본 발명의 일 구체예에서, 상기 헴철 생산 미생물은 대장균 또는 효모일 수 있으나, 이에 한정되지 않는다.
본 발명의 일 구체예에서, 상기 헴철 생산 미생물은 대장균 KCTC 18134P 일 수 있다.
이하, 실시예를 통해 본 발명을 보다 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명을 한정하는 것으로 해석되어서는 안 된다.
본 발명은 미생물 배양을 통한 생물학적 헴철 생산방법을 제공하여, 철분 공급원으로 안전하게 이용될 수 있는 헴철 추출물을 경제적으로 생산할 수 있게 한다.
도 1 은 5- 아미노레불린산(ALA)을 출발물질로 한 헴의 생합성 경로를 도시한다.
도 2 는 본 발명의 일 실시예에 따른 헴철 생산 미생물의 배양에서 생산된 헴철 추출물 용액의 스펙트럼 스캔 결과를 도시한다.
발명의 실시를 위한 형태
실시예 1. 헴철 생산용 재조합 대장균의 제조
본 실시예에서는 헴철 생합성의 가장 결정적인 기질로 작용하는 ALA 의 생산량을 증가시키기 위해 ALA 의 생합성에 관여하는 효소, ALA 합성효소(hemA), NADP- 의존적 말릭 효소(maeB) 및 C4- 디카르복시산 수송 단백질(dctA)을 코딩하는 유전자를 포함하는 플라스미드로 형질전환시킨 재조합 대장균을 제조하였다.
(1) hemA, maeB 및 dctA 를 포함하는 재조합 플라스미드 작제
로도박터 스파에로이데스(Rhodobacter sphaeroides ) 로부터 유래된 hemA(GenBank CP_000143, 서열번호 7) 를 lac 프로모터, 상기 hemA 유전자 및 hemA 플랭킹 영역을 포함하는 pUC19인 pALA7(van der Werf, M. J. and J. G. Zeikus,1996, Appl. Environ. Microbiol. 62: 3560-3566) 을 주형으로 서열번호 1 및 2 의 프라이머를 이용하여 PCR 을 통해 증폭시켰다(95℃에서 1 분, 55 ℃에서 1 분 및 72 ℃에서 2 분으로 구성된 사이클을 25 회 수행함). 상기 PCR 생성물(2.0kb)을 T- 클로닝 벡터(T&A Cloning Vector, RBC, Taiwan) 로부터 정제 후 XbaI 및 PstI 으로 처리된 pTrc99A(AP Biotech Co.) 에 라이게이션시켜, pTrc(PlachemA)를 작제하였다.
maeB 유전자(서열번호 9) 를 대장균 W3110(KCTC 2223) 의 게놈 DNA(GenBank AC_000091) 를 주형으로 서열번호 3 및 4 의 프라이머를 이용하여 PCR 을 통해 증폭시켰다(95℃에서 1 분, 55 ℃에서 1 분 및 72 ℃에서 2 분으로 구성된 사이클을 25 회 수행함). 상기 PCR 생성물(2.3kb)을 T- 클로닝 벡터(T&A Cloning Vector, RBC, Taiwan) 로부터 정제 후 PstI 및 HindIII 로 처리된 pTrc(PlachemA) 에 라이게이션시켜, pTrc(PlachemA-maeB) 를 작제하였다.
dctA 유전자(GenBank AC_000091:3956967..3958254: 서열번호 8) 를 대장균 W3110(KCTC 2223) 의 게놈 DNA(GenBank AC_000091) 를 주형으로 서열번호 5 및 6 의 프라이머를 이용하여 PCR 을 통해 증폭시켰다(95℃에서 1 분, 55 ℃에서 1 분 및 72 ℃에서 2 분으로 구성된 사이클을 25 회 수행함). 상기 PCR 생성물(1.3kb)을 T- 클로닝 벡터(T&A Cloning Vector, RBC, Taiwan) 로부터 정제 후 HindIII 로 처리된 pTrc(PlachemA-maeB) 에 라이게이션시켜, pTrc(PlachemA-maeB-dctA) 를 작제하였다. 상기 작제된 재조합 플라스미드를 PstI 에 의한 처리에 의해 생성된 DNA 단편(2.8kb와 7.0kb) 의 확인 및 서열분석(솔젠트, 대전 한국)에 의해 확인하였다.
(2) pTrc(PlachemA-maeB-dctA)에 의한 형질전환
상기 (1) 에서 작제된 pTrc(PlachemA-maeB-dctA) 를 전기천공(Gene Pulser, Bio-Rad, Hercules, CA, U.S.A.) 에 의해 대장균 W3110 에 형질전환시켜, hemA, maeB 및 dctA 를 동시에 발현하는 재조합 대장균 W3110/pTrc(PlachemA-maeB-dctA) 을 제조하였다. 대조구로서, pTrc99A 를 상기와 동일한 조건 하에 대장균 W3110 에 형질전환시켜서 대장균 W3110/pTrc99A 를 제조하였다.
