KR101298624B1 - 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 및 방법 - Google Patents
재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 및 방법 Download PDFInfo
- Publication number
- KR101298624B1 KR101298624B1 KR1020120029448A KR20120029448A KR101298624B1 KR 101298624 B1 KR101298624 B1 KR 101298624B1 KR 1020120029448 A KR1020120029448 A KR 1020120029448A KR 20120029448 A KR20120029448 A KR 20120029448A KR 101298624 B1 KR101298624 B1 KR 101298624B1
- Authority
- KR
- South Korea
- Prior art keywords
- gas
- boil
- refrigerant
- high pressure
- storage tank
- Prior art date
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 298
- 239000000446 fuel Substances 0.000 title claims abstract description 256
- 239000003345 natural gas Substances 0.000 title claims abstract description 148
- 238000002347 injection Methods 0.000 title claims abstract description 141
- 239000007924 injection Substances 0.000 title claims abstract description 141
- 238000000034 method Methods 0.000 title claims abstract description 57
- 239000007789 gas Substances 0.000 claims abstract description 822
- 238000003860 storage Methods 0.000 claims abstract description 194
- 239000003949 liquefied natural gas Substances 0.000 claims abstract description 186
- 230000006835 compression Effects 0.000 claims abstract description 92
- 238000007906 compression Methods 0.000 claims abstract description 92
- 239000006200 vaporizer Substances 0.000 claims abstract description 50
- 238000011084 recovery Methods 0.000 claims abstract description 40
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 28
- 238000002156 mixing Methods 0.000 claims abstract description 16
- 230000008016 vaporization Effects 0.000 claims abstract description 12
- 239000003507 refrigerant Substances 0.000 claims description 354
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 52
- 238000001704 evaporation Methods 0.000 claims description 52
- 230000008020 evaporation Effects 0.000 claims description 51
- 239000002360 explosive Substances 0.000 claims description 44
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 13
- 239000007788 liquid Substances 0.000 description 128
- 230000004048 modification Effects 0.000 description 71
- 238000012986 modification Methods 0.000 description 71
- 238000010586 diagram Methods 0.000 description 28
- 239000002737 fuel gas Substances 0.000 description 28
- 238000001816 cooling Methods 0.000 description 22
- 229910052757 nitrogen Inorganic materials 0.000 description 19
- 238000005057 refrigeration Methods 0.000 description 18
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 238000009835 boiling Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 7
- 238000009834 vaporization Methods 0.000 description 7
- 230000001276 controlling effect Effects 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 238000007710 freezing Methods 0.000 description 5
- 230000008014 freezing Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 229910052815 sulfur oxide Inorganic materials 0.000 description 4
- 238000004781 supercooling Methods 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 239000010763 heavy fuel oil Substances 0.000 description 3
- 239000003915 liquefied petroleum gas Substances 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- MSSNHSVIGIHOJA-UHFFFAOYSA-N pentafluoropropane Chemical compound FC(F)CC(F)(F)F MSSNHSVIGIHOJA-UHFFFAOYSA-N 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- YFMFNYKEUDLDTL-UHFFFAOYSA-N 1,1,1,2,3,3,3-heptafluoropropane Chemical compound FC(F)(F)C(F)C(F)(F)F YFMFNYKEUDLDTL-UHFFFAOYSA-N 0.000 description 1
- NSGXIBWMJZWTPY-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropane Chemical compound FC(F)(F)CC(F)(F)F NSGXIBWMJZWTPY-UHFFFAOYSA-N 0.000 description 1
- UJPMYEOUBPIPHQ-UHFFFAOYSA-N 1,1,1-trifluoroethane Chemical compound CC(F)(F)F UJPMYEOUBPIPHQ-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- QWTDNUCVQCZILF-UHFFFAOYSA-N iso-pentane Natural products CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- GTLACDSXYULKMZ-UHFFFAOYSA-N pentafluoroethane Chemical compound FC(F)C(F)(F)F GTLACDSXYULKMZ-UHFFFAOYSA-N 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0203—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
- F02M21/0215—Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
- F25J1/0025—Boil-off gases "BOG" from storages
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
- C09K5/044—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
- C09K5/045—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D19/00—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D19/02—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
- F02D19/021—Control of components of the fuel supply system
- F02D19/022—Control of components of the fuel supply system to adjust the fuel pressure, temperature or composition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0218—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
- F02M21/0245—High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0218—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
- F02M21/0287—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers characterised by the transition from liquid to gaseous phase ; Injection in liquid phase; Cooling and low temperature storage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/06—Apparatus for de-liquefying, e.g. by heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C5/00—Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
- F17C5/06—Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0045—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/0097—Others, e.g. F-, Cl-, HF-, HClF-, HCl-hydrocarbons etc. or mixtures thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0212—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0229—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
- F25J1/023—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0254—Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0275—Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
- F25J1/0277—Offshore use, e.g. during shipping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0275—Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
- F25J1/0277—Offshore use, e.g. during shipping
- F25J1/0278—Unit being stationary, e.g. on floating barge or fixed platform
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0291—Refrigerant compression by combined gas compression and liquid pumping
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/13—Inert gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/90—Mixing of components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/02—Mixing or blending of fluids to yield a certain product
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/62—Separating low boiling components, e.g. He, H2, N2, Air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/08—Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/30—Compression of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/60—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/60—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/62—Details of storing a fluid in a tank
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Ocean & Marine Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
본 발명은 증발가스의 재액화 장치 및 고압 천연가스 분사 엔진을 탑재한 LNG 운반선과 같은 해상 구조물에 있어서 고압 천연가스 분사 엔진에 효율적으로 연료를 공급하는 동시에 재액화 장치에서 소모하는 에너지를 최소화할 수 있는 연료 공급 시스템 및 방법에 관한 것이다.
본 발명에 따르면, 고압 천연가스 분사 엔진에 연료를 공급하는 연료 공급 시스템으로서, 액화가스를 저장하고 있는 저장탱크와; 상기 저장탱크 내에서 발생한 증발가스를 공급받아 압축하는 증발가스 압축부와; 상기 증발가스 압축부에서 압축된 증발가스를 공급받아 액화시킬 수 있는 재액화 장치와; 상기 증발가스 압축부에서 압축된 증발가스를 상기 저장탱크에서 공급된 액화가스와 혼합하여 응축시키는 재응축기와; 액화가스를 압축하는 고압 펌프와; 상기 고압 펌프에서 압축된 액화가스를 기화시키기 위한 고압 기화기와; 상기 고압 기화기의 상류측에 설치되어 상기 고압 기화기에서 기화될 액화가스로부터 냉열을 회수하는 냉열회수용 열교환기; 를 포함하며, 상기 저장탱크로부터 배출된 증발가스는 상기 증발가스 압축부에서 12 내지 45bara로 압축되는 것을 특징으로 하는 연료 공급 시스템과 연료 공급 방법이 제공된다.
본 발명에 따르면, 고압 천연가스 분사 엔진에 연료를 공급하는 연료 공급 시스템으로서, 액화가스를 저장하고 있는 저장탱크와; 상기 저장탱크 내에서 발생한 증발가스를 공급받아 압축하는 증발가스 압축부와; 상기 증발가스 압축부에서 압축된 증발가스를 공급받아 액화시킬 수 있는 재액화 장치와; 상기 증발가스 압축부에서 압축된 증발가스를 상기 저장탱크에서 공급된 액화가스와 혼합하여 응축시키는 재응축기와; 액화가스를 압축하는 고압 펌프와; 상기 고압 펌프에서 압축된 액화가스를 기화시키기 위한 고압 기화기와; 상기 고압 기화기의 상류측에 설치되어 상기 고압 기화기에서 기화될 액화가스로부터 냉열을 회수하는 냉열회수용 열교환기; 를 포함하며, 상기 저장탱크로부터 배출된 증발가스는 상기 증발가스 압축부에서 12 내지 45bara로 압축되는 것을 특징으로 하는 연료 공급 시스템과 연료 공급 방법이 제공된다.
Description
본 발명은 고압 천연가스 분사 엔진의 연료 공급 시스템 및 방법에 관한 것으로서, 더욱 상세하게는 증발가스의 재액화 장치 및 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진을 탑재한 LNG 운반선과 같은 해상 구조물에 있어서 고압 천연가스 분사 엔진에 효율적으로 연료를 공급하는 동시에 재액화 장치에서 소모하는 에너지를 최소화할 수 있는 연료 공급 시스템 및 방법에 관한 것이다.
근래, LNG(Liquefied Natural Gas)나 LPG(Liquefied Petroleum Gas) 등의 액화가스의 소비량이 전 세계적으로 급증하고 있는 추세이다. 액화가스는, 육상 또는 해상의 가스배관을 통해 가스 상태로 운반되거나, 또는, 액화된 상태로 액화가스 운반선에 저장된 채 원거리의 소비처로 운반된다. LNG나 LPG 등의 액화가스는 천연가스 혹은 석유가스를 극저온(LNG의 경우 대략 -163℃)으로 냉각하여 얻어지는 것으로 가스 상태일 때보다 그 부피가 대폭적으로 감소되므로 해상을 통한 원거리 운반에 매우 적합하다.
액화가스 운반선은, 액화가스를 싣고 바다를 운항하여 육상 소요처에 이 액화가스를 하역하기 위한 것이며, 이를 위해, 액화가스의 극저온에 견딜 수 있는 저장탱크(흔히, '화물창'이라 함)를 포함한다.
이와 같이 극저온 상태의 액화가스를 저장할 수 있는 저장탱크가 마련된 해상 구조물의 예로서는 액화가스 운반선 이외에도 LNG RV (Regasification Vessel)와 같은 선박이나 LNG FSRU (Floating Storage and Regasification Unit), LNG FPSO (Floating, Production, Storage and Off-loading)와 같은 구조물 등을 들 수 있다.
LNG RV는 자력 항해 및 부유가 가능한 액화가스 운반선에 LNG 재기화 설비를 설치한 것이고, LNG FSRU는 육상으로부터 멀리 떨어진 해상에서 LNG 수송선으로부터 하역되는 액화 천연가스를 저장탱크에 저장한 후 필요에 따라 액화 천연가스를 기화시켜 육상 수요처에 공급하는 해상 구조물이다. 그리고, LNG FPSO는 채굴된 천연가스를 해상에서 정제한 후 직접 액화시켜 저장탱크 내에 저장하고, 필요시 이 저장탱크 내에 저장된 LNG를 LNG 수송선으로 옮겨싣기 위해 사용되는 해상 구조물이다. 본 명세서에서 해상 구조물이란, 액화가스 운반선, LNG RV 등의 선박을 비롯하여, LNG FPSO, LNG FSRU 등의 구조물까지도 모두 포함하는 개념이다.
천연가스의 액화온도는 상압에서 약 -163℃의 극저온이므로, LNG는 그 온도가 상압에서 -163℃ 보다 약간만 높아도 증발된다. 종래의 LNG 운반선의 경우를 예를 들어 설명하면, LNG 운반선의 LNG 저장탱크는 단열처리가 되어 있기는 하지만, 외부의 열이 LNG에 지속적으로 전달되므로, LNG 운반선에 의해 LNG를 수송하는 도중에 LNG가 LNG 저장탱크 내에서 지속적으로 기화되어 LNG 저장 탱크 내에 증발가스(BOG; Boil-Off Gas)가 발생한다.
발생된 증발가스는 저장탱크 내의 압력을 증가시키며 선박의 요동에 따라 액화가스의 유동을 가속시켜 구조적인 문제를 야기시킬 수 있기 때문에, 증발가스의 발생을 억제할 필요가 있다.
종래, 액화가스 운반선의 저장탱크 내에서의 증발가스를 억제하기 위해, 증발가스를 저장탱크의 외부로 배출시켜 소각해 버리는 방법, 증발가스를 저장탱크의 외부로 배출시켜 재액화 장치를 통해 재액화시킨 후 다시 저장탱크로 복귀시키는 방법, 선박의 추진기관에서 사용되는 연료로서 증발가스를 사용하는 방법, 저장탱크의 내부압력을 높게 유지함으로써 증발가스의 발생을 억제하는 방법 등이 단독으로 혹은 복합적으로 사용되고 있었다.
증발가스 재액화 장치가 탑재된 종래의 해상 구조물의 경우, 저장탱크의 적정 압력 유지를 위해 저장탱크 내부의 증발가스를 저장탱크 외부로 배출시켜 재액화 장치를 통해 재액화시키게 되는데, 재액화 작업이 이루어지기 전에 증발가스를 대략 4 내지 8 bara 정도의 저압으로 압축시켜 재액화 장치로 공급한다. 압축된 증발가스는 질소 냉동 사이클을 포함하는 재액화 장치에서 초저온으로 냉각된 질소와의 열교환을 통해 재액화된 후 저장탱크로 복귀된다.
증발가스의 재액화 효율을 높이기 위해서는 증발가스를 높은 압력으로 압축시키는 것이 바람직하지만, 저장탱크에 저장된 LNG는 상압 상태를 유지하고 있기 때문에 재액화된 액화증발가스의 압력이 지나치게 높으면 저장탱크에 복귀할 때 플래시 가스(flash gas)가 발생하게 된다. 따라서, 재액화 효율은 낮지만 상기한 4 내지 8 bara 정도의 저압으로 증발가스를 압축할 수밖에 없다는 문제가 있다.
즉, 도 1에 도시된 바와 같이, 종래에는 저장탱크에서 발생된 증발가스, 즉 NBOG를 증발가스 압축기로 공급하여 대략 4 내지 8 bara 정도의 저압으로 압축시킨 후, 이 저압 BOG를 질소가스를 냉매로 사용하는 재액화 장치로 공급(대한민국 특허공개 제 10-2006-0123675 호의 상세한 설명에는 약 6.8bara로 압축하는 것이 기재되어 있고, 대한민국 특허공개 제 10-2001-0089142 호(대응 미국특허 US 6,530,241)의 상세한 설명에는 4.5bara로 압축하는 것이 기재되어 있음)한다. 재액화 장치에서 액화된 증발가스, 즉 LBOG는 저장탱크로 복귀하면서 플래시 가스가 발생하는 문제가 있었으며, 그로 인해 증발가스 압축기에서 증발가스의 압력을 저압으로 압축시킬 수밖에 없었다.
결국, 종래에는 저장탱크에서 발생되는 증발가스는 재액화 장치를 통해 재액화한 후 저장탱크에 복귀시키는 것이 전형적인 증발가스 처리방법으로 활용되고 있었으며, 재액화 이후 저장탱크 복귀시 플래시 가스 발생을 가능한 한 억제하기 위해 재액화되는 증발가스의 압력을 높이지 않는 것이 기본적인 개념으로 굳어져 있었다.
증발가스를 재액화시키는 재액화 장치로서는 국제특허공개 WO 2007/117148 호 공보, WO 2009/136793 호 공보 및 WO 2011/078689 호 공보, 한국특허공개 제2006-0123675호 공보, 한국특허공개 제2001-0089142호 공보 등에 개시되어 있는 질소 냉동 사이클이나, 그 이외에 혼합냉매 사이클 등이 이용되고 있었다. 위에서 설명한 바와 같이, 이와 같은 종래의 증발가스 재액화장치는 증발가스를 재액화할 때는 보통 4 ~ 8 bara 내외에서 가압하여 재액화하는 것이 일반적이고, 당업계에서는 그 이상으로 가압하는 것은 기술적으로 타당하지 못하다는 인식이 널리 퍼져 있었다. 그 이유는, 증발가스를 재액화할 때, 증발가스가 높은 압력에서 재액화되면 나중에 탱크로 되돌려 보낼 경우, 상압 근처로 압력이 낮아지므로 플래시 가스(증발가스)가 많이 생기기 때문이다.
한편, 질소 냉동 사이클은 냉매로서 질소가스(N2)를 사용하여 액화 효율이 낮은 문제가 있고, 혼합냉매 사이클은 냉매로서 질소와 탄화수소 가스 등이 혼합된 냉매를 사용하기 때문에 안정성이 떨어지는 문제가 있다.
더욱 상세하게는, 종래의 선박이나 해상 플랜트 등의 해상용 LNG 재액화 장치에서는 터보 팽창기(tubo expander) 방식의 질소 역브레이튼 사이클을 구현하여 증발가스를 재액화하였고, 육상용 LNG 액화 플랜트에서는 혼합냉매를 이용하는 줄-톰슨 냉동 사이클을 구현하여 천연가스를 액화시켰다. 해상용으로 사용하던 질소 역브레이튼 사이클은 상대적으로 장치의 구성이 단순하여 공간이 한정된 선박이나 해상 구조물에서 유리하지만 효율이 낮은 문제가 있고, 육상용으로 사용하던 혼합냉매 줄-톰슨 냉동 사이클은 상대적으로 효율이 높지만 혼합냉매의 특성상 기액상태가 동시에 존재할 때 이를 분리하기 위한 세퍼레이터를 사용해야 하는 등 장치 구성이 복잡해지는 문제가 있다. 하지만 이러한 재액화 방식은 아직 많이 사용되고 있다.
그 밖에도 LNG 등의 액화가스를 저장하는 저장탱크를 구비한 해상 구조물에 대하여, 저장탱크에서 지속적으로 발생하는 증발가스를 효율적으로 처리하되, 플래시 가스의 발생을 억제할 수 있는 방법에 대한 연구 개발이 계속해서 이루어질 필요가 있다.
본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위한 것으로서, 증발가스의 재액화 장치 및 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진을 탑재한 LNG 운반선과 같은 해상 구조물에 있어서 액화가스 저장탱크로부터 발생하는 증발가스를 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진의 연료로 활용하되, 고압 천연가스 분사 엔진에 효율적으로 연료를 공급하는 동시에 재액화 장치에서 소모하는 에너지를 최소화할 수 있는 연료 공급 시스템 및 방법을 제공하고자 하는 것이다.
상기 목적을 달성하기 위한 본 발명의 일 측면에 따르면, 고압 천연가스 분사 엔진에 연료를 공급하는 연료 공급 시스템으로서, 액화가스를 저장하고 있는 저장탱크와; 상기 저장탱크 내에서 발생한 증발가스를 공급받아 압축하는 증발가스 압축부와; 상기 증발가스 압축부에서 압축된 증발가스를 공급받아 액화시킬 수 있는 재액화 장치와; 상기 증발가스 압축부에서 압축된 증발가스를 상기 저장탱크에서 공급된 액화가스와 혼합하여 응축시키는 재응축기와; 액화가스를 압축하는 고압 펌프와; 상기 고압 펌프에서 압축된 액화가스를 기화시키기 위한 고압 기화기와; 상기 고압 기화기의 상류측에 설치되어 상기 고압 기화기에서 기화될 액화가스로부터 냉열을 회수하는 냉열회수용 열교환기; 를 포함하며, 상기 저장탱크로부터 배출된 증발가스는 상기 증발가스 압축부에서 12 내지 45bara로 압축되는 것을 특징으로 하는 연료 공급 시스템이 제공된다.
상기 냉열회수용 열교환기는 상기 고압 기화기에 공급되는 액화가스와 상기 재액화 장치의 냉매를 열교환하는 것이 바람직하다.
상기 연료 공급 시스템은, 상기 재액화 장치의 콜드 박스 상류측에서 분기하여 상기 냉열회수용 열교환기까지 연장하는 제1 냉매 순환 라인과, 상기 냉열회수용 열교환기로부터 상기 재액화 장치로 복귀하는 제2 냉매 순환 라인을 포함하는 것이 바람직하다.
상기 제2 냉매 순환 라인은 상기 냉열회수용 열교환기에서 냉각된 후 상기 재액화 장치로 복귀하는 냉매가 상기 재액화 장치 내에서 팽창되기 전의 냉매와 혼합되도록 구성되는 것이 바람직하다.
상기 냉열회수용 열교환기는 상기 고압 기화기에 공급되는 액화가스와 상기 증발가스 압축부에서 압축된 증발가스를 열교환하는 것이 바람직하다.
상기 연료 공급 시스템은, 상기 증발가스 압축부와 상기 재액화 장치 사이의 증발가스 공급라인에서 분기하여 상기 냉열회수용 열교환기에 연결되는 제1 증발가스 우회라인과, 상기 냉열회수용 열교환기로부터 상기 재응축기까지 연장하는 제2 증발가스 우회라인을 포함하는 것이 바람직하다.
상기 재액화 장치의 냉매는 질소가스 또는 혼합냉매인 것이 바람직하다.
상기 재액화 장치의 냉매는 비폭발성 혼합냉매인 것이 바람직하다.
상기 고압 천연가스 분사 엔진은, 액화가스 운반선, LNG RV, LNG FSRU 및 LNG FPSO 중 어느 하나에 설치되는 것이 바람직하다.
또한, 본 발명의 또 다른 측면에 따르면, 연료 공급 시스템에 의해 고압 천연가스 분사 엔진에 연료를 공급하는 방법으로서, 상기 연료 공급 시스템은, 액화가스를 저장하고 있는 저장탱크와, 상기 저장탱크 내에서 발생한 증발가스를 공급받아 압축하는 증발가스 압축부와, 상기 증발가스 압축부에서 압축된 증발가스를 공급받아 액화시킬 수 있는 재액화 장치와, 상기 증발가스 압축부에서 압축된 증발가스를 상기 저장탱크에서 공급된 액화가스와 혼합하여 응축시키는 재응축기와, 액화가스를 압축하는 고압 펌프와, 상기 고압 펌프에서 압축된 액화가스를 기화시키기 위한 고압 기화기를 포함하며, 상기 저장탱크로부터 배출된 증발가스는 상기 증발가스 압축부에서 12 내지 45bara로 압축되며, 상기 고압 펌프에서 압축된 액화가스는 냉열회수용 열교환기에서 가열된 후 상기 고압 기화기에 공급되는 것을 특징으로 하는 연료 공급 방법이 제공된다.
상기 연료 공급 방법에 따르면, 레이든(laden)시, 상기 냉열회수용 열교환기에서 상기 고압 기화기에 공급되는 액화가스와 상기 재액화 장치의 냉매를 열교환하는 것이 바람직하다.
상기 연료 공급 방법에 따르면, 밸러스트(ballast)시, 상기 냉열회수용 열교환기에서 상기 고압 기화기에 공급되는 액화가스와 상기 증발가스 압축부에서 압축된 증발가스를 열교환하는 것이 바람직하다.
상기 연료 공급 방법에 따르면, 상기 저장탱크가 액화가스 화물로 가득 채워진 레이든(laden)시, 상기 저장탱크에서 자연적으로 발생하는 증발가스를 상기 재액화 장치에 공급하여 재액화하는 것이 바람직하다.
상기 연료 공급 방법에 따르면, 밸러스트 운항과정 중, 상기 저장탱크로부터 공급된 액화가스를 이용하여, 발생된 증발가스 중 일부 혹은 전부를 상기 재응축기에서 재응축시키되, 상기 증발가스 전부를 상기 재응축기로 공급하여 재응축시키고 상기 재액화 장치의 가동을 중단시키는 기간을 포함하는 것이 바람직하다.
본 출원인은, 기존에 고압가스 분사 엔진에 연료를 공급하는 방법으로서 MAN B&W사가 제안한 가스의 압축에 의한 연료의 공급 대신에, 액체(LNG)를 고압펌프로 압축(펌핑)한 후에 이를 기화시켜 연료로 공급하는 기술을 개발하여 2007년 5월 8일자로 대한민국에 출원(특허출원 제 10-2007-0044727 호)하였고, 이러한 기술은 선주와 MAN B&W사로부터 큰 호응을 받고 있다.
