KR101293668B1 - 신규한 알파-네오 아가로바이오스 가수분해 효소 및 그를 이용한 단당류의 획득 방법 - Google Patents

신규한 알파-네오 아가로바이오스 가수분해 효소 및 그를 이용한 단당류의 획득 방법 Download PDF

Info

Publication number
KR101293668B1
KR101293668B1 KR1020100026454A KR20100026454A KR101293668B1 KR 101293668 B1 KR101293668 B1 KR 101293668B1 KR 1020100026454 A KR1020100026454 A KR 1020100026454A KR 20100026454 A KR20100026454 A KR 20100026454A KR 101293668 B1 KR101293668 B1 KR 101293668B1
Authority
KR
South Korea
Prior art keywords
alpha
hydrolase
galactose
sequence
neoagarobiose
Prior art date
Application number
KR1020100026454A
Other languages
English (en)
Other versions
KR20100108241A (ko
Inventor
최인걸
김경헌
이세영
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of KR20100108241A publication Critical patent/KR20100108241A/ko
Application granted granted Critical
Publication of KR101293668B1 publication Critical patent/KR101293668B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 신규한 알파-네오 아가로바이오스 가수분해 효소 (α-neoagarobiose hydrolase) 및 그를 이용한 단당류의 획득 방법에 관한 것이다.