(3) hemA, maeB 및 dctA 의 발현
상기 (2) 에서 수득된 재조합 대장균 W3110/pTrc(PlachemA-maeB-dctA) 과 대조구 대장균 W3110/pTrc99A 을 각각 암피실린(20 ㎍/ml) 및 0.1 mM IPTG(이소프로필-β-D-티오갈락토피라노시드)이 보충된 배지 S(5 g 효모 추출물, 10 g 트립톤, 5 g KH2PO4, 10 g 숙시네이트(디소디움 숙시네이트 헥사히드레이트), 2 g 글리신, FeCl3 40 mg/L, pH 6.5) 에 접종하고 회전식 진탕 배양기(37℃, 230 rpm) 에서 6 시간 동안 배양하여 수득된 배양액을 4℃에서 3,000g 로 15 분 동안 원심분리하여 수득된 세포들을 15 ml 의 증류수에 현탁시키고, 1 초 간격의 30W 로 설정된 초음파 파쇄기(sonicator)(UP200S, Hielscher Ultrasonics GmbH, Teltow, Germany) 를 이용하여, 얼음 상에서 1 분 동안 파쇄시켰다. 4 ℃, 10,000g 에서 20 분간 원심분리를 수행하여 세포 파쇄물을 제거하고, 세포 추출물인 상층액을 효소원으로 이용하여 하기와 같이 발현된 효소 활성을 측정하였다. 분당 1 u mole의 생성물을 생성하는 효소의 양을 1 유닛(unit)으로 정의하였다.
단백질의 양은 BIO-Rad Protein Assay Kit 및 우혈청 알부민을 표준으로 이용하여 측정하였다.
ALA 합성효소(HemA)의 활성은 50 mM Tris-HCI(pH 7.5), 20 mM MgCl2, 0.1 M 디소디움 숙시네이트, 0.1 M 글리신, 0.1 mM 피리독살 포스페이트, 15 mM ATP, 0.2 mM CoA, 및 50 ㎕의 세포 추출물로 구성된 반응 혼합물(1 ml) 을 37 ℃에서 30 분간 반응시켰다. 그 후, 분광분석계(UV2450; Shimazu, Kyoto, Japan) 를 이용하여 555 nm 에서 표준 ALA 시료 대비 상기 혼합물의 흡광도를 측정하였다. 재조합 대장균 W3110/pTrc(PlachemA-maeB-dctA) 및 대조구 대장균 W3110/pTrc99A 에서 ALA 합성효소 의 활성은 각각 1.22 유닛/mg-단백질 및 0.01 유닛/mg-단백질이었다.
NADP- 의존적 말릭 효소(MaeB)의 활성은 NADPH 의 수준으로부터 결정하였다. 0.1 M Tris-HCI(pH 8.1), 20 mM MnCl2, 2 mM NH4Cl, 1 mM DTT, 1 mM NADP, 10 mM 말레이트, 20 mM 비산나트륨, 및 25 ㎕의 세포 추출물로 구성된 반응 혼합물(1 ml) 을 37 ℃에서 15 분간 반응시켰다. 그 후, 멀티플레이트 분광분석계(Benchmark, Bio-Rad, Hercules, CA, U.S.A.) 를 이용하여 345 nm 에서 상기 혼합물의 흡광도를 측정하였다. 340nm 에서 NADPH 의 흡광계수(extinction coefficient) 는 6.7 mM/cm 였다. 재조합 대장균 W3110/pTrc(PlachemA-maeB-dctA) 및 대조구 대장균 W3110/pTrc99A 에서 NADP- 의존적 말릭 효소의 활성은 각각 0.74 유닛/mg-단백질 및 0.01 유닛/mg-단백질이었다.
C4- 디카르복시산 수송체(DctA) 활성은 KBSI(Metabolome Analysis Facility, Korea Basic Science Institute Seoul Center) 에 있는 500 MHz FT-NMR 스펙트로미터(UI1500; Varian Inc., Palo Alto, CA, U.S.A.) 를 이용하여 세포내 숙시네이트의 양을 측정하는 것에 의해 추정하였다. 배양물로부터 원심분리(12,000 rpm, 4 ℃, 10 분)에 의해 수득된 세포들을 10 g/l 의 디소디움 숙시네이트 헥사히드레이트를 포함하는 50 mM 인산염 완충액(pH 7.0) 에 재현탁시켰다. 숙시네이트를 세포 내로 수송시킬 수 있도록 상기 재현탁액을 1 분간 실온에서 방치하고, 세포외 숙시네이트를 제거하기 위해 증류수로 세포들을 2 회 세척하였다. 