KR101414538B1 - 묘화 상태 조정 방법 및 장치 - Google Patents

묘화 상태 조정 방법 및 장치 Download PDF

Info

Publication number
KR101414538B1
KR101414538B1 KR1020087023229A KR20087023229A KR101414538B1 KR 101414538 B1 KR101414538 B1 KR 101414538B1 KR 1020087023229 A KR1020087023229 A KR 1020087023229A KR 20087023229 A KR20087023229 A KR 20087023229A KR 101414538 B1 KR101414538 B1 KR 101414538B1
Authority
KR
South Korea
Prior art keywords
imaging
scanning direction
interval
image
pattern
Prior art date
Application number
KR1020087023229A
Other languages
English (en)
Other versions
KR20080114754A (ko
Inventor
나오토 킨조
카츠토 스미
료 키타노
Original Assignee
가부시키가이샤 아도테크 엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 아도테크 엔지니어링 filed Critical 가부시키가이샤 아도테크 엔지니어링
Publication of KR20080114754A publication Critical patent/KR20080114754A/ko
Application granted granted Critical
Publication of KR101414538B1 publication Critical patent/KR101414538B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/70391Addressable array sources specially adapted to produce patterns, e.g. addressable LED arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J25/00Actions or mechanisms not otherwise provided for
    • B41J25/304Bodily-movable mechanisms for print heads or carriages movable towards or from paper surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D1/00Measuring arrangements giving results other than momentary value of variable, of general application
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D15/00Component parts of recorders for measuring arrangements not specially adapted for a specific variable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/10Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces
    • H04N1/1008Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces with sub-scanning by translatory movement of the picture-bearing surface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/113Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/19Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
    • H04N1/195Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a two-dimensional array or a combination of two-dimensional arrays
    • H04N1/19505Scanning picture elements spaced apart from one another in at least one direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/19Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
    • H04N1/195Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a two-dimensional array or a combination of two-dimensional arrays
    • H04N1/19505Scanning picture elements spaced apart from one another in at least one direction
    • H04N1/19521Arrangements for moving the elements of the array relative to the scanned image or vice versa
    • H04N1/19573Displacing the scanned image

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

DMD(36)를 구성하는 마이크로미러(40)의 묘화면에 있어서의 미러상의 X좌표를 산출하고(스텝 S1), X좌표의 최대값이 소정의 역치 이하가 되는 DMD(36)의 경사 각도의 제 1 안전 영역을 산출하며(스텝 S3), 이어서 제 1 안전 영역 내에 있어서 시뮬레이션을 행하고(스텝 S4), 경사 각도의 제 2 안전 영역을 산출하며(스텝 S5), 이 제 2 안전 영역 내에서 원하는 경사 각도를 설정하여 조정을 행한다(스텝 S8).
묘화 상태 조정 방법, 묘화 상태 조정 장치