Description

신규한 알파-네오 아가로바이오스 가수분해 효소 및 그를 이용한 단당류의 획득 방법{A novel alpha-neoagarobiose hydrolase and a method of obtaining mono-saccharides using the same}
본 발명은 신규한 알파-네오 아가로바이오스 가수분해 효소 (α-neoagarobiose hydrolase) 및 그를 이용한 단당류의 획득 방법에 관한 것이다.
현재 대기 중으로 배출되는 이산화탄소의 양의 증가로 인한 지구 온난화 뿐만 아니라, 가까운 미래에 일어날 수도 있는 원유의 고갈 및 가격상승에 따라 전세계적으로 새로운 이산화탄소 저감형 대체 에너지의 개발이 급격히 요구되고 있다. 다양한 대체에너지들 중 재생가능하고 풍부한 지구자원중의 하나인 바이오매스를 이용하여 생산되는 바이오에너지가 앞서의 요구들을 충족하는 주요 재생에너지로 현재 각광받고 있다. 특히 바이오에탄올은 현재 많은 수요를 보이고 있는 수송용 연료의 대안으로 고려되고 있으며, 미국을 비롯한 선진국에서는 이미 바이오에탄올의 사용을 법률로서 의무화 하고 있다. 현재 바이오 에탄올을 생산하기 위해 사용하고 있는 원료물질들은 옥수수나 기타 식량자원에서 유래된 당질, 전분 등에 제한되어 있어(제1세대 바이오 연료), 인류의 식량자원과 경쟁하며 그로 인해 국제 곡물가격 상승의 유발한다는 문제점을 안고 있다. 이러한 단점을 극복할 수 있는 대안으로 식량자원과 경쟁하지 않는 새로운 육상 목질계 바이오매스(제2세대 바이오연료)나 해양 해조류 바이오매스(제3세대 바이오연료)가 차세대 바이오에너지 원료로서 또한 주목 받고 있으며, 이를 활용하여 바이오 에너지를 생산하는 기술들이 현재 활발하게 연구되고 있다.
해조류 바이오매스는 목질계 바이오매스에 비해 미생물이 이용가능한 다당류의 함량이 많고, 리그닌을 함유하고 있지 않아 전처리가 비교적 간단하며, 연중 여러 번 수확 가능한 것 등 여러 가지 장점을 가지고 있다. 특히 대한민국은 삼면이 바다로 이루어져 있어 해조류를 생물자원화가 용이하며, 해조류의 연간 생산량은 2006년 기준 13,754톤으로서 중국, 일본, 북한과 더불어 세계적인 해조류 생산국가에 속하고 있으나, 그 활용률면에서는 식용자원 이외로는 저조한 실정이다 (어업생산통계, 2006, 통계청 사회통계국 농어업생산통계과). 최근 들어서 해조류로부터 바이오에너지를 생산하는 연구가 일본과 대한민국 등에서 활발하게 논의되고 있다. 일본의 수산업진흥재단에서는 'Ocean Sunrise Project'라는 이름으로 일본의 배타적 경제수역과 해양벨트의 미사용 해역 4.47 백만 km2에서 해조류를 대량 양식하여 50억 리터의 연료용 에탄올을 생산하려는 계획을 세우고 있다(Aizawa M et al., Seaweed bioethanol production in Japan - The Ocean Sunrise Project, OCEANS Conference, Sep. 29-Oct. 04, 2007, Vancouver, Canada). 또한 한국에서는 2009년 1월 최종 발표된 정부의 17개 신성장동력사업분야 중 1개 분야인 신재생에너지 분야에 해양바이오연료가 포함되어 해조류에 대한 관심이 더욱 집중되고 있다. 2009년 농림수산식품부 해양바이오매스 확보 및 활용기술개발 연구기획 발표에 의하면 사방 71km의 정사각형의 해역에서 해조류를 양식하여 바이오에탄올을 생산할 경우 연간 37.74억 리터의 생산이 가능하며 이는 2030년 한국의 휘발유 예상 소비량의 31.4%를 대체할 수 있는 양이다.
현재 알려져 있는 해조류들 중에서 특히 홍조류 바이오매스(예, Gelidium amansii)를 원료물질로 사용하는 연구가 현재 활발하게 진행되고 있다. 홍조류는 전체 건중량의 70%이상이 다당류로서 미생물이 이용가능한 발효성당으로의 전환이 가능하다. 특히, 홍조류 바이오매스에서 유래된 다당류의 주요 성분은 아가(agar)로서 전체 건중량의 60%정도를 함유하고 있어서 바이오 에너지생산을 위한 주요 원료로 고려되고 있다. 아가 다당체는 갈락토오스(D-galactose)와 3,6-안하이드로갈락토오스(3,6-anhydro-L-galactose; 줄여서 AHG)를 단위체로 하여, 그들이 각각 알파 1,3 결합(α-1,3-linkage) 또는 베타 1,4 결합(β-1,4-linkage)로 연결된 중합체이다 (Duckworth, M. and W. Yaphe (1971) Carbohydrate Research 16, 435-445) (도면 1 참고).
아가 다당체를 탄소원으로 이용하는 미생물들의 경우, 베타 아가레이즈(β-agarase) 또는 알파 아가레이즈(α-agarase)를 이용하여 아가 다당체를 작은 크기의 올리고당으로 자른 후에 최종적으로 베타 아가레이즈의 경우 알파-네오아가로바이오스(α-neoagarobiose, α-1,3-D-galactosyl-3,6-anhydro-L-galactose)로 분해하고, 알파 아가레이즈의 경우는 베타-아가로바이오스(β-agarobiose, β-1,4-anhydro-L-galactosyl-D-galactose)로 분해하는 것으로 알려져 있다. 베타 아가레이즈의 분해산물인 네오아가로바이오스의 경우, 미생물이 대사하기 위해서는 갈락토오스로 전환이 필요하며, 그를 위해 알파-1,3 결합을 끊는 효소(알파-네오아가로바이오스 가수분해효소)가 필수적이라고 알려져 있다(Ekborg, N. A. et al (2005) Int. J. Syst. Evol. Microbiol. 55, 1545-1549; Ekborg, N. A. et al., (2006) Appl. Environ. Microbiol. 72, 3396-3405). 그러나 아직까지 S. degradans에서의 네오아가로바이오스의 알파-1,3 결합을 자르는 효소는 발견되지 않았다(Ekborg, N. A. et al. (2006) Appl. Environ. Microbiol. 72, 3396-3405).
미생물에서 아가로스로부터 올리고아가로사카라이드를 생산하는 베타-아가레이즈는 예컨대, 슈도모나스( Pseudomonas) 속 균주(Ha, J. C. et al. (1997) Biotechnol . Appl. Biochem. 26:1-6), 알테로모나스(Alteromonas) 속 균주(Potin, P., et al. (1993) Eur . J. Biochem. 214:599-607), 아가리보란스(Agarivorans) 속 균주(Ohta, Y. et al. (2005) Biotechnol . Appl . Biochem. 41:183-191), 슈도알테로모나스(Pseudoalteromonas) 속 균주(Belas, R. (1989) J. Bacteriol. 171:602-605), 마이크로실라(Microsilla) 속 균주(Zhong, Z. et al. (2001) Appl . Environ . Microbiol. 67:5771-5779) 및 비브리오(Vibrio) 속 균주(Aoki, T. et al. (1990) Eur. J. Biochem. 187:461-465) 등 많은 미생물에 의해 생산되는 것으로 보고 되었다.
홍조류에서 유래된 아가 다당체를 바이오 에너지생산을 위한 원료로 사용할 경우, 여러단계의 전처리과정을 거쳐 실제 미생물이 이용 가능한 발효성 당으로의 전환이 필수적이다. 아가 다당체의 발효성 단당류로의 전환은 크게 화학적 전처리와 생물학적전처리의 두 가지의 공정을 통하여 가능하다. 첫번째는 산가수분해등을 이용하는 화학적 방법으로 비교적 간단한 공정이나 다당류로 구성된 바이오매스를 고온에서 화학적으로 전처리하여 퍼퍼럴(furfural), HMF(hydroxymethylfurfural, 하이드록시메틸퍼퍼럴) 등의 독성부산물을 다량 생성하고, 무작위로 절단된 단당류 및 올리고의 혼합물로 얻는다는 단점이 있다. (Pickering et al., 1993, J. Appl. Phycol. 5: 85-91; Armise'n, 1995). 그에 반해 아가레이즈와 같은 효소를 사용하는 생물학적 전처리 및 당화 방법은 상온에서 환경친화적인 방법으로 발효성당인 갈락토오스를 얻을 수 있다는 장점이 있으나, 현재 상업적으로 구할 수 있는 효소는 베타-아가레이즈에 국한하고 있으며, 아가레이즈의 산물도 통상의 미생물들이 사용하기 어려운 이당류(네오아가로바이오스나 아가로바이오스)를 최종산물로 한다는 단점이 있다.
베타-아가레이즈 반응의 결과 생성된 네오아가로바이오스의 경우, 바이오에너지생산을 위해 사용하기 위해서는 발효성 단당류인 갈락토오스로의 전환이 필수적이며, 이때 알파-네오아가로바이오스 가수분해효소가 필요하다. 따라서 홍조류 바이오매스를 바이오에탄올과 같은 바이오에너지 생산의 원료로 사용하기 위한 효율적인 바이오매스 생물학적(효소적) 전처리 및 당화 공정의 최종단계에는 알파-네오아가로바이오스 가수분해효소가 필수불가결하다. 또한 네오아가로바이오스의 분해산물로 갈락토오스와 함께 얻어지는 AHG는 상업적으로도 판매되고 있지 않으며 D 형의 AHG만 구입이 가능한 실정이며 이 또한 고가에 판매되고 있다(2009년 현재 200 파운드(영국)/100mg, Dextra Laboratories). 따라서 본 효소를 이용하여 아가로스로부터 고가의 희귀성 단당류인 AHG의 대량생산이 가능하다.