그 후, O.D600=1 로 재현탁시킨 후, 0.5 ml 의 세포 현탁액을 5-mm NMR 튜브에서 D20 중의 0.75%TSP(trimethylsilyl-2,2,3,3-tetradeuteropropionic acid) 용액 100 ㎕와 혼합하고, 1 H-NMR 에 의해 정량하였다. DctA 발현 후, 재조합 대장균 W3110/pTrc(PlachemA-maeB-dctA) 에서 세포내 숙시네이트의 양은 14.6 u mol/OD 세포였고, DctA 발현전, 즉, 대조구 대장균 W3110/pTrc99A 의 경우, 세포내 숙시네이트의 양은 1.8 u mol/OD 세포였다.
상기 결과는 재조합 대장균 W3110/pTrc(PlachemA-maeB-dctA) 에서 도입된 hemA, maeB 및 dctA 가 기능적으로 발현되었다는 것을 보여준다.
본 실시예에서 제조된 대장균 W3110/pTrc(PlachemA-maeB-dctA) 를 2008 년 8 월 12 일 자로 한국생명공학연구원에 기탁하여 KCTC 18134P 의 수탁번호를 부여받았다.
실시예 2. 미생물 배양에 의한 헴철 추출물의 생산
실시예 1 에서 수득된 pTrc(PlachemA-maeB-dctA) 에 의해 형질전환된 대장균 W3110/pTrc(PlachemA-maeB-dctA) 을 배양하여 헴철 추출물을 생산하였다.
(1) 재조합 대장균의 배양
상기 형질전환된 대장균 W3110 의 단일 콜로니를 4ml 의 LB(Luria-Bertani) 배지(리터당, 5 g 효모 추출물, 5 g 염화나트륨, 및 10 g 박토트립톤)를 담은 15-ml 시험관에 접종하고 회전식 진탕 배양기(37℃, 230 rpm) 에서 16 시간 동안 배양하였다. 상기 배양액 1 ml 를 암피실린(20 ㎍/ml)이 보충된 배지 S(리터당, 5 g 효모 추출물, 10 g 트립톤, 5 g KH2PO4, 10 g 숙시네이트(디소디움 숙시네이트 헥사히드레이트), 2 g 글리신, FeCl3 40 mg, pH 6.5) 50ml 를 담은 250 ml 엘렌마이어 플라스크(Erlenmeyer flask) 에 접종하여 4 시간 배양하고, 상기 배양액을 암피실린(20 ㎍/ml) 및 0.1 mM IPTG( 이소프로필-β-D-티오갈락토피라노시드)가 보충된 3L 의 배지 S 를 담은 5L 발효조(바이오트론, 부천, 한국)에 접종하였다. 상기 발효조의 배양액을 37℃에서 0.5 vvm 의 통기 및 300 rpm 의 교반 하에 38 시간 동안 배양하였다. 재조합 대장균 pTrc(PlachemA-maeB-dctA) 의 배양과 동일한 조건 하에 실시예 1 에서 대조구로 제조된 대장균 W3110/pTrc99A 을 배양하였다.
600 nm 에서 흡광도(O.D.)를 측정하여 바이오매스를 측정하고, 1 O.D.=0.31 g/l의 계수를 이용하여 건조 세포 중량(DCW)로 환산하였다. 배양 16 시간 차에, 바이오매스는 대조구(대장균 W3110/pTrc99A) 의 경우 0.44 g/l 까지 증가되었고 재조합 대장균(W3110/pTrc(PlachemA-maeB-dctA))은 0.40 g/l 까지 증가되었고, 그 후, 38 시간 차에 배양을 종료할 때까지 유지되었다. 대조구와 재조합 대장균의 배양액은 모두 16 시간 차에 황색을 띠었고, 대조구의 색은 16 시간차 이후 거의 변하지 않았으나, 재조합 대장균 배양액은 시간의 경과에 따라 적색으로 변했다. 대조구와 재조합 대장균의 배양을 2 회 반복하였다.
대조구와 재조합 대장균의 6l 배양액(38시간)으로부터 각각 2.6 g 및 2.4 g 의 세포를 회수하였다.
(2) 헴철 추출물의 생산
상기 (1) 에서 수득된 재조합 대장균의 배양액과 대조구 배양액을 4 ℃에서 3,000g 로 15 분 동안 원심분리하여 적색으로 착색된 재조합 대장균과 대조구 대장균을 회수하고, 증류수로 2 회 세척하였다. 상기 세포들을 15 ml 의 증류수에 현탁시키고, 1 초 간격의 30W 로 설정된 초음파 파쇄기(sonicator)(UP200S, Hielscher Ultrasonics GmbH, Teltow, Germany) 를 이용하여, 얼음 상에서 20 분 동안 파쇄시켰다. 4 ℃, 10,000g 에서 10 분간 원심분리를 수행하여 세포 파쇄물을 제거하고, 상층액을 65 ℃ 수조에서 30 분 동안 보관하였다. 그 후, 4 ℃, 10,000g 에서 10 분간 원심분리를 수행하여 단백질 침전물을 제거하고 그 상층액을 이용하여 헴철 추출물을 생산하였다.