Description

묘화 상태 조정 방법 및 장치{PLOTTING STATE ADJUSTING METHOD AND DEVICE}
본 발명은 이차원 형상으로 배열된 복수의 묘화 요소를 묘화면을 따라 소정의 주사 방향으로 상대 이동시키고, 상기 각 묘화 요소를 묘화 데이터에 따라 제어함으로써 묘화를 행하는 묘화 장치에 있어서의 묘화 상태 조정 방법 및 장치에 관한 것이다.
묘화 장치의 일례로서 디지털 마이크로미러 디바이스(DMD) 등의 공간 광변조 소자를 이용하여 화상 데이터에 따라 변조된 광 빔에 의해 기록 매체에 화상을 노광하는 노광 장치가 여러가지 제안되어 있다. DMD는 화상 데이터에 기초하는 제어 신호에 따라 반사면의 각도가 변화되는 다수의 마이크로미러를 실리콘 등의 반도체 기판 상에 이차원 형상으로 배열한 미러 디바이스이고, 이 DMD를 구비한 노광 헤드를 기록 매체의 주사 방향으로 상대 이동시킴으로써 이차원 화상을 노광 기록할 수 있다.
여기에서, 기록 매체에 기록되는 화상의 해상성을 향상시키기 위해 다수의 마이크로미러가 이차원 형상으로 배열된 DMD를 주사 방향에 대하여 경사지게 배치하고, 근접한 마이크로미러에 의해 기록 매체 상에 형성되는 노광점을 일부 겹치도록 한 노광 장치가 제안되어 있다.(일본 특허 공표 2001-500628호 공보 참조). 이 와 같이, 복수의 노광점을 기록 매체 상에서 중합하여 다중 노광함으로써 예를 들면 각 마이크로미러에 대응하여 설치된 마이크로렌즈 등의 광학계나, 마이크로미러 자체의 결함, 또는 각 마이크로미러에 의해 반사되어 기록 매체에 안내되는 광 빔의 광량 편차에 기인하는 화질 열화를 억제하는 것이 가능해진다.
그런데, DMD를 이용하여 화상 패턴을 기록하는 경우, 기록되는 화상 패턴의 주사 방향과 직교되는 방향에 대한 선폭이 기록 위치에 따라 변동되는 문제가 있다. 즉, 기록되는 화상 패턴의 선폭은 주사 방향과 직교되는 방향으로 배열되는 노광점의 간격과 DMD에 의한 화상 패턴의 기록 위치에 의존한다. 이러한 변동이 있으면 노광 기록된 화상 패턴의 화상 품질이 저하되어 버린다.
마찬가지의 문제는 DMD를 이용한 노광 장치에 한정되는 것이 아니고, 예를 들면 잉크 방울을 기록 매체의 묘화면에 토출하여 화상을 기록하는 잉크젯 프린터 등에 있어서도 발생한다.
본 발명의 일반적인 목적은 이차원 형상으로 배열된 복수의 묘화 요소를 이용하여 화상 기록 매체에 화상 패턴을 묘화할 때 화상 패턴에 생기는 선폭 변동을 확실하게 저감시킬 수 있는 묘화 상태 조정 방법 및 장치를 제공하는 것에 있다.
도 1은 본 실시형태의 노광 장치의 외관 사시도이다.
도 2는 본 실시형태의 노광 장치에 있어서의 노광 스테이지의 평면도이다.
도 3은 본 실시형태의 노광 장치에 있어서의 노광 헤드의 개략 구성도이다.
도 4는 본 실시형태의 노광 장치에 있어서의 노광 헤드에 사용되는 디지털 마이크로미러 디바이스(DMD)의 구성을 나타내는 부분 확대도이다.
도 5는 도 4에 나타내는 DMD를 구성하는 마이크로미러가 온 상태로 설정되어 있는 경우의 설명도이다.
도 6은 도 4에 나타내는 DMD를 구성하는 마이크로미러가 오프 상태로 설정되어 있는 경우의 설명도이다.
도 7은 본 실시형태의 노광 장치에 있어서의 노광 헤드와, 노광 스테이지에 위치 결정된 기판의 관계 설명도이다.
도 8은 본 실시형태의 노광 장치에 있어서의 노광 헤드와, 기판 상의 노광 영역의 관계 설명도이다.
도 9는 도 4에 나타내는 DMD를 구성하는 마이크로미러의 배치 상태의 설명도이다.
도 10은 본 실시형태의 노광 장치의 제어 회로의 블록도이다.
도 11은 본 실시형태의 노광 장치에 있어서의 묘화 상태를 조정하는 처리 플로우 차트이다.
도 12는 본 실시형태의 노광 장치에 있어서 주사 방향으로 연장되는 직선을 기록한 때에 생기는 선폭 편차의 설명도이다.
도 13은 본 실시형태의 노광 장치에 있어서의 DMD의 경사 각도와 선폭 편차의 관계를 나타내는 특성 개념도이다.
도 14는 시뮬레이션에 의해 선폭 편차를 구하기 위한 화상 데이터의 설명도 이다.
도 15는 다른 실시형태에 따른 제어 회로의 블록도이다.
도 16은 본 실시형태의 노광 장치에 있어서의 DMD의 기판 상에서의 미러상(像)의 배치 설명도이다.
도 17은 본 실시형태의 노광 장치에 있어서의 DMD에 의해 기판 상에 기록되는 묘화점의 배치 설명도이다.
도 18은 본 실시형태의 노광 장치에 있어서의 DMD 미러상의 기판에 대한 광학 배율과 인접한 미러상에 의해 기록되는 묘화점 위치의 어긋남량의 관계 설명도이다.
도 19는 본 실시형태의 노광 장치에 있어서의 DMD 미러상의 기판에 대한 광학 배율과 인접하게 기록되는 묘화점 위치의 어긋남량의 관계 설명도이다.
도 20은 본 실시형태의 노광 장치에 있어서의 노광 헤드에 의한 기록 피치의 조정 방법의 설명도이다.
도 21은 기록하는 직선 패턴이 주사 방향에 대해 경사져 있는 경우에 있어서의 조정 방법의 설명도이다.
도 22는 기록하는 직선 패턴이 주사 방향에 대해 경사져 있는 경우에 있어서의 조정 방법의 설명도이다.
도 23은 본 실시형태의 노광 장치에 있어서 조정된 파라미터의 평가 방법의 설명도이다.
도 24는 본 실시형태의 노광 장치에 있어서 조정된 파라미터의 평가 방법의 설명도이다.
도 1은 본 발명의 묘화 상태 조정 방법 및 장치가 적용되는 묘화 장치인 플랫 베드 타입의 노광 장치(10)를 나타낸다. 노광 장치(10)는 복수의 다리부(12)에 의해 지지된 변형이 매우 작은 정반(14)을 구비하고, 이 정반(14) 상에는 2개의 가이드 레일(16)을 통해 노광 스테이지(18)가 화살표 방향으로 왕복 이동 가능하게 설치된다. 또한, 노광 스테이지(18)에는 감광 재료가 도포된 기판(F)이 흡착 유지된다.
정반(14)의 중앙부에는 가이드 레일(16)을 걸치도록 하여 문형(門型)의 칼럼(20)이 설치된다. 이 칼럼(20)의 한쪽 측부에는 노광 스테이지(18)에 대한 기판(F)의 장착 위치를 검출하는 CCD 카메라(22a, 22b)가 고정되고, 다른쪽 측부에는 기판(F)에 대하여 화상을 노광 기록하는 복수의 노광 헤드(24a~24j)가 위치 결정 유지된 스캐너(26)가 고정된다. 노광 헤드(24a~24j)는 기판(F)의 주사 방향(노광 스테이지(18)의 이동 방향)과 직교되는 방향에 2열로 지그재그형상으로 배열된다. CCD 카메라(22a, 22b)에는 로드 렌즈(62a, 62b)를 통해 스트로보(64a, 64b)가 장착된다. 스트로보(64a, 64b)는 기판(F)을 감광할 일 없는 적외광으로 이루어지는 조명광을 CCD 카메라(22a, 22b)의 촬상 영역에 조사한다.
정반(14)의 한쪽 끝부에는 노광 스테이지(18)의 이동 방향과 직교되는 방향으로 연장되는 가이드 테이블(66)이 장착되어 있고, 이 가이드 테이블(66)에는 노광 헤드(24a~24j)로부터 출력된 레이저 빔(L)의 광량을 검출하는 포토 센서(68)가 X방향으로 이동 가능하게 배치된다.
또한, 정반(14)의 다른쪽 끝부에는, 도 2에 나타내는 바와 같이, 가이드 테이블(67)을 따라 X방향으로 이동 가능한 상태로 포토 센서(69)가 배치된다. 포토 센서(69)의 상부에는 복수의 슬릿(71)이 X방향으로 배열되어 형성된 슬릿 판(73)이 배치된다. 슬릿(71)은 노광 스테이지(18)의 이동 방향(Y방향)에 대하여 45°의 각도로 경사지는 2개의 슬릿 편(75a, 75b)을 갖는 V자 형상으로 형성된다. 이 경우, 각 슬릿 편(75a, 75b)을 통과한 레이저 빔(L)을 포토 센서(69)에 의해 검출하여 각 노광 헤드(24a~24j)에 장착되는 각 공간 광변조 소자의 경사 각도를 산출할 수 있다. 또한, 노광 헤드(24a~24j)는 상기 경사 각도의 조정을 위해 레이저 빔(L)의 광축을 중심으로 하여 회전 가능하게 구성된다.
도 3은 각 노광 헤드(24a~24j)의 구성을 나타낸다. 노광 헤드(24a~24j)에는 예를 들면 광원 유닛(28)을 구성하는 복수의 반도체 레이저로부터 출력된 레이저 빔(L)이 합파(合波)되어 광파이버(30)를 통해 도입된다. 레이저 빔(L)이 도입된 광파이버(30)의 출사단에는 로드 렌즈(32), 반사 미러(34), 및 디지털 마이크로미러 디바이스(DMD)(36)(공간 광변조 소자)가 순서대로 배열된다.
여기에서 DMD(36)는, 도 4에 나타내는 바와 같이, SRAM 셀(메모리 셀)(38) 상에 격자 형상으로 배열된 다수의 마이크로미러(40)를 요동 가능한 상태로 배치한 것이고, 각 마이크로미러(40)의 표면에는 알루미늄 등의 반사율이 높은 재료가 증착되어 있다. SRAM 셀(38)에 묘화 데이터에 따른 디지털 신호가 기록되면 그 신호의 상태에 따라, 도 5 및 도 6에 나타내는 바와 같이, 각 마이크로미러(40)가 대각 선을 중심으로 하는 소정 방향으로 경사진다. 도 5는 마이크로미러(40)가 온 상태의 방향으로 경사진 경우를 나타내고, 도 6은 마이크로미러(40)가 오프 상태의 방향으로 경사진 경우를 나타낸다. 따라서, 제어 유닛(42)으로부터 공급되는 묘화 데이터에 기초한 변조 신호에 따라 DMD(36)의 각 마이크로미러(40)의 경사를 제어함으로써 묘화 데이터에 따라 레이저 빔(L)을 선택적으로 기판(F)에 안내하여 원하는 화상 패턴을 묘화할 수 있다.
온 상태의 마이크로미러(40)에 의해 반사된 레이저 빔(L)의 사출 방향으로는 확대 광학계인 제 1 결상 광학 렌즈(44, 46), DMD(36)의 각 마이크로미러(40)에 대응하여 다수의 렌즈를 배치한 마이크로 렌즈 어레이(48), 배율 조정 광학계인 제 2 결상 광학 렌즈(50, 52)가 순서대로 배열된다. 제 2 결상 광학 렌즈(50, 52)는 광학 배율을 조정하기 위해 화살표 방향으로 이동 가능하게 구성된다. 또한, 마이크로 렌즈 어레이(48)의 전후에는 미광(迷光)을 제거함과 아울러 레이저 빔(L)을 소정의 지름으로 조정하기 위한 마이크로 어퍼쳐 어레이(54, 56)가 배치된다.