본 발명은 상기의 문제점을 해결하고, 상기의 필요성에 의하여 안출된 것으로서 본 발명의 목적은 바이오에너지생산 등을 위한 발효성 단당류인 갈락토오스로의 전환에 필수적인 효소를 제공하는 것이다.
본 발명의 또 다른 목적은 네오아가로바이오스를 기질로 이용하여, 단당류당인 갈락토오스와 AHG로 전환하는 방법을 제공한다.
상기의 목적을 달성하기 위하여 본 발명은 서열번호 1, 2 및 4로 구성된 군으로부터 선택된 알파-네오 아가로바이오스 가수분해 효소(α-neoagarobiose hydrolase;이하 '알파-NABH'라 함)를 제공한다.
본 발명의 바람직한 실시예에서, 상기 알파-네오 아가로바이오스 가수분해 활성을 가진 효소는 서열번호 1, 2 및 4에 개시된 아미노산 서열 뿐 아니라 상기 효소의 하나 이상의 치환, 결손, 전위, 첨가 등의 변이 단백질로서 상기 알파-네오 아가로바이오스 가수분해 활성을 가지는 단백질도 본 발명의 효소의 권리범위에 포함되며, 바람직하게는 서열번호 1, 2 및 4에 개시된 아미노산 서열과 서열 동일성이 80% 이상, 85% 이상, 90% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 및 99% 이상인 아미노산 서열을 포함한다.
본 발명에서 폴리펩티드가 또 다른 서열에 대하여 특정 비율 (예컨대, 80%, 85%, 90%, 95%, 또는 99%) 의 서열 동일성을 가진다는 것은, 상기 두 서열을 정렬시킬 때, 상기 서열들의 비교시에 상기 비율의 아미노산 잔기가 동일함을 의미한다. 상기 정렬 및 백분율 상동성 또는 동일성은, 당업계에 공지된 임의의 적당한 소프트웨어 프로그램, 예를 들어 문헌[CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (F. M. Ausubel 등 (eds) 1987 Supplement 30 section 7.7.18)]에 기재된 것들을 사용하여 결정할 수 있다. 바람직한 프로그램으로는, GCG Pileup 프로그램, FASTA(Pearson 등 1988 Proc. Natl Acad. Sci USA85:2444-2448), 및 BLAST (BLAST Manual, Altschul 등, Natl. Cent. Biotechnol. Inf., Natl Lib. Med. (NCIB NLM NIH), Bethesda, MD, 및 Altschul 등 1997 NAR25:3389-3402)이 있다. 또 다른 바람직한 정렬 프로그램은 ALIGN Plus(Scientific and Educational Software, PA) 로서, 바람직하게는 기본 매개변수를 사용하는 것이다. 사용가능한 또 다른 서열 소프트웨어 프로그램은 Sequence Software Package Version 6.0 (Genetics Computer Group, University of Wisconsin, Madison, WI) 에서 이용가능한 TFASTA Data Searching Program 이다.
본 발명의 일 실시예에 있어서, 상기 효소는 사카로파거스 데그라단스 등으로부터 수득하는 것이 바람직하나 이에 한정되지 아니한다.
본 발명의 사카로파거스 데그라단스는 통상적으로 구입(Saccharophagus degradans ATCC 43961)할 수 있으나 이에 한정되지 아니하는 다양한 방법으로 얻을 수 있다.
또한 본 발명은 상기의 본 발명의 효소를 코딩하는 유전자를 제공한다.
본 발명의 일 실시예에 있어서, 상기 유전자는 서열번호 12에 기재된 유전자가 바람직하나 이에 한정되지 아니한다.
또한 본 발명의 일 실시예에 있어서, 상기 유전자는 사카로파거스 데그라단스로부터 수득한 것이 바람직하나 이에 한정되지 아니한다.
또한 본 발명은 사카로파거스 데그라단스를 배양하고; 배양액으로부터 본 발명의 효소를 채취하는 것을 포함하는, 본 발명의 효소를 제조하는 방법을 제공한다.
또한 본 발명은 본 발명의 효소로 알파-네오 아가로바이오스를 분해하여 상기 분해물로부터 갈락토오스 및 안하이드로 갈락토오스를 채취하는 것을 포함하는 갈락토오스 및 안하이드로 갈락토오스를 제조하는 방법을 제공한다.
또한 본 발명은 도 8에 기재된 모티프 1 내지 50(총 50개의 모티프)으로 구성된 군으로부터 선택된 모티프 중 1, 2, 3, 4, 5, 6, 7, 14, 16, 17, 20, 34, 40을 포함하는 13개의 모티프들을 포함하는 알파-네오 아가로바이오스 가수분해 효소(α-neoagarobiose hydrolase)를 제공하며, 더욱 바람직하게는 도 8-9에 기재된 50개의 모티프들 중 모티프 7과 34를 반드시 포함하는 알파-네오 아가로바이오스 가수분해 효소(α-neoagarobiose hydrolase)을 제공한다.
단백질 모티프는 규칙적으로 나타나는 패턴으로 표시할수 있으면, 통상적으로 패턴의 표형양식은 정규표현식으로 나타낸다; http://www.expasy.ch/prosite/prosuser.html; 예를 들어:PA [AC]-x-V-x(4)-{ED}.
본 패턴은 다음과 같이 해석된다: [Ala or Cys]-any-Val-any-any-any-any-{any but Glu or Asp}
PA <A-x-[ST](2)-x(0,1)-V.
이 패턴은 서열의 N-말단에 있어야 하고('<'), 다음과 같이 해석된다: Ala-any-[Ser or Thr]-[Ser or Thr]-(any or none)-Val; Sigrist C.J.A., Cerutti L., Hulo N., Gattiker A., Falquet L., Pagni M., Bairoch A., Bucher P.PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform. 3:265-274(2002);Sigrist C.J.A., De Castro E., Langendijk-Genevaux P.S., Le Saux V., Bairoch A., Hulo N. ProRule: a new database containing functional and structural information on PROSITE profiles. Bioinformatics. 2005 Nov 1;21(21):4060-6. Epub 2005 Aug 9; Timothy L. Bailey, Nadya Williams, Chris Misleh, and Wilfred W. Li, MEME: discovering and analyzing DNA and protein sequence motifs, Nucleic Acids Research, Vol. 34, pp. W369-W373, 2006).
본 발명에서 세포, 핵산, 단백질 또는 벡터과 관련하여 사용될 때 용어 "재조합"은, 상기 세포, 핵산, 단백질 또는 벡터가 이종 핵산 또는 단백질의 도입 또는 본래적 핵산 또는 단백질의 변경에 의해 변형되었거나, 또는 상기 세포가 이렇게 변형된 세포로부터 유래한 것을 가리킨다. 즉, 예를 들어, 재조합 세포는 상기 세포의 본래적 (비(非)재조합) 형태 내에서는 발견되지 않는 유전자를 발현하거나 또는, 다르게는 발현시 비정상적으로 발현되거나 또는 전혀 발현되지 않는 본래적 유전자를 발현한다.
용어 "단백질" 및 "폴리펩티드"는 본원에서 상호교환가능하게 사용된다. 본원에서는 아미노산 잔기에 대하여 통상의 1문자 또는 3문자 코드가 사용된다.
본 발명에서 "유전자"는 본 발명의 효소의 코딩 영역 전 및 후의 영역, 뿐만 아니라 개별 코딩 분절 사이의 개재 서열이 포함된, 폴리펩티드를 생산하는데 연관된 DNA 분절을 지칭할 수도 있다.
본 발명에서 용어 "핵산"은 단일가닥 또는 이중가닥의 DNA, RNA, 및 이들의 화학적 변형체를 포괄한다. 용어 "핵산" 및 "폴리뉴클레오티드"는 본원에서 상호교환가능하게 사용될 수 있다. 유전 암호가 축퇴되어 있기 때문에, 특정 아미노산을 인코딩하기 위해서 하나 이상의 코돈을 사용할 수 있으며, 본 발명은 특정 아미노산 서열을 인코딩하는 폴리뉴클레오티드를 포괄한다.
본 발명에서 "벡터"는 하나 이상 세포 유형 내로 핵산을 도입하기 위해 설계된 폴리뉴클레오티드 서열을 지칭한다. 벡터에는, 클로닝 벡터, 발현 벡터, 셔틀 벡터, 플라스미드, 파아지 입자, 카세트 등이 있다.
본원에서 사용된 "발현 벡터"는 적당한 숙주 내에서 목적 DNA 를 발현시킬 수 있는 적당한 제어 서열에 작동가능하게 연결되어 있는 DNA 서열을 가진 DNA 구조물을 의미한다. 이러한 제어 서열에는, 전사를 초래하는 프로모터, 전사를 조절하는 임의적 오퍼레이터 (operator) 서열, mRNA 상의 적당한 리보솜 결합 부위를 인코딩하는 서열, 인핸서 및 전사 및 번역의 종결을 조절하는 서열이 포함될 수 있다.