적색의 색소인 헴철을 차가운 산-아세톤 추출 방법(Di Iorio, E.E., Methods Enzymol, 1981. 76: p. 57-72) 을 이용하여 추출하였다. 상기에서 수득된 세포 추출물의 상층액을 -20 ℃에서 교반 하에 100 ml 의 산-아세톤(99.8 ml 의 아세톤 + 0.2 ml 의 10 N HCl) 에 소량씩 적가하였다. 그 후, 상기 용액을 -20 ℃에서 30 분간 10,000g 로 원심분리하였다. 침전물에서 적색이 완전히 제거하기 위해 상기 추출 과정을 반복하였다. 상기 과정에서 수득된 산-아세톤을 10N NaOH 를 첨가하여 중화시키고 회전 증발기(rotary evaporator) 를 이용하여 증발시켰다. 증발 후 잔류된 용액을 동결건조시켜 헴철 추출물을 수득하였다. 정제 과정을 통해 대조구와 재조합 대장균의 배양액으로부터 각각 0.6 g 의 추출물을 수득하였다.
각 추출물의 단백질 함량은 우혈청 알부민을 표준으로 이용한 Bio-Rad 단백질 분석 키트(Bio-Rad, Hercules, CA, U.S.A.) 를 이용하여 결정하였다. 철의 양은 [Fe(NH4)2(SO4)2 ·6H2O]를 표준으로 이용한 오르토-페난트롤린 비색법(Volkova, T.N.and N.V. Patrina, Lab Delo, 1967. 2: 97-8) 을 이용하여 결정하였다. 또한, 헴량은 헤민(Sigma, St. Louis, MO, USA) 을 표준으로 이용하여 557 nm 에서의 비색법에 의해 결정하였다.
상기와 같이 측정된 헴량은 재조합 대장균과 대조구 대장균에서 각각 64.0 mg/g- 추출물 과 0.01 mg/g- 추출물 미만이었다. 또한, 철의 양은 재조합 대장균과 대조구 대장균에서 각각 6.8 mg/g- 추출물 및 0.05 mg/g- 추출물 미만이었다. 재조합 대장균 W3110/pTrc(PlachemA-maeB-dctA) 과 대조구 대장균 W3110/pTrc99A 의 헴철 생산을 위한 배양 결과가 하기의 표에 요약된다.
Figure 112011019415242-pct00001
(3) 헴철의 확인
재조합 대장균 W3110/pTrc(PlachemA-maeB-dctA) 의 배양액에서 관찰된 적색이 헴철에 의한 것이라는 것을 확인하기 위해 UV1240 분광분석기(Shimadzu사, 교토, 일본)를 이용하여 추출물의 스펙트럼을 조사하였다. 상기 재조합 대장균으로부터 수득된 추출물(0.1 mg/ml) 의 스펙트럼은 407 nm 에서 주요 피크를 보이고, 500, 551, 594, 599 및 625 nm 에서 작은 피크를 보였고, 이는 헴의 특징적인 스펙트럼과 일치한다(Berry and Trumpower, Simultaneous determination of hemes a, b and c from pyridine hemochrome spectra. Anal Biochem 161(1):1-15, 1987). 도 2 는 재조합 대장균의 배양에서 생성된 헴철을 함유하는 추출물의 스펙트럼을 도시한다. 이에 의해, 재조합 대장균의 배양에서 생성된 적색 색소는 헴철로 확인하였다.
실시예 3. 미생물 배양에 의해 생산된 헴철 추출물의 철분 공급원으로서의 용도
본 실시예는 미생물 배양에 의해 생산된 헴철 추출물이 철분 공급원으로 이용될 수 있다는 것을 확인하기 위해 수행하였다.
21 마리의 12 주령 암컷 마우스(ICR)과 철-결핍 사료(AIN-93G)를 중앙실험동물(주)(서울, 한국)로부터 구입하였다. 상기 마우스의 체중은 32-34g 이었다.
상기 마우스를 무작위로 세 그룹으로 나누고(7 마리/그룹) 마우스당 매일 6g 의 철 불포함 사료 펠릿을 제공하였다. 주사기에 장착된 39 mm 길이의 라운드-헤드 니들(round-head needle) 을 통해 경구로 사료를 투여하였다. 상기 실시예 2 에서 생산된 헴철 추출물을 함유하는 용액(0.5 ml 에 담긴 1 mg- 추출물)을 매일 그룹 1 의 마우스에게 투여하고, 대조구 세균 추출물을 함유하는 용액(0.5 ml 에 담긴 1 mg- 추출물)과 0.5 ml 의 증류수를 각각 그룹 2 와 3 의 마우스에 매일 투여하였다. 대조구 대장균 W3110/pTrc99A 을 실시예 2 와 동일한 조건 하에 배양하고 추출 과정을 수행하여 얻은 추출액을 대조구 세균 추출물로 사용하였다.