각 노광 헤드(24a~24j)에 장착되는 DMD(36)는, 도 7 및 도 8에 나타내는 바와 같이, 높은 해상도를 실현하기 위해 기판(F)의 이동 방향에 대하여 소정 각도 경사진 상태로 설정된다. 즉, 도 9에 나타내는 바와 같이, DMD(36)를 주사 방향(Y방향)에 대하여 경사지게 함으로써 DMD(36)를 구성하는 마이크로미러(40)의 주사 방향과 직교되는 방향(X방향)에 대한 간격(ΔX)이 좁아지고, 이로 인해 X방향에 대한 해상도를 높일 수 있다.
여기에서, 도 9에 나타내는 바와 같이, 주사 방향(Y방향)과 동일한 주사 선(57) 상, 또는 주사선(57)의 근방에는 복수의 마이크로미러(40)(도 9에서는 2개 또는 3개)가 배치되어 있고, 기판(F)에는 이들 복수의 마이크로미러(40)에 의해 대략 동일 위치로 안내된 레이저 빔(L)에 의해 화상 패턴이 다중 노광된다. 이로 인해, 예를 들면 각 마이크로미러(40)에 대응하여 설치된 마이크로 렌즈 어레이(48)나 마이크로미러(40) 자체의 결함, 또는 마이크로미러(40)에 의해 기판(F)에 안내되는 레이저 빔(L)의 광량 편차 등에 기인하는 화질 열화를 억제할 수 있다. 또한, 노광 헤드(24a~24j)는 이음매가 생기지 않도록 노광 영역(58a~58j)이 주사 방향과 직교되는 방향으로 중첩되도록 설정된다(도 8 참조).
도 10은 노광 장치(10)의 처리 회로의 주요부 구성 블록도이다. 처리 회로는 기판(F)에 대하여 원하는 화상을 노광하기 위해 도 9에 나타내는 Y방향에 대한 DMD(36)의 적절한 경사 각도(θ)와, 줌 광학계인 제 2 결상 광학 렌즈(50, 52)의 적절한 광학 배율(β)을 연산하는 연산부(76)를 구비한다. 또한, 연산부(76)는 경사 각도(θ) 및 광학 배율(β)을 연산할 때에 노광 장치(10)에 접속되는 외부 연산 장치에 장착하여 구성해도 좋다. 또한, 처리 회로는 연산부(76)에 의해 산출된 경사 각도(θ)에 따라 노광 헤드(24a~24j)를 회전시켜 DMD(36)를 경사 각도(θ)로 조정하는 경사 각도 조정부(77)와, 연산부(76)에 의해 산출된 광학 배율(β)에 따라 줌 광학계를 구성하는 제 2 결상 광학 렌즈(50, 52)를 변위시켜 광학 배율(β)을 조정하는 광학 배율 조정부(79)를 구비한다.
연산부(76)는 DMD(36)를 구성하는 각 마이크로미러(40)를 기판(F)에 사영(射影)한 미러상 중심의 X방향의 좌표인 X좌표를 산출하는 X좌표 산출부(78)와, DMD(36)의 각 미러상의 X좌표를 오름차순으로 소트하여 서로 이웃하는 X좌표간 거리의 최대값을 경사 각도(θ)마다 산출하는 최대값 산출부(80)를 구비한다.
연산부(76)는 최대값 산출부(80)에 의해 산출된 최대값을 기판(F)에 기록되는 화상 패턴의 X방향에 대한 선폭 편차 범위의 허용 상한값과 비교하여 허용할 수 있는 경사 각도(θ)의 제 1 안전 영역을 산출하는 경사 각도 제 1 안전 영역 산출부(82)와, 제 1 안전 영역의 범위에서 시뮬레이션을 행하여 기판(F)에 기록되는 화상의 X방향의 선폭 편차 범위를 상기 허용 상한값과 비교하여 허용할 수 있는 경사 각도(θ)의 제 2 안전 영역을 산출하는 경사 각도 제 2 안전 영역 산출부(84)와, 각 마이크로미러(40)로부터 슬릿 판(73)을 통해 안내되는 레이저 빔(L)을 포토 센서(69)로 검출함과 아울러 노광 스테이지(18)의 Y방향의 위치 정보를 인코더(81)로 검출함으로써 도 9의 y방향으로 배열되는 복수의 마이크로미러(40)의 열인 각 스와스(Si)의 경사 각도(θi)를 산출하고, 상기 경사 각도(θi)의 셰이프드 위트(shaped width)를 허용하는 범위 내로 하는 경사 각도(θ)를 설정하는 경사 각도 설정부(86)를 구비한다. 설정된 경사 각도(θ)는 경사 각도 조정부(77)에 공급된다.
연산부(76)는 경사 각도 설정부(86)에서 설정된 경사 각도(θ)에 있어서, 동일한 스와스(Si)를 구성하는 서로 이웃하는 마이크로미러(40)에 의해 기판(F)에 기록되는 각 묘화점의 Y방향의 묘화 위치 관계에 의해 발생하는 화상 패턴의 Y방향의 어긋남인 재기(jaggy)가 극대가 되는 광학 배율(βt1)을 산출하고, 상기 광학 배율(βt1)의 전후를 회피한 허용할 수 있는 광학 배율의 제 1 안전 영역을 산출하는 광학 배율 제 1 안전 영역 산출부(88)와, 경사 각도 설정부(86)에서 설정된 경사 각도(θ) 및 상기 제 1 안전 영역의 범위에 있어서, 다른 스와스(Si)의 마이크로미러(40)에 의해 기판(F)에 다중 노광되는 각 묘화점의 Y방향의 묘화 위치 관계에 의해 발생하는 화상의 Y방향의 재기가 극대가 되는 광학 배율(βt2)을 산출하고, 상기 광학 배율(βt2)의 전후를 회피한 허용할 수 있는 광학 배율의 제 2 안전 영역을 산출하는 광학 배율 제 2 안전 영역 산출부(90)와, 제 2 안전 영역 내에서 광학 배율(β)을 설정하는 광학 배율 설정부(91)를 구비한다. 설정된 제 2 안전 영역 내의 광학 배율(β)은 광학 배율 조정부(79)에 공급된다.
본 실시형태의 노광 장치(10)는 기본적으로는 이상과 같이 구성되는 것이고, 다음으로 노광 장치(10)의 조정 방법에 대해 도 11에 나타내는 플로우 차트에 따라 설명한다.
복수의 마이크로미러(40)를 이용하여 Y방향으로 연장되는 직선을 기판(F)에 기록하는 경우, X방향에 있어서의 직선의 기록 위치에 의해 X방향의 선폭에 편차가 생긴다. 예를 들면, 도 12에 나타내는 바와 같이, X방향의 선폭이 동일한 화상 데이터(D)를 이용하여 화상 패턴을 기록하는 경우, DMD(36)의 마이크로미러(40)의 위치에 대한 화상 패턴의 X방향의 기록 위치가 다르면, 검은 점으로 나타내는 바와 같이, 화상 패턴(G1)은 마이크로미러(40)의 기판(F) 상에서의 미러상(P1~P3)에 따라 형성되는 것에 대해, 화상 패턴(G2)은 화상 패턴(G1)과는 다른 개수의 미러상(P2, P3)에 따라 형성되기 때문에 화상 패턴(G1, G2)의 선폭에 편차가 생겨 버린다. 이러한 선폭의 편차를 허용 범위 내로 하기 위해서는 DMD(36)의 경사 각도(θ) 를 조정하고, 미러상(P1~P3)의 X방향에 대한 간격을 조정할 필요가 있다.
그래서, 우선 X좌표 산출부(78)에 있어서 DMD(36) 상에서의 마이크로미러(40)의 x방향의 간격(dx)과, y방향의 간격(dy)과, 마이크로미러(40)와 기판(F) 상에서의 미러상 사이의 설계상 비율인 광학 배율(β0)을 이용하여 모든 마이크로미러(40)의 미러상의 중심을 X축 상에 사영한 X좌표[X(i, k, θ)]를 DMD(36)의 경사 각도(θ)마다 산출한다.(스텝 S1). 또한, X좌표[X(i, k, θ)]는 도 9에 나타내는 x방향의 마이크로미러(40)의 위치를 i, y방향의 마이크로미러(40)의 위치를 k로 한 경우에 있어서의 경사 각도(θ)에서의 X축 상의 좌표를 나타낸다.
이어서, 최대값 산출부(80)에 있어서 경사 각도(θ)별로 X좌표[X(i, k, θ)]를 오름차순으로 소트하고, 서로 이웃하는 X좌표[X(i, k, θ)]간의 거리의 최대값[ΔX_max(θ)]을 DMD(36)의 경사 각도(θ)마다 산출한다(스텝 S2). 또한, 최대값[ΔX_max(θ)]은 매우 적은 연산량으로 구할 수 있다. 도 13의 파선으로 나타내는 그래프는 경사 각도(θ)를 가로축, 최대값[ΔX_max(θ)]을 세로축으로 하여 플롯한 특성 개념도이다. 이 경우, 경사 각도(θ)에 따라 최대값[ΔX_max(θ)]이 극대, 극소를 반복하고, 또한 특정 영역에서 극대값이 증대하는 패턴이 나타난다.
다음으로, 경사 각도 제 1 안전 영역 산출부(82)에 있어서 산출된 최대값[ΔX_max(θ)]을 기판(F)에 기록되는 화상의 X방향에 대한 선폭 편차 범위의 허용 상한값인 역치(TH_LWV)와 비교하여 역치(TH_LWV) 이하가 되는 허용할 수 있는 경사 각도(θ)의 제 1 안전 영역[R1(θ)]을 산출한다(스텝 S3). 또한, 제 1 안전 영역[R1(θ)]은 최대값[ΔX_max(θ)]의 변화가 작고, 경사 각도(θ)가 연속하는 소정 의 범위에서 ΔX_max(θ)≤TH_LWV의 조건을 충족시키는 범위로 한다.
제 1 안전 영역[R1(θ)]을 설정한 후, 경사 각도 제 2 안전 영역 산출부(84)에 있어서 제 1 안전 영역[R1(θ)]의 범위에서 시뮬레이션을 행하여 선폭 편차 범위[LWV(θ)]를 산출한다(스텝 S4). 예를 들면, 각 마이크로미러(40)로부터 기판(F)에 안내되는 레이저 빔(L)의 파워 분포를 가우스 분포로 가정하고, 도 14에 나타내는 바와 같이, Y방향으로 평행하고 X방향의 다른 위치에 일정 폭으로 이루어지는 복수의 직선(92)을 기록하는 화상 데이터와, X방향으로 평행한 1개의 직선(94)을 기록하는 화상 데이터를 설정한다. 이어서, 직선(94)이 소정의 선폭이 되도록 파워 누적값에 대한 역치를 설정하고, 화상 데이터에 기초하여 각 직선(92)을 기록할 때의 레이저 빔(L)의 파워 누적 분포를 경사 각도(θ)마다 계산하여 파워 누적 분포를 상기 역치와 비교함으로써 각 직선(92)의 선폭[LW(X)]을 구한다. 그리고, 그 선폭[LW(X)]의 최대값과 최소값의 차이 데이터로부터 선폭 편차 범위[LWV(θ)]를 산출한다. 또한, 복수의 직선(92)의 화상 데이터를 설정하여 선폭 편차 범위[LWV(θ)]를 산출하는 대신에 1개의 직선(92)의 화상 데이터와 DMD(36)의 각 마이크로미러(40)의 위치 관계를 X방향으로 미소량씩 어긋나게 하면서 선폭[LW(X)]을 구하고, 그것으로부터 각 선폭 편차 범위[LWV(θ)]를 산출하도록 해도 좋다.