본 발명에서 "프로모터"는 유전자의 전사를 개시하기 위해 RNA 중합효소를 결합시키는 데에 연루된 조절 서열이다. 상기 프로모터는 유도성 프로모터 또는 구성적 (constitutive) 프로모터일 수 있다.
본 발명에서 용어 "유래된"은 용어 "~로부터 기원하는", "수득되는" 또는 "~로부터 수득가능한", 및 "~로부터 단리된"을 포괄하며, 본원에서 사용될 때, 이는 상기 뉴클레오티드 서열에 의해 인코딩되는 폴리펩티드가 상기 뉴클레오티드가 본래적으로 존재하거나 또는 상기 뉴클레오티드 서열이 삽입되어 있는 세포로부터 생산됨을 의미한다.
용어 "배양"은 액체 또는 고체 배지에서 적당한 조건 하에서 미생물 세포 집단을 성장시키는 것을 지칭한다. 바람직한 실시예에서, 배양은 (전형적으로는 용기 또는 반응기 내에서의) 아가로스를 포함한 기질을 최종 생성물로 생물전환을 지칭한다. 발효는 미생물에 의해 유기 물질을 효소적 및 혐기적으로 분해하여 더욱 단순한 유기 화합물을 생산하는 것을 지칭한다. 발효가 혐기적 조건하에서 일어나는 것이긴 하지만, 발효는 또한 산소의 존재하에서도 일어나므로, 상기 용어를 엄격한 혐기적 조건으로만 한정하고자 하는 의도는 없다.
본 발명에서 사용된 용어 "회수", "단리" 및 "분리"는 자연적으로 결합되어 있는 하나 이상의 성분으로부터 제거된 화합물, 단백질, 세포, 핵산 또는 아미노산을 지칭한다.
본원에서 사용된 세포와 관련하여 사용되는 용어 "형질전환", "안정한 형질전환" 및 "유전자 이식(transgenic)"은 세포가 여러 세대를 통해 유지되는 에피솜 플라스미드로서의 또는 그의 게놈 내로 통합된 비(非)본래적 (예컨대, 이종) 핵산 서열을 가지는 것을 의미한다.
본원에서 사용된 용어 "발현"은 유전자의 핵산 서열에 기초하여 폴리펩티드가 생산되는 방법을 지칭한다. 상기 방법에는 전사 및 번역이 포함된다.
핵산 서열을 세포 내로 삽입하는 용어 "도입"은 "트랜스펙션 (transfection)", 또는 "형질전환" 또는 "형질도입(transduction)"을 의미하며, 핵산 서열의 진핵 또는 원핵 세포 내로의 통합에 대한 언급이 포함되고, 이때 상기 핵산 서열은 세포의 게놈 (예컨대, 염색체, 플라스미드, 색소체, 또는 미토콘드리아 DNA) 내로 통합되어, 자율 레플리콘으로 전환되거나, 또는 일시적으로 발현된다 .
이하 본 발명을 설명한다.
1. 홍조류를 포함한 해양바이오매스의 전처리 공정 과정중 알파- 네오아가로바이오스로부터 발효성 당인 갈락토오스를 생성하는 효소처리공정
아가 다당체로부터 발효성당을 생성하기 위해 단당류로 분해하는 전처리 과정으로는 크게 화학적인 방법과 효소적 방법 두 가지가 사용 가능하다. 먼저, 화학적인 방법은 복합 다당류를 무작위적으로 분해하기 때문에 원하는 발효성 단당류를 선택적으로 생산하기 매우 어려울 뿐만 아니라 생성된 당의 발효를 저해하는 부산물을 생성하기도 한다. 또한, 알칼리 처리나 산처리의 경우 상당한 양의 오염물질을 배출하여 이것을 정화시키기 위해 많은 비용이 소모되어 미생물이 이용가능한 발효성 당의 생산방법에는 적합하지 않다. 효소적인 방법으로는 미생물이 생성하는 아가레이즈를 이용하여 아가 다당체를 분해시키는 것이 가능하다. 이러한 방법에 사용가능한 효소로는 알파 아가레이즈 또는 베타 아가레이즈가 있다. 아가 다당체를 분해하는 효소로서 알파 아가레이즈는 아가 다당체에 존재하는 알파-1,3과 베타-1,4 결합 중 알파 결합을 가수분해하여 최종적으로 베타-아가로바이오스 이당체를 만들고 베타 아가레이즈는 베타 결합을 끊어 알파-네오아가로바이오스 이당체를 생성한다. 이러한 효소적 전처리의 과정 중 베타 아가레이즈를 사용할 경우, 최종 산물은 알파-네오아가로바이오스로 이는 통상의 미생물이 사용할 수 없는 비발효성 당이다. 이를 발효성 당인 갈락토오스로 최종적으로 전환하는 전처리 공정을 위해서는 알파-네오아가로바이오스 가수분해효소가 필요 불가결하다.
2. 아가다당체의 효소적 분해산물인 알파- 네오아가로바이오스로부터 갈락토오스 또는 AHG 의 생산
현재 네오아가로바이오스의 가수분해로 얻어지는 3,6-Anhydro-L-galactose는 상업적으로도 판매되고 있지 않으며 D 형의 AHG만 구입이 가능한 실정이며 이 또한 고가에 판매되고 있다(2009년 현재 200 파운드(영국)/100mg, dextra Laboratories). 따라서 본 효소를 이용하여 아가로스로부터 고가의 AHG의 대량생산이 가능하다.
본 발명의 발명자들은 해양세균 사카로파거스 데그라단스로에서 알파-네오아가로바이오스 가수분해효소의 활성을 확인하고, 해당 유전자를 최초로 확인하였다. 또한 대장균에 형질전환하여 단백질을 대량생산하여 알파-네오아가로바이오스 가수분해효소의 활성을 확인하였다. 신규 알파-네오아가로바이오스 가수분해효소 유전자의 효소활성을 이용하여 아가 다당체를 포함하는 해양바이오매스의 전처리 공정에서 적용하고, 전처리 공정에서 얻어진 알파-네오아가로바이오스로부터 갈락토오스를 포함한 발효성 당의 획득에 이용한다.
최근 아가 다당체를 탄소원으로 사용하여 성장할 수 있는 해양세균인 사카로파거스 데그라단스(Saccharophagus degradans)가 발견되었고 유전체 서열이 최근에 결정되었다.
알파-네오아가로바이오스 가수분해효소의 유전자를 발굴하기 위하여, 먼저 사카로파거스 데그라단스에서 알파-네오아가로바이오스 가수분해효소의 활성을 확인하였다. 그 다음 유전체서열정보 분석을 통하여 사카로파거스 데그라단스의 유전자중 당가수분해효소 훼밀리 32에 속하는 유전자(단백질데이터베이스 Uniprot database ID: Q21HB2) 알파-네오아가로바이오스 가수분해효소로 예측하였다. 실제 단백질이 알파-네오아가로바이오스 가수분해효소의 활성을 가지고 있는지 확인하기 위하여, 발현용 벡터에 클로닝하고 대장균에서 과발현하여 단백질을 분리 정제한 다음 최종적으로 효소의 활성을 확인하였다.
본 발명에서는 신규한 알파-네오아가로바이오스 가수분해효소의 염기서열과 단백질서열을 보고하고 있다. 특히, 앞서 서술한 바와 같이 최근 해조류 바이오매스를 이용한 바이오 에너지 생산에서 바이오매스의 발효성당으로의 효소적 전환공정 중 아가 다당체로 부터 안하이드로 갈락토오스 및 갈락토오스의 생산에는 알파-네오아가로바이오스 가수분해효소의 사용이 필수적이므로 바이오매스전처리 비용절감 및 수율향상 효과를 기대할 수 있다. 또한 바이오연료를 생산하는 효모나 세균등에 알파-NABH 유전자를 도입하여 아가 또는 네오아가로바이오스로 부터 직접 바이오 연료를 생산하는 것도 기대할 수 있다. 또한 해양바이오매스로 부터 고부가가치의 단당류인 갈락토오스와 AHG를 생산하는 공정에도 알파-네오아가로바이오스 가수분해효소를 사용하여, 유용물질의 생산도 가능하다.
도 1은 아가 다당체의 구조를 나타내는 그림이다.
도 2는 S. degradans 2-40으로부터 얻은 세포내 조효소에 의한 반응 생성물의 박막 크로마토그래피(Thin layer chromatography)를 나타낸 사진. 레인 A, 갈락토오스의 스탠다드; 레인 B, 0.25% (w/v) 아가로스를 세포내 효소와 배양한 것; 레인 C, 0.3%(w/v) 젤라듐(홍조류) 분말을 세포내 효소와 배양한 것. 효소반응은 30, 20 mM Tris-HCl (pH6.8)에서 12시간 동안 수행하였다.
도 3은 본 발명에서 발굴한 유전자의 염기서열 및 단백질 서열을 나타낸다.
도 4는 대장균에서 발현되어 정제된 아가레이즈; 12% SDS-폴리아크릴아마이드젤 전기영동; A : 분자크기 마커, B : 알파-네오아가로바이오스 가수분해 효소(neoagarobiose hydrolase)를 나타냄.
도 5는 알파-네오아가로바이오스 가수분해 효소(neoagarobiose hydrolase) 및 베타-아가레이즈에 의한 아가로스 가수분해의 산물의 박막 크로마토그래피 사진. 효소 반응을 30, 20 mM Tris-HCl(pH6.8)에서 수행하였고, 그 기질 농도는 0.25% (w/v)이었다. (a) 갈락토오스 (b-c) 반응 혼합물. A: 갈락토오스 표준물질; B: 알파-네오아가로바이오스 가수분해 효소(neoagarobiose hydrolase) 반응산물(2시간 반응); C: 네오아가로바이오즈.
도 6은 알파-네오아가로바이오스 가수분해 효소(neoagarobiose hydrolase) 및 베타-아가레이즈에 의한 아가로스 가수분해의 산물의 액체크로마토그리피 질량분석 (Mass Spectrometry)을 통한 반응산물의 확인을 나타내고 있다. 질량분석기를 이용한 반응산물들의 질량분석결과 (formate(HCOO-, 분자량: 45)로 음이온화),
도 6에서 나타나는 것과 같이 갈락토오스의 질량은 225.1 (180+45), 안하이드로갈락토오스는 207.1 (162+45)에서 확인되고 있다. 따라서 가수분해효소의 산물이 갈락토오스와 안하이드로갈락토오스임을 확인하고 있다. 즉 기초과학지원센터 서울분소에 질량분석을 의뢰하여 얻은 결과물이 도면 6에 나타난 질량분석스펙트럼이고, 그 결과물을 해석한 결과로 효 소의 가수분해산물을 확인하였음.