이어서 Hamworthy사는 본 출원인의 상기 기술을 다소 개량하여 WO 2009/136793으로 출원한 바 있다. 하지만 이와 같은 기술이 개발된 이후에도 여전히, 당업계에서는 재액화후 탱크로 회송시 플래시 가스의 발생을 우려하여 중발가스의 재액화시에 압축범위는 저압 범위(4 ~ 8 bara)로 하고 그 이상의 압력으로 증발가스를 압축하는 것은 전혀 고려되지 않고 있었다.
이와 같은 LNG의 고압 펌핑의 기본기술의 개발 후, 본 출원인은 이 기술을 실제 적용함에 있어서, LNG 저장탱크에서 발생하는 증발가스를 연료로 사용하는 기술을 개발하는 과정 중에서, 증발가스를 4 ~ 8 bara로 압축하여 재액화하는 종래의 재액화와 달리, 종래의 재액화보다 압력이 더 높은 중압범위로 가압(12 내지 45 bara)한 상태에서 재액화하고 이를 고압펌프로 공급하면 재액화에 소요되는 에너지가 상당히 줄어드는 점을 발견하였고, 이와 같은 발견이 기초가 되어 본 발명을 완성하게 되었다.
또, 본 발명에 따르면, 재액화 에너지가 현저하게 감소하는 장점 이외에도, 재액화 후의 중압범위로 가압된 LNG를 고압으로 압축하는 고압펌프의 동력 소비도 줄어드는 점, 또 재액화 후에 고압펌프로 가압을 하므로 종래와 같이 과냉(subcooling)을 할 필요가 없는 점 등의 장점이 있음을 발견하였다.
상기와 같은 발명의 과제와 이의 작용효과는 본 발명에서 처음으로 개시되는 것들이다.
본 발명의 연료 공급 시스템에 따른 연료 공급 방법은, 액화되기 전의 증발가스와 기화되기 전의 액화증발가스를 열교환함으로써 액화증발가스가 가지는 액화 에너지를 증발가스가 회수하여 사용함으로써 증발가스를 액화하기 위한 에너지를 절감하는 것이 바람직하다. 또한, 상기 액화가스를 저장하는 저장탱크에서 발생한 증발가스를 압축하기 전에 상기 압축된 증발가스나 상기 재액화장치의 질소냉동사이클에서 가온된 질소냉매와 열교환하여 상기 저장탱크에서 발생한 증발가스를 예열하는 것이 바람직하다. 이와 같은 냉열회수나 증발가스의 예열 등은 국제특허공개 WO 2007/117148 호 공보, WO 2009/136793 호 공보, 한국특허공개 제2006-0123675호 공보, 한국특허등록 제0929250호 공보 등에 공개된 기술을 사용할 수 있다. 본 발명에서는 액화증발가스로부터 냉열회수를 기재하고 있으나, 액화증발가스의 양이 고압 천연가스 분사 엔진에서의 연료 필요량보다 적을 경우에, LNG 저장탱크에 저장된 LNG를 연료로 사용할 필요가 있고, 이 경우에는 상기 LNG 저장탱크로부터 공급되는 LNG로부터 냉열을 회수할 수도 있다.
상기 해상 구조물의 예로서는 액화가스 운반선 이외에도 LNG RV와 같은 선박이나 LNG FSRU, LNG FPSO와 같은 구조물 등을 들 수 있다.
상기 연료 공급 방법은, 상기 연료 공급 중에 상기 액화증발가스는 모두 상기 고압 천연가스 분사 엔진에 공급하는 시기를 포함하는 것을 특징으로 한다. 즉, 해상 구조물의 운항 중에는 고압 천연가스 분사 엔진이 필요로 하는 연료의 양은 LNG 저장탱크에서 발생하는 증발가스의 양보다 더 많은 시기가 상당 기간 존재하고 이 시기에는 액화증발가스를 모두 고압 천연가스 분사 엔진에 공급함으로써 액화증발가스를 LNG 저장탱크에 회송함에 따른 플래시 가스의 발생 문제를 해결할 수 있다.
본 발명의 또 다른 측면에서 상기 해양구조물의 운항 중에는 고압 천연가스 분사 엔진이 필요로 하는 연료의 양이 상기 LNG 저장탱크에서 발생하는 증발가스의 양 이상일 때에는 상기 액화증발가스 전부 또는 상당부분을 상기 고압 천연가스 분사 엔진에 공급하는 것을 특징으로 한다. 이때 부족한 연료는 LNG 저장탱크에 저장된 LNG를 연료로 사용할 수도 있다.
본 발명에 따르면, 증발가스의 재액화 장치 및 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진을 탑재한 LNG 운반선과 같은 해상 구조물에 있어서 액화가스 저장탱크로부터 발생하는 증발가스를 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진의 연료로 활용할 수 있는 연료 공급 시스템 및 방법이 제공될 수 있다.
본 발명의 고압 천연가스 분사 엔진용 연료 공급 시스템 및 방법에 의하면, 고압 천연가스 분사 엔진에 효율적으로 연료를 공급하는 동시에 재액화 장치에서 소모하는 에너지를 최소화할 수 있게 된다.
본 발명의 고압 천연가스 분사 엔진을 위한 연료 공급 시스템에 의하면, 증발가스를 종래의 4 내지 8 bara 정도의 저압으로 압축시키는 대신에 12 내지 45 bara 정도의 중압으로 압축시킨 후 재액화시킬 수 있으며, 증발가스의 압력이 높아지면 액화 에너지가 감소하므로, 재액화시 소요되는 액화 에너지를 절감할 수 있게 된다.
또한, 본 발명의 고압 천연가스 분사 엔진을 위한 연료 공급 시스템에 의하면, 재액화시 증발가스의 압력이 종래보다 높은 중압 상태이므로, 증발가스의 액화점이 상승하여 재액화를 위한 열교환기에서 받는 열응력이 감소하고 고압 기화기의 히트 듀티(heat duty)가 감소하여 장비의 크기를 줄일 수 있다.
또한, 중압으로 가압된 상태의 액화증발가스를 고압으로 압축하므로 고압펌프의 동력도 절감되는 효과도 있다.
또한, 본 발명의 고압 천연가스 분사 엔진을 위한 연료 공급 시스템에 의하면, 증발가스의 재액화를 위한 재액화 장치의 냉매로서 비폭발성 혼합냉매를 이용할 경우, 종래의 질소 냉동 사이클보다 효율적이고 종래의 혼합냉매 사이클보다 안전한 재액화가 가능하게 된다.
상기 연료 공급 시스템에 의한 연료 공급 방법은, 상기 고압 천연가스 분사 엔진의 운전 중에 상기 액화증발가스는 모두 상기 고압 천연가스 분사 엔진에 공급하는 시기를 포함한다. 즉, 해양구조물의 운항 중에는 고압 천연가스 분사 엔진이 필요로 하는 연료의 양은 LNG 저장탱크에서 발생하는 증발가스의 양보다 더 많은 시기가 상당 기간 존재하는데, 이 시기에는 액화증발가스를 모두 고압 천연가스 분사 엔진에 공급함으로써 액화증발가스를 LNG 저장탱크에 회송함에 따른 플래시 가스의 발생 문제를 해결할 수 있다. 또 종래와 같이 액화증발가스를 LNG 저장탱크로 회송시에 발생하는 플래시 가스를 줄이기 위하여 과냉함에 따른 에너지 소비도 상당량 줄일 수 있다. 종래의 Hamworthy사의 Mark III 재액화 장치(WO 2007/117148 호에 기재된 기술)의 경우, 8 bara로 증발가스를 가압하여 -159℃로 액화한다. 이때의 증발가스의 포화온도는 약 -149.5℃이므로 약 9 ~ 10℃ 정도가 과냉된 상태이다. 이 정도의 과냉이 되어야 LNG 저장탱크로 액화증발가스를 회송할 경우 플래시 가스의 발생이 억제된다. 하지만, 본 발명에서는 액화증발가스가 고압 천연가스 분사 엔진에 연료로서 공급되는 과정에서 고압 펌프에 의해 가압되기 때문에, 압력 증가로 인해 포화상태의 LBOG는 이후 과냉상태가 안정적으로 유지될 수 있다. 따라서, 본 발명에서는 액화증발가스를 해당 압력에서의 포화온도보다 0.5 ~ 3℃, 바람직하게는 1℃ 정도만 과냉시켜 액화시킨 후 연료로 공급해도 되는 이점이 있다.
또한, 본 발명의 고압 천연가스 분사 엔진을 위한 연료 공급 시스템에 의하면, 필요시 이종연료엔진(DFDE)을 장착하여 고압 천연가스 분사 엔진에 공급되고 남은 연료나 감압시 발생하는 플래시 가스를 이종연료엔진의 연료로 사용하여 소모할 수 있다. 즉, 고압 천연가스 분사엔진에서 필요로 하는 연료를 초과하는 증발가스는 본 발명에 따른 중압에 의한 재액화 과정을 거치지 않고 LNG 저장탱크로부터 바로 4 ~ 8 bara 정도로 압축하여 DFDE에서 사용할 수 있다.
도 1은 종래기술에 따른 증발가스 재액화를 통한 증발가스 처리 방법을 설명하기 위한 개략적인 블록선도,
도 2는 본 발명에 따른 연료 공급을 통한 증발가스 처리 방법을 설명하기 위한 개략적인 블록선도,
도 3a는 본 발명의 제1 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 3b는 본 발명의 제1 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 4a는 본 발명의 비폭발성 혼합냉매에 함유된 성분들의 어는점 및 끓는점을 나타내는 그래프,
도 4b는 탄화수소 혼합냉매에 함유된 성분들의 어는점 및 끓는점을 나타내는 그래프,
도 4c는 천연가스의 가압 압력에 따른 액화 온도를 나타내는 그래프,
도 5는 비폭발성 혼합냉매를 구성하기 위한 냉매 성분들의 끓는점을 나타내는 그래프,
도 6a 내지 도 6c는 증발가스의 재액화 장치에서 질소가스 냉동 사이클을 사용한 경우, 비폭발성 혼합냉매 냉동사이클을 사용한 경우, 그리고 SMR(Single Mixed Refrigerant) 냉동 사이클을 사용한 경우의 소모동력을 비교하기 위한 그래프들,
도 7a는 본 발명의 제2 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 7b는 본 발명의 제2 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 8a는 본 발명의 제3 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 8b는 본 발명의 제3 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 9a는 본 발명의 제4 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 9b는 본 발명의 제4 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 10a는 본 발명의 제5 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 10b는 본 발명의 제5 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 11은 본 발명의 제6 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 12는 본 발명의 제6 실시형태의 제1 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 13은 본 발명의 제6 실시형태의 제2 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 14는 본 발명의 제6 실시형태의 제3 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 15는 본 발명의 제6 실시형태의 제4 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도
도 16은 본 발명의 제7 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도, 그리고
도 17은 본 발명의 제8 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도이다.
도 2는 본 발명에 따른 연료 공급을 통한 증발가스 처리 방법을 설명하기 위한 개략적인 블록선도,
도 3a는 본 발명의 제1 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 3b는 본 발명의 제1 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 4a는 본 발명의 비폭발성 혼합냉매에 함유된 성분들의 어는점 및 끓는점을 나타내는 그래프,
도 4b는 탄화수소 혼합냉매에 함유된 성분들의 어는점 및 끓는점을 나타내는 그래프,
도 4c는 천연가스의 가압 압력에 따른 액화 온도를 나타내는 그래프,
도 5는 비폭발성 혼합냉매를 구성하기 위한 냉매 성분들의 끓는점을 나타내는 그래프,
도 6a 내지 도 6c는 증발가스의 재액화 장치에서 질소가스 냉동 사이클을 사용한 경우, 비폭발성 혼합냉매 냉동사이클을 사용한 경우, 그리고 SMR(Single Mixed Refrigerant) 냉동 사이클을 사용한 경우의 소모동력을 비교하기 위한 그래프들,
도 7a는 본 발명의 제2 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 7b는 본 발명의 제2 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 8a는 본 발명의 제3 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 8b는 본 발명의 제3 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 9a는 본 발명의 제4 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 9b는 본 발명의 제4 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 10a는 본 발명의 제5 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 10b는 본 발명의 제5 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 11은 본 발명의 제6 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 12는 본 발명의 제6 실시형태의 제1 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 13은 본 발명의 제6 실시형태의 제2 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 14는 본 발명의 제6 실시형태의 제3 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 15는 본 발명의 제6 실시형태의 제4 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도
도 16은 본 발명의 제7 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도, 그리고
도 17은 본 발명의 제8 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도이다.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다. 또한 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
일반적으로, 선박에서 배출되는 폐기가스 중 국제 해사 기구(International Maritime Organization)의 규제를 받고 있는 것은 질소산화물(NOx)과 황산화물(SOx)이며, 이산화탄소(CO2)의 배출도 규제하려 하고 있다. 특히, 질소산화물(NOx)과 황산화물(SOx)의 경우, 1997년 해상오염 방지협약(MARPOL; The Prevention of Marine Pollution from Ships) 의정서를 통하여 제기되고, 8년이라는 긴 시간이 소요된 후 2005년 5월에 발효요건을 만족하여 현재 강제규정으로 이행되고 있다.
따라서, 이러한 규정을 충족시키기 위하여 질소산화물(NOx) 배출량을 저감하기 위하여 다양한 방법들이 소개되고 있는데, 이러한 방법 중에서 LNG 운반선을 위하여 고압 천연가스 분사 엔진, 예를 들어 ME-GI 엔진이 개발되어 사용되고 있다.
이와 같은 ME-GI 엔진은 LNG(Liquefied Natural Gas)를 극저온에 견디는 저장탱크에 저장하여 운반하도록 하는 LNG 운반선 등과 같은 해상 구조물(본 명세서에서 해상 구조물이란, LNG 운반선, LNG RV 등의 선박을 비롯하여, LNG FPSO, LNG FSRU 등의 해상 플랜트까지도 모두 포함하는 개념이다.)에 설치될 수 있으며, 이 경우 천연가스를 연료로 사용하게 되며, 그 부하에 따라 대략 150 ∼ 400 bara(절대압력) 정도의 고압의 가스 공급 압력이 요구된다.
ME-GI 엔진과 같은 고압 천연가스 분사 엔진을 탑재한 해상 구조물의 경우에도, LNG 저장탱크에서 발생하는 증발가스(Boil Off Gas; BOG)를 처리하기 위해서는 재액화(Reliquefaction) 장치가 여전히 필요하게 된다. ME-GI 엔진과 같은 고압 천연가스 분사 엔진과, 증발가스를 처리하기 위한 재액화 장치를 모두 탑재한 종래의 해상 구조물의 경우, 가스와 연료유 가격의 변화와 배출가스의 규제 정도에 따라 주로 증발가스를 연료로 사용할 것인지, 아니면 증발가스를 재액화하여 저장탱크로 보내고 주로 중유(Heavy Fuel Oil; HFO)를 연료로 사용할 것인지 선택할 수 있는 장점이 있으며, 특히, 특정규제를 받는 해역을 통과시 간편하게 LNG를 기화시켜서 연료로 사용할 수 있다는 장점이 있고, 차세대 친환경적인 엔진으로서 효율이 50%에 육박하여 향후에는 LNG 운반선의 메인 엔진으로서 사용될 수 있다.
도 2에는 본 발명에 따른 연료 공급 방법을 설명하기 위한 개략적인 블록선도가 도시되어 있다. 본 발명의 연료 공급 방법에 의하면, 저장탱크에서 발생된 증발가스, 즉 NBOG를 증발가스 압축기로 공급하여 대략 12 내지 45 bara 정도의 중압으로 압축시킨 후, 이 중압 BOG를 혼합냉매, 예컨대 비폭발성 혼합냉매(Non Flammable Mixed Refrigerant)나 SMR(Single Mixed Refrigerant), 또는 질소를 냉매로 사용하는 재액화 장치로 공급한다. 재액화 장치에서 액화된 증발가스, 즉 LBOG는 연료 공급 시스템에서 ME-GI 엔진에서 요구하는 압력(예컨대 150 내지 400 bara 정도의 고압)으로 압축된 후 ME-GI 엔진에 연료로서 공급된다. 본 발명에 의하면, 재액화 장치에서 연료 공급 시스템에 공급되는 LBOG가 저장탱크로 복귀하지 않으므로 종래기술에서와 같이 플래시 가스가 발생하는 문제를 방지할 수 있으며, 그로 인해 증발가스 압축기에서 증발가스의 압력을 중압으로 압축시킬 수 있다.
본 명세서에 있어서, 고압이 의미하는 압력범위는 고압 천연가스 분사 엔진에서 요구하는 연료 공급 압력인 대략 150 내지 400 bara 정도의 압력이고, 중압이 의미하는 압력범위는 증발가스 압축부(13)에서 증발가스를 압축하는 대략 12 내지 45 bara 정도의 압력이고, 저압이 의미하는 압력범위는 종래 기술에서 증발가스를 재액화 장치로 공급하기 위해 압축하는 대략 4 내지 8 bara 정도의 압력이다.
이와 같은 중압범위의 압축 후 재액화는, 도 6a 및 도 6b에서와 같이 질소 냉매를 사용하는 경우와 비폭발성 혼합냉매를 사용하는 경우, 그리고 도 6c에서와 같이 SMR을 사용하는 경우 모두에 있어서 종래의 저압 재액화와 대비하여 상당한 재액화 에너지 절감의 효과를 나타낸다.
도 6a 및 도 6b에 나타낸 데이터는 Hysys 공정모델(Aspentech사 제품)을 이용하여 나온 결과이다. 이 결과를 살펴보면, 질소 가스를 냉매로 사용하는 Hamworthy사의 Mark III 재액화 장치(WO 2007/117148에 기재된 기술)를 사용한 경우에는 증발가스 압축기의 압력이 8 bara인 경우 재액화에 필요로 하는 소요 동력이 약 2,776㎾임에 반하여 증발가스 압축기의 압력이 12 bara로 상승하면서 2,500㎾로 급격히 줄어듦을 알 수 있다. 증발가스 압축기의 압력이 12 bara 이상에서는 재액화에 필요로 하는 소요동력이 점진적으로 감소하는 것으로 나타난다.
도 6c에 나타낸 그래프는 냉매로서 탄화수소계 SMR을 사용한 경우의 소요동력의 변화를 나타낸다. 이 결과를 살펴보면, 냉매로서 SMR을 사용할 때에도, 재액화에 필요로 하는 소요 동력은 증발가스 압축기의 압력이 8 bara인 경우에 비하여 증발가스 압축기의 압력이 12 bara인 경우 급격히 줄어듦을 알 수 있다. 증발가스 압축기의 압력이 12 bara 이상에서는 재액화에 필요로 하는 소요동력이 점진적으로 감소하는 것으로 나타난다.
SMR의 조성은 각 액화압력 별로 효율 최적화를 위해 다음 표 1과 같이 조절되었다.
Refrigerant Composition (mol%) | ||||
8bara | 12bara | 30bara | 45bara | |
Nitrogen | 11.91 | 5.55 | 0.00 | 0.00 |
Methane | 45.11 | 48.54 | 45.81 | 36.63 |
Ethane | 17.68 | 18.66 | 22.84 | 30.74 |
Propane | 10.57 | 11.30 | 13.70 | 13.05 |
i-Pentane | 14.74 | 15.95 | 17.65 | 19.58 |
본 발명에 기재된 비폭발성 혼합냉매(NFMR, 하기 표 4의 조성)을 사용한 재액화 장치의 경우에는 상기 질소가스 냉매를 사용하는 경우에 비하여 재액화에 필요로 하는 에너지가 더 감소함을 알 수 있다.
본 발명에서 증발가스의 압력범위는 중압범위, 즉 12 bara 내지 45 bara가 바람직하다. 12 bara 이하에서는 재액화에 필요한 소요동력의 절감 효과가 크지 않아 바람직하지 않다. 또 45 bara를 초과하는 경우에는 증발가스의 가압에 필요한 소요동력에 비하여, 재액화에 필요한 에너지의 절감효과가 크지 않아서 바람직하지 않다.
(제1 실시형태)
도 3a는 본 발명의 제1 실시형태에 따른 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진을 갖는 해상 구조물, 특히 액화천연가스 운반선의 연료 공급 시스템을 도시한 구성도이다. 도 3a에는, 천연가스를 연료로 사용할 수 있는 ME-GI 엔진을 설치한 LNG 운반선에 본 발명의 고압 천연가스 분사 엔진용 연료 공급 시스템이 적용된 예가 도시되어 있지만, 본 발명의 고압 천연가스 분사 엔진용 연료 공급 시스템은 액화가스 저장탱크가 설치된 모든 종류의 해상 구조물, 즉 LNG 운반선, LNG RV와 같은 선박을 비롯하여, LNG FPSO, LNG FSRU와 같은 해상 플랜트에 적용될 수 있다.
본 발명의 제1 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 액화가스 저장탱크(11)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 압축부(13)에서 대략 12 내지 45 bara(절대압력) 정도의 중압으로 압축된 후 재액화 장치(20)에 공급된다. 재액화 장치(20)에서 액화에너지, 즉 냉열을 공급받아 재액화된 액화증발가스(LBOG)는 고압 펌프(33)에 의해 대략 150 내지 400 bara 정도의 고압으로 압축된 후 고압 기화기(37)에 공급된다. 고압 기화기(37)에서 기화된 증발가스는 계속해서 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급된다.
고압 펌프(33)에 의해 고압으로 압축된 액화증발가스(즉, 액화천연가스)는 초임계압 상태이므로 사실상 액상과 기상을 구별할 수 없다. 그렇지만 본 명세서에서는 고압 상태에서 액화증발가스를 주위온도(혹은 고압 천연가스 분사 엔진에서 요구하는 온도)까지 가열하는 것을 기화시킨다고 표현하고 있으며, 고압 상태에서 액화증발가스를 주위온도까지 가열하는 장치를 고압 기화기라고 표현한다.
저장탱크는 LNG 등의 액화가스를 극저온 상태로 저장할 수 있도록 밀봉 및 단열 방벽을 갖추고 있지만, 외부로부터 전달되는 열을 완벽하게 차단할 수는 없다. 그에 따라 저장탱크(11) 내에서는 액화가스의 증발이 지속적으로 이루어지며, 증발가스의 압력을 적정한 수준으로 유지하기 위해 증발가스 배출라인(L1)을 통하여 저장탱크(11) 내부의 증발가스를 배출시킨다.
배출된 증발가스는 증발가스 배출라인(L1)을 통해 증발가스 압축부(13)에 공급된다. 증발가스 압축부(13)는 하나 이상의 증발가스 압축기(14)와, 이 증발가스 압축기(14)에서 압축되면서 온도가 상승한 증발가스를 냉각시키기 위한 하나 이상의 중간 냉각기(15)를 포함한다. 도 3a에서는 5개의 증발가스 압축기(14)와 5개의 중간 냉각기(15)를 포함하는 5단 압축의 증발가스 압축부(13)가 예시되어 있다.
증발가스 압축부(13)에서 압축된 증발가스는 증발가스 공급라인(L2)을 통하여 재액화 장치(20)에 공급된다. 재액화 장치(20)에 공급된 증발가스는 재액화 장치(20)의 콜드 박스(21)를 통과하면서 냉매에 의해 냉각되어 재액화된다. 재액화 장치(20)로서는, LNG 등의 액화가스로부터 발생하는 증발가스 등을 액화시킬 수 있는 것이라면 어떠한 구성의 것이라도 사용될 수 있다.