도 13의 실선으로 나타내는 그래프는 경사 각도(θ)를 가로축, 선폭 편차 범위[LWV(θ)]를 세로축으로 하여 플롯한 시뮬레이션 결과의 특성 개념도이다. 선폭 편차 범위[LWV(θ)]는 레이저 빔(L)의 파워 분포를 가우스 분포로 하여 설정하고 있기 때문에 최대값[ΔX_max(θ)]의 특성보다 큰 값이 된다. 이 경우, 최대값[Δ X_max(θ)]이 역치(TH_LWV) 이하가 되는 제 1 안전 영역[R1(θ)]의 범위에서 선폭 편차 범위[LWV(θ)]를 산출하기 때문에 시뮬레이션에 요하는 시간을 단축할 수 있다.
그리고, 선폭 편차 범위[LWV(θ)]와 역치(TH_LWV)를 비교하여 역치(TH_LWV) 이하가 되는 허용할 수 있는 경사 각도(θ)의 제 2 안전 영역[R2(θ)]을 산출한다(스텝 S5). 또한, 제 2 안전 영역[R2(θ)]은, 제 1 안전 영역[R1(θ)]의 경우와 마찬가지로, 선폭 편차 범위[LWV(θ)]의 변화가 작고, 경사 각도(θ)가 연속하는 소정의 범위에서 LWV(θ)≤TH_LWV의 조건을 충족하는 범위로 한다.
여기에서, DMD(36)의 y방향으로 배열되는 복수의 마이크로미러(40)의 열인 각 스와스(Si)의 경사 각도(θi)(도 9 참조)는 DMD(36)의 제조상의 오차나 노광 헤드(24a~24j)를 구성하는 광학계의 영향에 의해 스와스(Si)마다 다른 경우가 있다.
그래서, 노광 스테이지(18)에 배치된 슬릿 판(73)을 노광 헤드(24a~24j)의 하부까지 이동시킨 후, DMD(36)를 구성하는 각 마이크로미러(40)를 통해 슬릿 판(73)에 레이저 빔(L)을 안내하고, 슬릿 판(73)에 형성된 각 슬릿 편(75a, 75b)을 통과한 레이저 빔(L)을 포토 센서(69)에 의해 검출한다. 그리고, 포토 센서(69)의 X방향의 위치 정보와 인코더(81)로부터 얻어지는 노광 스테이지(18)의 Y방향의 위치 정보에 기초하여 스와스(Si)를 구성하는 복수의 마이크로미러(40)의 위치를 산출하고, 그 위치로부터 각 스와스(Si)의 경사 각도(θi)를 산출하여 이 경사 각도(θi)의 최대값과 최소값의 차이를 DMD(36)를 구성하는 스와스(Si)의 경사 각도(θi)의 셰이프드 위트(Δθ)로서 산출한다(스텝 S6).
이어서, 경사 각도 설정부(86)에 있어서 경사 각도 제 2 안전 영역 산출부(84)에서 구한 제 2 안전 영역[R2(θ)]으로부터 셰이프드 위트(Δθ)의 범위를 허용하는 경사 각도(θ)를 선택하여 설정한다(스텝 S7). 이와 같이 하여 경사 각도(θ)를 설정함으로써 DMD(36)의 전체 범위에 있어서의 선폭 편차 범위[LWV(θ)]를 허용 범위 내로 하여 Y방향으로 연장되는 화상 패턴의 X방향에 대한 선폭의 편차를 허용 범위 내로 할 수 있다.
또한, 경사 각도(θ)는 스텝 S4의 시뮬레이션으로 산출한 선폭 편차 범위[LWV(θ)]의 변동이 작은 범위로부터 선택하는 것이 바람직하다. 또한, 상기 선폭 편차 범위[LWV(θ)]가 작을수록 커지는 가중 계수를 선폭 편차 범위[LWV(θ)]에 할당하여 상기 가중 계수가 큰 범위로부터 경사 각도(θ)를 우선적으로 선택하도록 해도 좋다.
또한, 도 13에 나타내는 바와 같이, 제 2 안전 영역[R2(θ)]이 복수 영역 있는 경우, 경사 각도(θ)가 크고 다중 노광에 있어서의 다중도가 커지는 제 2 안전 영역[R2(θ)]을 우선하여 설정하는 것이 바람직하다.
또한, 도 15에 나타내는 바와 같이, 스텝 S4의 시뮬레이션으로 산출한 선폭 편차 범위[LWV(θ)](도 13의 실선으로 나타내는 관계)를 선폭 편차 범위 테이블로서 선폭 편차 범위 테이블 기억부(100)에 기억시켜 두고, 예를 들면 메인터넌스 등을 행할 때 원하는 역치(TH_LWV)에 따라 상기 선폭 편차 범위 테이블 기억부(100)로부터 판독한 선폭 편차 범위[LWV(θ)]의 제 2 안전 영역[R2(θ)]의 범위 내에 있어서 측량한 경사 각도(θ)를 적절한 경사 각도(θ)로 변경하도록 해도 좋다.
한편, 도 9는 주사선(57) 상에 2개 또는 3개의 마이크로미러(40)가 배치되는 다중도 2 또는 3의 상태를 나타내고 있다. 이 경우, 복수의 마이크로미러(40)가 동일한 주사선(57) 상에 배열되고, 인접한 주사선(57) 사이에 마이크로미러(40)가 배치되지 않는 상태가 되면 주사선(57) 사이의 간극의 영향으로 선폭 편차 범위[LWV(θ)]가 커져 버린다.
그래서, 선폭 편차 범위[LWV(θ)]를 작게 하기 위해 다중 노광에 의한 각 묘화점이 주사선(57) 사이에 균등하게 배치되도록 경사 각도(θ)를 설정한다.
도 16은 도 9의 (i,k)의 위치에 있는 마이크로미러(40)를 기판(F) 상에 사영한 미러상[P(i,k)]의 배치 관계를 나타낸다. 또한, 도 17은 노광 장치(10)에 의해 Y방향에 기록 피치(ΔY)로 기판(F)에 묘화되는 묘화점의 배치 관계를 나타낸다. 또한, 그룹(J0)은 다중도(N)의 미러상[P(i,0), P(i-1,K), P(i-2,2·K),…, P(i-N+1,(N-1)·K)]에 의해 기록되는 묘화점이다. 또한, 그룹(J1)은 인접한 미러상[P(i,1), P(i-1,K+1), P(i-2,2·K+1),…, P(i-N+1,(N-1)·K+1)]에 의해 기록되는 묘화점이다. 또한, 설명의 편의상 미러상[P(i,k)]에 의해 기록되는 묘화점을 P(i,k)로서 나타내고 있다.
이 경우, 다중 노광의 다중도를 N으로 하여, 미러상[P(i,0)]을 지나 Y방향으로 평행한 직선(L0) 상에 배열되는 N개의 미러상[P(i,0), P(i-1,K), P(i-2,2·K),…, P(i-N+1,(N-1)·K)]의 X좌표의 위치를 직선(L0)과 미러상[P(i,1)]을 지나 직선(L0)에 평행한 직선(L1) 사이에 균등하게 배치하면 직선(L0, L1) 사이의 간극에 의한 선폭 편차 범위[LWV(θ)]를 작게 할 수 있다. 즉, 직선(L0, L1) 사이를 q/N 분할(q:1을 포함하고, N과 공통의 공약수를 가지지 않는 N 미만의 정수)한 위치에 각 미러상[P(i,k)]이 배치되도록 경사 각도(θ)를 설정하면 좋다.
경사 각도 조정부(77)는 이상과 같이 하여 설정된 경사 각도(θ)가 되도록 노광 헤드(24a~24j)를 회전시켜 조정한다(스텝 S8).
그런데, 복수의 마이크로미러(40)를 이용하여 다중 노광을 행하는 경우, 예를 들면, 도 17에 나타내는 바와 같이, 각 그룹(J0, J1)을 구성하는 묘화점이 X방향에 일렬로 배열되어 있으면 이 묘화점의 배열 방향을 따른 직선, 또는 배열 방향에 대하여 약간 경사진 직선을 묘화할 때 묘화점의 배열 방향과 직교되는 방향으로 분단된 직선 패턴(96a, 96b)이 형성될 우려가 있다. 또한, 그룹(J0) 및 그룹(J1)이 X방향으로 일렬로 배열되어 있는 경우에는 그룹(J0, J1) 내의 묘화점이 일렬로 배열되어 있을 때보다 긴 주기로 분단된 직선이 형성될 우려가 있다. 이와 같이, 묘화점이 X방향으로 배열되면 기록하려고 하는 화상 패턴이 Y방향으로 분단된 재기가 발생해 버린다.
본 실시예에서는 기판(F)에 대한 마이크로미러(40)의 광학 배율(β)을 조정함으로써 그룹(J0, J1) 내의 묘화점의 Y방향의 배치를 조정하고, 이로 인해 상기의 과제를 해결할 수 있다.
그래서, 광학 배율(β)을 조정할 때 우선 그룹(J0)의 묘화점과 그룹(J1)의 묘화점이 X방향으로 배열될 때의 조건을 구한다. 이는 동일한 스와스(Si) 상에서 서로 이웃하는 마이크로미러(40)에 의해 기판(F)에 기록되는 묘화점이 X방향으로 배열될 때의 조건이고, 도 17에서는 미러상[P(i,0)]에 의한 묘화점과 미러 상[P(i,1)]에 의한 묘화점이 X방향으로 배열되는 경우에 상당한다.
미러상[P(i,0), P(i,1)] 사이의 기판(F) 상에서의 스와스 열방향[미러상{P(i,0), P(i,1)}을 연결하는 직선 방향]의 거리를 wy, 광학 배율을 βt1, 마이크로미러(40)의 스와스 열방향의 거리를 dy로 하면 미러상[P(i,0), P(i,1)] 사이의 Y방향의 거리(TY0)(도 16 참조)는,
TY0=wy·cosθ=βt1·dy·cosθ (1)
이다. 또한, 노광 장치(10)에 의한 각 묘화점의 Y방향의 기록 피치를 ΔY, H를 정수로 하면 미러상[P(i,0), P(i,1)]에 의한 묘화점이 X방향으로 배열되는 조건은,
TY0=H·ΔY (2)
이다. 따라서, (1), (2)식으로부터 광학 배율(βt1)이,
βt1=ΔY·H/(dy·cosθ) (3)
일 때에 미러상[P(i,0), P(i,1)]에 의한 묘화점이 X방향으로 배열된다.
그래서, 광학 배율 제 1 안전 영역 산출부(88)는 경사 각도 설정부(86)에서 설정된 경사 각도(θ)를 (3)식에 대입하여 광학 배율(βt1)을 산출하고, 이 광학 배율(βt1) 전후의 소정 범위의 광학 배율(α1)을 제외한 허용할 수 있는 광학 배율(β)의 제 1 안전 영역[Q1(β)]을 산출한다(스텝 S9).
도 18은 장주기의 광학 배율(β)과 Y방향의 직선의 어긋남량[LER(β)]의 관계를 플롯한 후술하는 시뮬레이션 결과의 특성 개념도이다(βt1_C1, βt1_C2, βt1_C3은 다른 광학 배율(βt1)을 나타냄). 이 경우, 제 1 안전 영역[Q1(β)]은 어긋남량[LER(β)]이 허용 상한값인 역치(TH_LER) 이하가 되는 범위로 설정된다.
다음으로, 그룹(J0, J1)을 구성하는 인접한 묘화점, 예를 들면 미러상[P(i,0)]에 의한 묘화점과 미러상[P(i-1,K)]에 의한 묘화점이 X방향으로 배열될 때의 조건을 구한다.
도 16에 나타내는 바와 같이, 미러상[P(i,0)] 및 미러상[P(i-1,K)]을 연결하는 직선은 X방향의 선폭 편차 범위[LWV(θ)]를 작게 하기 위해 Y방향으로 소정량 경사져서 설정되어 있다. 이 직선의 경사량(tK)을,