도 7은 알파-네오아가로바이오스 가수분해 효소를 포함한 호모로그(homolog) 단백질의 모티프(motif)분석결과를 나타낸다.
도 8은 알파-네오아가로바이오스 가수분해 효소 특이적 모티프들을 나타낸다.
도 9-10은 도 8에서 확인된 알파-네오아가로바이오스 가수분해 효소 특이적 모티프들을 모두 포함하고 있는 단백질들의 서열을 나타내고 있다.
도 11은 도 9-10에서 얻어진 10개의 서열과 알파-네오아가로바이오스 가수분해효소의 아미노산 서열을 사용한 다중서열정렬을 나타낸다.
도 12는 대장균에서 발현되어 정제된 슈도알테로모나스 아틀란티카 유래 아가레이즈; 12% SDS-폴리아크릴아마이드젤 전기영동; Lane A, 분자크기 마커; Lane B, 알파-네오아가로바이오스 가수분해효소.
도 13은 대장균에서 발현되어 정제된 스트렙토마이세스 코엘리컬러 아가레이즈; 12% SDS-폴리아크릴아마이드젤 전기영동; Lane A, 알파-네오아가로바이오스 가수분해 효소; Lane B, 분자크기 마커.
도 14는 알파-네오아가로바이오스 가수분해 효소(neoagarobiose hydrolase) 및 베타-아가레이즈에 의한 아가로스 가수분해의 산물의 박막 크로마토그래피 사진이다. 효소 반응을 30, 20mM Tris-HCl(pH 6.8)에서 2시간 동안 수행하였고, 그 기질 농도는 0.25%(w/v)이었다. (A) 갈락토오스 (B-D) 반응 혼합물. Lane A, 갈락토오스 표준물질; Lane B, 사카로파거스 데그라단스(Saccharophagus degradans 2-40) 유래 알파-네오아가로바이오스 가수분해 효소(neoagarobiose hydrolase) 반응산물; Lane C, 슈도알테로모나스 아틀란티카(Pseudoalteromonas atlantica T6c)유래 알파-네오아가로바이오스 가수분해 효소(neoagarobiose hydrolase) 반응산물; Lane D, 스트렙토마이세스 코엘리컬러(Streptomyces coelicolor A3)유래 알파-네오아가로바이오스 가수분해 효소(neoagarobiose hydrolase) 반응산물.
이하, 비한정적인 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 단 하기 실시예는 본 발명을 설명하기 위한 목적으로 기재된 것으로서 본 발명의 범위는 하기 실시예에 의하여 제한되지 아니한다.
실시예 1:사카로파거스 데그라단스 조추출액으로 부터의 알파-네오아가로바이오 가수분해효소의 효소활성 확인
사카로파거스 데그라단스가 알파-네오아가로바이오스 가수분해를 통해 단당류인 갈락토오스와 AHG를 생성하는 효소 활성을 가지고 있는지 확인하기 위하여 다음과 같은 방법으로 조추출액을 얻어 활성을 확인하였다. 사카로파거스 데그라단스를 해수염을 포함하는 배지에서 대수증식기 중간까지 키운 후 40ml의 배양액을 원심분리한 후에 초음파를 이용해 세포를 파쇄하고 조추출액을 얻은 다음 아가다당체를 베타 아가레이즈로 분해하여 얻어진 아가로스를 기질로 하여 반응분해산물을 TLC를 통하여 관찰하였다. A레인에서는 갈락토오스 표준물, B레인에서는 0.25%(w/v)의 아가로오스를 사카로퍼거스 데그라단스의 세포내 조효소액과 반응시킨 산물, C레인에서는 0.3%(w/v) 홍조류인 건조된 우뭇가사리 가루를 사카로퍼거스 데그라단스의 세포내 조효소액과 반응시킨 후 산물을 TLC로 분석한 결과이다. 사카로퍼거스 데그라단스의 세포내 조효소액과 반응을 통하여 아가로오스와 우뭇가사리로부터 모두 단당류인 AHG와 갈락토오스 그리고 이당류를 생성하는 것으로 나타났다. 따라서 사카로퍼거스 데그라단스는 세포내에 알파-네오아가로바이오스 가수분해를 통해 단당류인 갈락토오스와 AHG를 생성하는 효소를 가지고 있는 것으로 알 수 있다.
본 발명에서 발굴한 유전자의 염기서열 및 단백질의 아미노산 서열은 도면 3과 같다.
실시예 2: 알파-네오아가로바이오스 가수분해효소의 생화학적 활성 및 특징 조사
정제된 알파-네오아가로바이오스 가수분해효소의 활성은 다음과 같이 확인하였다. 먼저 아가 다당체를 베타-아가레이즈로 처리하여 효소적 처리의 최종산물인 네오아가로바이오스를 생성한 다음, 그것을 기질로 하여 알파-네오아가로바이오스 가수분해효소의 반응 산물을 TLC로 확인하였다(도면 5 TLC 결과). TLC용매조건(n-Buthanol:EtOH:Water ; 3:2:2)에서 알파-네오아가로바이오 가수분해효소로 처리된 기질은 갈락토오스와 안하이드로갈락토오스로 추정되는 물질로 분해되는 것을 확인하였다. 갈락토오스 Rf값은 약0.46, 네오아가로바이오스의 Rf값은 약 0.58로 TLC상에서 확인하였다.
네오아가로바이오스 가수분해효소에 의해 생성된 산물의 분자량을 측정하기 위하여 액체크로마토그래피-질량분석기(Liquid chromatography-mass spectrometry)를 통해 분자량을 확인하였다. 안하이드로갈락토오스(AHG)는 분자량이 162이고, 갈락토오스 분자량은 180임을 LC-MS분석결과에서 나타난 207.1m/z는 안하이드로갈락토오스에 포름산(formic acid)가 결합된 상태인 분자량으로 안하이드로갈락토오스가 검출되었음을 알 수 있고, 179.1m/z와 225.1m/z는 갈락토오스와 갈락토오스와 결합한 포름산(formic acid)의 분자량으로 갈락토오스가 검출되었음을 확인 할 수 있다. 따라서 LC-MS에서 나타난 바와 같이 네오아가로바이오스 가수분해효소의 반응산물인 두 가지 단당류인 갈락토오스와 안하이드로갈락토오스가 반응산물임을 확인할 수 있다(도 6 참조).
실시예 3: 알파-네오아가로바이오스 분해효소 특이적 펩타이드 모티프 서열
*일반적으로 단백질 모티프(motif)는 동일한 분자적 기능을 갖는 단백질들에서 일종의 패턴처럼 나타나는 짧은 펩타이드 서열을 의미한다. 이러한 단백질 모티프들은 전체단백질 서열중에서 대개 진화적으로 잘 보존되어 있으며 활성부위를 포함하는 분자적 기능을 대표하는 영역으로 표시되는 패턴화된 아미노산 서열로 표시된다(Sigrist C.J.A., Cerutti L., Hulo N., Gattiker A., Falquet L., Pagni M., Bairoch A., Bucher P.PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform. 3:265-274(2002);Sigrist C.J.A., De Castro E., Langendijk-Genevaux P.S., Le Saux V., Bairoch A., Hulo N. ProRule: a new database containing functional and structural information on PROSITE profiles. Bioinformatics. 2005 Nov 1;21(21):4060-6. Epub 2005 Aug 9; Timothy L. Bailey, Nadya Williams, Chris Misleh, and Wilfred W. Li, MEME: discovering and analyzing DNA and protein sequence motifs, Nucleic Acids Research, Vol. 34, pp. W369-W373, 2006).
알파-네오아가로오스 가수분해효소를 규정지을 수 있는 단백질 모티프의 서열을 확인하기 위해, 먼저 알파-네오아가로바이오스 가수분해효소의 아미노산서열을 템플레이트로 사용하여 공공데이터베이스를 NCBI 블라스트(blast)를 사용하여 검색하여 통계적 유의성(E-value<0.001)을 갖는 60개(알파-네오아가로바이오스 가수분해효소 포함)의 단백질의 아미노산 서열을 수집하였다. 이들 서열을 단백질 모티프 검색 프로그램인 MEME(http://meme.sdsc.edu/meme4_1/intro.html; 사용 파라미터: mode=zero or one occurrence & nsites=50, mwin=8 그 이외의 조건은 default parameter를 사용하였음; Timothy L. Bailey, Nadya Williams, Chris Misleh, and Wilfred W. Li, MEME: discovering and analyzing DNA and protein sequence motifs, Nucleic Acids Research, Vol. 34, pp. W369-W373, 2006) 을 사용하여 알파-네오아가로바이오스 분해효소에 특이적인 모티프를 검색하였다. 그결과 도면 7과 같이 사카로파거스 데그라단스의 알파-네오아가로바이오스 가수분해효소는 상동성을 갖는 단백질들의 분석으로부터 얻어진 총 50개의 모티프 중, 13개의 특이적 모티프 (1,2,3,4,5,6,7,14,16,17,20,34,40) 를 갖는 것으로 확인되었다. 따라서 상기 13개의 특이적 모티프, 특히 모티프 7과 34는 알파-네오아가로바이오스 분해 효소의 활성을 대표하는 모티프인 것으로 추정되며, 상기 모티프들은 도 8에 나타내었다(통상적으로 단백질 모티프는 정규표현식(regular expression)을 사용하여 나타냄으로, 도면에서도 같은 방식으로 표현하였다; Sigrist C.J.A., Cerutti L., Hulo N., Gattiker A., Falquet L., Pagni M., Bairoch A., Bucher P. PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform. 3:265-274(2002)).