15 일간 상기 마우스들의 섭식 및 배설을 매일 관찰하고 주별로 체중 및 사료 소비량을 측정하였다. 15 일의 관찰 기간 종료 시, 모든 마우스를 안락사시키고 심장 천자(cardiac puncture) 를 통해 혈액을 채취하였다. 채취된 혈액의 적혈구 함량, 적혈구의 충전세포 용적(packed cell volume), 헤모글로빈 함량 및 헴 함량을 헤마토크릿(hematocrit) 분석기(MS9-5, Melet Schloesing Lab, Osny, France) 를 이용하여 측정하였다.
세 군 모두에서 체중의 변화는 크지 않았다. 그룹 3 은 약 2.3% 의 체중감소를 보였으나, 그룹 1 과 2 는 체중의 변화가 거의 없었다. 세 그룹 중에서 그룹 1 의 마우스가 가장 높은 적혈구 함량(9.8 cells/ ㎕), 적혈구의 충전세포 용적(56.6%), 헤모글로빈 함량(15.5 g/dL) 를 보였다. 가장 중요한 차이는 마우스의 혈액 내 헴 함량이었다. 그룹 1 의 경우 헴 함량이 4.2 mg/ml 였고, 그룹 2 와 3 의 경우, 각각 2.6 mg/ml 및 2.5 mg/ml 였다.
재조합 대장균 W3110/pTrc(PlachemA-maeB-dctA) 의 배양액 추출물, 대조구 대장균 W3110/pTrc99A 의 배양액 추출물 및 증류수를 각각 철분 공급원으로 공급받은 그룹 1, 2 및 3 의 마우스의 15 일간의 사육 결과는 하기의 표에 요약된다. 데이터는 평균±표준편차로 표시되며, 그룹간 차이의 통계적 유의성은 Student t- 검정에 의해 결정하였다. P<0.05 인 경우 유의성이 있는 것으로 판단하였다.
Figure 112011019415242-pct00002
본 실시예의 결과는 세균 배양액으로부터 생산된 헴철 추출물이 동물의 체내에서 철분 공급원으로 이용될 수 있다는 것을 보여주었다.
본 발명과 관련된 모든 연구는 가톨릭대학교 연구윤리위원회에 의해 허가된 절차에 따라 수행하였다.
실시예 4. 자가발현벡터를 갖는 헴철 생산용 균주의 작제
실시예 1 에서 제조된 재조합 대장균 W3110/pTrc(PlachemA-maeB-dctA) 에서 hemA, maeA, 및 dctA 를 발현하여 헴철을 생합성하기 위해서는 IPTG(isopropyl-β-D-thiogalactopyranoside)를 첨가하여 trc 프로모터의 조절을 받는 ALA 생합성에 관여하는 유전자군, hemA-maeA-dctA 를 유도해야 하나, 산업적 용도에서는 고가의 IPTG 를 사용하기 어려운 단점이 있다. 이 문제를 해결하기 위해 대장균에서 자발적으로 발현을 유도하는 람다 파아지(lamda phage) L 프로모터를 포함하는 pLex 벡터(3 KB, Invitrogen, Carlsbad, CA, USA) 에 상기 유전자군(hemA-maeA-dctA)을 서브클로닝하였다. 상기 유전자군은 pTrc(PlachemA-maeB-dctA) 를 주형으로 하여 각각 EcoRI 과 XbaI 의 인식부위를 갖는 서열번호 10 과 11 의 프라이머를 사용하여 PCR (94 ℃ 1 분, 57 ℃ 1 분, 및 72 ℃ 3 분으로 구성된 사이클을 30 회 반복)로 증폭하였다. 증폭된 5.4 kb 의 DNA 단편을 T- 벡터(T&A cloning vector, RBC Co., Taiwan) 에 삽입한 후 제한효소 EcoRI-XbaI 으로 절단하고 동일 제한효소로 절단된 pLex 벡터에 연결하였다. 완성된 pLex-hemA+-maeA-dctA 를 제한효소 절단맵과 DNA 서열결정을 통해 원하는 단편이 삽입된 것을 확인한 후 대장균 W3110 에 전기천공을 통해 삽입하였다. 형질전환된 W3110(pLex-hemA+-maeA-dctA) 를 IPTG 를 포함하지 않는 S- 배지를 이용한 것을 제외하고는 실시예 2 와 동일한 방법으로 배양하고, 배양액으로부터 헴의 양을 측정하여 헴 6.2 mg/L ( 철 분자 기준으로 0.7 mg-iron/L) 를 생산함을 확인하였다.
Figure 112014056177780-pct00005