콜드 박스(21)에서의 열교환을 통해 재액화된 증발가스는 버퍼 탱크(31)에서 기체와 액체 상태로 분리되며, 액체 상태의 액화증발가스만이 연료 공급라인(L3)을 통해 고압 펌프(33)에 공급된다. 고압 펌프(33)는 복수개, 예를 들어 2개가 병렬로 설치될 수 있다.
고압 펌프(33)에서는 액화증발가스를 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)에서 요구하는 연료 공급 압력까지 가압하여 송출한다. 고압 펌프(33)에서 송출되는 액화증발가스는 대략 150 ∼ 400 bara(절대압력) 정도의 고압을 갖는다.
도 3a에 예시된 재액화 장치(20)는, 냉매와 증발가스의 열교환에 의해 증발가스를 재액화시키기 위한 콜드 박스(21)와, 이 콜드 박스(21)에서 가열되어 부분적으로 기화된 냉매를 기체 상태의 냉매와 액체 상태의 냉매로 분리하기 위한 하나 이상의 냉매 기액분리기(22)와, 이 냉매 기액분리기(22)에서 분리된 기체 상태의 냉매를 압축시키기 위한 하나 이상의 냉매 압축기(23)와, 냉매 압축기(23)에서 압축된 냉매를 냉각시키기 위한 냉매 냉각기(24)와, 냉매 압축기(23)에서 압축된 후 냉매 냉각기(24)에서 냉각된 냉매를 팽창시켜 온도를 낮추는 냉매 팽창밸브(25)와, 냉매 기액분리기(22)에서 분리된 액체 상태의 냉매를 냉매 팽창밸브(25)에 공급하기 위한 냉매 펌프(26)를 포함한다.
냉매 펌프(26)를 통하여 냉매 팽창밸브(25)에 공급되는 냉매는 냉매 팽창밸브(25)의 상류측에서 냉매 냉각기(24)를 통과한 후 냉매 팽창밸브(25)에 공급되는 냉매와 혼합되는 것이 바람직하다.
한편, 냉매 팽창밸브(25)에 공급되는 냉매는 팽창 전에 콜드 박스(21)를 통과하면서 팽창 후의 극저온 상태의 냉매와 열교환될 수 있도록 구성되어도 좋다.
또한, 냉매 냉각기(24)에서 냉각된 냉매는 또 다른 냉매 기액분리기에 공급되어 기체 상태의 냉매와 액체 상태의 냉매로 분리되어 처리될 수 있다. 이를 위해 도 3a의 재액화 장치(20)는 각각 2개씩의 냉매 기액분리기(22), 냉매 압축기(23), 냉매 냉각기, 및 냉매 펌프(26)를 포함하는 것으로 예시되어 있지만, 이는 본 발명을 한정하지 않으며 설계시 필요에 따라 설치 개수는 가감될 수 있다.
(제1 실시형태의 변형예)
도 3b에는 본 발명의 바람직한 제1 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제1 실시형태의 변형예는, 증발가스 압축부(13) 및 재액화 장치(20)의 구성이 상술한 제1 실시형태에 비해 부분적으로 상이하므로, 이하에서는 그 차이점만을 설명한다.
도 3b에 예시된 본 제1 실시형태의 변형예에 따른 증발가스 압축부(13)는 5개의 증발가스 압축기(14)를 가진다는 점에서는 도 3a에 예시된 것과 동일하지만, 증발가스 압축부(13)에 포함된 첫 번째 증발가스 압축기와 두 번째 증발가스 압축기 사이, 그리고 두 번째 증발가스 압축기와 세 번째 증발가스 압축기 사이에 중간 냉각기(15)가 생략되어 있다는 점에서 도 3a에 예시된 것과 상이하다. 본 발명에 따르면, 이와 같이 증발가스 압축기(14) 사이마다 중간 냉각기(15)가 배치될 수도 있고, 그렇지 않을 수도 있다.
또한, 도 3b에 예시된 본 제1 실시형태의 변형예에 따른 재액화 장치(20)는, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단을 포함한다.
더욱 상세하게는, 도 3b에 예시된 본 제1 실시형태의 변형예에 따른 재액화 장치(20)는, 냉매와 증발가스의 열교환에 의해 증발가스를 재액화시키기 위한 콜드 박스(21)와, 이 콜드 박스(21)에서 가열되어 부분적으로 기화된 냉매를 기체 상태의 냉매와 액체 상태의 냉매로 분리하기 위한 제1 냉매 기액분리기(22a)와, 이 제1 냉매 기액분리기(22a)에서 분리된 기체 상태의 냉매를 압축시키기 위한 제1 냉매 압축기(23a)와, 이 제1 냉매 압축기(23a)에서 압축된 냉매를 냉각시키기 위한 제1 냉매 냉각기(24a)와, 이 제1 냉매 냉각기(24a)에서 냉각된 냉매를 2차적으로 기체 상태의 냉매와 액체 상태의 냉매로 분리하기 위한 제2 냉매 기액분리기(22b)와, 이 제2 냉매 기액분리기(22b)에서 분리된 기체 상태의 냉매를 압축시키기 위한 제2 냉매 압축기(23b)와, 이 제2 냉매 압축기(23b)에서 압축된 냉매를 냉각시키기 위한 제2 냉매 냉각기(24b)와, 제1 냉매 기액분리기(22a)에서 분리된 액체 상태의 냉매를 제2 냉매 냉각기(24b)에 공급하기 위한 제1 냉매 펌프(26a)와, 제2 냉매 기액분리기(22b)에서 분리된 액체 상태의 냉매를 제2 냉매 냉각기(24b)에 공급하기 위한 제2 냉매 펌프(26b)와, 제2 냉매 냉각기(24b)에서 냉각된 냉매를 3차적으로 기체 상태의 냉매와 액체 상태의 냉매로 분리하기 위한 제3 냉매 기액분리기(22c)와, 이 제3 냉매 기액분리기(22c)에서 분리된 액체 상태의 냉매를 팽창시켜 온도를 떨어뜨리기 위한 냉매 팽창밸브(25)와, 액체 상태의 냉매를 제3 냉매 기액분리기(22c)에서 냉매 팽창밸브(25)에 공급하기 위한 제3 냉매 펌프(26c)를 포함한다.
제1 및 제2 냉매 기액분리기(22a, 22b)에서 제2 냉매 냉각기(24b)에 공급되는 액체 상태의 냉매는 합류된 후, 제2 냉매 압축기(23b)에서 제2 냉매 냉각기(24b)로 공급되는 기체 상태의 냉매와 혼합된 상태로 제2 냉매 냉각기(24b)에 공급될 수 있다. 또한, 제3 기액 분리기(22c)에서 분리된 기체 상태의 냉매는 제3 냉매 펌프(26c)에 의해 냉매 팽창밸브(25)에 공급되는 액체 상태의 냉매와 혼합될 수 있다. 또한, 냉매 팽창밸브(25)에 공급되는 냉매는 팽창 전에 콜드 박스(21)를 통과하면서 팽창 후의 극저온 상태의 냉매와 열교환될 수 있도록 구성되어도 좋다.
도 3b의 재액화 장치(20)는 예시일 뿐이고 본 발명을 한정하지 않으며, 설계시 필요에 따라 재액화 장치의 구성은 변화될 수 있다.
(비폭발성 혼합냉매)
본 발명에 따르면, 재액화 장치(20) 내에서 순환하는 냉매로서는 종래와는 달리 R14를 포함하는 비폭발성 혼합냉매가 사용될 수 있다. 복수의 비폭발성 냉매를 혼합하여 이루어지는 비폭발성 혼합냉매는 중압으로 압축된 증발가스를 재액화할 때의 액화온도에서도 응결되지 않는 특성을 가지도록 하는 혼합 조성비를 갖는다.
혼합냉매의 상변화를 이용한 냉동 사이클은 질소만을 냉매로 하는 질소가스 냉동 사이클보다 효율이 높다. 종래의 혼합냉매는 폭발성 냉매가 혼합되어 안전성에 문제가 있었지만, 본 발명의 비폭발성 혼합냉매는 비폭발성 냉매를 혼합한 냉매이므로 안전성이 높다.
본 발명의 비폭발성 혼합냉매에 의해, 혼합냉매 줄-톰슨 냉동 사이클을 해상용 LNG 재액화 장치에 적용하는 것이 가능해질 수 있다. 한편, 종래 육상용 LNG 액화 플랜트에서 혼합냉매를 사용하는 것이 알려져 있었지만, 이 혼합냉매는 탄화수소(Hydro-Carbon; 이하, "HC" 라 함) 혼합냉매로서 폭발성을 가져 취급에 어려움이 있었다. 본 발명의 비폭발성 혼합냉매는 아르곤, 하이드로플루오르카본(Hydro-Fluoro-Carbon; 이하, "HFC" 라 함) 냉매, 및 플루오르카본(Fluoro-Carbon; 이하, "FC" 라 함) 냉매로 이루어져 폭발성이 없다.
HFC/FC 냉매로서는 다음 표 2와 같은 것이 사용될 수 있다. 표 2에는 아르곤을 함께 표시하였다.
냉매번호 | 화학식 | Mole. weight | 끓는점(NBP)(℃) |
Ar | Ar | 39.95 | -185.9 |
R14 | CF4 | 88 | -128.1 |
R23 | CHF3 | 70.01 | -82.1 |
R116 | CF3CF3 | 138.01 | -78.2 |
R41 | CH3F | 34.03 | -78.1 |
R32 | CH2F2 | 52.02 | -51.7 |
R125 | CHF2CF3 | 120.02 | -48.1 |
R143a | CH3CF3 | 84.04 | -47.2 |
R161 | CH3CHF2 | 48.06 | -37.1 |
R218 | CF3CF2CF3 | 188.02 | -36.6 |
R134a | CH2FCF3 | 102.03 | -26.1 |
R152a | CH3CHF2 | 66.05 | -24 |
R227ea | CF3CHFCF3 | 170.03 | -15.6 |
R236fa | CF3CH2CF3 | 152.04 | -1.4 |
R245fa | CHF2CH2CF3 | 134.05 | 15.1 |
표 2에 나타낸 냉매 이외에도, 이러한 냉매들을 2 이상 혼합하여 별도의 냉매 번호(R400 및 R500 계열)를 붙여 사용하기도 한다. 이러한 HFC/FC 혼합냉매는 표 3에 표시하였다.
냉매번호 | 화학식(mass ratio) | Mole. weight | 끓는점(NBP)(℃) |
R410A | R32/125(50/50) | 72.58 | -51.6 |
R410B | R32/125(45/55) | 75.57 | -51.5 |
R507 | R125/143a(50/50) | 98.86 | -47.1 |
R407B | R32/125/134a(10/70/20) | 102.94 | -46.8 |
R404A | R125/143a/134a(44/52/4) | 97.6 | -46.6 |
R407A | R32/125/134a(20/40/40) | 90.11 | -45.2 |
R407C | R32/125/134a(23/25/52) | 86.2 | -43.8 |
R407E | R32/125/134a(25/15/60) | 83.78 | -42.8 |
R407D | R32/125/134a(15/15/70) | 90.96 | -39.4 |
다만, 도 4a 및 도 4b에 도시된 바와 같이, HFC/FC 냉매의 경우 어는점이 LNG의 일반적인 온도(-163℃)보다 높아 LNG의 재액화시 냉매로서 사용할 수 없다. 그러나, 본 발명자들은, 도 4c에 도시된 바와 같이, 천연가스(혹은 증발가스)의 압력이 높아질수록 액화(혹은 재액화) 온도가 상승하는 점에 착안하여, 효율이 높고 안전한 HFC/FC 혼합냉매(즉, 비폭발성 혼합냉매) 줄-톰슨 냉동 사이클에 의해 해상 구조물에서의 LNG 저장탱크로부터 발생하는 증발가스를 재액화할 수 있는 재액화 장치를 개발하였다. 다시 말해서, 본 발명에 따르면, 증발가스를 재액화하기 전에 12 내지 45 bara의 중압으로 가압함으로써, 상압에서의 증발가스 재액화 온도보다 높은 온도, 즉 비폭발성 혼합냉매의 어는점보다 높은 온도에서 증발가스의 재액화가 가능해지도록 한다.
본 발명의 비폭발성 혼합냉매는, 비등점이 천연가스 액화온도(혹은 증발가스 재액화온도)와 상온 사이에 골고루 분포되어 넓은 상변화 구간을 이용할 수 있도록 다양한 성분의 냉매를 혼합하여 만들어진다. 끓는점이 서로 유사한 냉매들을 5개의 계열로 분류하여, 각각의 계열에서 하나 이상의 성분을 선택하여 본 발명의 비폭발성 혼합냉매를 구성하는 것이 바람직하다. 즉, 본 발명의 비폭발성 혼합냉매는 5개의 계열에서 각각 적어도 하나의 성분을 선택하여 혼합함으로써 만들어진다.
도 5에 도시된 바와 같이, 계열 I에는 냉매들 중 끓는점이 가장 낮은 Ar이 포함되고, 계열 II에는 R14가 포함되고, 계열 III에는 R23, R116, 및 R41이 포함되고, 계열 IV에는 R32, R410A, R410B, R125, R143a, R507, R407B, R404A, R407A, R407C, R407E, R407D, R161, R218, R134a, R152a, 및 R227ea가 포함되고, 계열 V에는 R236fa 및 R245fa가 포함된다.
이들 5개의 계열에서 각각 하나 이상의 냉매를 선택하여 이루어지는 본 발명의 비폭발성 혼합냉매는, 냉매 수급의 용이함, 비용 등을 감안하여 볼 때, 다음 표 4와 같은 구성성분과 조성을 가지는 것이 바람직하다. 비폭발성 혼합냉매의 조성 비율은, 증발가스와의 열교환이 이루어지는 열교환기, 즉 콜드박스(21)에서의 고온 유체(즉, 증발가스)와 저온 유체(즉, 비폭발성 혼합냉매) 사이의 온도차가 가능한 한 일정하게 유지되도록 정해지는 것이 효율면에서 바람직하다.
구성성분 | 조성(% mole) |
Ar | 20 내지 55 |
R14 | 15 내지 30 |
R23 | 5 내지 15 |
R410a | 10 내지 15 |
R245fa | 15 내지 20 |
비폭발성 혼합냉매를 사용할 경우, 종래기술에서와 같이 질소가스 냉매를 사용하여 증발가스를 재액화할 때에 비하여 소모되는 동력, 즉 전력(kW)을 절감할 수 있어 재액화 효율을 향상시킬 수 있다.
더욱 상세하게는, 본 발명은 종래의 재액화 장치에서 사용되는 재액화시 증발가스 압력에 비해 상대적으로 높은 압력인 12 내지 45 bara 정도의 중압으로 증발가스를 압축시켜 재액화하고 있기 때문에 재액화시 소요되는 동력을 절감할 수 있는 것이다.특히, 상기 조성의 비폭발성 혼합냉매를 사용할 경우, 증발가스가 바람직하게는 12 내지 45 bara 정도의 압력을 가질 때 재액화 장치에서의 재액화 효율을 가장 양호하게 유지할 수 있게 된다.
또한, 증발가스의 압력이 12 bara일 때의 재액화 온도는 약 -130℃이고, 이 온도까지 증발가스를 냉각시키기 위해서 비폭발성 혼합냉매의 온도는 약 -155℃ 로 낮아진다. 상기 조성의 비폭발성 혼합냉매는 -155℃ 이하에서 동결이 발생할 우려가 있으므로, 증발가스의 압력이 12 bara보다 낮은 경우에는 비폭발성 혼합냉매를 사용하는 냉동사이클이 구성되기 어렵다.
또한, 45 bara를 초과하는 경우에는 증발가스의 가압에 필요한 소요동력의 증가에 비하여 감소되는 액화 에너지가 크지 않아서 바람직하지 않다.
도 6a를 참조하면, 본 발명은 중압, 즉 12 내지 45 bara의 압력범위(증발가스 4.3 ton/h 기준)에 특징이 있어 질소가스 냉매와 비폭발성 혼합냉매 모두에서 효과가 있지만, 질소가스 냉매를 사용하는 재액화 장치에 비해 본 발명의 상기한 바와 같은 조성을 갖는 비폭발성 혼합냉매를 사용하는 재액화 장치가 대략 10 내지 20% 정도 동력이 더 절감됨을 알 수 있다.
도 6b에는, 종래기술에 따른 재액화 장치의 조건(즉, 재액화 장치에서 사용되는 냉매는 질소가스(N2)이고 재액화 장치에 공급되는 증발가스의 압력은 8bara인 경우)에서의 동력 필요량과, 본 발명에 따른 비폭발성 혼합냉매(NFMR)를 사용하는 재액화 장치의 조건(즉, 재액화 장치에서 사용되는 냉매는 비폭발성 혼합냉매(NFMR)이고 재액화 장치에 공급되는 증발가스의 압력은 12 내지 45bara인 경우)에서의 동력 필요량을 비교한 그래프가 도시되어 있다. 도 6b를 참조하면, 질소 냉매를 사용하는 종래의 재액화 장치(냉동 사이클)에서 소모되는 동력에 비해 본 발명의 재액화 장치는 대략 50 내지 80% 정도의 동력만으로도 운전이 가능함을 알 수 있다. 이와 같이 본 발명은 종래에 비해 상당히 적은 동력으로 운전이 가능하기 때문에, 발전기 용량을 감소시킬 수 있어 발전기의 소형화가 가능하게 된다.
한편, 본 발명의 재액화 장치는 냉매의 팽창 수단으로서 줄-톰슨 밸브(Joule Thomson valve)를 사용하므로, 팽창기(expander)를 사용하는 종래의 질소 컴팬더(N2 compander)보다 전체 시스템이 단순해져 경제적이라는 장점을 얻을 수 있다.
또한 표 2에는 기재하지 않았지만, 본 발명의 비폭발성 혼합냉매는 표 2에 기재된 성분 이외의 비폭발성 냉매 성분을 미소량 함유할 수 있다.
(제2 실시형태)
도 7a는 본 발명의 제2 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 7a에 도시된 제2 실시형태의 연료 공급 시스템은, 전술한 제1 실시형태의 연료 공급 시스템에 비하여 증발가스를 중압으로 압축시킨 후 재액화 장치에서 재액화시키기 전에, 고압 펌프(33)에서 고압 기화기(37)로 공급되는 LNG와 열교환시켜 예냉한다는 점에서만 서로 상이하므로, 이어지는 설명에서는 제1 실시형태와의 차이점을 위주로 설명한다.
도 7a에 도시된 바와 같이, 고압 펌프(33)에서 고압으로 압축된 액화증발가스는, 고압 기화기(37)에 공급되기 전에, 재액화 장치(20)에 공급되는 증발가스와 열교환기(35)에서 열교환된다. 고압 기화기(37)에 공급되는 액화증발가스는 재액화 장치(20)에 공급되는 증발가스에 비해 상대적으로 저온이므로, 열교환기(35)를 통과하면서 재액화 장치(20)에 공급되는 증발가스의 온도를 낮출 수 있어 재액화 장치(20)에서의 재액화 에너지를 절감할 수 있다. 그와 함께, 고압 기화기(37)에 공급되는 액화증발가스는 열교환기(35)를 통과하면서 가열되어 고압 기화기(37)에서의 기화 에너지를 절감할 수 있다.
증발가스 압축부(13)에서 압축된 증발가스는 증발가스 공급라인(L2)을 통하여 재액화 장치(20)에 공급된다. 증발가스 공급라인(L2)의 도중에는 열교환기(35)가 설치되어 있으며, 전술한 바와 같이 열교환기(35)에서 상대적으로 고온의 압축된 증발가스와 고압 펌프(33)로부터 배출된 상대적으로 저온의 액화증발가스는 서로 열교환한다. 열교환기(35)를 통과하면서 냉각된 증발가스는 재액화 장치(20)의 콜드 박스(21)를 통과하면서 냉매에 의해 냉각되어 재액화된다.
(제2 실시형태의 변형예)
도 7b에는 본 발명의 바람직한 제2 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제2 실시형태의 변형예는, 제1 실시형태의 변형예에서 설명한 바와 같이, 증발가스 압축부(13) 및 재액화 장치(20)의 구성이 상술한 제2 실시형태에 비해 부분적으로 상이하다.
즉, 도 7b에 예시된 본 제2 실시형태의 변형예에 따른 증발가스 압축부(13)는 5개의 증발가스 압축기(14)를 가진다는 점에서는 도 7a에 예시된 것과 동일하지만, 증발가스 압축부(13)에 포함된 첫 번째 증발가스 압축기와 두 번째 증발가스 압축기 사이, 그리고 두 번째 증발가스 압축기와 세 번째 증발가스 압축기 사이에 중간 냉각기(15)가 생략되어 있다는 점에서 도 7a에 예시된 것과 상이하다. 본 발명에 따르면, 이와 같이 증발가스 압축기(14) 사이마다 중간 냉각기(15)가 배치될 수도 있고, 그렇지 않을 수도 있다.
또한, 도 7b에 예시된 본 제2 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에 예시된 제1 실시형태의 변형예에 따른 재액화 장치(20)와 마찬가지로, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 냉매 기액분리기를 포함한다.
특히, 도 7b에 예시된 본 제2 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에서와 마찬가지로, 복수의 냉매 기액분리기(22a, 22b, 22c)를 포함하고 있으며, 이들 복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기(22c)에는 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 혼합된 후 공급된다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매는, 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 냉매 압축기(23a, 23b)에 의해 압축되고 냉매 냉각기(24a, 24b)에 의해 냉각되는 과정을 거칠 수 있다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 액체 상태의 냉매는, 기체 상태의 냉매가 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 더욱 상세하게는 기체 상태의 냉매가 냉매 냉각기(24b)에 의해 냉각되기 전에 이 기체 상태의 냉매와 혼합된다.
(제3 실시형태)
도 8a는 본 발명의 제3 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 8a에 도시된 제3 실시형태의 연료 공급 시스템은, 전술한 제1 실시형태의 연료 공급 시스템에 비하여 증발가스를 압축시키기 전에 예열한다는 점에서만 서로 상이하므로, 이어지는 설명에서는 제1 실시형태와의 차이점을 위주로 설명한다.
도 8a에 도시된 바와 같이, 본 발명의 제2 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 액화가스 저장탱크(11)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 압축부(13)에서 대략 12 내지 45 bara(절대압력) 정도의 중압으로 압축된 후 재액화 장치(20)에 공급되기 전에 증발가스 압축부(13)의 상류측에 설치된 증발가스 예열기(41)에 공급된다. 증발가스 압축부(13)에서 대략 12 내지 45 bara로 압축되고 중간 냉각기(15)를 통해 대략 40℃ 정도로 냉각된 증발가스는 증발가스 예열기(41)에서 액화가스 저장탱크(11)에서 배출된 극저온의 증발가스와 열교환됨으로써 냉각된 후 재액화 장치(20)에 공급된다.
제3 실시형태에 따르면 재액화 장치(20)에 공급될 증발가스의 온도를 증발가스 예열기(41)를 통해 낮출 수 있어 콜드 박스(21)에서의 열부하를 감소시킬 수 있다. 또한, 증발가스 압축부(13)에 공급되는 극저온 상태의 증발가스와, 증발가스 압축부(13)에서 압축된 상대적으로 온도가 높은 증발가스를, 증발가스 압축부(13)의 상류측에 위치한 증발가스 예열기(41)에서 열교환함으로써, 증발가스 압축부에 공급되는 증발가스의 온도를 상승시키고 증발가스 압축부(즉, 증발가스 압축기)의 입구온도를 일정하게 유지할 수 있게 된다.