tK=(wx/wy)·(1/tanθ) (4)
로 정의한다. 또한, wx는 미러상[P(i,0), P(i-1,0)] 사이의 기판(F) 상에서의 스와스 행방향[미러상{P(i,0), P(i-1,0)}을 연결하는 직선 방향]의 거리이다. K0=INT(tK)(INT:tK의 정수 부분)로 하여 경사 각도(θ)를 복수의 각도 분류로 나눈다. 이 경우, 예를 들면 다중도(N)=8로 하면 각도 분류는 다음 3가지 케이스로 할 수 있다.
<케이스 1>
(K0+2/3)≤tK<(K0+1)이면 K=K0+1, stp=1
<케이스 2>
(K0+1/3)≤tK<(K0+2/3)이면 K=stp·K0+1, stp=2
<케이스3>
K0≤tK<(K0+1/3)이면 K=K0, stp=1
또한, 각도 분류는 상기의 3가지 케이스에 한정되는 것이 아니고, 다중도(N) 및 시뮬레이션의 결과에 따라 가장 바람직한 각도 분류로 한다. 또한, 각도 분류는 X방향으로 연속적으로 배열되는 묘화점의 수가 증가하면(다중도가 대(大)가 될수록 증가함), 그만큼 어긋남량[LER(β)]이 커져 버리기 때문에 묘화점의 수에 따라 적절히 설정하는 것이 바람직하다. 또한, 묘화점 수를 조정하기 위해 DMD(36)를 구성하는 마이크로미러(40)의 y방향의 전체 행 수를 Ynum으로 하여 묘화에 유효한 마이크로미러(40)의 행 수(Valid)를,
Valid=Ynum-INT(Ynum-tK·N) (5)
로 하고, 도 9의 사선 부분에 나타내는 바와 같이, 그 이외의 마이크로미러(40)를 상시 오프 상태로 설정하는 것이 바람직하다.
미러상[P(i,0), P(i-1,K)]의 기판(F) 상에 있어서의 Y방향의 거리(TY)(도 16 참조)는 광학 배율을 βt2로 하여,
TY=βt2·(K·dy·cosθ+dx·stp·sinθ) (6)
이다. 또한, M을 정수로 하여 미러상[P(i,0), P(i-1,K)]에 의한 묘화점이 X방향으로 배열되는 조건은,
TY=ΔY·M (7)
이다. 따라서, (6), (7)식으로부터 광학 배율(βt2)이
βt2=ΔY·M/(K·dy·cosθ+dx·stp·sinθ) (8)
일 때에 미러상[P(i,0), P(i-1,K)]에 의한 묘화점이 X방향으로 배열된다. 여기에서 경사 각도(θ)는 시계 방향을 플러스로 하고 있다(도 16에서는 θ>0).
그래서, 광학 배율 제 2 안전 영역 산출부(90)는 경사 각도 설정부(86)에서 설정된 경사 각도(θ)로부터 해당하는 각도 분류의 케이스를 선택하여 K 및 stp의 값을 결정한 후, (8)식에 경사 각도(θ)를 대입하여 광학 배율(βt2)을 산출한다. 그리고, 이 광학 배율(βt2) 전후의 소정 범위의 광학 배율±α2를 제외한 허용할 수 있는 광학 배율(β)의 제 2 안전 영역[Q2(β)]을 산출한다(스텝 S10).
도 19는 제 1 안전 영역[Q1(β)]에 있어서의 단주기의 광학 배율(β)과 Y방향의 직선의 어긋남량[LER(β)]의 관계를 플롯한 후술하는 시뮬레이션 결과의 특성 개념도이다(βt2_C1, βt2_C2, βt2_C3은 다른 광학 배율(βt2)을 나타냄). 이 경우, 제 2 안전 영역[Q2(β)]은 어긋남량[LER(β)]이 허용 상한값인 역치(TH_LER) 이하가 되는 범위로 설정된다.
이어서, 광학 배율 설정부(91)에 있어서 광학 배율 제 2 안전 영역 산출부(90)에서 구한 제 2 안전 영역[Q2(β)] 내에서 광학 배율(β)을 설정한다(스텝 S11). 이 경우, 광학 배율(β)은 노광 장치(10)의 설치 정밀도나 노광 장치(10)간의 편차를 고려하여 제 2 안전 영역[Q2(β)] 내의 중간값이 되도록 설정하는 것이 바람직하다. 또한, 도 17에 나타내는 각 그룹(J0, J1) 내에 있어서 Y방향으로 묘화점의 위치가 흩어지도록, 예를 들면,
TY=ΔY·M+q·ΔY/N' (9)
의 관계를 만족시키는 광학 배율(β)을 설정하는 것이 바람직하다. 또한, (9)식에 있어서 q는 1을 포함하고, mod(N',q)≠0이 아닌 N' 미만의 정수, N'은 X방향으로 배열되는 그룹(J0, J1) 내의 묘화점의 수이고, 상술한 <케이스 1> 또는 <케이스 3>에서는 N'=N(다중도), <케이스 2>에서는 N'=N/2이다.
이와 같이 하여 광학 배율(β)을 설정함으로써 어긋남량[LER(β)]을 허용 범 위 내로 하여 X방향으로 연장되는 화상 패턴의 Y방향에 대한 어긋남인 재기를 허용 범위 내로 할 수 있다.
또한, 광학 배율(β)은 경사 각도 설정부(86)에서 설정된 경사 각도(θ), 또는 경사 각도 제 2 안전 영역 산출부(84)에서 산출된 제 2 안전 영역[R2(θ)] 내의 경사 각도(θ)에 따라 스텝 S4의 경우와 대략 마찬가지로 하여 시뮬레이션에 의해 구할 수도 있다.
예를 들면, 레이저 빔(L)의 파워 분포를 가우스 분포로 가정하고, X방향으로 평행한 직선을 형성하는 화상 데이터에 기초하여 기판(F) 상에 이 직선을 묘화할 때의 레이저 빔(L)의 파워 누적 분포를 광학 배율(β)마다 계산하며, 파워 누적 분포를 소정의 역치와 비교하여 직선의 Y방향의 기록 위치를 구해 그 기록 위치의 어긋남량[LER(β)]을 산출한다. 도 18 및 도 19는 이 시뮬레이션에 의한 결과를 나타낸다. 이 처리는 경사 각도 설정부(86)에서 설정된 경사 각도(θ), 또는 경사 각도 제 2 안전 영역 산출부(84)에서 산출된 제 2 안전 영역[R2(θ)] 내의 경사 각도(θ)마다 행한다. 그리고, 어긋남량[LER(β)]이 소정의 역치(TH_LER) 이하가 되는 광학 배율(β)을 결정한다.
또한, 광학 배율(β)은 노광 장치(10)의 정밀도나 편차를 고려하여 제 2 안전 영역[Q2(β)] 내의 중간값으로서 설정하는 것이 바람직하다. 또한, 광학 배율(β)은 제 2 안전 영역[Q2(β)] 내에서의 어긋남량[LER(β)]의 변화가 가장 작아지는 값으로서 설정해도 좋다.
또한, 도 15에 나타내는 바와 같이, 시뮬레이션으로 산출한 어긋남량 [LER(β)](도 19에 나타내는 관계)을 경사 각도(θ)마다 어긋남량 테이블로서 어긋남량 테이블 기억부(102)에 기억시켜 두고, 예를 들면 메인터넌스 등을 행할 때 원하는 역치(TH_LER) 및 경사 각도(θ)에 따라 상기 어긋남량 테이블 기억부(102)로부터 판독한 어긋남량[LER(β)]의 제 2 안전 영역[Q2(β)]의 범위 내에 있어서 적절한 광학 배율(β)을 설정하도록 해도 좋다.
광학 배율 조정부(79)는 이상과 같이 하여 설정된 광학 배율(β)에 기초하여 제 2 결상 광학 렌즈(50, 52)를 변위시켜 광학 배율(β)의 조정을 행한다(스텝 S12).
또한, 광학 배율(β)을 조정하는 대신에, 또는 광학 배율(β)의 조정과 아울러 기록 피치(ΔY)를 조정하여 묘화점의 위치를 Y방향으로 흩어지게 함으로써 X방향으로 연장되는 직선의 어긋남량이 작아지도록 할 수도 있다.
즉, (7)식의 조건이 성립하는 기록 피치(ΔY)일 때, 도 17에 나타내는 바와 같이, 묘화점이 X방향과 평행한 상태가 되어 어긋남량[LER(β)]이 커져버린다. 그래서, 도 20에 나타내는 바와 같이, 스텝 S10에서 산출한 광학 배율(βt2) 전후의 광학 배율±α2에 대응하여 기록 피치(ΔY) 전후에 소정 범위±tα를 설정하고, 이 소정 범위±tα를 제외하는 범위로서 기록 피치(ΔY)의 안전 영역을 설정한다.
기록 피치(ΔY)가 소정 범위±tα 내에 있을 때의 조건은 미러상[P(i,0), P(i-1,K)] 사이에 기록하는 묘화점의 기록 스텝수를 M으로 하여,
-tα≤(TY-ΔY·M)≤tα (tα≥0) (10)
이다. 설정 가능한 기록 스텝수(M)의 최소 스텝수(M0)가 고정되어 있는 것으로 하 면 M=M0으로 했을 때의 (10)식의 조건을 제외한 기록 피치(ΔY)를 설정함으로써 그룹(J0 또는 J0') 내의 묘화점이 소정 범위±tα를 제외하는 범위에 묘화되게 되고, 이로 인해 X방향으로 연장되는 직선의 Y방향에 대한 어긋남량의 증대를 억제할 수 있다.
또한, 도 20에 나타내는 미러상[P(i,0), P(i-1,K),…, P(i-N+1,(N-1)·K)]에 의해 형성되는 묘화점이 그룹(J0) 내에서 Y방향으로 균등하게 흩어지기 위해서는,
ΔY=TY/(M0-p/N') (11)
로서 기록 피치(ΔY)를 설정하면 좋다. (11)식에 있어서 p는 1을 포함하고, mod(N',p)≠0이 아닌 N' 미만의 정수, N'는 X방향으로 배열되는 그룹(J0) 내의 묘화점의 수이고, 상술한 <케이스 1> 또는 <케이스 3>에서는 N'=N(다중도), <케이스 2>에서는 N'=N/2이 된다.
또한, 기록 피치(ΔY)는 기판(F)의 생산성에 영향을 주는 파라미터이고, 크게 변경할 수 없는 경우가 있다. 이러한 경우에는 기록 피치(ΔY)를 조정하는 대신에 (10)식에 기초하여 기록 스텝수(M)를 증감시키도록 해도 좋다. 기록 피치(ΔY) 또는 기록 스텝수(M)의 조정은 DMD(36)에 공급되는 화상 데이터의 리셋 타이밍, 또는 노광 스테이지(18)의 이송 속도에 의해 조정할 수 있다.
또한, 광학 배율(β), 기록 피치(ΔY), 또는 기록 스텝수(M)를 조정하는 대신에 경사 각도 제 2 안전 영역 산출부(84)에서 산출한 제 2 안전 영역[R2(θ)] 내의 경사 각도(θ)를 (8)식의 조건이 성립하지 않는 범위에서 미세 조정함으로써 X방향으로 연장되는 직선의 어긋남량을 작게 할 수도 있다.
또한, 직선 패턴(96a, 96b)이 X방향으로 평행할 때의 Y방향의 어긋남량이 작아지도록 조정하는 경우에 대해 설명했지만, 예를 들면, 도 21 및 도 22에 나타내는 바와 같이, 직선 패턴(98)이 X방향으로 경사 각도(φ)(≠0)로 경사져 있는 경우에는 제 1 안전 영역[Q1(β)] 및 제 2 안전 영역[Q2(β)]을 다음과 같이 하여 조정하는 것이 바람직하다.