Claims (16)

  1. 효소발현 유도 과정을 통하여 헴철을 고효율로 생산할 수 있는 미생물인 기기탁번호 KCTC 18134P로 특정되는 대장균(Escherichia coli) W3110/pTrc(PlachemA+-maeB-dctA).
  2. 제1항의 미생물인 W3110/pTrc(PlachemA+-maeB-dctA)를 배양하는 단계를 포함하는, 헴철을 생산하는 방법
  3. 효소발현 유도 과정 없이 헴철을 고효율로 생산할 수 있는 미생물인 대장균(Escherichia coli) W3110(pLex-hemA+-maeA-dctA).
  4. 제3항의 미생물인 W3110(pLex-hemA+-maeA-dctA)를 배양하는 단계를 포함하는, 헴철을 생산하는 방법.
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
KR1020117006154A 2008-09-12 2009-09-02 생물학적 헴철 생산 방법 및 그에 의해 생산된 헴철 추출물을 포함하는 철분보충 조성물 KR101427075B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020080090482 2008-09-12
KR20080090482 2008-09-12
PCT/KR2009/004946 WO2010030091A2 (ko) 2008-09-12 2009-09-02 생물학적 헴철 생산 방법 및 그에 의해 생산된 헴철 추출물을 포함하는 철분보충 조성물