증발가스 압축부(13)에서 압축된 후 증발가스 예열기(41)를 통과한 증발가스는 전술한 제1 실시형태의 연료 공급 시스템과 마찬가지로 재액화 장치(20)에 공급된다. 계속해서, 재액화 장치(20)에서 액화에너지, 즉 냉열을 공급받아 재액화된 액화증발가스(LBOG)는 고압 펌프(33)에 의해 대략 150 내지 400 bara 정도의 고압으로 압축된 후 고압 기화기(37)에 공급된다. 고압 기화기(37)에서 기화된 증발가스는 계속해서 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급된다.
(제3 실시형태의 변형예)
도 8b에는 본 발명의 바람직한 제3 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제3 실시형태의 변형예는, 재액화 장치(20)의 구성이 상술한 제3 실시형태에 비해 부분적으로 상이하다.
즉, 도 8b에 예시된 본 제3 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에 예시된 제1 실시형태의 변형예에 따른 재액화 장치(20)와 마찬가지로, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 냉매 기액분리기를 포함한다.
특히, 도 8b에 예시된 본 제3 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에서와 마찬가지로, 복수의 냉매 기액분리기(22a, 22b, 22c)를 포함하고 있으며, 이들 복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기(22c)에는 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 혼합된 후 공급된다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매는, 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 냉매 압축기(23a, 23b)에 의해 압축되고 냉매 냉각기(24a, 24b)에 의해 냉각되는 과정을 거칠 수 있다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 액체 상태의 냉매는, 기체 상태의 냉매가 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 더욱 상세하게는 기체 상태의 냉매가 냉매 냉각기(24b)에 의해 냉각되기 전에 이 기체 상태의 냉매와 혼합된다.
(제4 실시형태)
도 9a는 본 발명의 제4 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 9a에 도시된 제4 실시형태의 연료 공급 시스템은, 전술한 제3 실시형태의 연료 공급 시스템에 비하여 잉여 증발가스를 처리하기 위한 잉여 증발가스 소비수단, 즉 이종연료엔진(DFDE) 등과, 안정적인 연료 공급을 위한 수단, 즉 LNG 공급라인이 추가되었다는 점에서 서로 상이하므로, 이어지는 설명에서는 제2 실시예와의 차이점을 위주로 설명한다.
여기서 잉여 증발가스라 함은 고압가스분사엔진에서 필요로 하는 액화증발가스 양보다 많은 증발가스를 의미한다. 잉여 증발가스가 발생하는 경우는, 고압가스분사엔진이 운전 중이더라도 발생하는 증발가스의 발생양이 많거나, 고압가스분사엔진이 저속으로 운전하거나 또는 운전을 하지 않는 경우(예컨대 입항을 하거나 운하를 통하는 경우)에 발생할 수 있다.
본 발명의 제4 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 고압 천연가스 분사 엔진의 부하가 줄어들거나 발생된 증발가스의 양이 많을 경우, 잉여의 액화증발가스(LBOG)는 버퍼 탱크(31)의 후단에서 연료 공급라인(L3)으로부터 분기하는 LBOG 복귀라인(L4)에 설치되는 LBOG 팽창밸브(51)를 통하여 감압되고, 감압 과정에서 발생하는 플래시 가스를 포함한 LBOG는 기액분리기를 통해 액체 성분(LBOG)과 기체 성분(플래시가스)으로 분리된 후, 액체 성분은 LBOG 복귀라인(L4)을 통해 저장탱크(11)로 복귀된다.
더욱 상세하게는, LBOG 팽창밸브(51)에서 감압되어 플래시 가스를 포함하는 LBOG는 LBOG 기액분리기(53)로 공급되어 액체 성분과 기체 성분으로 분리되며, LBOG 기액분리기(53)에서 분리된 기체 성분(즉, 플래시 가스)은, 연료가스 공급라인(L6)을 통하여, 발전 등을 위해 해상 구조물 내에 설치될 수 있는 잉여 증발가스 소비수단, 즉 이종연료엔진(DFDE)에 연료로서 공급된다. 이종연료엔진에 공급되는 연료가스의 압력은 연료가스 공급라인(L6)의 도중에 있어서의 LBOG 기액분리기(53)의 하류측에 설치되는 압력조절밸브에 의해 조절될 수 있으며, 역시 연료가스 공급라인(L6)의 도중에 설치되는 연료가스 히터(55)에서 연료가스의 온도는 이종연료엔진에서 요구하는 온도까지 가열될 수 있다. 또한, LBOG 기액분리기(53)에서 분리된 액체 성분은 LBOG 복귀라인(L4)을 통해 저장탱크로 복귀된다.
이때, 이종연료엔진에 대한 연료가스 공급압력은 일반적으로 5 내지 8 bara 정도이므로, LBOG 기액분리기(53)에서 분리된 액체 성분의 압력이 여전히 상압보다 높을 수 있다. 이 경우, LBOG 기액분리기(53)에서 분리된 액체 성분(즉, LBOG)은 또 다른 LBOG 팽창밸브(52)를 통하여 추가적으로 감압되고, 계속해서 또 다른 LBOG 기액분리기(54)에 공급되어 액체 성분(LBOG)과 기체 성분(플래시가스)으로 분리된 후, 상압의 액체 성분은 LBOG 복귀라인(L4)을 통해 저장탱크(11)로 복귀된다. 또 다른 LBOG 기액분리기(54)에서 분리된 기체 성분은 또 다른 잉여 증발가스 소비수단으로서의 가스 연소 유닛(GCU; Gas Combustion Unit)에 공급되어 연소됨으로써 소비될 수 있다.
한편, 이종연료엔진에 공급되는 연료가 부족하면, 고압 천연가스 분사 엔진(즉, ME-GI)에 연료를 공급하는 연료 공급라인(L3)으로부터 분기되어 이종연료엔진(즉, DFDE)에 연료를 공급하는 연료가스 공급라인(L6)에 연결되는 분기라인(L5)을 통하여 이종연료엔진에 연료가 추가로 공급될 수 있다. 분기라인(L5)에는 압력강하를 위해 밸브가 설치된다.
또한, 증발가스 재액화 장치가 작동하지 않거나 저장탱크(11)에서 발생하는 증발가스의 양이 적은 경우, 저장탱크(11) 내에 설치된 LNG 공급펌프(57)와 LNG 공급라인(L7)을 통해 저장탱크(11)에 수용된 LNG를 버퍼 탱크(31)에 공급함으로써 연료를 공급할 수 있다.
이와 같이 이종연료엔진은 압력 차이로 인하여 저장탱크(11)에 복귀되는 도중의 LBOG로부터 발생할 수 있는 플래시 가스를 처리할 수 있는 플래시 가스 처리수단으로서 기능하게 된다.
한편, 도면에는 도시하지 않았지만, LBOG 기액분리기(53)에서 분리된 기체성분은 이종연료엔진 대신에 가스터빈이나, 보일러 등과 같은 소비처로 공급되어 연료로서 사용될 수 있다. 또한, 이 기체성분은, 대기중에 천연가스를 방출하는 가스 방출장치나, 대기중에서 연소시키는 가스 연소장치(예컨대 플레어 타워) 등에 공급되어 처리될 수 있다. 이때 이종연료엔진, 가스터빈, 보일러, 가스 방출장치나 플레어 타워 등은 잉여 증발가스 소비수단(플래시 가스 처리수단)에 포함되며, 이와 같은 잉여 증발가스 소비수단에 공급되는 기체성분은 연료가스 히터(55)에서 가열될 수 있다.
증발가스 압축부(13)에서 12 내지 45 bara 정도의 중압으로 압축된 후 재액화 장치(20)에서 액화된 증발가스를 ME-GI 엔진과 같은 고압 천연가스 분사 엔진에서 모두 소비하지 못하는 경우에는, 중압 상태의 액화된 증발가스를 저장탱크(11)에 복귀시킬 필요가 있다. 예컨대, 본 발명자들은, 저장탱크(11)의 압력은 상압 상태이므로, 액화된 증발가스를 저장탱크에 공급하기 전에 압력을 낮출 필요가 있으나, 압력을 낮추는 과정에서 플래시 가스가 발생한다는 점을 인식하여 플래시 가스를 처리할 수 있는 수단, 즉 잉여 증발가스 소비수단을 갖춘 연료 공급 시스템을 발명하였다. 이와 같이 본 발명에 따르면 상기된 바와 같은 플래시 가스를 처리할 수 있는 수단, 즉 잉여 증발가스 소비수단이 구비되어 있기 때문에, 재액화 장치에 공급되는 증발가스를 12 내지 45 bara 정도의 중압으로 압축하여 공급할 수 있으며, 그에 따라 재액화시의 에너지 소모량을 절감할 수 있게 된다.
(제4 실시형태의 변형예)
도 9b에는 본 발명의 바람직한 제4 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제4 실시형태의 변형예는, 재액화 장치(20)의 구성이 상술한 제4 실시형태에 비해 부분적으로 상이하고, 잉여의 증발가스가 발생할 경우 증발가스 압축부(13)로부터 혹은 그 하류측 끝에서 분기되는 라인을 통해 잉여의 증발가스를 처리한다는 점이 제4 실시형태에 비해 상이하다.
도 9b에 예시된 본 제4 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에 예시된 제1 실시형태의 변형예에 따른 재액화 장치(20)와 마찬가지로, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 냉매 기액분리기를 포함한다.
특히, 도 9b에 예시된 본 제4 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에서와 마찬가지로, 복수의 냉매 기액분리기(22a, 22b, 22c)를 포함하고 있으며, 이들 복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기(22c)에는 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 혼합된 후 공급된다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매는, 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 냉매 압축기(23a, 23b)에 의해 압축되고 냉매 냉각기(24a, 24b)에 의해 냉각되는 과정을 거칠 수 있다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 액체 상태의 냉매는, 기체 상태의 냉매가 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 더욱 상세하게는 기체 상태의 냉매가 냉매 냉각기(24b)에 의해 냉각되기 전에 이 기체 상태의 냉매와 혼합된다.
또한, 도 9b에 예시된 제4 실시형태의 변형예에 따른 연료 공급 시스템은, 소요량보다 많은 증발가스가 발생할 경우, 증발가스 압축부(13)로부터 분기하는 제2 분기라인(L8)을 통해 잉여 증발가스를 잉여 증발가스 소비수단으로서의 이종연료엔진(DFDE)에 공급하여 사용하도록 구성할 수 있다. 이때 증발가스 압축부(13)에 포함된 중간 냉각기(15)에서 증발가스의 온도를 대략 40℃로 냉각시키기 때문에 이종연료엔진에 공급되는 증발가스의 온도를 조절하기 위한 별도의 히터 등의 장치는 생략될 수 있다.
또는, 잉여 증발가스를 증발가스 압축부(13)의 후단에서 분기하는 제3 분기라인(L9)을 통해 또 다른 잉여 증발가스 소비수단으로서의 가스터빈에 공급하여 사용하도록 구성할 수 있다. 마찬가지로 이때에도 가스터빈에 공급되는 증발가스의 온도를 조절하기 위한 별도의 장치는 생략될 수 있다.
또한, 도 9b에 예시된 제4 실시형태의 변형예에 따른 연료 공급 시스템은, 전술한 제4 실시형태에 비해 LBOG 복귀라인(L4)에 LBOG 팽창밸브 및 LBOG 기액분리기가 각각 하나씩 배치되는 것으로 구성되어 있지만, 필요에 따라 전술한 제4 실시형태와 마찬가지로 또 다른 LBOG 팽창밸브(52) 및 LBOG 기액분리기(54)가 추가로 배치되도록 구성될 수 있다.
(제5 실시형태)
도 10a는 본 발명의 제5 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 10a에 도시된 제5 실시형태의 연료 공급 시스템은, 전술한 제3 실시형태의 연료 공급 시스템에 비하여 잉여 증발가스를 소비하기 위한 수단, 즉 가스 연소 유닛(GCU; Gas Combustion Unit) 등과, 안정적인 연료 공급을 위한 수단, 즉 LNG 공급라인이 추가되었다는 점에서 서로 상이하다. 또한, 잉여 증발가스가 발생하지 않도록 증발가스 중 일부를 재액화 이전에 분기시켜 소비하기 위한 수단, 즉 이종연료엔진(DFDE) 혹은 가스터빈 등을 가진다는 점에서 서로 상이하다. 이어지는 설명에서는 제3 실시형태와의 차이점을 위주로 설명한다.
본 발명의 제5 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 고압 천연가스 분사 엔진의 부하가 줄어들거나 발생된 증발가스의 양이 많아 잉여의 액화증발가스(LBOG)가 발생할 것으로 예상될 경우에는, 증발가스 압축부(13)에서 압축된 혹은 압축되고 있는 도중의 증발가스를 분기라인을 통해 분기시켜 잉여 증발가스 소비수단에서 사용한다.
즉, 잉여 증발가스를 증발가스 압축부(13)에서 분기하는 제2 분기라인(L8)을 통해 잉여 증발가스 소비수단으로서의 이종연료엔진(DFDE)에 공급하여 사용하도록 구성할 수 있다. 이때 증발가스 압축부(13)에 포함된 중간 냉각기(15)에서 증발가스의 온도를 대략 40℃로 냉각시키기 때문에 이종연료엔진에 공급되는 증발가스의 온도를 조절하기 위한 별도의 히터 등의 장치는 생략될 수 있다.
또는, 잉여 증발가스를 증발가스 압축부(13)의 후단에서 분기하는 제3 분기라인(L9)을 통해 또 다른 잉여 증발가스 소비수단으로서의 가스터빈에 공급하여 사용하도록 구성할 수 있다. 마찬가지로 이때에도 가스터빈에 공급되는 증발가스의 온도를 조절하기 위한 별도의 장치는 생략될 수 있다.
한편, 상기된 바와 같이 재액화 장치(20)에 공급되는 증발가스의 양을 감소시켰음에도 불구하고 고압 천연가스 분사 엔진에서 요구하는 증발가스의 양보다 공급되는 연료로서의 증발가스의 양이 많은 경우에는, 잉여의 증발가스를, 전술한 제4 실시형태에서와 마찬가지로 처리한다.
즉, 잉여의 증발가스는, 버퍼 탱크(31)의 후단에서 연료 공급라인(L3)으로부터 분기하는 LBOG 복귀라인(L4)에 설치되는 LBOG 팽창밸브(51)를 통하여 감압되고, 감압 과정에서 발생하는 플래시 가스를 포함한 LBOG는 LBOG 기액분리기(53)를 통해 액체 성분(LBOG)과 기체 성분(플래시가스)으로 분리된 후, 액체 성분은 LBOG 복귀라인(L4)을 통해 저장탱크(11)로 복귀된다. LBOG 기액분리기(53)에서 분리된 기체 성분(즉, 플래시 가스)은, 연료가스 공급라인(L6)을 통하여, 잉여 증발가스 소비수단으로서의 가스 연소 유닛(GCU)에 연료로서 공급된다.
한편, 고압 천연가스 분사 엔진(즉, ME-GI)에 연료를 공급하는 연료 공급라인(L3)으로부터 분기되어 연료가스 공급라인(L6)에 연결되는 분기라인(L5)을 통하여 잉여의 증발가스가 GCU에 추가로 공급될 수 있다. 분기라인(L5)에는 압력강하를 위해 밸브가 설치된다.
또한, 전술한 제4 실시형태와 마찬가지로, 증발가스 재액화 장치가 작동하지 않거나 저장탱크(11)에서 발생하는 증발가스의 양이 적은 경우, 저장탱크(11) 내에 설치된 LNG 공급펌프(57)와 LNG 공급라인(L7)을 통해 저장탱크(11)에 수용된 LNG를 버퍼 탱크(31)에 공급함으로써 연료를 공급할 수 있다.
지금까지 설명한 제4 및 제5 실시형태에 있어서, 발생된 플래시 가스를 처리하기 위한 수단으로 설명된 DFDE(제4 실시형태), GCU(제5 실시형태) 등의 장치와, 플래시 가스가 발생하지 않도록 잉여의 증발가스를 재액화 이전에 미리 소비하는 수단으로 설명된 DFDE(제5 실시형태), 가스터빈(제5 실시형태) 등의 장치는, 모두 플래시 가스의 발생을 억제할 수 있는 것이므로 플래시 가스 억제수단으로 통칭할 수 있다. 아울러, 이들 장치는, 모두 고압가스 분사엔진에서 필요로 하는 연료의 양보다 많은 잉여의 증발가스를 소비할 수 있는 것이므로 잉여 증발가스 소비수단으로 통칭할 수도 있다.
(제5 실시형태의 변형예)
도 10b에는 본 발명의 바람직한 제5 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제5 실시형태의 변형예는, 재액화 장치(20)의 구성이 상술한 제5 실시형태에 비해 부분적으로 상이하다.
즉, 도 10b에 예시된 본 제5 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에 예시된 제1 실시형태의 변형예에 따른 재액화 장치(20)와 마찬가지로, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 냉매 기액분리기를 포함한다.
특히, 도 10b에 예시된 본 제5 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에서와 마찬가지로, 복수의 냉매 기액분리기(22a, 22b, 22c)를 포함하고 있으며, 이들 복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기(22c)에는 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 혼합된 후 공급된다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매는, 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 냉매 압축기(23a, 23b)에 의해 압축되고 냉매 냉각기(24a, 24b)에 의해 냉각되는 과정을 거칠 수 있다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 액체 상태의 냉매는, 기체 상태의 냉매가 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 더욱 상세하게는 기체 상태의 냉매가 냉매 냉각기(24b)에 의해 냉각되기 전에 이 기체 상태의 냉매와 혼합된다.
(제6 실시형태)
도 11은 본 발명의 제6 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 11에 도시된 제6 실시형태의 연료 공급 시스템은, 전술한 제1 내지 제5 실시형태의 연료 공급 시스템에 포함된 버퍼 탱크를 대신하여 재응축기(Recondenser)를 사용한다는 점에서 서로 상이하다.
본 발명의 제6 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료가스 공급 시스템에 따르면, 액화가스 저장탱크(110)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 압축부(113)에서 대략 12 내지 45 bara(절대압력) 정도의 중압으로 압축된 후 재액화 장치(120)에 공급된다. 재액화 장치(120)에서 액화에너지, 즉 냉열을 공급받아 재액화된 액화증발가스(LBOG)는 고압 펌프(133)에 의해 대략 150 내지 400 bara 정도의 고압으로 압축된 후 고압 기화기(137)에 공급된다. 고압 기화기(137)에서 기화된 증발가스는 계속해서 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급된다.
저장탱크는 LNG 등의 액화가스를 극저온 상태로 저장할 수 있도록 밀봉 및 단열 방벽을 갖추고 있지만, 외부로부터 전달되는 열을 완벽하게 차단할 수는 없다. 그에 따라 저장탱크(110) 내에서는 액화가스의 증발이 지속적으로 이루어지며, 증발가스의 압력을 적정한 수준으로 유지하기 위해 증발가스 배출라인(L11)을 통하여 저장탱크(110) 내부의 증발가스를 배출시킨다.
배출된 증발가스는 증발가스 배출라인(L11)을 통해 증발가스 압축부(113)에 공급된다. 증발가스 압축부(113)는 하나 이상의 증발가스 압축기(114)를 포함한다. 도시하지는 않았지만, 증발가스 압축부(113)는 증발가스 압축기(114)에서 압축되면서 온도가 상승한 증발가스를 냉각시키기 위한 하나 이상의 중간 냉각기(도시생략)를 포함할 수 있다. 도 11에서는 3개의 증발가스 압축기(114)를 포함하는 3단 압축의 증발가스 압축부(113)가 예시되어 있다.
증발가스 압축부(113)에서 압축된 증발가스는 증발가스 공급라인(L12)을 통하여 재액화 장치(120)에 공급된다. 재액화 장치(120)에 공급된 증발가스는 재액화 장치(120)의 콜드 박스, 즉, 메인 극저온 열교환기(Main Cryogenic Heat Exchanger)(121)를 통과하면서 냉매에 의해 냉각되어 재액화된다.
재액화 장치(120)로서는, LNG 등의 액화가스로부터 발생하는 증발가스 등을 액화시킬 수 있는 것이라면 어떠한 구성의 것이라도 사용될 수 있다. 즉, 상술한 제1 내지 제5 실시형태 및 그 변형예에서 설명된 바와 같은 구성의 비폭발성 혼합냉매를 활용한 재액화 시스템이 사용될 수 있다. 또한, 종래 공지되어 있는 질소냉매를 활용한 재액화 시스템이 사용될 수도 있으며, 예를 들어 국제특허공개 WO 2007/117148 호 공보 및 WO 2009/136793 호 공보 등에 개시되어 있는 것이 사용될 수도 있다.
콜드 박스(121)에서의 열교환을 통해 재액화된 증발가스는 재응축기(131)에 공급되어 임시 저장된다. 본 실시형태에 따르면, 재액화된 액화증발가스와, 액화가스 저장탱크(110)에서 공급되는 액화가스, 즉 LNG를 재응축기(131)에 임시 저장하고, 액화가스 저장탱크(110)로부터 재액화 장치(120)에 공급되는 증발가스 중 일부 혹은 전체를 재응축기(131)로 우회시켜 응축시킴으로써 재액화 장치(120)로 유입되는 증발가스의 양을 감소시키거나 없앰으로써 전체적인 시스템 효율을 향상시킬 수 있다. 이하 상세하게 설명되는 바와 같이, 재응축기(131)는, 재액화 장치(120)에서 재액화된 후 재응축기(131)에 공급되어 임시 저장되는 액화증발가스 및 저장탱크(110)에서 직접 재응축기(131)에 공급된 액화가스(즉, LNG) 중 적어도 하나로부터의 냉열을 이용하여, 발생된 증발가스 중 일부 혹은 전부를 재응축시킨다.
재응축기(131)는 전술한 실시형태들에서의 버퍼 탱크와 마찬가지로 기체와 액체 성분을 분리하는 기능을 수행할 수도 있으므로, 재응축기(131)에 임시 저장된 액화가스는 기체와 액체 상태로 분리되며, 액체 상태의 액화가스만이 연료 공급라인(L13)을 통해 고압 펌프(133)에 공급된다. 고압 펌프(133)는 복수개, 예를 들어 2개가 병렬로 설치될 수 있다.
고압 펌프(133)에서는 액화가스를 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)에서 요구하는 연료 공급 압력까지 가압하여 송출한다. 고압 펌프(133)에서 송출되는 액화가스는 대략 150 ∼ 400 bara(절대압력) 정도의 고압을 갖는다.
고압 펌프(133)에서의 충분한 유효 흡인 수두(NPSH; Net Positive Suction Head)를 보장할 수 있도록, 필요시, 연료 공급라인(L13)의 재응축기(131)와 고압 펌프(133) 사이에는 부스터 펌프(132)가 설치될 수 있다.
또한, 전술한 제2 실시형태에서와 같이, 고압 펌프(133)에서 고압으로 압축된 액화가스는, 고압 기화기(137)에 공급되기 전에, 재액화 장치(120)에 공급되는 증발가스와 열교환기(135)에서 열교환되도록 시스템을 구성하여도 좋다. 고압 기화기(137)에 공급되는 액화가스는 재액화 장치(120)에 공급되는 증발가스에 비해 상대적으로 저온이므로, 열교환기(135)를 통과하면서 재액화 장치(120)에 공급되는 증발가스의 온도를 낮출 수 있어 재액화 장치(120)에서의 재액화 에너지를 절감할 수 있다. 그와 함께, 고압 기화기(137)에 공급되는 액화가스는 열교환기(135)를 통과하면서 가열되어 고압 기화기(137)에서의 기화 에너지를 절감할 수 있다.