알파-네오아가로바이오스 분해효소와 서열상동성을 보이는 단백질들 중에서 이들 13개의 특이적 모티프들의 일부를 포함하는 한편 모티프 7과 34를 반드시 포함하는 단백질은 10개로 확인되었다 (도면 9-10 참조).
*앞서 알파-네오아가로바이오스 분해효소에 발견되는 13개의 특이적 모티프들의 일부를 포함하는 한편 모티프 7과 34를 반드시 포함하는 단백질은 현재 공공 데이터베이스상에서 10개가 발견되고 있다. 그들의 오리진은 각각, Pseudoalteromonas atlantica T6c, Microscilla sp. PRE1, Bacteroides plebeius DSM 17135, Gramella forsetii(strain KT0803), Flavobacteriales bacterium HTCC2170, Paenibacillus sp. oral taxon 786 str. D14, Ruminococcus sp. 5_1_39BFAA, Streptomyces coelicolor A3이다. 각각의 아미노산 서열은 도면 10에 나타내었다.
도면 11에 나와 있는 서열들은 위에서 서술한 것처럼 알파네오아가로바이오스 가수분해효소와 서열상동성을 갖는 단백질 중에서 13개의 특이적 모티프들의 일부를 포함하는 한편 모티프 7과 34를 반드시 포함하는 단백질 10개를 골라서 다중정렬한것이고, 그들 10개 단백질의 서열은 도면 9-10에 나타내었다.
실시예 4:알파- 네오아가로바이오스 가수분해효소 유전자의 단백질 서열 상동성 확인
사카로파거스 데그라단스유래의 가수분해효소의 단백질 서열 상동성 검색을 통하여 유사한 기능을 갖을 것으로 예상되는 후보 유전자들을 확인하였다. 후보유전자들의 구체적인 기능은 알려져 있지 않으나 탄수화물 관련 효소/단백질 데이터베이스인 CAZy(http://www.cazy.org)에 의하면 모두 글리코시드 가수분해효소(glycoside hydrolase family 32, GH32)에 속하는 것으로 확인 되었다. GH32 family에 속하는 단백질들이 갖는 알려진 기능은 invertase(EC 3.2.1.26); endo-inulinase(EC 3.2.1.7); β-2,6-fructan 6-levanbiohydrolase(EC 3.2.1.64); endo-levanase(EC 3.2.1.65); exo-inulinase(EC 3.2.1.80); fructan β-(2,1)-fructosidase/1-exohydrolase(EC 3.2.1.153); fructan β-(2,6)-fructosidase/6-exohydrolase(EC 3.2.1.154); sucrose:sucrose 1-fructosyltransferase(EC 2.4.1.99); fructan:fructan 1-fructosyltransferase(EC2.4.1.100 ); sucrose:fructan 6-fructosyltransferase(EC 2.4.1.10); fructan:fructan 6G-fructosyltransferase(EC 2.4.1.243); levan fructosyltransferase(EC 2.4.1.-)이다. 따라서 GH32 family에 속하는 일부 단백질들이 네오아가로바이오스 가수분해능과 같은 분자기능을 갖는 다는 것은 본 발명에서 처음으로 보고하고 있다.
사카로파거스 데그라단스(Saccharophagusdegradans2-40)유래 알파-네오아가로바이오스 가수분해효소(이하 α-NABH)의 아미노산 서열의 상동성 검색(블라스트 검색-첨부화일 참고)으로 얻어진 서열 중 50%이상의 상동성을 갖는 단백질 서열을 블라스트의 E-value에 의해 나열하면 다음과 같다(다음은 Uniprot 데이터베이스 번호를 사용, 괄호안은 유래 미생물 및 % identity).
1. Q15UF2 (Pseudoalteromonas atlantica (strain T6c / BAA-1087), 70%),
2. Q93PB3 (Microscilla sp.PRE1.,59%),
3. B4CY74 (Bacteroides plebeius DSM17135.,60%),
4. A0M245 (Gramella forsetii (strainKT0803).,56%),
5. A4AR39 (Flavobacteriales bacterium HTCC2170.,57%),
6. C6J3P3 (Paenibacillus sp.oral taxon 786 str.D14.,58%),
7. C6JDD4 (Ruminococcus sp.5_1_39BFAA.,58%),
8. C6J313 (Paenibacillus sp.oral taxon 786 str.D14.,57%),
9. Q15XP8 (Pseudoalteromonas atlantica (strainT6c/BAA-1087),55%),
10. Q9RKF6 (Streptomyces coelicolor,56%)
실시예 5: 대장균에서의 발현 및 크기 확인
앞서 획득한 50% identity이상의 서열 상동성을 갖는 단백질중에서 가장 높은 서열상동성을 갖는 슈도알테로모나스 아틀란티카(Pseudoalteromonas atlantica T6c)유래 단백질(Q15UF2,)과 가장 낮은 스트렙토마이세스 코엘리컬러(Streptomyces coelicolorA3)유래 단백질(Q9RKF6)을 각각 클로닝하여 α-NABH 활성을 갖고 있는지 확인하였다. 먼저, 이들을 암호화하는 유전자의 염기서열을 각각대장균 발현벡터인 pET21a (노바젠, 미국)에 삽입하였다(이하 슈도알테로모나스 아틀란티카 유래 α-NABH 유전자를 포함하는 발현벡터를 pPsAGAJ, 스트렙토마이세스 코엘리컬러 유래 α-NABH 유전자를 포함하는 발현벡터를 pScAGAJ라 명명함). 재조합 a-NABH가 대장균에서 성공적으로 발현하는 것을 확인하기 위하여, pPsAGAJ와 pScAGAJ를 발현용 대장균인 E. coli BL21(DE3)에 형질전환시킨 후에, 50 mg/L 농도의 앰피실린 항생제를 함유한 고체배지에 도말하였다. 위의 형질전환에 의해 획득한 콜로니를 50mg/L 농도의 앰피실린 항생제가 첨가된 루리아 버타니(LB) 배지에 접종한 후, 37에서 하루 동안 진탕배양하여 균체를 확보하였다. 그 후 발현확인을 위해, 형질전환체를 50mg/L 농도의 앰피실린 항생제가 첨가된 루리아 버타니(LB) 배지에 접종한 후, 37에서 OD600=0.5~1.0까지 진탕배양하고, 0.5mM/L의 농도로 IPTG를 첨가하여 180rpm에서 4시간 동안 발현을 유도하였다. 배양액은 원심분리(12000rpm, 4, 10분)하여 균체를 회수하였고, 회수한 균체는 20mM 트리스 완충액(Tris-HCl pH7.4)에 현탁하여 초음파 파쇄기로 파쇄한 후, 12% SDS-PAGE에서 크기를 확인하였다. 크기가 확인된 파쇄한 현탁액을 15분간 원심분리하여 상층액을 조효소액으로 사용하였다.
실시예 6:알파- 네오아가로바이오스 가수분해효소의 생화학적 활성확인
정제된 α-NABH의 활성은 다음과 같이 확인하였다. 먼저 아가 다당체를 베타-아가레이즈로 처리하여 효소적 처리의 최종산물인 네오아가로바이오스를 생성한 다음, 그것을 기질로 하여 a-NABH의 반응 산물을 TLC로 확인하였다. TLC를 통한 확인은 Silica gel 60 TLC 평판에 반응액을 1ul 점적하고, TLC용매조건(n-Buthanol:EtOH:Water ; 3:2:2)에서 전개하였다. 전개한 TLC 평판은 1차 처리 용액인 황산(10%(v/v) H2SO4inEthanol)으로 처리한 후 건조하고, 1차 처리된 평판은 다시 2차 처리 용액인 나프토레조시놀(0.2%(w/v) naphthoresorcinol in Ethanol)로 처리하였다. 이렇게 처리된 TLC 평판은 건조 후 가열하였다.
상기 실시예 4 내지 6의 결과는 다음과 같다.
발현용 균주인 E. coli BL21(DE3)를 사용하여 형질전환한 슈도알테로모나스 아틀라티카와 스트렙토마이세스 코엘리컬러 유래 α-NABH의 발현과 크기의 확인은 12% SDS-PAGE를 통하여 확인하였다. 슈도알테로모나스 아틀라티카와 스트렙토마이세스 코엘리컬러 유래 α-NABH의 예상 분자량은 각각 40.7kDa과 41.1kDa정도이며, 예상 분자량과 동일한 것으로 확인하였다(도면 12, 도면 13).
또한 분해산물을 확인하기 위해서 표준물질로 D-갈락토오스를 사용하여 예상 분해산물을 확인하였다. α-NABH로 처리된 이당류인 네오아가로바이오스는 D-갈락토오스와 동일한 Rf값에서 확인된 갈락토오스와 안하이드로갈락토오스로 추정되는 물질로 분해되는 것을 확인하였다(도 14).
서열목록 전자파일 첨부