Publications (2)

Publication Number Publication Date
KR20110070977A KR20110070977A (ko) 2011-06-27
KR101427075B1 true KR101427075B1 (ko) 2015-01-29

Family

ID=42005604

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117006154A KR101427075B1 (ko) 2008-09-12 2009-09-02 생물학적 헴철 생산 방법 및 그에 의해 생산된 헴철 추출물을 포함하는 철분보충 조성물

Country Status (3)

Country Link
US (1) US9334513B2 (ko)
KR (1) KR101427075B1 (ko)
WO (1) WO2010030091A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190006056A (ko) * 2017-01-03 2019-01-16 주식회사 인트론바이오테크놀로지 돼지 피로부터 유래되지 않은 헴철을 제조할 수 있는 생물학적 방법
WO2022240114A1 (ko) 2021-05-10 2022-11-17 한국과학기술원 풍미, 영양 및 색감이 개선된 식품 및 이의 제조방법

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101511361B1 (ko) * 2013-02-27 2015-04-10 가톨릭대학교 산학협력단 헴 생산성이 증가된 재조합 대장균 및 이를 이용한 헴 생산 방법
CN104215491B (zh) * 2014-09-26 2016-11-02 河南科技大学 一种从植物中提取和测定血红素的方法
KR20180079846A (ko) * 2017-01-03 2018-07-11 주식회사 인트론바이오테크놀로지 돼지 피로부터 유래되지 않은 헴철을 제조할 수 있는 생물학적 방법
KR101894575B1 (ko) 2017-01-03 2018-09-04 주식회사 인트론바이오테크놀로지 돼지 피로부터 유래되지 않은 헴철을 제조할 수 있는 화학적 방법
WO2019117612A1 (ko) * 2017-12-12 2019-06-20 한국과학기술원 대사공학적으로 조작된 미생물을 이용한 헴의 세포외 생산방법
KR102168039B1 (ko) 2017-12-12 2020-10-21 한국과학기술원 대사공학적으로 조작된 미생물을 이용한 헴의 세포외 생산방법
KR102118083B1 (ko) * 2018-11-14 2020-06-03 주식회사 헤모랩 가축 분변 균총의 육종진화에 의해 선별된 헴철 생산 미생물 및 이를 이용한 헴철 생산 방법
KR20220139308A (ko) * 2020-01-10 2022-10-14 주식회사 인트론바이오테크놀로지 대장균을 사용한 대두 레그헤모글로빈의 제조 방법
EP4090678A4 (en) * 2020-01-10 2024-01-10 Intron Biotechnology Inc METHOD FOR PREPARING PORCINE MYOGLOBIN USING ESCHERICHIA COLI
CN114945591A (zh) * 2020-01-10 2022-08-26 尹特荣生物科技株式会社 一种利用大肠杆菌制备牛肌红蛋白的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193831A (ja) * 2000-12-27 2002-07-10 Fancl Corp ヘム鉄含有経口用組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434842B1 (ko) * 2001-05-07 2004-06-07 오남순 헤모글로빈으로부터 헴철의 간편한 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193831A (ja) * 2000-12-27 2002-07-10 Fancl Corp ヘム鉄含有経口用組成物