재응축기(131)에 재응축되어 임시 저장된 액화증발가스는, 필요시, LBOG 복귀라인(L14)을 통해 액화가스 저장탱크(110)에 복귀될 수 있다. 도 11에 도시하지는 않았지만, LBOG 복귀라인(L14)에는, 도 9a 내지 도 10b를 참조하여 설명한 제4 및 제5 실시형태 및 그 변형예와 같은 팽창밸브, 기액분리기 등이 설치될 수 있다.
그러나, 본 제6 실시형태에 따른 연료가스 공급 시스템에 의하면, 해상 구조물의 운항 중 대부분의 기간 동안, 저장탱크에서 발생된 증발가스를 액화시켜 모두 고압 천연가스 분사 엔진에서 연료로서 사용하고 있으며, 그에 따라 LBOG 복귀라인(L14)을 통하여 저장탱크(110)에 복귀하는 액화가스를 없앨 수 있다. LBOG 복귀라인(L14)은, 해상 구조물을 항구 내에 접안하기 위해 예인하는 경우, 운하를 통과하는 경우, 혹은 저속 운항중인 경우와 같이 고압 천연가스 분사 엔진의 연료 소모량이 저장탱크에서 발생된 증발가스의 양보다 적은 극히 예외적인 경우에만, LBOG를 재응축기(131)로부터 저장탱크(110)에 복귀시키는 용도로 사용될 수 있다. 또한, 재응축기의 고장이나 유지보수시 재응축기(131) 내에 남아있는 LBOG를 저장탱크(110)에 복귀시키는 용도로 사용될 수 있다.
본 실시형태에 따르면, 해상 구조물의 운항시 대부분의 기간 동안 LBOG를 저장탱크로 복귀시키지 않고 전량 엔진에서 사용할 수 있으므로, 그 기간 동안에는 복귀하는 LBOG 자체를 없앨 수 있고, 그에 따라 LBOG의 복귀 도중에 압력 차이로 인하여 발생할 수 있는 플래시 가스를 원천적으로 제거할 수 있다. 본 명세서에서 "플래시 가스를 제거한다"는 표현은, 발생된 플래시 가스를 소모함으로써 플래시 가스가 저장탱크(110)의 내부에 공급되지 않도록 하는 것과, 재액화된 증발가스가 저장탱크(110)에 되돌아가는 것을 방지하여 복귀 도중의 플래시 가스 발생을 원천적으로 차단함으로써 플래시 가스의 발생 자체를 방지하는 것을 모두 포함하는 개념이다.
또한, 본 명세서에서의 "고압 천연가스 분사 엔진의 연료 소모량이 저장탱크에서 발생된 증발가스의 양보다 많다거나 적다"는 표현 중에서 '고압 천연가스 분사 엔진의 연료 소모량' 은, 고압 천연가스 분사 엔진 이외에도 해상 구조물 내에 증발가스를 연료로서 사용하는 엔진, 예컨대 DFDE, 가스 터빈 등이 존재할 경우, 이들 엔진에서의 연료 소모량과 고압 천연가스 분사 엔진의 연료 소모량이 더해진 것으로 간주되어야 한다. 물론, 증발가스를 연료로서 사용하는 엔진이 고압 천연가스 분사 엔진뿐이라면, 고압 천연가스 분사 엔진의 연료 소모량만을 의미하는 것이다.
액화가스 저장탱크(110)에서 발생하는 증발가스의 양이 고압 천연가스 분사 엔진에서 요구하는 연료량보다 적은 경우 등에는, LNG 공급라인(L17)을 통해 저장탱크(110)에 수용된 LNG를 직접 재응축기(131)에 공급할 수 있다. 저장탱크(110)에 수용된 LNG를 직접 재응축기(131)에 공급할 수 있도록, LNG 공급라인(L17)의 일단, 즉 액화가스 저장탱크(110) 내부에 위치하는 LNG 공급라인(L17)의 시작지점에는 잠수식 펌프(157)가 설치된다. 본 실시형태에 따르면, 재응축기(131) (혹은, 제1 내지 제5 실시형태 및 그 변형예에서의 버퍼 탱크(31))에서의 내부압력은, 증발가스 압축부(130)에서 대략 12 내지 45 bara 정도의 중압으로 압축된 증발가스의 압력과 거의 동일한 압력을 가지므로, 잠수식 펌프(157)만으로 저장탱크(110)에 대략 상압 정도의 압력으로 저장되어 있는 액화가스를 중압까지 압축시키는 것은 한계가 있을 수 있다. 따라서, LNG 공급라인(L17)의 도중에 부스터 펌프(158)를 설치하여, 잠수식 펌프(157)에 의해 저장탱크의 외부로 배출된 액화가스를 재응축기(131) (혹은 버퍼 탱크) 내부의 압력과 동일한 수준의 압력까지 압축시키는 것이 바람직하다.
액화가스 저장탱크(110)에서 발생하는 증발가스의 양이 고압 천연가스 분사 엔진에서 요구하는 연료량보다 많아 잉여의 액화증발가스(LBOG)가 발생할 것으로 예상되는 경우에는, 증발가스 압축부(113)에서 압축된 혹은 단계적으로 압축되고 있는 도중의 증발가스를, 증발가스 분기라인(L18)을 통하여 분기시켜 증발가스 소비수단에서 사용한다. 증발가스 소비수단으로서는 ME-GI 엔진에 비해 상대적으로 낮은 압력의 천연가스를 연료로서 사용할 수 있는 가스 터빈이나 DFDE 등이 사용될 수 있다.
한편, 전술한 바와 같이, 재액화 장치(120)의 부하를 감소시키거나 재액화 장치의 운전을 완전히 중단시켜 전체 시스템의 효율을 향상시킬 수 있도록, 본 실시형태에 따른 연료가스 공급 시스템은, 증발가스 공급라인(L12)으로부터 분기하여 증발가스 압축부(113)에서 압축된 증발가스 중 일부 혹은 전체를 재액화 장치를 우회하여 직접 재응축기(131)에 공급할 수 있는 증발가스 우회라인(L21)을 포함할 수 있다.
더욱 상세하게는, 증발가스 우회라인(L21)은 증발가스 공급라인(L12)의 열교환기(135) 하류측에서 분기하여 재응축기(131)에 연결되는 것이 바람직하다. 필요시 재응축기(131)의 압력을 조절할 수 있도록 증발가스 우회라인(L21)에는 압력제어밸브(161)가 설치되는 것이 바람직하다.
액화가스 저장탱크(110)에서 발생하는 증발가스의 양이 고압 천연가스 분사 엔진에서 요구하는 연료량보다 적은 경우에는 저장탱크(110) 내의 LNG를 재응축기(131)에 공급하여 부족한 연료량을 보충하며, 이때 재액화 장치에 공급되는 증발가스 중 일부를 증발가스 우회라인(L21)을 통해 재응축기(131)에 공급하여 LNG와 혼합시켜 재응축시킴으로써 재액화 장치의 부하를 감소시킬 수 있다.
이하, 상기된 바와 같이 구성된 제6 실시형태의 연료가스 공급 시스템이 예를 들어 LNG 운반선에 설치되었을 때의 재응축기(131)를 활용한 운전방법을, 도 11을 참조하여 설명한다.
제6 실시형태에 따른 연료가스 공급 시스템은, 재응축기(131)를 구비하고 있기 때문에, 저장탱크(110)에서 발생된 증발가스를 모두 재액화 장치(120)의 콜드 박스(121)에 공급하지 않고 적어도 일부의 증발가스를 재응축기(131)로 우회시킴으로써, 에너지 소모가 많은 재액화 장치의 부하를 감소시키거나, 또는 경우에 따라서는 재액화 장치의 작동을 완전히 중지할 수 있다.
저장탱크(110)를 거의 비우고 항해하는 밸러스트(ballast) 항해시에는 증발가스의 발생량이 비교적 적다. 이때에는 저장탱크에서 자연적으로 발생하는 증발가스만으로는 고압 천연가스 분사 엔진에서의 연료 요구량을 만족시킬 수 없으므로, 저장탱크(110)에 저장된 LNG를 LNG 공급라인(L17)을 통해 재응축기(131)로 직접 공급한다.
그와 함께 액화가스 저장탱크(110)로부터 배출된 증발가스는 증발가스 압축부(113)에서 12 내지 45bara 정도의 중압으로 압축되고 열교환기(135)에서 냉각된 후 증발가스 우회라인(L21)을 통해 전량 재응축기(131)로 공급된다.
밸러스트 항해시에는 발생되는 증발가스의 양이 적기 때문에, 발생된 증발가스는 전량 재응축기(131)에 공급되어 재응축될 수 있다. 즉, 밸러스트 운항과정 중에는, 대부분의 기간 동안, 저장탱크에서 발생된 증발가스 전부를 재응축기(131)에서 재응축함으로써, 재액화 장치의 가동을 중단시킬 수 있다. 다만, 밸러스트 운항과정 중 해상 구조물이 예인되는 도중과 같이 고압 천연가스 분사 엔진이 저속으로 운전되거나 작동을 멈춘 경우에는 고압 천연가스 분사 엔진의 연료 소모량이 없거나 현저히 감소하기 때문에, 저장탱크에서 발생된 증발가스 전부를 재응축시켜 연료로서 소모하지 못하고, 부분적으로 재액화 장치에서 재액화시킬 수도 있지만, 이러한 경우는 밸러스트 운항 과정 중 매우 예외적인 경우이다.
LNG 공급라인(L17)을 통해 재응축기(131)에 공급된 LNG는 과냉각된 상태이므로, 증발가스 우회라인(L21)을 통해 공급되어 온 증발가스는 재응축기(131) 내에서 과냉각된 LNG와 혼합되는 과정에서 LNG로부터 냉열을 공급받아 전량 응축될 수 있다.
이와 같이 본 실시형태의 연료가스 공급 시스템에 의하면, 밸러스트시 발생된 증발가스를 모두 재응축기(131) 내에서 재응축하여 고압 천연가스 분사 엔진에서의 연료로서 사용할 수 있으며, 그에 따라 저장탱크(110)로 복귀하는 LBOG는 전혀 존재하지 않는다.
또한, 발생된 증발가스를 전량 재응축기(131) 내에서 처리할 수 있기 때문에, 전력 소모가 많아 에너지를 많이 사용하는 재액화 장치(120)를 전혀 가동하지 않을 수 있어 상당한 양의 에너지를 절약할 수 있게 된다.
한편, 저장탱크(110)를 가득 채우고 항해하는 레이든(laden) 항해시에는 증발가스의 발생량이 상대적으로 많다. 이때에는 저장탱크에서 자연적으로 발생하는 증발가스를 모두 재응축기(131)에서 처리할 수 없으므로 재액화 장치(120)를 가동하여 증발가스를 재액화한다. 필요하다면, 발생된 증발가스 중 일부는 증발가스 우회라인(L21)을 통해 재응축기(131)로 우회시켜 재액화 장치(120)에서의 재액화 부하를 감소시킴으로써 에너지를 절약할 수 있다.
재액화 장치(120)에서 증발가스를 과냉 상태로 냉각하기 위해 증발가스를 포화온도보다 낮은 과냉온도까지 냉각하는 것은 효율적이지 못하다. 하지만, 증발가스를 포화온도까지만 냉각하여 액화시킬 경우에는 포화 상태의 LBOG가 배관을 따라 이동하면서 가열되어 다시 기화될 우려가 있으므로, 재액화 장치(120)에서 증발가스를 액화시킬 때에는 증발가스를 해당 압력에서의 과냉온도까지 냉각시키는 것이 바람직하다.
국제특허공개 WO 2007/117148 호 공보 및 WO 2009/136793 호 공보 등에 개시되어 있는 종래 공지된 재액화 장치의 경우에는, 기본적으로 재액화 장치에 의해 재액화된 LBOG를 LNG 저장탱크로 복귀시키는 개념을 가지고 있었기 때문에, LNG 저장탱크 내부의 온도(대략 -163℃)에 맞춰 4 내지 8bara에서의 포화온도보다 훨씬 낮은 온도로 증발가스를 과냉시키고 있었다.
그러나, 본 발명의 연료 공급 시스템에 따르면, 기본적으로 재액화된 LBOG를 고압 천연가스 분사 엔진에 연료로서 공급하여 사용하는 개념을 가지고 있기 때문에, 증발가스를 대략 12 내지 45bara로 압축하고 있으며, 재액화 장치에서의 재액화 온도 역시 해당 압력에서의 포화 온도보다 대략 1℃ 정도만 낮은 온도로 재액화 장치를 운전하고 있다.
본 발명에 따르면, 재액화 장치에서 재액화된 LBOG를 저장탱크로 복귀시키지 않기 때문에 저장탱크 내부에 저장된 LNG의 온도 및 압력을 고려할 필요가 없다. 또한, 종래 LBOG를 저장탱크까지 이송하는 배관의 길이가 상대적으로 긴 것에 비해, 본 발명의 경우 LBOG의 과냉 상태를 유지하면서 이송해야 하는 배관의 길이가 상대적으로 짧아 포화 온도보다 지나치게 낮은 온도까지 증발가스를 과냉시킬 필요가 없다.
그러므로, 증발가스의 액화온도를 포화온도보다 약간만 낮은 온도로 설정(예컨대 0.5 ~ 3℃, 바람직하게는 1℃ 정도만 과냉)하여 재액화 장치(120)를 가동함으로써 재액화 장치의 동력 소모를 감소시킬 수 있다.
이때, 증발가스 우회라인(L21) 상에 설치된 압력 제어 밸브(161)를 개폐 조절함으로써, 열교환기(135)에서의 열교환을 통해 냉각된 증발가스가 재응축기 내로 유입될 수 있도록 하여 재응축기(131)의 압력을 적절하게 조절할 수 있다.
또, 본 실시형태에 따르면, 증발가스를 해당 압력에서의 포화온도보다 1℃ 정도만 과냉시켜 액화시킨 후 재응축기(131)에 공급하더라도, 고압 천연가스 분사 엔진에 연료로서 공급되는 과정에서 부스터 펌프(132) 및 고압 펌프(133)에 의해 가압되기 때문에, 압력 증가로 인해 포화상태의 LBOG는 이후 과냉상태가 안정적으로 유지될 수 있다.
(제6 실시형태의 제1 변형예)
도 12에는 본 발명의 바람직한 제6 실시형태의 제1 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제6 실시형태의 제1 변형예는, 재액화 장치에서 소모하는 에너지를 최소화할 수 있도록, 고압 천연가스 분사 엔진에 대한 연료 공급이 중단된 경우에 재액화 장치로 공급되는 증발가스를 예냉시키기 위한 예냉 유닛을 포함한다는 점이 제6 실시형태에 비해 상이하다.
제6 실시형태의 제1 변형예에 따른 예냉 유닛은, LNG 공급라인(L17)으로부터 분기하여 고압 펌프(133) 하류측(즉, 열교환기(135)의 상류측)의 연료 공급라인(L13)에 연결되는 LNG 분기라인(L31)과, 열교환기(135) 하류측의 연료 공급라인(L13)으로부터 분기하여 증발가스 압축부(113) 하류측의 증발가스 공급라인(L12)에 연결되는 LNG 합류라인(L32)을 포함한다.
저장탱크(110)로부터 배출된 증발가스는 재액화 장치(120)의 콜드 박스(121)에 공급되기 전에 열교환기(135)에서의 열교환을 통해 냉각될 수 있으며, 그에 따라 재액화 장치(120)에서의 에너지 소모를 절감하도록 구성될 수 있다. 그런데, 열교환기(135)에서의 냉열 공급원은 고압 펌프(133)에서 고압 천연가스 분사 엔진에 공급되는 연료(즉, 액화천연가스)이므로, 고압 천연가스 분사 엔진의 작동이 정지되어 연료 공급이 중단될 경우에는 냉열 공급원이 사라지게 된다. 이때, 본 발명의 제6 실시형태의 제1 변형예에 따르면, 예냉 유닛을 통해 저장탱크(110)의 LNG가 가지는 냉열을 증발가스에 전달하여 증발가스를 냉각시킬 수 있다. 그에 따라 고압 천연가스 분사 엔진의 작동이 정지된 경우에도 재액화 장치(120)에 공급되는 증발가스의 효율적인 재액화가 가능하게 된다.
LNG 공급라인(L17)에서 분기하는 LNG 분기라인(L31)을 통해 열교환기(135)에 공급되는 LNG는 열교환기(135)에서의 열교환을 통해 증발가스를 냉각시키고 자신은 가열된다. 가열된 LNG는 적어도 부분적으로 기화된 후 LNG 합류라인(L32)을 통해 증발가스와 합류된다.
LNG 분기라인(L31)에는 LNG의 공급량을 조절함으로써 증발가스의 예냉 온도를 조절하기 위해 온도조절 밸브가 설치되는 것이 바람직하다. LNG 분기라인(L31)은 LNG 공급라인(L17)에서 분기할 수도 있고, LNG 저장탱크(110)로부터 연장하는 별도의 배관으로 이루어질 수도 있다. 도시하지는 않았지만, LNG 공급라인(L17)에는 부스터 펌프(158)(도 11 참조)가 설치될 수 있다.
(제6 실시형태의 제2 변형예)
도 13에는 본 발명의 바람직한 제6 실시형태의 제2 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제6 실시형태의 제2 변형예는, 재액화 장치에서 소모하는 에너지를 최소화할 수 있도록, 고압 천연가스 분사 엔진에 대한 연료 공급이 중단된 경우에 재액화 장치로 공급되는 증발가스를 예냉시키기 위한 예냉 유닛을 포함한다는 점이 제6 실시형태에 비해 상이하다.
제6 실시형태의 제2 변형예에 따른 예냉 유닛은, 전술한 제1 변형예와는 달리, 열교환기(135) 상류측의 증발가스 공급라인(L12)에 설치되는 증발가스 예냉용 열교환기(141)와, LNG 공급라인(L17)으로부터 분기하여 증발가스 예냉용 열교환기(141)에 연결되는 LNG 분기라인(L35)과, 증발가스 예냉용 열교환기(141)로부터 연장하여 이 증발가스 예냉용 열교환기(141) 상류측의 증발가스 공급라인(L12)에 연결되는 LNG 합류라인(L36)을 포함한다.
저장탱크(110)로부터 배출된 증발가스는 재액화 장치(120)의 콜드 박스(121)에 공급되기 전에 열교환기(135)에서의 열교환을 통해 냉각될 수 있으며, 그에 따라 재액화 장치(120)에서의 에너지 소모를 절감하도록 구성될 수 있다. 그런데, 열교환기(135)에서의 냉열 공급원은 고압 펌프(133)에서 고압 천연가스 분사 엔진에 공급되는 연료(즉, 액화천연가스)이므로, 고압 천연가스 분사 엔진의 작동이 정지되어 연료 공급이 중단될 경우에는 냉열 공급원이 사라지게 된다. 이때, 본 발명의 제6 실시형태의 제2 변형예에 따르면, 예냉 유닛을 통해 저장탱크(110)의 LNG가 가지는 냉열을 증발가스에 전달하여 증발가스를 냉각시킬 수 있다. 그에 따라 고압 천연가스 분사 엔진의 작동이 정지된 경우에도 재액화 장치(120)에 공급되는 증발가스의 효율적인 재액화가 가능하게 된다.
LNG 공급라인(L17)에서 분기하는 LNG 분기라인(L35)을 통해 증발가스 예냉용 열교환기(141)에 공급되는 LNG는 열교환을 통해 증발가스를 냉각시키고 자신은 가열된다. 가열된 LNG는 적어도 부분적으로 기화된 후 LNG 합류라인(L36)을 통해 증발가스와 합류된다.
LNG 분기라인(L31)에는 LNG의 공급량을 조절함으로써 증발가스의 예냉 온도를 조절하기 위해 온도조절 밸브가 설치되는 것이 바람직하다. LNG 분기라인(L35)은 LNG 공급라인(L17)에서 분기할 수도 있고, LNG 저장탱크(110)로부터 연장하는 별도의 배관으로 이루어질 수도 있다. 도시하지는 않았지만, LNG 공급라인(L17)에는 부스터 펌프(158)(도 11 참조)가 설치될 수 있다.
이와 같이 본 발명의 제6 실시형태의 제1 및 제2 변형예에 따르면, 예를 들어 LNG의 하역을 위해 대기하는 중이나, 항구 또는 운하에서 예인되고 있는 중과 같이, 저장탱크(110)에 LNG가 수용되어 있어 증발가스가 계속해서 발생하고 있지만 고압 천연가스 분사 엔진의 작동은 정지된 경우에도, 증발가스의 재액화를 효율적으로 수행할 수 있게 된다.
(제6 실시형태의 제3 변형예)
도 14에는 본 발명의 바람직한 제6 실시형태의 제3 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제6 실시형태의 제3 변형예는, 재액화 장치로부터 고압 펌프(133)를 거쳐 고압 천연가스 분사 엔진에 연료를 공급하는 연료 공급라인(L13)의 도중에서 분기하여 재액화된 LBOG를 저장탱크(110)에 복귀시키는 LBOG 복귀라인(L41)을 가진다는 점이 제6 실시형태에 비해 상이하다.
제6 실시형태의 제3 변형예에 따른 LBOG 복귀라인(L41)은, 재액화 장치(120)의 하류측, 즉 재액화 장치(120)의 콜드 박스(121)와 고압 펌프(133) 사이에서 분기한다. 더욱 구체적으로는 LBOG 복귀라인(L41)은 재액화 장치(120)의 콜드 박스(121)와 재응축기(131) 사이에서 분기하는 것이 바람직하다.
전술한 제6 실시형태에서 LBOG 복귀라인이 재응축기(131)로부터 연장하는 것에 비해, 본 제6 실시형태의 제3 변형예에 따르면 복귀하는 LBOG에 대한 열에너지 유입을 감소시킬 수 있다.
재액화 장치가 안정적으로 운전되기 위해서는 고압 펌프 상류측의 압력, 즉 메인 열교환기인 콜드 박스(121) 후단의 배압을 일정하게 유지할 필요가 있는데, 본 제6 실시형태의 제3 변형예에 따르면, LBOG 복귀라인(L41)에 압력조절밸브(145)를 설치함으로써 연료 공급라인(L13)의 압력을 설정된 압력으로 유지할 수 있다. 압력조절밸브(145)를 설치함에 따라 재액화 장치를 안정적으로 운전할 수 있는 동시에 연료 공급라인을 통하여 공급되는 연료의 유량까지 조절할 수 있게 된다.
도시하지는 않았지만, LNG 공급라인(L17)에는 부스터 펌프(158)(도 11 참조)가 설치될 수 있다. 또한, 도시하지는 않았지만, LBOG 복귀라인(L41)에는 도 9a 내지 도 10b를 참조하여 설명한 제4 및 제5 실시형태 및 그 변형예와 같은 팽창밸브, 기액분리기 등이 설치될 수 있으며, 발생되는 플래시 가스를 처리하거나 플래시 가스 발생을 억제하는 수단이 설치될 수 있다.
또, 본 제6 실시형태의 제3 변형예에서는 재응축기(131)를 대신하여 일반적인 석션 드럼이 설치되어도 좋다.