즉, 미러상[P(i,0) 및 P(i,1)]에 기초하여 기록되는 묘화점끼리를 연결하는 직선이 직선 패턴(98)과 동일한 방향으로 배열될 때의 조건은 광학 배율을 β1로 하여 도 16 및 도 21로부터 (3)식을 이끌어낸 경우와 대략 마찬가지로 하여,
β1=ΔY·H/[dy·(cosθ+sinθ·tanφ)] (12)
가 된다. 여기에서, 경사 각도(φ)는 시계 방향을 플러스로 하고 있다(도 21에서는 φ<0). 또한, H는 미러상[P(i,0) 및 P(i,1)]의 Y방향의 거리를 d_pY0으로 하여,
wy·cosθ+d_pY0=H·ΔY (13)
의 관계를 만족시키는 정수이다.
(12)식의 관계로부터 얻어지는 광학 배율(β1) 전후의 소정 범위를 제외한 광학 배율(β)의 범위를 제 1 안전 영역[Q1(β)]으로서 설정함으로써 미러상[P(i,0) 및 P(i,1)]에 의한 묘화점이 경사 각도(φ)의 직선 패턴(98)과 대략 동일 방향으로 경사져 있을 때에 발생하는 Y방향의 재기를 억제할 수 있다.
또한, 미러상[P(i,0) 및 P(i-1,K)]에 기초하여 기록되는 묘화점끼리를 연결하는 직선이 직선 패턴(98)과 동일 방향으로 배열될 때의 조건은 광학 배율을 β2로 하여 도 16 및 도 22로부터 (8)식을 이끌어낸 경우와 대략 마찬가지로 하여,
β2=ΔY·M/(K·dy·cosθ+dx·stp·sinθ
+(K·dy·sinθ-dx·stp·cosθ)·tanφ) (14)
가 된다. 또한, M은 미러상[P(i,0) 및 P(i-1,K)]의 Y방향의 거리를 d_pY로 하여,
TY+d_pY=M·ΔY (15)
의 관계를 만족시키는 정수이고, stp는 상술한 경사 각도(θ)의 각도 분류, 예를 들면 다중도(N)=8로 한 경우에 있어서의 <케이스 1>~<케이스 3>으로 정의되는 수이다.
(14)식의 관계로부터 얻어지는 광학 배율(β2) 전후의 소정 범위를 제외한 광학 배율(β)의 범위를 제 2 안전 영역[Q2(β)]으로서 설정함으로써 미러상[P(i,0) 및 P(i-1,K)]에 의한 묘화점이 경사 각도(φ)의 직선 패턴(98)과 대략 동일 방향으로 경사져 있을 때에 발생하는 Y방향의 재기를 억제할 수 있다.
또한, 묘화해야 할 직선 패턴(98)의 경사 각도(φ)에 따라 묘화점의 위치를 조정하기 위해 광학 배율(β)의 조정 대신에 기록 피치(ΔY), 기록 스텝수(M), 또는 경사 각도(θ)를 직선 패턴(98)의 경사 각도(φ)에 따라 조정하도록 해도 좋다.
여기에서, 이상과 같이 하여 광학 배율(β), 기록 피치(ΔY), 기록 스텝수(M), 또는 경사 각도(θ)의 파라미터를 가장 바람직하게 설정하기 위한 평가 방법의 일례를 설명한다.
예를 들면, 도 23에 나타내는 바와 같이, 기록하고 싶은 직선 패턴(98)이 연장되는 방향의 사이즈를 t1, 연장되는 방향과 직교되는 방향의 사이즈를 t2로 하고, 직선 패턴(98)을 사이즈(t2)의 방향에 대해 복수의 블록(B1~Bs)으로 분할하고, 각블록(B1~Bs) 내의 묘화점(검은 점으로 나타냄)의 개수[cnt(B1)~cnt(Bs)]를 카운팅한다. 그리고, 카운팅값의 최대값을 max[cnt(B1),…, cnt(Bs)], 최소값을 min[cnt(B1),…, cnt(Bs)]로 하여 묘화점의 편재도(D)를,
D=max[cnt(B1),…, cnt(Bs)]-min[cnt(B1),…, cnt(Bs)] (16)
로서 산출함으로써 파라미터의 평가를 행한다. 이 경우, 도 23의 배치에서는 편재도(D)=4, 도 24의 배치에서는 편재도(D)=0이고, 도 24의 배치가 되도록 파라미터를 설정하는 것이 바람직하다고 판단할 수 있다.
또한, 기판(F)에 묘화되는 직선 패턴(98) 경사 각도(φ)는 반드시 일정 방향만으로는 한정되지 않고, 복수의 경사 각도(φ)로 이루어지는 직선 패턴(98)이 혼재하고 있는 경우가 있다. 그 경우, 예를 들면 각 직선 패턴(98)의 각 경사 각도(φ)에 대하여 산출된 각 제 2 안전 영역[Q2(β)]의 공통이 되는 범위로부터 광학 배율(β) 등의 파라미터를 설정한다. 또한, 공통 범위를 찾아낼 수 없는 경우에는 직선 패턴(98)마다 산출한 편재도(D)의 최대값이 소정값 이하가 되도록 광학 배율(β) 등의 파라미터를 설정한다.
이상과 같이 하여 경사 각도(θ), 광학 배율(β), 또는 기록 피치(ΔY) 또는 기록 스텝수(M)를 조정한 후, 기판(F)에 대한 원하는 화상의 노광 처리가 행해진다. 또한, 기록 피치(ΔY) 또는 기록 스텝수(M)는 제어 유닛(42)에 있어서 조정할 수 있다.
그래서, 노광 스테이지(18)에 기판(F)을 흡착 유지시킨 후, 제어 유닛(42)은 노광 스테이지(18)를 구동시키고, 노광 스테이지(18)를 정반(14)의 가이드 레 일(16)을 따라 한쪽 방향으로 이동시킨다. 노광 스테이지(18)가 칼럼(20) 사이를 통과할 때 CCD 카메라(22a, 22b)가 기판의 소정 위치에 형성되어 있는 얼라이먼트 마크를 판독한다. 제어 유닛(42)은 판독한 얼라이먼트 마크의 위치 데이터에 기초하여 기판(F)의 위치 보정 데이터를 산출한다.
위치 보정 데이터가 산출된 후, 제어 유닛(42)은 노광 스테이지(18)를 다른쪽 방향으로 이동시키고, 스캐너(26)에 의해 기판(F)에 대한 화상의 노광 기록을 개시한다.
즉, 광원 유닛(28)으로부터 출력된 레이저 빔(L)은 광파이버(30)를 통해 각 노광 헤드(24a~24j)에 도입된다. 도입된 레이저 빔(L)은 로드 렌즈(32)로부터 반사 미러(34)를 통해 DMD(36)에 입사된다.
DMD(36)를 구성하는 각 마이크로미러(40)는 묘화 데이터에 따라 온 오프 제어된다. 도 4 및 도 5에 나타내는 바와 같이, DMD(36)를 구성하는 각 마이크로미러(40)에 의해 원하는 방향으로 선택적으로 반사된 레이저 빔(L)은 제 1 결상 광학 렌즈(44, 46)에 의해 확대된 후, 마이크로 어퍼쳐 어레이(54), 마이크로 렌즈 어레이(48) 및 마이크로 어퍼쳐 어레이(56)를 통해 소정의 지름으로 조정되고, 이어서 제 2 결상 광학 렌즈(50, 52)에 의해 소정의 배율로 조정되어 기판(F)에 안내된다.
이 경우, 노광 스테이지(18)는 정반(14)을 따라 이동하고, 기판(F)에는 노광 스테이지(18)의 이동 방향과 직교되는 방향으로 배열되는 복수의 노광 헤드(24a~24j)에 의해 원하는 이차원 화상이 묘화된다.
또한, 반사형 공간 광변조 소자인 DMD(36) 대신에 LCD 등의 투과형 공간 광 변조 소자를 사용할 수도 있다. 또한, MEMS(Micro Electro Mechanical Systems) 타입의 공간 광변조 소자, 또는 상기 광학 효과에 의해 투과 광을 변조시키는 광학 소자(PLZT 소자)나 액정 광 셔터(FLC) 등의 액정 셔터 어레이 등, MEMS 타입 이외의 공간 광변조 소자를 이용하는 것도 가능하다. 또한, MEMS란 IC 제조 프로세스를 기반으로 한 마이크로 머시닝 기술에 의한 마이크로 사이즈의 센서, 액츄에이터, 제어 회로를 집적화한 미세 시스템의 총칭이고, MEMS 타입의 공간 광변조 소자란 정전기력, 전자력 등을 이용한 전기 기계 동작에 의해 구동되는 공간 광변조 소자를 의미하고 있다. 또한, 그레이팅 라이트 밸브(GLV:Grating Light Valve)를 복수 배열하여 이차원 형상으로 구성한 것을 이용할 수도 있다. 광원으로서는 상기한 레이저 외에 램프 등도 사용 가능하다.
또한, 상술한 실시형태에서는 반도체 레이저를 광원으로서 설명했지만, 고체 레이저, 자외 LD, 적외 LD 등을 이용할 수도 있다. 또한, 공간 광변조 소자 대신으로서 복수의 발광점이 이차원 형상으로 배열된 광원(예를 들면 LD 어레이, LED 어레이 등)을 사용할 수도 있다.
상술한 실시형태에서는 플랫 베드 타입의 노광 장치(10)를 예로 들었지만, 감광 재료가 드럼의 외주면에 감겨지는 아우터 드럼 타입의 노광 장치, 감광 재료가 실린더의 내주면에 장착되는 이너 드럼 타입의 노광 장치여도 좋다.
또한, 상술한 노광 장치(10)는 예를 들면 프린트 배선 기판(PWB:Printed Wiring Board)의 제조 공정에 있어서의 드라이 필름 레지스트(DFR:Dry Film Resist)나 액상 레지스트의 노광, 액정 표시 장치(LCD)의 제조 공정에 있어서의 컬 러 필터의 형성, TFT의 제조 공정에 있어서의 DFR의 노광, 플라즈마 디스플레이 패널(PDP)의 제조 공정에 있어서의 DFR의 노광 등의 용도에 바람직하게 이용할 수 있다. 또한, 감광 재료가 기판 상에 도포된 것을 본 발명의 대상으로 해도 좋다.
또한, 상술한 노광 장치(10)에는 노광에 의한 광으로 직접 정보가 기록되는 포톤 모드 감광 재료, 노광에 의해 발생한 열로 정보가 기록되는 히트 모드 감광 재료 모두 사용할 수 있다. 포톤 모드 감광 재료를 사용하는 경우 레이저 광원으로서 GaN계 반도체 레이저, 파장 변환 고체 레이저 등이 사용되고, 히트 모드 감광 재료를 사용하는 경우 레이저 광원으로서 적외 반도체 레이저, 고체 레이저가 사용된다.
또한, 본 발명에서는 노광 장치에 한정되지 않고, 예를 들면 잉크젯 기록 헤드에 마찬가지의 구성을 채용하는 것이 가능하다. 즉, 일반적으로 잉크젯 기록 헤드에서는 기록 매체(예를 들면, 기록 용지나 OHP 시트 등)에 대향되는 노즐면에 잉크 방울을 토출하는 노즐이 형성되어 있지만, 잉크젯 기록 헤드 중에는 이 노즐을 격자 형상으로 복수 배치하고, 헤드 자체를 주사 방향에 대하여 경사지게 해서 고해상도로 화상을 기록 가능한 것이 있다. 이러한 이차원 배열이 채용된 잉크젯 기록 헤드에 있어서 각 잉크젯 기록 헤드를 구성하는 복수의 노즐의 파라미터를 조정함으로써 화상 상에서의 재기의 발생을 억제할 수 있다.