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
2008 International Symposium on Microbiology, [S10-2], 2008.5.15 *
2008 International Symposium on Microbiology, [S10-2], 2008.5.15*
App. Environ. Microbiol. 1994, Vol.60, pages 2431-2437 *
App. Environ. Microbiol. 1994, Vol.60, pages 2431-2437*

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190006056A (ko) * 2017-01-03 2019-01-16 주식회사 인트론바이오테크놀로지 돼지 피로부터 유래되지 않은 헴철을 제조할 수 있는 생물학적 방법
KR102429286B1 (ko) * 2017-01-03 2022-08-04 주식회사 인트론바이오테크놀로지 돼지 피로부터 유래되지 않은 헴철을 제조할 수 있는 생물학적 방법
WO2022240114A1 (ko) 2021-05-10 2022-11-17 한국과학기술원 풍미, 영양 및 색감이 개선된 식품 및 이의 제조방법

Also Published As

Publication number Publication date
WO2010030091A3 (ko) 2010-06-17
US9334513B2 (en) 2016-05-10
WO2010030091A2 (ko) 2010-03-18
KR20110070977A (ko) 2011-06-27
US20110213142A1 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
KR101427075B1 (ko) 생물학적 헴철 생산 방법 및 그에 의해 생산된 헴철 추출물을 포함하는 철분보충 조성물
KR101511361B1 (ko) 헴 생산성이 증가된 재조합 대장균 및 이를 이용한 헴 생산 방법
CN107384844A (zh) 一种产磷脂酶d的重组大肠杆菌及其应用
CN102994539A (zh) 加强钝齿棒杆菌nad激酶表达在高低供氧条件下提高该菌株l-精氨酸生产能力的方法
CN101649300A (zh) 一种产l-苹果酸的基因工程菌及其构建方法和应用
JP6799738B2 (ja) グルタチオンの製造方法
WO2020223418A2 (en) Biosynthesis of vanillin from isoeugenol
Raimondi et al. Secretion of Kluyveromyces lactis Cu/Zn SOD: strategies for enhanced production
KR20180049611A (ko) 헴철을 포함하는 철분 보충용 사료 첨가제
Choi et al. Heme derived from Corynebacterium glutamicum: a potential iron additive for swine and an electron carrier additive for lactic acid bacterial culture
CN112646760B (zh) 生产肌醇的工程菌及其构建方法和应用
JP2014064472A (ja) グルタチオンの製造方法
Ahmad et al. Soy Leghemoglobin: A review of its structure, production, safety aspects, and food applications
KR101157461B1 (ko) 글루타치온 고발현 사카로마이세스 세레비지애 54-8 야생형및 이의 용도
Kwon et al. Potential application of the recombinant Escherichia coli-synthesized heme as a bioavailable iron source
Lee et al. Effect of glutathione on growth of the probiotic bacterium Lactobacillus reuteri
US20240052295A1 (en) Methods for culturing methanotrophic bacteria and isolating proteins from bacterial biomass
JP2023532703A (ja) 免疫シグナル伝達をもたらすため、且つ/又は腸内バリア機能に影響を及ぼすため、且つ/又は代謝状態を調節するためのAmuc-1100ポリペプチドバリアント
KR20200117246A (ko) 레그헤모글로빈과 헴 조효소가 결합된 홀로단백질 제조용 벡터, 형질전환 세포, 및 상기 홀로단백질의 제조방법
KR20140094772A (ko) 아르기닌을 오르니틴으로 생전환하는 능력이 우수한 바실러스 아리압하타이 엘케이에스28균주와 이를 이용한 오르니틴의 고효율적 생산방법
KR102057792B1 (ko) 바실러스 리체니포르미스 ka6 균주 및 이를 이용한 오르니틴 생산 방법
CN113832090B (zh) 一种高产维生素k2的重组纳豆枯草芽孢杆菌,制备方法和用途
Lipińska et al. Research on the quality of baker’s yeast enriched with chromium
TW202128980A (zh) Ace阻礙用或血壓上升抑制用之組成物、其製造方法、酵素劑、多核苷酸、及形質轉換體
WO2021088603A1 (zh) 一种制备固定化精氨酸脱亚胺酶及生产[14/15n]-l-瓜氨酸的方法

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180731

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190731

Year of fee payment: 6