(제6 실시형태의 제4 변형예)
도 15에는 본 발명의 바람직한 제6 실시형태의 제4 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제6 실시형태의 제4 변형예는, 재액화 장치로부터 고압 펌프(133)를 거쳐 고압 천연가스 분사 엔진에 연료를 공급하는 연료 공급라인(L13)의 도중에서 분기하여 재액화된 LBOG를 저장탱크(110)에 복귀시키는 LBOG 복귀라인(L41)을 가진다는 점이 제6 실시형태에 비해 상이하다. 또한, 제4 변형예의 연료 공급 시스템은 재응축기를 가지지 않고 재액화 장치에서 재액화된 LBOG가 곧바로 고압 펌프(133)에 공급된다는 점이 제6 실시형태에 비해 상이하다.
제6 실시형태의 제4 변형예에 따른 LBOG 복귀라인(L41)은, 재액화 장치(120)의 하류측, 즉 재액화 장치(120)의 콜드 박스(121)와 고압 펌프(133) 사이에서 분기한다.
전술한 제6 실시형태에서 LBOG 복귀라인이 재응축기(131)로부터 연장하는 것에 비해, 본 제6 실시형태의 제4 변형예에 따르면 복귀하는 LBOG에 대한 열에너지 유입을 감소시킬 수 있다.
재액화 장치가 안정적으로 운전되기 위해서는 고압 펌프 상류측의 압력, 즉 메인 열교환기인 콜드 박스(121) 후단의 배압을 일정하게 유지할 필요가 있는데, 본 제6 실시형태의 제4 변형예에 따르면, LBOG 복귀라인(L41)에 압력조절밸브(145)를 설치함으로써 연료 공급라인(L13)의 압력을 설정된 압력으로 유지할 수 있다. 압력조절밸브(145)를 설치함에 따라 재액화 장치를 안정적으로 운전할 수 있는 동시에 연료 공급라인을 통하여 공급되는 연료의 유량까지 조절할 수 있게 된다.
도시하지는 않았지만, LNG 공급라인(L17)에는 부스터 펌프(158)(도 11 참조)가 설치될 수 있다. 또한, 도시하지는 않았지만, LBOG 복귀라인(L41)에는 도 9a 내지 도 10b를 참조하여 설명한 제4 및 제5 실시형태 및 그 변형예와 같은 팽창밸브, 기액분리기 등이 설치될 수 있으며, 발생되는 플래시 가스를 처리하거나 플래시 가스 발생을 억제하는 수단이 설치될 수 있다.
(제7 실시형태)
도 16은 본 발명의 제7 실시형태에 따른 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진을 갖는 해상 구조물, 특히 액화천연가스 운반선의 연료 공급 시스템을 도시한 구성도이다.
본 발명의 제7 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 액화가스 저장탱크(11)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 압축부(13)에서 대략 12 내지 45 bara(절대압력) 정도의 중압으로 압축된 후 재액화 장치(60)에 공급된다. 재액화 장치(60)에서 액화에너지, 즉 냉열을 공급받아 재액화된 액화증발가스(LBOG)는 고압 펌프(33)에 의해 대략 150 내지 400 bara 정도의 고압으로 압축된 후 고압 기화기(37)에 공급된다. 고압 기화기(37)에서 기화된 증발가스는 계속해서 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급된다.
저장탱크에서 배출된 증발가스는 증발가스 배출라인(L1)을 통해 증발가스 압축부(13)에 공급된다. 증발가스 압축부(13)는 하나 이상의 증발가스 압축기(14)와, 이 증발가스 압축기(14)에서 압축되면서 온도가 상승한 증발가스를 냉각시키기 위한 하나 이상의 중간 냉각기(15)를 포함한다. 도 16에서는 3개의 증발가스 압축기(14)와 3개의 중간 냉각기(15)를 포함하는 3단 압축의 증발가스 압축부(13)가 예시되어 있다.
증발가스 압축부(13)에서 압축된 증발가스는 증발가스 공급라인(L2)을 통하여 재액화 장치(60)에 공급된다. 재액화 장치(60)에 공급된 증발가스는 재액화 장치(60)의 콜드 박스(61), 즉 메인 극저온 열교환기(Main Cryogenic Heat Exchanger)를 통과하면서 냉매에 의해 냉각되어 재액화된다.
재액화 장치(60)로서는, LNG 등의 액화가스로부터 발생하는 증발가스 등을 액화시킬 수 있는 것이라면 어떠한 구성의 것이라도 사용될 수 있다. 본 발명에 따르면, 재액화 장치(60)는 냉매를 순환시키는 냉동 사이클로 이루어질 수 있으며, 냉매로서는 질소나 혼합냉매, 특히 비폭발성 혼합냉매를 사용할 수 있다. 즉, 재액화 장치(60)로서는, 상술한 제1 내지 제6 실시형태 및 그 변형예에서 설명된 바와 같은 구성의 비폭발성 혼합냉매를 활용한 재액화 시스템도 사용될 수 있다. 또한, 재액화 장치(60)로서는, 종래 공지되어 있는 질소냉매를 활용한 재액화 시스템, 예를 들어 국제특허공개 WO 2007/117148 호 공보 및 WO 2009/136793 호 공보 등에 개시되어 있는 것이 사용될 수도 있다.
도 16에 예시된 재액화 장치(60)는, 냉매와 증발가스의 열교환에 의해 증발가스를 재액화시키기 위한 콜드 박스(61)와, 이 콜드 박스(61)에서 가열되어 기화된 냉매를 압축시키기 위한 하나 이상의 냉매 압축기(62)와, 이 냉매 압축기(62)에서 압축된 냉매를 냉각시키기 위한 하나 이상의 냉매 냉각기(63)와, 압축되고 냉각된 냉매를 기체 상태의 냉매와 액체 상태의 냉매로 분리하기 위한 냉매 기액분리기(64)와, 냉매를 팽창시켜 온도를 낮추는 냉매 팽창밸브(65)를 포함한다. 이와 같이 구성된 재액화 장치(60)는 단지 예시일 뿐이며, 이 구성만으로 본 발명이 한정되는 것은 아니다.
냉매 팽창밸브(65)에 공급되는 냉매는 팽창 전에 콜드 박스(61)를 통과하면서 팽창 후의 극저온 상태의 냉매와 열교환될 수 있도록 구성되어도 좋다.
콜드 박스(61)에서의 열교환을 통해 재액화된 증발가스는 버퍼 탱크로서의 기능도 수행할 수 있는 재응축기(31)에 공급되어 임시 저장된다. 본 실시형태에 따르면, 재액화된 액화증발가스와, 액화가스 저장탱크(11)에서 공급되는 액화가스, 즉 LNG를 재응축기(31)에 임시 저장하고, 액화가스 저장탱크(11)로부터 재액화 장치(60)에 공급되는 증발가스 중 일부 혹은 전체를 재응축기(31)로 우회시켜 응축시킴으로써 재액화 장치(60)로 유입되는 증발가스의 양을 감소시키거나 없앰으로써 전체적인 시스템 효율을 향상시킬 수 있다. 이하 상세하게 설명되는 바와 같이, 재응축기(31)는, 재액화 장치(60)에서 재액화된 후 재응축기(31)에 공급되어 임시 저장되는 액화증발가스 및 저장탱크(11)에서 직접 재응축기(31)에 공급된 액화가스(즉, LNG) 중 적어도 하나로부터의 냉열을 이용하여, 발생된 증발가스 중 일부 혹은 전부를 재응축시킨다.
재응축기(31)는 전술한 실시형태들에서의 버퍼 탱크와 마찬가지로 기체와 액체 성분을 분리하는 기능을 수행할 수도 있으므로, 재응축기(31)에 임시 저장된 액화가스는 기체와 액체 상태로 분리되며, 액체 상태의 액화가스만이 연료 공급라인(L3)을 통해 고압 펌프(33)에 공급된다.
고압 펌프(33)에서는 액화가스를 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)에서 요구하는 연료 공급 압력까지 가압하여 송출한다. 고압 펌프(33)에서 송출되는 액화가스는 대략 150 ∼ 400 bara(절대압력) 정도의 고압을 갖는다.
고압 펌프(33)에서의 충분한 유효 흡인 수두(NPSH; Net Positive Suction Head)를 보장할 수 있도록, 필요시, 연료 공급라인(L3)의 재응축기(31)와 고압 펌프(33) 사이에는 부스터 펌프가 설치될 수 있다.
본 실시형태에 따르면, 고압 펌프(33)에서 고압으로 압축된 액화가스는, 고압 기화기(37)에 공급되기 전에, 재액화 장치(60)의 냉매와 냉열회수용 열교환기(70)에서 열교환된다. 냉열회수용 열교환기(70)는 고압 펌프(33)와 고압 기와기(37) 사이에 위치되는 것이 바람직하다. 고압 기화기(37)에 공급되는 액화가스는 재액화 장치(60)에서 팽창되어 냉각되기 전의 냉매에 비해 상대적으로 저온이므로, 냉열회수용 열교환기(70)에서의 열교환으로 냉매의 온도를 낮출 수 있어 재액화 장치(60)에서의 재액화 에너지를 절감할 수 있다. 그와 함께, 고압 기화기(37)에 공급되는 액화가스는 냉열회수용 열교환기(70)를 통과하면서 가열되어 고압 기화기(37)에서의 기화 에너지를 절감할 수 있다.
이를 위해 본 실시형태에 따른 연료 공급 시스템은, 재액화 장치(60)의 콜드 박스(61) 상류측에서 분기하여 냉열회수용 열교환기(70)까지 연장하는 제1 냉매 순환 라인(L71)과, 냉열회수용 열교환기(70)로부터 재액화 장치(60)로 복귀하는 제2 냉매 순환 라인(L72)을 포함하도록 구성된다. 제2 냉매 순환 라인(L72)은 냉각된 후 재액화 장치(60)로 복귀하는 냉매가 팽창되기 전의 냉매와 혼합되도록 구성될 수 있으며, 더욱 상세하게는 팽창 수단(65)에 공급되기 전에 콜드 박스(61)의 내부를 통과하고 있는 도중의 냉매와 혼합되도록 구성될 수 있다.
재응축기(31)에 재응축되어 임시 저장된 액화증발가스는, 필요시, LBOG 복귀라인(L4)을 통해 액화가스 저장탱크(11)에 복귀될 수 있다.
그러나, 본 제7 실시형태에 따른 연료가스 공급 시스템에 의하면, 해상 구조물의 운항 중 대부분의 기간 동안, 저장탱크에서 발생된 증발가스를 액화시켜 모두 고압 천연가스 분사 엔진에서 연료로서 사용하고 있으며, 그에 따라 LBOG 복귀라인(L4)을 통하여 저장탱크(11)에 복귀하는 액화가스를 없앨 수 있다. LBOG 복귀라인(L4)은, 해상 구조물을 항구 내에 접안하기 위해 예인하는 경우, 운하를 통과하는 경우, 혹은 저속 운항중인 경우와 같이 고압 천연가스 분사 엔진의 연료 소모량이 저장탱크에서 발생된 증발가스의 양보다 적은 극히 예외적인 경우에만, LBOG를 재응축기(31)로부터 저장탱크(11)에 복귀시키는 용도로 사용될 수 있다. 또한, 재응축기의 고장이나 유지보수시 재응축기(31) 내에 남아있는 LBOG를 저장탱크(11)에 복귀시키는 용도로 사용될 수 있다.
액화가스 저장탱크(11)에서 발생하는 증발가스의 양이 고압 천연가스 분사 엔진에서 요구하는 연료량보다 적은 경우 등에는, LNG 공급라인(L7)을 통해 저장탱크(11)에 수용된 LNG를 직접 재응축기(31)에 공급할 수 있다. 저장탱크(11)에 수용된 LNG를 직접 재응축기(31)에 공급할 수 있도록, LNG 공급라인(L7)의 일단, 즉 액화가스 저장탱크(11) 내부에 위치하는 LNG 공급라인(L7)의 시작지점에는 잠수식 펌프(57)가 설치된다. 필요시, LNG 공급라인(L7)의 도중에 부스터 펌프를 설치하여, 잠수식 펌프(57)에 의해 저장탱크의 외부로 배출된 액화가스를 재응축기(31) (혹은 버퍼 탱크) 내부의 압력과 동일한 수준의 압력까지 압축시키도록 구성할 수 있다.
액화가스 저장탱크(11)에서 발생하는 증발가스의 양이 고압 천연가스 분사 엔진에서 요구하는 연료량보다 많아 잉여의 액화증발가스(LBOG)가 발생할 것으로 예상되는 경우에는, 증발가스 압축부(13)에서 압축된 혹은 단계적으로 압축되고 있는 도중의 증발가스를, 증발가스 분기라인을 통하여 분기시켜 증발가스 소비수단에서 사용한다. 증발가스 소비수단으로서는 ME-GI 엔진에 비해 상대적으로 낮은 압력의 천연가스를 연료로서 사용할 수 있는 가스 터빈이나 DFDE 등이 사용될 수 있다.
한편, 전술한 바와 같이, 재액화 장치(60)의 부하를 감소시키거나 재액화 장치의 운전을 완전히 중단시켜 전체 시스템의 효율을 향상시킬 수 있도록, 본 실시형태에 따른 연료가스 공급 시스템은, 증발가스 공급라인(L2)으로부터 분기하여 증발가스 압축부(13)에서 압축된 증발가스 중 일부 혹은 전체를 재액화 장치를 우회하여 직접 재응축기(31)에 공급할 수 있는 증발가스 우회라인을 포함할 수 있다.
더욱 상세하게는, 증발가스 우회라인은, 증발가스 압축부(13)와 콜드 박스(61) 사이의 증발가스 공급라인(L2)에서 분기하여 냉열회수용 열교환기(70)에 연결되는 제1 증발가스 우회라인(L73)과, 냉열회수용 열교환기(70)로부터 재응축기(31)까지 연장하는 제2 증발가스 우회라인(L74)을 포함하도록 구성될 수 있다.
고압 기화기(37)에 공급되는 액화가스는 증발가스 압축부(13)에서 압축된 증발가스에 비해 상대적으로 저온이므로, 냉열회수용 열교환기(70)에서의 열교환으로 압축된 증발가스의 온도를 낮출 수 있어 재응축기(31)에서의 증발가스의 재응축을 더욱 용이하게 할 수 있다. 그와 함께, 고압 기화기(37)에 공급되는 액화가스는 냉열회수용 열교환기(70)를 통과하면서 가열되어 고압 기화기(37)에서의 기화 에너지를 절감할 수 있다.
이하, 상기된 바와 같이 구성된 제7 실시형태의 연료가스 공급 시스템이 예를 들어 LNG 운반선에 설치되었을 때의 재응축기(31)를 활용한 운전방법을, 도 16을 참조하여 설명한다.
본 실시형태에 따른 연료가스 공급 시스템은, 재응축기(31)를 구비하고 있기 때문에, 저장탱크(11)에서 발생된 증발가스를 모두 재액화 장치(60)의 콜드 박스(61)에 공급하지 않고 적어도 일부의 증발가스를 재응축기(31)로 우회시킴으로써, 에너지 소모가 많은 재액화 장치의 부하를 감소시키거나, 또는 경우에 따라서는 재액화 장치의 작동을 완전히 중지할 수 있다.
저장탱크(11)를 거의 비우고 항해하는 밸러스트(ballast) 항해시에는 증발가스의 발생량이 비교적 적다. 이때에는 저장탱크에서 자연적으로 발생하는 증발가스만으로는 고압 천연가스 분사 엔진에서의 연료 요구량을 만족시킬 수 없으므로, 저장탱크(11)에 저장된 LNG를 LNG 공급라인(L7)을 통해 재응축기(31)로 직접 공급한다.
그와 함께 액화가스 저장탱크(11)로부터 배출된 증발가스는 증발가스 압축부(13)에서 12 내지 45bara 정도의 중압으로 압축된다. 계속해서, 거의 대부분의 증발가스, 바람직하게는 증발가스 전량이 제1 증발가스 우회라인(L73)을 통해 냉열회수용 열교환기(70)에 공급되어 냉각된 후 제2 증발가스 우회라인(L74)을 통해 재응축기(31)로 공급된다.
밸러스트 항해시에는 발생되는 증발가스의 양이 적기 때문에, 발생된 증발가스는 전량 재응축기(31)에 공급되어 재응축될 수 있다. 즉, 밸러스트 운항과정 중에는, 대부분의 기간 동안, 저장탱크에서 발생된 증발가스 전부를 재응축기(31)에서 재응축함으로써, 재액화 장치의 가동을 중단시킬 수 있다. 다만, 밸러스트 운항과정 중 해상 구조물이 예인되는 도중과 같이 고압 천연가스 분사 엔진이 저속으로 운전되거나 작동을 멈춘 경우에는 고압 천연가스 분사 엔진의 연료 소모량이 없거나 현저히 감소하기 때문에, 저장탱크에서 발생된 증발가스 전부를 재응축시켜 연료로서 소모하지 못하고, 부분적으로 재액화 장치에서 재액화시킬 수도 있지만, 이러한 경우는 밸러스트 운항 과정 중 매우 예외적인 경우이다.
LNG 공급라인(L7)을 통해 재응축기(31)에 공급된 LNG는 과냉각된 상태이므로, 증발가스 우회라인(L73, L74)을 통해 공급되어 온 증발가스는 재응축기(31) 내에서 과냉각된 LNG와 혼합되는 과정에서 LNG로부터 냉열을 공급받아 전량 응축될 수 있다.
이와 같이 본 실시형태의 연료가스 공급 시스템에 의하면, 밸러스트시 발생된 증발가스를 모두 재응축기(31) 내에서 재응축하여 고압 천연가스 분사 엔진에서의 연료로서 사용할 수 있으며, 그에 따라 저장탱크(11)로 복귀하는 LBOG는 전혀 존재하지 않는다.
또한, 발생된 증발가스를 전량 재응축기(31) 내에서 처리할 수 있기 때문에, 전력 소모가 많아 에너지를 많이 사용하는 재액화 장치(60)를 전혀 가동하지 않을 수 있어 상당한 양의 에너지를 절약할 수 있게 된다.
한편, 저장탱크(11)를 가득 채우고 항해하는 레이든(laden) 항해시에는 증발가스의 발생량이 상대적으로 많다. 이때에는 저장탱크에서 자연적으로 발생하는 증발가스를 모두 재응축기(31)에서 처리할 수 없으므로 재액화 장치(60)를 가동하여 증발가스를 재액화한다. 필요하다면, 발생된 증발가스 중 일부는 증발가스 우회라인을 통해 재응축기(31)로 우회시켜 재액화 장치(60)에서의 재액화 부하를 감소시킴으로써 에너지를 절약할 수 있다.
재액화 장치(60)를 가동하는 동안에는 제1 및 제2 냉매 순환 라인(L71, L72)을 통해 재액화 장치의 냉매를 냉열회수용 열교환기(70)에 순환시켜 열교환시킴으로써 재액화 장치(60)의 효율을 향상시킬 수 있다.
다시 말해서, 레이든 항해시에는 재응축기(31)를 증발가스의 응축을 위해 사용하지 않는 대신에 재액화 장치(60)에서 증발가스를 재액화시키면서 재응축기는 석션 드럼(또는 버퍼 탱크)의 기능을 수행하도록 할 수 있다. 그와 함께 레이든 항해시에는 재액화 장치(60)의 냉매를 냉열회수용 열교환기(70)에 순환시킴으로써 재액화 장치(60)의 효율을 향상시키게 된다.
한편, 밸러스트 항해시에는 재액화 장치(60)의 가동을 완전히 중단시키고 발생된 증발가스를 모두 재응축기(31)에서 LNG와 혼합함으로써 재응축시킬 수 있다. 그와 함께 밸러스트 항해시에는 재응축기에 공급되는 증발가스가 냉열회수용 열교환기(70)를 거치면서 예냉되도록 함으로써 재응축 효율을 향상시키게 된다.
재액화 장치(60)에서 증발가스를 과냉 상태로 냉각하기 위해 증발가스를 포화온도보다 낮은 과냉온도까지 냉각하는 것은 효율적이지 못하다. 하지만, 증발가스를 포화온도까지만 냉각하여 액화시킬 경우에는 포화 상태의 LBOG가 배관을 따라 이동하면서 가열되어 다시 기화될 우려가 있으므로, 재액화 장치(60)에서 증발가스를 액화시킬 때에는 증발가스를 해당 압력에서의 과냉온도까지 냉각시키는 것이 바람직하다.
국제특허공개 WO 2007/117148 호 공보 및 WO 2009/136793 호 공보 등에 개시되어 있는 종래 공지된 재액화 장치의 경우에는, 기본적으로 재액화 장치에 의해 재액화된 LBOG를 LNG 저장탱크로 복귀시키는 개념을 가지고 있었기 때문에, LNG 저장탱크 내부의 온도(대략 -163℃)에 맞춰 4 내지 8bara에서의 포화온도보다 훨씬 낮은 온도로 증발가스를 과냉시키고 있었다.
그러나, 본 발명의 연료 공급 시스템에 따르면, 기본적으로 재액화된 LBOG를 고압 천연가스 분사 엔진에 연료로서 공급하여 사용하는 개념을 가지고 있기 때문에, 증발가스를 대략 12 내지 45bara로 압축하고 있으며, 재액화 장치에서의 재액화 온도 역시 해당 압력에서의 포화 온도보다 대략 1℃ 정도만 낮은 온도로 재액화 장치를 운전하고 있다.
본 발명에 따르면, 재액화 장치에서 재액화된 LBOG를 저장탱크로 복귀시키지 않기 때문에 저장탱크 내부에 저장된 LNG의 온도 및 압력을 고려할 필요가 없다. 또한, 종래 LBOG를 저장탱크까지 이송하는 배관의 길이가 상대적으로 긴 것에 비해, 본 발명의 경우 LBOG의 과냉 상태를 유지하면서 이송해야 하는 배관의 길이가 상대적으로 짧아 포화 온도보다 지나치게 낮은 온도까지 증발가스를 과냉시킬 필요가 없다.
그러므로, 증발가스의 액화온도를 포화온도보다 약간만 낮은 온도로 설정(예컨대 0.5 ~ 3℃, 바람직하게는 1℃ 정도만 과냉)하여 재액화 장치(60)를 가동함으로써 재액화 장치의 동력 소모를 감소시킬 수 있다.
또, 본 실시형태에 따르면, 증발가스를 해당 압력에서의 포화온도보다 1℃ 정도만 과냉시켜 액화시킨 후 재응축기(31)에 공급하더라도, 고압 천연가스 분사 엔진에 연료로서 공급되는 과정에서 고압 펌프(33)에 의해 가압되기 때문에, 압력 증가로 인해 포화상태의 LBOG는 이후 과냉상태가 안정적으로 유지될 수 있다.
(제8 실시형태)
도 17은 본 발명의 제8 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 17에 도시된 제8 실시형태의 연료 공급 시스템은, 전술한 제7 실시형태의 연료 공급 시스템에 비하여 증발가스를 압축시키기 전에 예열한다는 점에서만 서로 상이하므로, 이어지는 설명에서는 제7 실시형태와의 차이점을 위주로 설명한다.
도 17에 도시된 바와 같이, 본 발명의 제8 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 액화가스 저장탱크(11)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 압축부(13)에서 대략 12 내지 45 bara(절대압력) 정도의 중압으로 압축된 후 재액화 장치(60)에 공급되기 전에 증발가스 압축부(13)의 상류측에 설치된 증발가스 예열기(41)에 공급된다. 증발가스 압축부(13)에서 대략 12 내지 45 bara로 압축되고 중간 냉각기(15)를 통해 대략 40℃ 정도로 냉각된 증발가스는 증발가스 예열기(41)에서 액화가스 저장탱크(11)에서 배출된 극저온의 증발가스와 열교환됨으로써 냉각된 후 재액화 장치(20)에 공급된다.