Claims (9)

  1. 이차원 형상으로 배열된 복수의 묘화 요소(40)를 묘화면(F)을 따라 소정의 주사 방향으로 상대 이동시키고, 상기 각 묘화 요소(40)를 묘화 데이터에 따라 제어함으로써 묘화를 행하는 묘화 장치에 있어서의 묘화 상태 조정 방법으로서:
    상기 묘화 요소(40)에 의한 상기 묘화면(F) 상에 있어서의 묘화점의 상기 주사 방향과 직교되는 방향에 대한 간격을 구하고, 상기 간격을 묘화 패턴의 허용 변동 폭 이하로 하는, 상기 주사 방향에 대한 상기 묘화 요소(40)의 배열 방향(θ)의 안전 영역을 설정한 후, 상기 안전 영역 내에서 상기 묘화 패턴의 시뮬레이션을 행하여 상기 간격이 상기 허용 변동 폭 이하가 되도록 상기 배열 방향(θ)을 조정하는 것을 특징으로 하는 묘화 상태 조정 방법.
  2. 삭제
  3. 제 1 항에 있어서, 상기 주사 방향과 직교되는 방향의 각 위치에 있어서의 상기 묘화 요소(40)의 각 배열 방향(θ)이 상기 간격을 묘화 패턴의 허용 변동 폭 이하로 하는 안전 영역에 포함되도록 조정하는 것을 특징으로 하는 묘화 상태 조정 방법.
  4. 제 1 항에 있어서, 상기 배열 방향(θ)의 후보가 복수 있는 경우, 상기 주사 방향으로부터 가장 떨어진 상기 배열 방향(θ)을 우선적으로 선택하는 것을 특징으로 하는 묘화 상태 조정 방법.
  5. 제 1 항에 있어서, 상기 주사 방향과 직교되는 방향에 대한 간격이 균등해지도록 상기 배열 방향(θ)을 조정하는 것을 특징으로 하는 묘화 상태 조정 방법.
  6. 이차원 형상으로 배열된 복수의 묘화 요소(40)를 묘화면을 따라 소정의 주사 방향으로 상대 이동시키고, 상기 각 묘화 요소(40)를 묘화 데이터에 따라 제어함으로써 묘화를 행하는 묘화 장치에 있어서의 묘화 상태 조정 방법으로서:
    상기 묘화 요소(40)에 의한 상기 묘화면(F) 상에 있어서의 묘화점의 상기 주사 방향과 직교되는 방향에 대한 간격과, 상기 간격을 묘화 패턴의 허용 변동 폭 이하로 하는 상기 묘화 요소(40)의 상기 주사 방향에 대한 배열 방향(θ)의 관계를 테이블(100)로서 구비하고; 상기 테이블(100)로부터 상기 간격에 따른 상기 배열 방향(θ)을 선택하여 조정하는 것을 특징으로 하는 묘화 상태 조정 방법.
  7. 이차원 형상으로 배열된 복수의 묘화 요소(40)를 묘화면을 따라 소정의 주사 방향으로 상대 이동시키고, 상기 각 묘화 요소(40)를 묘화 데이터에 따라 제어함으로써 묘화를 행하는 묘화 장치에 있어서의 묘화 상태 조정 장치로서:
    상기 묘화 요소(40)에 의한 상기 묘화면(F) 상에 있어서의 묘화점의 상기 주사 방향과 직교되는 방향에 대한 간격을 구하고, 상기 간격을 묘화 패턴의 허용 변동 폭 이하로 하는, 상기 주사 방향에 대한 상기 묘화 요소(40)의 배열 방향(θ)의 안전 영역을 설정한 후, 상기 안전 영역 내에서 상기 묘화 패턴의 시뮬레이션을 행하여 상기 간격이 상기 허용 변동 폭 이하가 되도록 상기 배열 방향(θ)을 조정하는 배열 방향 조정 수단(77)을 구비하는 것을 특징으로 하는 묘화 상태 조정 장치.
  8. 삭제
  9. 이차원 형상으로 배열된 복수의 묘화 요소(40)를 묘화면(F)을 따라 소정의 주사 방향으로 상대 이동시키고, 상기 각 묘화 요소(40)를 묘화 데이터에 따라 제어함으로써 묘화를 행하는 묘화 장치에 있어서의 묘화 상태 조정 장치로서:
    상기 묘화 요소(40)에 의한 상기 묘화면(F) 상에 있어서의 묘화점의 상기 주사 방향과 직교되는 방향에 대한 간격과, 상기 간격을 묘화 패턴의 허용 변동 폭 이하로 하는 상기 묘화 요소(40)의 상기 주사 방향에 대한 배열 방향(θ)의 관계를 테이블로서 기억하는 테이블 기억 수단(100); 및
    상기 테이블로부터 상기 간격에 따른 상기 배열 방향(θ)을 선택하여 조정하는 배열 방향 조정 수단(77)을 구비하는 것을 특징으로 하는 묘화 상태 조정 장치.
KR1020087023229A 2006-03-27 2007-03-16 묘화 상태 조정 방법 및 장치 KR101414538B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2006-00085153 2006-03-27
JP2006085153A JP4948867B2 (ja) 2006-03-27 2006-03-27 描画状態調整方法及び装置
PCT/JP2007/055447 WO2007111174A1 (ja) 2006-03-27 2007-03-16 描画状態調整方法及び装置