Claims (10)

  1. 도 8에 기재된 단백질 모티프 7 및 34를 포함하고, 서열번호 1, 2 및 4로 구성된 군으로부터 선택된 하나의 아미노산 서열로 표시되는 알파-네오 아가로바이오스 가수분해 효소를 이용하여 알파-네오 아가로바이오스를 분해하여 상기 분해물로부터 갈락토오스 또는 안하이드로 갈락토오스를 채취하는 것을 포함하는 갈락토오스 또는 안하이드로 갈락토오스를 제조하는 방법.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 도 8에 기재된 단백질 모티프 7 및 34를 포함하고, 서열번호 1, 2 및 4로 구성된 군으로부터 선택된 하나의 아미노산 서열로 표시되는 알파-네오 아가로바이오스 가수분해 효소를 유효성분으로 포함하는 알파-네오 아가로바이오스로부터 갈락토오스 또는 안하이드로 갈락토오스 제조용 조성물.
  9. 삭제
  10. 삭제
KR1020100026454A 2009-03-27 2010-03-24 신규한 알파-네오 아가로바이오스 가수분해 효소 및 그를 이용한 단당류의 획득 방법 KR101293668B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20090026300 2009-03-27
KR1020090026300 2009-03-27

Publications (2)

Publication Number Publication Date
KR20100108241A KR20100108241A (ko) 2010-10-06
KR101293668B1 true KR101293668B1 (ko) 2013-08-13

Family

ID=42781673

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100026454A KR101293668B1 (ko) 2009-03-27 2010-03-24 신규한 알파-네오 아가로바이오스 가수분해 효소 및 그를 이용한 단당류의 획득 방법

Country Status (5)

Country Link
US (1) US9297000B2 (ko)
JP (1) JP5468680B2 (ko)
KR (1) KR101293668B1 (ko)
CN (1) CN102405282B (ko)
WO (1) WO2010110599A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056923A1 (ko) 2013-10-14 2015-04-23 고려대학교 산학협력단 아가로올리고당 분해효소 및 이를 이용한 아가로오스로부터 3,6-안하이드로-l-갈락토오스와 갈락토오스의 생산방법