제8 실시형태에 따르면 재액화 장치(20)에 공급될 증발가스의 온도를 증발가스 예열기(41)를 통해 낮출 수 있어 콜드 박스(61)에서의 열부하를 감소시킬 수 있다. 또한, 증발가스 압축부(13)에 공급되는 극저온 상태의 증발가스와, 증발가스 압축부(13)에서 압축된 상대적으로 온도가 높은 증발가스를, 증발가스 압축부(13)의 상류측에 위치한 증발가스 예열기(41)에서 열교환함으로써, 증발가스 압축부에 공급되는 증발가스의 온도를 상승시키고 증발가스 압축부(즉, 증발가스 압축기)의 입구온도를 일정하게 유지할 수 있게 된다. 또한, 증발가스 압축기(14)로서 극저온용 압축기가 아닌 상온용 압축기를 사용할 수 있어 가격절감 효과를 거둘 수 있다.
증발가스 압축부(13)에서 압축된 후 증발가스 예열기(41)를 통과한 증발가스는 전술한 제7 실시형태의 연료 공급 시스템과 마찬가지로 재액화 장치(60) 또는 재응축기(31)에 공급된다. 계속해서, 재액화 또는 재응축된 액화증발가스(LBOG)는 고압 펌프(33)에 의해 대략 150 내지 400 bara 정도의 고압으로 압축된 후 고압 기화기(37)에 공급된다. 고압 기화기(37)에서 기화된 증발가스는 계속해서 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급된다.
한편, 전술한 제7 실시형태와 본 제8 실시형태는 재액화 장치(60)의 구성이 약간 상이하지만, 도면에 도시된 재액화 장치(60)의 구성은 예시일 뿐이며, 본 발명을 한정하지 않는다.
상기된 바와 같은 본 발명의 제1 내지 제8 실시형태 및 그 변형예들에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템은 종래에 비해 다음과 같은 장점을 갖는다.
일반적으로, 증발가스의 재액화 효율을 높이기 위해서는 증발가스를 높은 압력으로 압축시키는 것이 바람직하다. 그러나 종래에는 증발가스를 재액화 장치에 의해 재액화하여 저장탱크로 복귀시켰으며, 저장탱크에 저장된 LNG는 상압 상태를 유지하고 있기 때문에, 재액화된 액화증발가스의 압력이 지나치게 높아 저장탱크에 복귀할 때 플래시 가스(flash gas)가 발생하지 않도록, 재액화 효율은 낮지만 4 내지 8 bara 정도의 저압으로 증발가스를 압축할 수밖에 없었다.
그에 비해 본 발명에 의하면, 저장탱크로부터 배출된 증발가스를 고압 천연가스 분사 엔진에서 연료로서 사용하기 때문에, 플래시 가스 발생을 우려할 필요 없이 증발가스를 종래에 비해 높은 압력으로 압축시켜 재액화시킴으로써 재액화 효율을 높일 수 있다.
이와 같이 본 발명에 의하면, 재액화된 증발가스를 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급하기 때문에 재액화된 증발가스를 저장탱크로 재저장을 위해 복귀시킬 필요가 없어 저장탱크로의 복귀시 발생될 수 있는 플래시 가스의 발생을 방지할 수 있고, 플래시 가스의 발생이 억제됨으로써 재액화 이전에 증발가스의 압력을 종래에 비해 높은 압력, 즉 12 내지 45 bara 정도의 중압으로 압축시켜 재액화할 수 있다. 이러한 중압으로 증발가스를 압축시켜 재액화함에 따라 냉매에 상관없이 재액화 효율을 향상시킬 수 있는데, 특히 비폭발성 혼합냉매에 의한 재액화 효율은 질소가스 냉매를 사용하는 것에 비해 더 증대시킬 수 있다. 즉, 종래의 질소가스 냉매를 사용하는 것에 비해 비폭발성 혼합냉매를 사용하는 본 발명의 재액화 장치는 상당히 적은 에너지만을 사용하여 증발가스를 재액화해서 엔진에 연료로서 공급하는 것이 가능하게 된다.
재액화 장치(20, 60, 120)로서는, LNG 등의 액화가스로부터 발생하는 증발가스 등을 액화시킬 수 있는 것이라면 어떠한 구성의 것이라도 사용될 수 있다. 즉, 상술한 제1 내지 제8 실시형태 및 그 변형예에서 설명된 바와 같은 구성의 비폭발성 혼합냉매를 활용한 재액화 시스템이 사용될 수 있다. 또한, 종래 공지되어 있는 혼합냉매 혹은 질소냉매를 활용한 재액화 시스템이 사용될 수도 있으며, 예를 들어 국제특허공개 WO 2007/117148 호 공보 및 WO 2009/136793 호 공보, 한국특허공개 제2006-0123675호, 한국특허공개 제2001-0089142호 등에 개시되어 있는 것이 사용될 수도 있다.
본 발명에 따른 연료가스 공급 시스템에 의하면, 해상 구조물의 운항 중 대부분의 기간 동안, 저장탱크에서 발생된 증발가스를 액화시켜 모두 고압 천연가스 분사 엔진에서 연료로서 사용하고 있으며, 그에 따라 LBOG 복귀라인(L4, L14)을 통하여 저장탱크(11)에 복귀하는 액화가스를 없앨 수 있다. LBOG 복귀라인(L4, L14)은, 해상 구조물을 항구 내에 접안하기 위해 예인하는 경우, 운하를 통과하는 경우, 혹은 저속 운항중인 경우와 같이 고압 천연가스 분사 엔진의 연료 소모량이 저장탱크에서 발생된 증발가스의 양보다 적은 예외적인 경우에, LBOG를 버퍼탱크 혹은 재응축기(31, 131)로부터 저장탱크(11, 110)에 복귀시키는 용도로 사용될 수 있다. 또한, 버퍼탱크(혹은 재응축기)의 고장이나 유지보수시 버퍼탱크(혹은 재응축기) 내에 남아있는 LBOG를 저장탱크(11, 110)에 복귀시키는 용도로 사용될 수 있다.
본 발명에 따르면, 해상 구조물의 운항시 대부분의 기간 동안 LBOG를 저장탱크로 복귀시키지 않고 전량 엔진에서 사용할 수 있으므로, 그 기간 동안에는 복귀하는 LBOG 자체를 없앨 수 있고, 그에 따라 LBOG의 복귀 도중에 압력 차이로 인하여 발생할 수 있는 플래시 가스를 원천적으로 제거할 수 있다. 본 명세서에서 "플래시 가스를 제거한다, 혹은 플래시 가스의 발생을 억제한다"라는 표현은, 발생된 플래시 가스를 소모함으로써 플래시 가스가 저장탱크(11)의 내부에 공급되지 않도록 하는 것과, 재액화된 증발가스가 저장탱크(11)에 되돌아가는 것을 방지하여 복귀 도중의 플래시 가스 발생을 원천적으로 차단함으로써 플래시 가스의 발생 자체를 방지하는 것을 모두 포함하는 개념이다.
국제특허공개 WO 2007/117148 호 공보 및 WO 2009/136793 호 공보, 한국특허공개 제2006-0123675호, 한국특허공개 제2001-0089142호 등에 개시되어 있는 종래 공지된 재액화 장치의 경우에는, 기본적으로 재액화 장치에 의해 재액화된 LBOG를 LNG 저장탱크로 복귀시키는 개념을 가지고 있었기 때문에, LNG 저장탱크 내부의 온도(대략 -163℃)에 맞춰 4 내지 8bara에서의 포화온도보다 훨씬 낮은 온도로 증발가스를 과냉시키고 있었다.
예컨대, 종래의 Hamworthy사의 Mark III 재액화 장치(WO 2007/117148 호에 기재된 기술)의 경우, 8 bara로 증발가스를 가압하여 -159℃로 액화한다. 이때의 증발가스의 포화온도는 약 -149.5℃이므로 9 ~ 10℃ 정도가 과냉된 상태이다. 이 정도의 과냉이 되어야 LNG 저장탱크로 액화증발가스를 회송할 경우 플래시 가스의 발생이 억제된다. 하지만, 본 발명에서는 액화 고압 천연가스 분사 엔진에 연료로서 공급되는 과정에서 고압 펌프에 의해 가압되기 때문에, 압력 증가로 인해 포화상태의 LBOG는 이후 과냉상태가 안정적으로 유지될 수 있다. 본 발명에서는 액화증발가스를 해당 압력에서의 포화온도보다 0.5 ~ 3℃, 바람직하게는 1℃ 정도만 과냉시켜 액화시킨 후 연료로 공급해도 되는 이점이 있다. 재액화 장치에서 과냉을 적게 시킬수록 재액화 에너지의 절감효과가 크다. 예컨대 -150℃의 온도에서 증발가스를 1℃ 과냉시키는데 필요한 에너지는 전체 재액화에 소요되는 동력의 1%가 추가로 소요된다.
본 발명의 연료 공급 시스템에 따르면, 기본적으로 재액화된 LBOG를 고압 천연가스 분사 엔진에 연료로서 공급하여 사용하는 개념을 가지고 있기 때문에, 증발가스를 대략 12 내지 45bara로 압축하고 있으며, 재액화 장치에서의 재액화 온도 역시 해당 압력에서의 포화 온도보다 0.5 ~ 3℃, 바람직하게는 1℃ 정도만 낮은 온도로 재액화 장치를 운전하고 있다.
본 발명에 따르면, 재액화 장치에서 재액화된 LBOG를 저장탱크로 가능하다면 복귀시키지 않기 때문에 저장탱크 내부에 저장된 LNG의 온도 및 압력을 고려할 필요성이 낮다. 또한, 종래 LBOG를 저장탱크까지 이송하는 배관의 길이가 상대적으로 긴 것에 비해, 본 발명의 경우 LBOG의 과냉 상태를 유지하면서 이송해야 하는 배관의 길이(재액화장치(예컨대, 기액분리기)-고압펌프 사이의 길이)가 상대적으로 짧아 포화 온도보다 지나치게 낮은 온도까지 증발가스를 과냉시킬 필요가 없다.
즉, 해양구조물의 운항 중에는 고압 천연가스 분사 엔진이 필요로 하는 연료의 양은 LNG 저장탱크에서 발생하는 증발가스의 양보다 더 많은 시기(경우)가 상당 기간 존재하고 이 시기에는 액화증발가스를 모두 고압 천연가스 분사 엔진에 공급함으로써 액화증발가스를 LNG 저장탱크에 회송함에 따른 플래시 가스의 발생 문제를 해결할 수 있다.
그러므로, 증발가스의 액화온도를 포화온도보다 약간만 낮은 온도로 설정(예컨대 0.5 ~ 3℃ 정도만 과냉)하여 재액화 장치(20)를 가동함으로써 재액화 장치의 동력 소모를 감소시킬 수 있다.
또, 본 실시형태에 따르면, 증발가스를 해당 압력에서의 포화온도보다 0.5 ~ 3℃ 정도만 과냉시켜 액화시킨 후 버퍼탱크(31)에 공급하더라도, 고압 천연가스 분사 엔진에 연료로서 공급되는 과정에서 고압 펌프(33)에 의해 가압되기 때문에, 압력 증가로 인해 포화상태의 LBOG는 이후 과냉상태가 안정적으로 유지될 수 있다.
또한, 고압펌프로 공급되는 LBOG가 중압범위로 가압된 상태이므로 고압펌프로 LBOG를 펌핑할 때의 동력도 줄어드는 이점이 있다.
종래 재액화 장치를 구비한 해상 구조물에서는, 전술한 바와 같이 증발가스를 저장탱크에 복귀시킬 것을 염두에 두고 증발가스를 재액화하였기 때문에, 복귀시 플래시 가스 발생을 억제하고자 증발가스의 압력을 4 내지 8bara 정도의 저압으로 압축시키는 것이 당연하였다. 그러나, 전술한 바와 같은 본 발명의 연료가스 공급 시스템에서는, 증발가스를 재액화한 후 모두 고압 천연가스 분사 엔진에서 연료로서 사용하기 때문에, 증발가스를 12 내지 45bara 정도의 비교적 높은 압력으로 압축하고 있다. 이러한 개념은, 증발가스를 재액화한 후 저장탱크에 복귀시키던 종래에는 전혀 생각하지 못하던 본 발명 특유의 신규하고 진보적인 개념이라 할 수 있다.
또한, 종래에는 재액화된 LBOG를 저장탱크에 다시 주입하는 과정에서 감압을 통해 플래시 가스가 생성되고, 이 플래시 가스를 다시 재액화 장치로 보내 재액화 장치의 효율을 떨어뜨리고 있었으나, 본 발명에서는 재액화된 LBOG를 감압 없이(오히려 가압하여) 고압 천연가스 분사 엔진에서 연료로 전량 사용함으로써 재액화 장치의 효율을 종래에 비해 향상시킬 수 있다.
이와 같이 본 발명의 연료가스 공급 시스템에 따르면, 대부분의 운항 기간 동안에, 증발가스를 재액화한 후 모두 고압 천연가스 분사 엔진에서 연료로서 사용하기 때문에, 증발가스를 12 내지 45bara 정도의 비교적 높은 압력으로 압축하는 것이 가능하다. 그에 따라, 도 6b를 참조하여 전술한 바와 같이, 종래의 재액화 장치(냉동 사이클)에서 소모되는 동력에 비해 본 발명의 재액화 장치는 대략 50 내지 80% 정도의 동력만으로도 운전이 가능함을 알 수 있다. 이와 같이 본 발명은 종래에 비해 상당히 적은 동력으로 운전이 가능하기 때문에, 발전기 용량을 감소시킬 수 있어 발전기의 소형화가 가능하게 되고, 비용을 절감할 수 있게 된다.
더욱이, 종래의 재액화 장치의 경우 대기 상태로 운전하는데 대략 1 내지 1.5 MW의 전력이 소모되었으나, 본 발명의 경우 제6 실시형태에서 설명한 바와 같이 밸러스트 운항 중에는 대부분의 기간동안 재액화 장치의 운전을 중단시킬 수 있기 때문에, 재액화 장치에서 소모하는 전력을 절약할 수 있다. 예를 들어, 연간 밸러스트 운항을 150일로 가정하고, 재액화 장치의 운전을 위해 연료 소비 183g/kWh의 디젤 발전기를 사용한다고 가정하면, 연간 660 내지 923ton의 HFO를 절약할 수 있다. 2011년 9월 중순 현재 싱가포르 HFO 가격이 ton당 671 USD 정도이므로, 연간 0.4 내지 0.6 mil USD를 절감할 수 있다는 현저한 효과가 있다.
이상에서는 본 발명의 연료 공급 시스템 및 방법이 LNG 운반선 등의 해상 구조물에 적용된 것을 예로 들어 설명이 이루어졌지만, 본 발명의 연료 공급 시스템 및 방법은 육상에서의 고압 천연가스 분사 엔진에 대한 연료 공급에 적용될 수 있음은 물론이다.
본 발명은 상기 실시예에 한정되지 않고 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정 또는 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다.
11, 110 : 저장탱크 13, 113 : 증발가스 압축부
14, 114 : 증발가스 압축기 15 : 중간 냉각기
20, 60, 120 : 재액화 장치 21, 61, 121 : 콜드 박스
22, 64 : 냉매 기액분리기 23, 62 : 냉매 압축기
24, 63 : 냉매 냉각기 25, 65 : 냉매 팽창밸브
26 : 냉매 펌프 31 : 버퍼 탱크(로서의 재응축기)
33, 133 : 고압 펌프 37, 137 : 고압 기화기
41 : 증발가스 열교환기 51, 52 : LBOG 팽창밸브
53, 54 : LBOG 기액분리기 55 : 연료가스 히터
57 : LNG 공급펌프 70 : 냉열회수용 열교환기
131, 재응축기
132 : 부스터 펌프 135 : 열교환기
141 : 증발가스 예냉용 열교환기
145 : 압력조절밸브 157 : 잠수식 펌프
158 : 부스터 펌프 161 : 압력 제어 밸브
L1, L11 : 증발가스 배출라인 L2, L12 : 증발가스 공급라인
L3, L13 : 연료 공급라인 L4, L14 : LBOG 복귀라인
L5 : 분기라인 L6 : 연료가스 공급라인
L7, L17 : LNG 공급라인 L8 : 제2 분기라인
L9 : 제3 분기라인 L18 : 증발가스 분기라인
L21 : 증발가스 우회라인 L31, L35 : LNG 분기라인
L32, L36 : LNG 합류라인 L41 : LBOG 복귀라인
L71 : 제1 냉매 순환 라인 L72 : 제2 냉매 순환 라인
L73 : 제1 증발가스 우회라인 L74 : 제2 증발가스 우회라인
14, 114 : 증발가스 압축기 15 : 중간 냉각기
20, 60, 120 : 재액화 장치 21, 61, 121 : 콜드 박스
22, 64 : 냉매 기액분리기 23, 62 : 냉매 압축기
24, 63 : 냉매 냉각기 25, 65 : 냉매 팽창밸브
26 : 냉매 펌프 31 : 버퍼 탱크(로서의 재응축기)
33, 133 : 고압 펌프 37, 137 : 고압 기화기
41 : 증발가스 열교환기 51, 52 : LBOG 팽창밸브
53, 54 : LBOG 기액분리기 55 : 연료가스 히터
57 : LNG 공급펌프 70 : 냉열회수용 열교환기
131, 재응축기
132 : 부스터 펌프 135 : 열교환기
141 : 증발가스 예냉용 열교환기
145 : 압력조절밸브 157 : 잠수식 펌프
158 : 부스터 펌프 161 : 압력 제어 밸브
L1, L11 : 증발가스 배출라인 L2, L12 : 증발가스 공급라인
L3, L13 : 연료 공급라인 L4, L14 : LBOG 복귀라인
L5 : 분기라인 L6 : 연료가스 공급라인
L7, L17 : LNG 공급라인 L8 : 제2 분기라인
L9 : 제3 분기라인 L18 : 증발가스 분기라인
L21 : 증발가스 우회라인 L31, L35 : LNG 분기라인
L32, L36 : LNG 합류라인 L41 : LBOG 복귀라인
L71 : 제1 냉매 순환 라인 L72 : 제2 냉매 순환 라인
L73 : 제1 증발가스 우회라인 L74 : 제2 증발가스 우회라인
Claims (14)
- 고압 천연가스 분사 엔진에 연료를 공급하는 연료 공급 시스템으로서,
액화가스를 저장하고 있는 저장탱크와;
상기 저장탱크 내에서 발생한 증발가스를 공급받아 압축하는 증발가스 압축부와;
상기 증발가스 압축부에서 압축된 증발가스를 공급받아 액화시킬 수 있는 재액화 장치와;
상기 증발가스 압축부에서 압축된 증발가스를 상기 저장탱크에서 공급된 액화가스와 혼합하여 응축시키는 재응축기와;
액화가스를 압축하는 고압 펌프와;
상기 고압 펌프에서 압축된 액화가스를 기화시키기 위한 고압 기화기와;
상기 고압 기화기의 상류측에 설치되어 상기 고압 기화기에서 기화될 액화가스로부터 냉열을 회수하는 냉열회수용 열교환기;
를 포함하며,
상기 저장탱크로부터 배출된 증발가스는 상기 증발가스 압축부에서 12 내지 45bara로 압축되는 것을 특징으로 하는 연료 공급 시스템. - 청구항 1에 있어서,
상기 냉열회수용 열교환기는 상기 고압 기화기에 공급되는 액화가스와 상기 재액화 장치의 냉매를 열교환하는 것을 특징으로 하는 연료 공급 시스템. - 청구항 2에 있어서,
상기 재액화 장치의 콜드 박스 상류측에서 분기하여 상기 냉열회수용 열교환기까지 연장하는 제1 냉매 순환 라인과, 상기 냉열회수용 열교환기로부터 상기 재액화 장치로 복귀하는 제2 냉매 순환 라인을 포함하는 것을 특징으로 하는 연료 공급 시스템. - 청구항 3에 있어서,
상기 제2 냉매 순환 라인은 상기 냉열회수용 열교환기에서 냉각된 후 상기 재액화 장치로 복귀하는 냉매가 상기 재액화 장치 내에서 팽창되기 전의 냉매와 혼합되도록 구성되는 것을 특징으로 하는 연료 공급 시스템. - 청구항 1에 있어서,
상기 냉열회수용 열교환기는 상기 고압 기화기에 공급되는 액화가스와 상기 증발가스 압축부에서 압축된 증발가스를 열교환하는 것을 특징으로 하는 연료 공급 시스템. - 청구항 5에 있어서,
상기 증발가스 압축부와 상기 재액화 장치 사이의 증발가스 공급라인에서 분기하여 상기 냉열회수용 열교환기에 연결되는 제1 증발가스 우회라인과, 상기 냉열회수용 열교환기로부터 상기 재응축기까지 연장하는 제2 증발가스 우회라인을 포함하는 것을 특징으로 하는 연료 공급 시스템. - 청구항 1에 있어서,
상기 재액화 장치의 냉매는 질소가스 또는 혼합냉매인 것을 특징으로 하는 연료 공급 시스템. - 청구항 1에 있어서,
상기 재액화 장치의 냉매는 비폭발성 혼합냉매인 것을 특징으로 하는 연료 공급 시스템. - 청구항 1에 있어서,
상기 고압 천연가스 분사 엔진은, 액화가스 운반선, LNG RV, LNG FSRU 및 LNG FPSO 중 어느 하나에 설치되는 것을 특징으로 하는 연료 공급 시스템. - 연료 공급 시스템에 의해 고압 천연가스 분사 엔진에 연료를 공급하는 방법으로서,
상기 연료 공급 시스템은, 액화가스를 저장하고 있는 저장탱크와, 상기 저장탱크 내에서 발생한 증발가스를 공급받아 압축하는 증발가스 압축부와, 상기 증발가스 압축부에서 압축된 증발가스를 공급받아 액화시킬 수 있는 재액화 장치와, 상기 증발가스 압축부에서 압축된 증발가스를 상기 저장탱크에서 공급된 액화가스와 혼합하여 응축시키는 재응축기와, 액화가스를 압축하는 고압 펌프와, 상기 고압 펌프에서 압축된 액화가스를 기화시키기 위한 고압 기화기를 포함하며,
상기 저장탱크로부터 배출된 증발가스는 상기 증발가스 압축부에서 12 내지 45bara로 압축되며,
상기 고압 펌프에서 압축된 액화가스는 냉열회수용 열교환기에서 가열된 후 상기 고압 기화기에 공급되는 것을 특징으로 하는 연료 공급 방법. - 청구항 10에 있어서,
상기 냉열회수용 열교환기에서 상기 고압 기화기에 공급되는 액화가스와 상기 재액화 장치의 냉매를 열교환하는 것을 특징으로 하는 연료 공급 방법. - 청구항 10에 있어서,
상기 냉열회수용 열교환기에서 상기 고압 기화기에 공급되는 액화가스와 상기 증발가스 압축부에서 압축된 증발가스를 열교환하는 것을 특징으로 하는 연료 공급 방법. - 청구항 10에 있어서,
상기 저장탱크가 액화가스 화물로 가득 채워진 레이든(laden)시, 상기 저장탱크에서 자연적으로 발생하는 증발가스를 상기 재액화 장치에 공급하여 재액화하는 것을 특징으로 하는 연료 공급 방법. - 청구항 10에 있어서,
상기 저장탱크로부터 공급된 액화가스를 이용하여, 발생된 증발가스 중 일부 혹은 전부를 상기 재응축기에서 재응축시키되, 밸러스트 운항과정 중, 상기 증발가스 전부를 상기 재응축기로 공급하여 재응축시키고 상기 재액화 장치의 가동을 중단시키는 기간을 포함하는 것을 특징으로 하는 연료 공급 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20110025397 | 2011-03-22 | ||
KR1020110025397 | 2011-03-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120107885A KR20120107885A (ko) | 2012-10-04 |
KR101298624B1 true KR101298624B1 (ko) | 2013-08-26 |
Family
ID=45614323
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110033331A KR101106088B1 (ko) | 2011-03-22 | 2011-04-11 | 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매 |
KR1020110143200A KR20120107837A (ko) | 2011-03-22 | 2011-12-27 | 고압 천연가스 분사 엔진을 위한 연료 공급 방법 |
KR1020120020109A KR20120107851A (ko) | 2011-03-22 | 2012-02-28 | 고압 천연가스 분사 엔진을 위한 연료 공급 방법 |
KR1020120029449A KR101298623B1 (ko) | 2011-03-22 | 2012-03-22 | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 및 방법 |
KR1020120029450A KR101298626B1 (ko) | 2011-03-22 | 2012-03-22 | 냉열회수용 열교환기를 갖는 연료 공급 시스템 |
KR1020120029451A KR101298625B1 (ko) | 2011-03-22 | 2012-03-22 | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 및 방법 |
KR1020120029448A KR101298624B1 (ko) | 2011-03-22 | 2012-03-22 | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 및 방법 |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110033331A KR101106088B1 (ko) | 2011-03-22 | 2011-04-11 | 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매 |
KR1020110143200A KR20120107837A (ko) | 2011-03-22 | 2011-12-27 | 고압 천연가스 분사 엔진을 위한 연료 공급 방법 |
KR1020120020109A KR20120107851A (ko) | 2011-03-22 | 2012-02-28 | 고압 천연가스 분사 엔진을 위한 연료 공급 방법 |
KR1020120029449A KR101298623B1 (ko) | 2011-03-22 | 2012-03-22 | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 및 방법 |
KR1020120029450A KR101298626B1 (ko) | 2011-03-22 | 2012-03-22 | 냉열회수용 열교환기를 갖는 연료 공급 시스템 |
KR1020120029451A KR101298625B1 (ko) | 2011-03-22 | 2012-03-22 | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 및 방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20140069117A1 (ko) |
EP (1) | EP2693034A4 (ko) |
JP (1) | JP2014517849A (ko) |
KR (7) | KR101106088B1 (ko) |
CN (1) | CN103547788A (ko) |
WO (1) | WO2012128449A1 (ko) |
Families Citing this family (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101439942B1 (ko) * | 2012-10-24 | 2014-09-12 | 대우조선해양 주식회사 | 선박용 엔진의 하이브리드 연료공급 방법 |
KR101386543B1 (ko) * | 2012-10-24 | 2014-04-18 | 대우조선해양 주식회사 | 선박의 증발가스 처리 시스템 |
KR101356004B1 (ko) * | 2012-10-24 | 2014-02-05 | 대우조선해양 주식회사 | 선박의 증발가스 처리 방법 |
KR101356003B1 (ko) * | 2012-10-24 | 2014-02-05 | 대우조선해양 주식회사 | 선박의 증발가스 처리 시스템 |
KR101350808B1 (ko) * | 2012-10-24 | 2014-01-16 | 대우조선해양 주식회사 | 선박용 엔진의 하이브리드 연료공급 시스템 및 방법 |
KR20130139150A (ko) * | 2012-12-11 | 2013-12-20 | 대우조선해양 주식회사 | 해상 구조물의 증발가스 처리 시스템 및 처리 방법 |