Publications (2)

Publication Number Publication Date
KR20080114754A KR20080114754A (ko) 2008-12-31
KR101414538B1 true KR101414538B1 (ko) 2014-07-03

Family

ID=38541094

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087023229A KR101414538B1 (ko) 2006-03-27 2007-03-16 묘화 상태 조정 방법 및 장치

Country Status (4)

Country Link
US (1) US20100259736A1 (ko)
JP (1) JP4948867B2 (ko)
KR (1) KR101414538B1 (ko)
WO (1) WO2007111174A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8740340B2 (en) * 2011-03-09 2014-06-03 Seiko Epson Corporation Printing device
JP2013065387A (ja) 2011-08-31 2013-04-11 Panasonic Corp 記録再生装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001521672A (ja) 1997-04-14 2001-11-06 ディーコン エー/エス 光電性媒体を照明する装置及び方法
JP2004062155A (ja) 2002-06-07 2004-02-26 Fuji Photo Film Co Ltd 露光ヘッド及び露光装置
KR20040048298A (ko) * 2002-12-02 2004-06-07 후지 샤신 필름 가부시기가이샤 묘화헤드, 묘화장치 및 묘화방법
JP2004226520A (ja) 2003-01-21 2004-08-12 Fuji Photo Film Co Ltd 露光装置及び露光装置の調整方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297836C (zh) * 2002-06-07 2007-01-31 富士胶片株式会社 曝光头以及曝光装置
JP2005022247A (ja) * 2003-07-02 2005-01-27 Fuji Photo Film Co Ltd 画像記録方法及び画像記録装置
JP4324646B2 (ja) * 2003-07-09 2009-09-02 株式会社オーク製作所 パターン描画装置
CN1721996A (zh) * 2004-06-17 2006-01-18 富士胶片株式会社 描绘装置及描绘方法
JP4823581B2 (ja) * 2004-06-17 2011-11-24 富士フイルム株式会社 描画装置および描画方法
JP2006085074A (ja) * 2004-09-17 2006-03-30 Fuji Photo Film Co Ltd 画像形成装置
JP4638826B2 (ja) * 2005-02-04 2011-02-23 富士フイルム株式会社 描画装置及び描画方法
JP2006337601A (ja) * 2005-05-31 2006-12-14 Fujifilm Holdings Corp 描画装置及び描画方法
JP2007025398A (ja) * 2005-07-19 2007-02-01 Fujifilm Corp パターン形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001521672A (ja) 1997-04-14 2001-11-06 ディーコン エー/エス 光電性媒体を照明する装置及び方法
JP2004062155A (ja) 2002-06-07 2004-02-26 Fuji Photo Film Co Ltd 露光ヘッド及び露光装置
KR20040048298A (ko) * 2002-12-02 2004-06-07 후지 샤신 필름 가부시기가이샤 묘화헤드, 묘화장치 및 묘화방법
JP2004226520A (ja) 2003-01-21 2004-08-12 Fuji Photo Film Co Ltd 露光装置及び露光装置の調整方法

Also Published As

Publication number Publication date
KR20080114754A (ko) 2008-12-31
US20100259736A1 (en) 2010-10-14
WO2007111174A1 (ja) 2007-10-04
JP2007264023A (ja) 2007-10-11
JP4948867B2 (ja) 2012-06-06

Similar Documents

Publication Publication Date Title
US7212327B2 (en) Imaging head, imaging device and imaging method
KR100737875B1 (ko) 노광장치
US8109605B2 (en) Image recording apparatus and image recording method
KR101369217B1 (ko) 묘화 상태 조정 방법 및 장치
JP4450739B2 (ja) 露光装置
US20050286093A1 (en) Image drawing apparatus and image drawing method
JP4486323B2 (ja) 画素位置特定方法、画像ずれ補正方法、および画像形成装置
JP6652618B2 (ja) 照度割合変更方法及び露光方法
US7177011B2 (en) Image drawing apparatus and image drawing method
KR101067729B1 (ko) 프레임 데이타 작성 장치, 작성 방법, 작성 프로그램, 그프로그램을 격납한 기억 매체, 및 묘화 장치
JP2005316409A (ja) 露光装置
JP4638826B2 (ja) 描画装置及び描画方法
JP4273030B2 (ja) 露光装置の校正方法及び露光装置
JP2007078764A (ja) 露光装置および露光方法
US7339602B2 (en) Image-drawing device and image-drawing method
KR101414538B1 (ko) 묘화 상태 조정 방법 및 장치
US20070291348A1 (en) Tracing Method and Apparatus
US20050157286A1 (en) Method and system for detecting sensitivity of photosensitive materials and exposure correcting method
KR101343906B1 (ko) 묘화 장치 및 묘화 방법
JP2008139527A (ja) 描画装置及び描画方法
JP2007310263A (ja) 画像記録方法及び装置並びにその調整方法
JP2005202227A (ja) 感光材料の感度検出方法および装置並びに露光補正方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
N231 Notification of change of applicant
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170601

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180529

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190530

Year of fee payment: 6