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101327248B1 (ko) 2011-07-26 2013-11-13 고려대학교 산학협력단 3,6-안하이드로-l-갈락토오스를 대사하는 신규한 해양미생물 및 이 균주의 용도
KR101894703B1 (ko) * 2011-11-23 2018-09-05 고려대학교 산학협력단 홍조류 한천의 효소적 당화 및 이를 이용한 에탄올 발효
KR101525298B1 (ko) * 2012-01-18 2015-06-03 고려대학교 산학협력단 3,6-안하이드로-l-갈락토오스의 제조방법 및 이의 용도
WO2013109096A1 (ko) * 2012-01-18 2013-07-25 고려대학교 산학협력단 3,6-안하이드로-l-갈락토오스의 제조방법 및 이의 용도
CN103357888B (zh) * 2013-07-05 2015-02-11 淮阴工学院 一维核壳型纳米银/凹土复合材料的绿色合成方法
CN103468661B (zh) * 2013-10-08 2014-11-05 中国海洋大学 一种新琼二糖水解酶及其应用
KR101641173B1 (ko) * 2014-10-01 2016-07-21 고려대학교 산학협력단 완충용액 전처리를 이용하여 한천에서 단당류의 생산 수율을 개선하는 방법
KR101610163B1 (ko) * 2014-10-17 2016-04-08 현대자동차 주식회사 단당류 제조용 고체산 촉매 및 이를 이용하여 해조류로부터 단당류를 제조하는 방법
KR101743421B1 (ko) 2015-10-16 2017-06-05 고려대학교 산학협력단 3,6―안하이드로―l―갈락토오스의 항충치 용도
KR101787331B1 (ko) * 2016-01-19 2017-10-19 고려대학교 산학협력단 내열성 한천분해효소 및 이를 이용한 단당류의 생산방법
KR101851628B1 (ko) * 2016-04-04 2018-04-25 고려대학교 산학협력단 미생물을 이용한 3,6-안하이드로-l-갈락토오스의 신규한 정제방법
KR20170125600A (ko) * 2016-05-04 2017-11-15 재단법인 탄소순환형 차세대 바이오매스 생산전환 기술연구단 네오아가로바이오스 하이드로레이즈의 생산능을 가지는 신규한 알카니보락스 속 a28-3 균주 및 그 용도
KR101864800B1 (ko) * 2016-12-07 2018-06-07 고려대학교 산학협력단 해조류 유래 무수갈락토오스의 생산방법
KR102100958B1 (ko) * 2019-01-10 2020-04-14 명지대학교 산학협력단 가야도모나스 주비니에게 g7 유래 알파-네오아가로올리고당 가수분해효소의 이용
KR102166572B1 (ko) * 2019-10-31 2020-10-16 명지대학교 산학협력단 가야도모나스 주비니에게 g7 유래 알파-네오아가로올리고당 가수분해효소의 이용

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418156A (en) * 1991-04-15 1995-05-23 University Of Maryland Agarase enzyme system from alteromonas strain 2-40
US8795989B2 (en) * 2007-04-30 2014-08-05 University Of Maryland Enzymic production of neoagarobiose

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Can. J. Microbiol. 1975. Vol. 21, No. 10, pp. 1512-1218 *
GenBank Accession No. YP_528129 (2009.01.21.) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056923A1 (ko) 2013-10-14 2015-04-23 고려대학교 산학협력단 아가로올리고당 분해효소 및 이를 이용한 아가로오스로부터 3,6-안하이드로-l-갈락토오스와 갈락토오스의 생산방법
KR101521711B1 (ko) * 2013-10-14 2015-05-19 고려대학교 산학협력단 신규한 아가로올리고당 분해효소 및 이를 이용한 아가로오스로부터 3,6-안하이드로-l-갈락토오스와 갈락토오스의 생산방법
US9902983B2 (en) 2013-10-14 2018-02-27 Korea University Research And Business Foundation Agarooligosaccharide hydrolase and method for producing 3,6-anhydro-L-galactose and galactose from agarose by using same

Also Published As

Publication number Publication date
JP5468680B2 (ja) 2014-04-09
CN102405282A (zh) 2012-04-04
KR20100108241A (ko) 2010-10-06
CN102405282B (zh) 2014-02-12
JP2012521755A (ja) 2012-09-20
US20130171699A1 (en) 2013-07-04
WO2010110599A2 (ko) 2010-09-30
US9297000B2 (en) 2016-03-29
WO2010110599A9 (ko) 2011-03-17
WO2010110599A3 (ko) 2011-05-19

Similar Documents

Publication Publication Date Title
KR101293668B1 (ko) 신규한 알파-네오 아가로바이오스 가수분해 효소 및 그를 이용한 단당류의 획득 방법
Qeshmi et al. Xylanases from marine microorganisms: a brief overview on scope, sources, features and potential applications
CN101558166A (zh) 用于酶促水解纤维素的高效纤维素酶组合物的构建
Gupta et al. Cost effective production of complete cellulase system by newly isolated Aspergillus niger RCKH-3 for efficient enzymatic saccharification: medium engineering by overall evaluation criteria approach (OEC)
CN103429751A (zh) 经工程化以发酵木糖的遗传修饰的热纤梭菌
CN109072270B (zh) 用于产生低聚糖或葡萄糖的组合物及其产生的方法
JP2013545491A (ja) バイオマス加水分解物培地中でのキシロース資化性ザイモモナス・モビリスによるエタノール産生の向上
CN106414728A (zh) 琼胶寡糖水解酶及通过使用该琼胶寡糖水解酶从琼脂糖中生成3,6-脱水-l-半乳糖和半乳糖的方法
CA2685864A1 (en) Carbohydrase expression during degradation of whole plant material by saccharophagus degradans
EP3387121A1 (en) Novel proteins from anaerobic fungi and uses thereof
CA2780974C (en) Mutli-cellulase enzyme compositions for hydrolysis of cellulosic biomass
KR20100040438A (ko) 신규한 아가레이즈 및 이를 이용한 아가로스로부터 아가로올리고사카라이드의 효소적 생산방법
US20170327854A1 (en) Methods for cellobiosan utilization
CN102888416A (zh) 编码糖基水解酶家族3的β-葡萄糖苷酶基因及其应用
Atheena et al. Identification and characterization of chitinase producing marine microorganism: Unleashing the potential of chitooligosaccharides for bioethanol synthesis
Rastegari Molecular mechanism of cellulase production systems in penicillium
JP2015012852A (ja) 微細藻類バイオマスを原料とするバイオ燃料の製造方法
Nevalainen et al. Sources, properties, and modification of lignocellulolytic enzymes for biomass degradation
CN109182361B (zh) 纤维素内切酶基因及其蛋白和应用
CN103562216A (zh) 纤维糊精和β-D-葡萄糖的增强型发酵
Brumm et al. Identification, cloning and characterization of Dictyoglomus turgidum CelA, an endoglucanase with cellulase and mannanase activity
KR101543845B1 (ko) L-갈락토스 대사능을 가지는 재조합 미생물 및 이를 이용하여 l-갈락토스를 함유하는 바이오매스로부터 바이오에탄올을 제조하는 방법
JP6518107B2 (ja) 転写因子変異株
Zafar et al. Purification and Characterization of a recombinant β-Xylosidase from Bacillus licheniformis ATCC 14580 into E. coli Bl21
KR101539535B1 (ko) 곰팡이 유래의 글리코시드 하이드로레이즈 61을 발현하는 미생물 및 이를 이용한 셀룰로스 분해 촉진 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160615

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180702

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190715

Year of fee payment: 7