KR101350807B1 (ko) * | 2012-10-24 | 2014-01-16 | 대우조선해양 주식회사 | 선박용 엔진의 하이브리드 연료공급 시스템 |
KR101722597B1 (ko) * | 2012-12-11 | 2017-04-03 | 대우조선해양 주식회사 | 증발가스 재액화 시스템 및 방법 |
WO2014092368A1 (ko) | 2012-12-11 | 2014-06-19 | 대우조선해양 주식회사 | 선박의 액화가스 처리 시스템 |
KR20140075574A (ko) * | 2012-12-11 | 2014-06-19 | 대우조선해양 주식회사 | 선박의 증발가스 부분재액화 시스템 |
KR101534237B1 (ko) * | 2012-12-11 | 2015-07-06 | 대우조선해양 주식회사 | 해상 구조물의 증발가스 처리 시스템 |
KR20140076482A (ko) * | 2012-12-11 | 2014-06-20 | 대우조선해양 주식회사 | 증발가스 재액화 시스템 및 방법 |
KR101707501B1 (ko) * | 2012-12-11 | 2017-02-16 | 대우조선해양 주식회사 | 증발가스 재액화 시스템 및 방법 |
KR101525664B1 (ko) * | 2013-06-12 | 2015-06-03 | 현대중공업 주식회사 | 액화가스 처리 시스템 및 방법 |
KR101519541B1 (ko) * | 2013-06-26 | 2015-05-13 | 대우조선해양 주식회사 | 증발가스 처리 시스템 |
KR101640768B1 (ko) * | 2013-06-26 | 2016-07-29 | 대우조선해양 주식회사 | 선박의 제조방법 |
KR20150005036A (ko) * | 2013-07-04 | 2015-01-14 | 대우조선해양 주식회사 | 선박의 증발가스 처리 시스템 및 방법 |
KR101524430B1 (ko) * | 2013-09-24 | 2015-05-28 | 삼성중공업 주식회사 | 증발가스 재액화장치 |
KR101707500B1 (ko) * | 2013-10-31 | 2017-02-16 | 대우조선해양 주식회사 | 증발가스 처리 시스템 및 방법 |
KR101739458B1 (ko) | 2013-11-21 | 2017-05-24 | 대우조선해양 주식회사 | 냉매 순환 시스템 |
CN103696884A (zh) * | 2013-11-21 | 2014-04-02 | 武汉三江航天远方科技有限公司 | 共用气化器式lng供气系统 |
KR101722598B1 (ko) * | 2014-02-17 | 2017-04-03 | 대우조선해양 주식회사 | 가스공정을 테스트하기 위한 가스공급 시스템 및 방법 |
KR101726668B1 (ko) * | 2014-02-24 | 2017-04-13 | 대우조선해양 주식회사 | 증발가스 처리 시스템 및 방법 |
KR101788749B1 (ko) * | 2014-02-24 | 2017-10-20 | 대우조선해양 주식회사 | 증발가스 처리 시스템 및 방법 |
KR101559251B1 (ko) * | 2014-07-11 | 2015-10-14 | 서울대학교산학협력단 | 유기 랭킨 사이클 시스템 및 그 제어 방법 |
WO2016114515A1 (ko) * | 2015-01-13 | 2016-07-21 | 삼성중공업 주식회사 | 선박 및 연료가스 공급방법 |
KR101623161B1 (ko) * | 2015-01-13 | 2016-05-23 | 대우조선해양 주식회사 | 선박용 부분재액화장치 성능 시험 설비 |
WO2016122026A1 (ko) * | 2015-01-30 | 2016-08-04 | 대우조선해양 주식회사 | 선박용 엔진의 연료공급 시스템 및 방법 |
WO2016126025A1 (ko) * | 2015-02-03 | 2016-08-11 | 삼성중공업 주식회사 | 선박의 연료가스 공급시스템 |
KR101511214B1 (ko) * | 2015-02-04 | 2015-04-17 | 대우조선해양 주식회사 | 선박용 증발가스 재액화 장치 및 방법 |
JP6498785B2 (ja) * | 2015-02-04 | 2019-04-10 | サムスン ヘビー インダストリーズ カンパニー リミテッド | 船舶の蒸発ガス処理装置および処理方法 |
KR101599404B1 (ko) * | 2015-02-11 | 2016-03-03 | 대우조선해양 주식회사 | 선박 |
RU2703355C2 (ru) * | 2015-06-02 | 2019-10-16 | Дэу Шипбилдинг Энд Марин Инджиниринг Ко., Лтд. | Судно |
WO2016195233A1 (ko) * | 2015-06-02 | 2016-12-08 | 대우조선해양 주식회사 | 선박 |
SG11201709846PA (en) | 2015-06-02 | 2017-12-28 | Daewoo Shipbuilding & Marine | Ship |
KR101802599B1 (ko) * | 2015-06-09 | 2017-11-28 | 현대중공업 주식회사 | 가스 처리 시스템 |
KR102179194B1 (ko) * | 2015-06-09 | 2020-11-16 | 현대중공업 주식회사 | 가스 처리 시스템을 포함하는 선박 |
KR101711951B1 (ko) * | 2015-06-26 | 2017-03-03 | 삼성중공업 주식회사 | 연료가스 공급시스템 |
KR101711944B1 (ko) * | 2015-06-26 | 2017-03-03 | 삼성중공업 주식회사 | 연료가스 공급시스템 |
KR101767551B1 (ko) * | 2015-09-07 | 2017-08-11 | 대우조선해양 주식회사 | 선박의 증발가스 재액화 장치 |
KR101784842B1 (ko) * | 2015-10-07 | 2017-10-12 | 삼성중공업 주식회사 | 연료가스 공급시스템 |
KR101824430B1 (ko) * | 2015-11-03 | 2018-02-02 | 삼성중공업 주식회사 | 소형 부유식 액화천연가스 생산설비 |
JP6703837B2 (ja) | 2016-01-07 | 2020-06-03 | 株式会社神戸製鋼所 | ボイルオフガス供給装置 |
ES2743317T3 (es) * | 2016-01-18 | 2020-02-18 | Cryostar Sas | Sistema para licuar un gas |
US20190112008A1 (en) * | 2016-03-31 | 2019-04-18 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Boil-off gas re-liquefying device and method for ship |
KR102548329B1 (ko) * | 2016-09-23 | 2023-06-27 | 삼성중공업 주식회사 | 연료공급시스템 |
KR102548330B1 (ko) * | 2016-10-21 | 2023-06-27 | 삼성중공업 주식회사 | 연료공급시스템 |
KR101751860B1 (ko) * | 2016-10-24 | 2017-06-28 | 대우조선해양 주식회사 | 증발가스 재액화 시스템 및 방법 |
KR101767560B1 (ko) * | 2017-01-18 | 2017-08-11 | 대우조선해양 주식회사 | 증발가스 재액화 시스템 및 방법 |
KR101867037B1 (ko) * | 2017-01-26 | 2018-07-19 | 대우조선해양 주식회사 | Lng 선의 증발가스 재액화 방법 및 시스템 |
US10865740B2 (en) * | 2017-03-16 | 2020-12-15 | Volvo Truck Corporation | Fuel system for an internal combustion engine |
KR101979348B1 (ko) | 2017-08-23 | 2019-05-16 | 한국생산기술연구원 | Lng 액화플랜트의 이동식 냉매공급시스템 |
CN107891742B (zh) * | 2017-11-03 | 2020-06-05 | 黄帮义 | 液化气汽车供气保温系统 |
CN107630770A (zh) * | 2017-11-03 | 2018-01-26 | 黄帮义 | 液化气汽车供气系统 |
DE102017222926A1 (de) * | 2017-12-15 | 2019-06-19 | Robert Bosch Gmbh | Kraftstofffördereinrichtung für eine Brennkraftmaschine |
US12092392B2 (en) * | 2018-10-09 | 2024-09-17 | Chart Energy & Chemicals, Inc. | Dehydrogenation separation unit with mixed refrigerant cooling |
FR3089282B1 (fr) * | 2018-11-30 | 2023-02-24 | Gaztransport Et Technigaz | Systeme de traitement de gaz d’un terminal de reception equipe d’une unite de regazeification et procede de traitement de gaz correspondant |
KR102242748B1 (ko) * | 2018-12-04 | 2021-04-21 | 한국조선해양 주식회사 | 가스 처리 시스템 및 선박 |
JP7163853B2 (ja) * | 2019-04-11 | 2022-11-01 | 株式会社豊田自動織機 | 改質システム及びエンジンシステム |
KR102315029B1 (ko) * | 2019-11-20 | 2021-10-20 | 대우조선해양 주식회사 | Lng 재기화 시스템 및 방법 |
KR102276362B1 (ko) * | 2019-12-31 | 2021-07-12 | 대우조선해양 주식회사 | 증발가스 재액화 시스템 및 방법 |
KR20210104532A (ko) * | 2020-02-17 | 2021-08-25 | 한국조선해양 주식회사 | 가스 처리 시스템 및 이를 포함하는 선박 |
KR102388256B1 (ko) * | 2020-08-25 | 2022-04-21 | 한국기계연구원 | 액체수소 플랜트 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010077227A (ko) * | 2000-02-01 | 2001-08-17 | 윤상국 | 액화천연가스의 냉열을 이용한 천연가스증기의 재액화장치및 방법 |
KR20080057461A (ko) * | 2006-12-20 | 2008-06-25 | 신영중공업주식회사 | Lng bog 재액화 장치 및 방법 |
KR20080097141A (ko) * | 2007-04-30 | 2008-11-04 | 대우조선해양 주식회사 | 인-탱크 재응축 수단을 갖춘 부유식 해상 구조물 및 상기부유식 해상 구조물에서의 증발가스 처리방법 |
JP2010023776A (ja) * | 2008-07-23 | 2010-02-04 | Ihi Marine United Inc | 液化ガス燃料船及びそのバンカリング方法 |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2764489B2 (ja) * | 1991-10-29 | 1998-06-11 | 株式会社荏原製作所 | 冷凍装置用冷媒及び該冷媒を用いる冷凍装置 |
JPH06159928A (ja) * | 1992-11-20 | 1994-06-07 | Chiyoda Corp | 天然ガス液化方法 |
JP3868033B2 (ja) * | 1996-07-05 | 2007-01-17 | 三菱重工業株式会社 | Lngボイルオフガスの再液化方法及びその装置 |
JP2971465B1 (ja) * | 1998-11-18 | 1999-11-08 | 川崎重工業株式会社 | 液化ガス運搬船の蒸発ガス処理制御装置および方法 |
US6881354B2 (en) * | 1998-12-30 | 2005-04-19 | Praxair Technology, Inc. | Multicomponent refrigerant fluids for low and cryogenic temperatures |
US6076372A (en) * | 1998-12-30 | 2000-06-20 | Praxair Technology, Inc. | Variable load refrigeration system particularly for cryogenic temperatures |
US6308531B1 (en) * | 1999-10-12 | 2001-10-30 | Air Products And Chemicals, Inc. | Hybrid cycle for the production of liquefied natural gas |
US6502410B2 (en) * | 2000-06-28 | 2003-01-07 | Igc-Polycold Systems, Inc. | Nonflammable mixed refrigerants (MR) for use with very low temperature throttle-cycle refrigeration systems |
US6293108B1 (en) * | 2000-06-30 | 2001-09-25 | Vortex Aircon | Regenerative refrigeration system with mixed refrigerants |
US6427483B1 (en) * | 2001-11-09 | 2002-08-06 | Praxair Technology, Inc. | Cryogenic industrial gas refrigeration system |
US6591632B1 (en) * | 2002-11-19 | 2003-07-15 | Praxair Technology, Inc. | Cryogenic liquefier/chiller |
JP4317187B2 (ja) * | 2003-06-05 | 2009-08-19 | フルオー・テクノロジーズ・コーポレイシヨン | 液化天然ガスの再ガス化の構成および方法 |
US7127914B2 (en) * | 2003-09-17 | 2006-10-31 | Air Products And Chemicals, Inc. | Hybrid gas liquefaction cycle with multiple expanders |
US7114347B2 (en) * | 2003-10-28 | 2006-10-03 | Ajay Khatri | Closed cycle refrigeration system and mixed component refrigerant |
JP4488755B2 (ja) * | 2004-01-30 | 2010-06-23 | 三井造船株式会社 | ボイルオフガス処理方法 |
JP4936750B2 (ja) * | 2006-03-15 | 2012-05-23 | 中国電力株式会社 | 燃料供給システム |
CN101449124B (zh) * | 2006-04-07 | 2012-07-25 | 海威气体系统公司 | 用于在再液化系统中在压缩之前将lng蒸发气预热至常温的方法和设备 |
WO2008122556A2 (en) * | 2007-04-04 | 2008-10-16 | Shell Internationale Research Maatschappij B.V. | Method and apparatus for separating one or more c2+ hydrocarbons from a mixed phase hydrocarbon stream |
KR100835090B1 (ko) * | 2007-05-08 | 2008-06-03 | 대우조선해양 주식회사 | Lng 운반선의 연료가스 공급 시스템 및 방법 |
US20080276627A1 (en) * | 2007-05-08 | 2008-11-13 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Fuel gas supply system and method of a ship |
NZ582507A (en) * | 2007-07-09 | 2012-08-31 | Lng Technology Pty Ltd | A method and system for production of liquid natural gas |
KR101076266B1 (ko) * | 2007-07-19 | 2011-10-26 | 대우조선해양 주식회사 | Lng 운반선의 연료용 가스 공급 장치 |
JP5148319B2 (ja) * | 2008-02-27 | 2013-02-20 | 三菱重工業株式会社 | 液化ガス再液化装置、これを備えた液化ガス貯蔵設備および液化ガス運搬船、並びに液化ガス再液化方法 |
CA2718840A1 (en) * | 2008-04-11 | 2009-10-15 | Fluor Technologies Corporation | Methods and configuration of boil-off gas handling in lng regasification terminals |
KR20090110965A (ko) * | 2008-04-21 | 2009-10-26 | 대우조선해양 주식회사 | 메탄 팽창 사이클, 혼합냉매 사이클 및 질소 팽창 사이클을이용한 천연가스 액화방법 및 장치 |
NO330187B1 (no) * | 2008-05-08 | 2011-03-07 | Hamworthy Gas Systems As | Gasstilforselssystem for gassmotorer |
JP5167158B2 (ja) * | 2009-01-29 | 2013-03-21 | 三菱重工業株式会社 | 液化燃料運搬船およびその推進システム |
KR101187532B1 (ko) * | 2009-03-03 | 2012-10-02 | 에스티엑스조선해양 주식회사 | 재액화 기능을 가지는 전기추진 lng 운반선의 증발가스 처리장치 |
US20100281915A1 (en) * | 2009-05-05 | 2010-11-11 | Air Products And Chemicals, Inc. | Pre-Cooled Liquefaction Process |
KR20100136691A (ko) * | 2009-06-19 | 2010-12-29 | 삼성중공업 주식회사 | 선박의 연료가스 공급장치 및 방법 |
KR20110018181A (ko) * | 2009-08-17 | 2011-02-23 | 삼성중공업 주식회사 | 연료가스 공급시스템 |
CN101881549B (zh) * | 2010-06-25 | 2014-02-12 | 华南理工大学 | 一种液化天然气接收站蒸发气体再冷凝回收系统及其回收方法 |
CN101975335B (zh) * | 2010-09-26 | 2012-08-22 | 上海交通大学 | 液化天然气汽车加气站蒸发气体的再液化装置 |
US20140060110A1 (en) * | 2011-03-11 | 2014-03-06 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Fuel supply system for marine structure having reliquefaction apparatus and high-pressure natural gas injection engine |
KR101106089B1 (ko) * | 2011-03-11 | 2012-01-18 | 대우조선해양 주식회사 | 고압 천연가스 분사 엔진을 위한 연료 공급 방법 |
EP2693035A4 (en) * | 2011-03-22 | 2016-07-13 | Daewoo Shipbuilding&Marine Engineering Co Ltd | METHOD AND SYSTEM FOR SUPPLYING FUEL TO A HIGH PRESSURE NATURAL GAS INJECTION ENGINE |
-
2011
- 2011-04-11 KR KR1020110033331A patent/KR101106088B1/ko not_active IP Right Cessation
- 2011-12-20 JP JP2014500982A patent/JP2014517849A/ja active Pending
- 2011-12-20 EP EP11861567.3A patent/EP2693034A4/en not_active Withdrawn
- 2011-12-20 WO PCT/KR2011/009822 patent/WO2012128449A1/ko active Application Filing
- 2011-12-20 US US14/006,083 patent/US20140069117A1/en not_active Abandoned
- 2011-12-20 CN CN201180070989.8A patent/CN103547788A/zh active Pending
- 2011-12-27 KR KR1020110143200A patent/KR20120107837A/ko not_active Application Discontinuation
-
2012
- 2012-02-28 KR KR1020120020109A patent/KR20120107851A/ko not_active Application Discontinuation
- 2012-03-22 KR KR1020120029449A patent/KR101298623B1/ko active IP Right Grant
- 2012-03-22 KR KR1020120029450A patent/KR101298626B1/ko active IP Right Grant
- 2012-03-22 KR KR1020120029451A patent/KR101298625B1/ko active IP Right Grant
- 2012-03-22 KR KR1020120029448A patent/KR101298624B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010077227A (ko) * | 2000-02-01 | 2001-08-17 | 윤상국 | 액화천연가스의 냉열을 이용한 천연가스증기의 재액화장치및 방법 |
KR20080057461A (ko) * | 2006-12-20 | 2008-06-25 | 신영중공업주식회사 | Lng bog 재액화 장치 및 방법 |
KR20080097141A (ko) * | 2007-04-30 | 2008-11-04 | 대우조선해양 주식회사 | 인-탱크 재응축 수단을 갖춘 부유식 해상 구조물 및 상기부유식 해상 구조물에서의 증발가스 처리방법 |
JP2010023776A (ja) * | 2008-07-23 | 2010-02-04 | Ihi Marine United Inc | 液化ガス燃料船及びそのバンカリング方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101298626B1 (ko) | 2013-08-26 |
JP2014517849A (ja) | 2014-07-24 |
EP2693034A4 (en) | 2016-07-06 |
KR20120107837A (ko) | 2012-10-04 |
KR101106088B1 (ko) | 2012-01-18 |
KR20120107886A (ko) | 2012-10-04 |
KR20120107888A (ko) | 2012-10-04 |
EP2693034A1 (en) | 2014-02-05 |
KR101298625B1 (ko) | 2013-08-26 |
KR101298623B1 (ko) | 2013-08-26 |
KR20120107887A (ko) | 2012-10-04 |
KR20120107851A (ko) | 2012-10-04 |
US20140069117A1 (en) | 2014-03-13 |
WO2012128449A1 (ko) | 2012-09-27 |
KR20120107885A (ko) | 2012-10-04 |
CN103547788A (zh) | 2014-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101298624B1 (ko) | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 및 방법 | |
KR101300708B1 (ko) | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 | |
KR101106089B1 (ko) | 고압 천연가스 분사 엔진을 위한 연료 공급 방법 | |
JP5611476B2 (ja) | 再液化装置及び高圧天然ガス噴射エンジンを有する海上構造物の燃料供給システム | |
JP5806381B2 (ja) | 超過ボイルオフガス消費手段を備えた高圧天然ガス噴射エンジン用燃料供給システム | |
KR20120107831A (ko) | 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템 | |
KR20110118604A (ko) | 가스 공급 장치 | |
EP2693035A1 (en) | Method and system for supplying fuel to high-pressure natural gas injection engine | |
KR20120107832A (ko) | 고압 천연가스 분사 엔진을 위한 연료 공급 시스템 및 방법 | |
KR20120107835A (ko) | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 | |
KR20120103413A (ko) | 고압 천연가스 분사 엔진을 위한 연료 공급 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160811 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170705 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180731 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190705 Year of fee payment: 7 |