KR101030476B1 - Snp 어레이를 이용한 염색체, 유전자, 또는 특정 뉴클레오티드 서열의 카피 수 측정방법 - Google Patents

Snp 어레이를 이용한 염색체, 유전자, 또는 특정 뉴클레오티드 서열의 카피 수 측정방법 Download PDF

Info

Publication number
KR101030476B1
KR101030476B1 KR1020090018949A KR20090018949A KR101030476B1 KR 101030476 B1 KR101030476 B1 KR 101030476B1 KR 1020090018949 A KR1020090018949 A KR 1020090018949A KR 20090018949 A KR20090018949 A KR 20090018949A KR 101030476 B1 KR101030476 B1 KR 101030476B1
Authority
KR
South Korea
Prior art keywords
dna
snp
chromosome
sample
gene
Prior art date
Application number
KR1020090018949A
Other languages
English (en)
Other versions
KR20090097792A (ko
Inventor
홍경만
Original Assignee
국립암센터
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립암센터 filed Critical 국립암센터
Publication of KR20090097792A publication Critical patent/KR20090097792A/ko
Application granted granted Critical
Publication of KR101030476B1 publication Critical patent/KR101030476B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B30/00Methods of screening libraries
    • C40B30/04Methods of screening libraries by measuring the ability to specifically bind a target molecule, e.g. antibody-antigen binding, receptor-ligand binding
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Plant Pathology (AREA)

Abstract

본 발명은 (ⅰ) 동형접합체 (homozygote) DNA를 검체시료 DNA 와 혼합하는 단계; (ⅱ) 상기 혼합한 DNA 를 SNP 어레이 (array)로 분석하는 단계; 및 (ⅲ) 동형접합체 (homozygote) DNA 및 검체시료 DNA 에서 나온 신호의 차이를 측정하여 염색체, 유전자 또는 특정 뉴클레오티드 서열의 카피 수를 결정하는 단계를 포함하는, 염색체, 유전자 또는 특정 뉴클레오티드 서열의 카피 수 측정 방법에 관한 것이다.
SNP, SNP array, 염색체, 염색체 카피 수

Description

SNP 어레이를 이용한 염색체, 유전자, 또는 특정 뉴클레오티드 서열의 카피 수 측정방법 {A METHOD FOR MEASURING THE CHROMOSOME, GENE OR NUCLEOTIDE SEQUENCE COPY NUMBER USING SNP ARRAY}
본 발명은 (ⅰ) 동형접합체 (homozygote) DNA를 검체시료 DNA 와 혼합하는 단계; (ⅱ) 상기 혼합한 DNA 를 SNP 어레이로 분석하는 단계; 및 (ⅲ) 동형접합체 (homozygote) DNA 및 검체시료 DNA에서 나온 신호의 차이를 측정하여 염색체, 유전자 또는 특정 뉴클레오티드 서열의 카피 수를 결정하는 단계를 포함하는, 염색체, 유전자 또는 특정 뉴클레오티드 서열의 카피 수 측정 방법에 관한 것이다.
특정 염색체 서열의 변화는 사람의 질환과 증후군의 원인이 된다. 이와 같은 변화로는 다운증후군 (down syndrome)처럼 염색체 하나 전부가 더 있는 것 혹은 적은 것도 있으며, 디죠지 (DiGeorge) 증후군처럼 수백만 염기쌍이 결실되어 있거나, 베커 (Becker) 또는 뒤시엔느 근이영양증 (Duchenne muscular dystrophy)처럼 조그만 염색체 조각의 결실 혹은 중복된 것 등이 있을 수 있다. 정신지체 환자들에서는 아말단 (subtelomeric) 결실도 많이 보고되고 있다 (Lamb등, 1989). 또한 BRCA1, MLH1/MLH2와 같은 특정 유전자의 염색체 부위가 암에서 흔히 변화되는데, 이는 그 유전자의 발현에 중요하다고 알려져 있다 (Petrij-Bosch등, 1997; Wijnen 등, 1998). 유전자 카피 (copy) 수의 변화를 분석하는 것은 ERBB2 유전자의 증폭이 일어난 유방암 환자의 치료에 ERBB2에 특이한 항체를 사용하는 예에서 볼 수 있듯이 암환자의 치료에도 중요한 요소가 될 수 있다 (Leyland-Jones와 Smith, 2001).
현재 염색체 변화의 카피 수를 결정하는데 여러 가지 방법을 사용하고 있다. 염색체의 수와 구조적 변화를 측정하는 가장 표준적인 방법은 핵형분석 (karyotyping) 방법인데, 환자의 혈액, 섬유아세포 또는 양수세포를 배양해야 하고, 결과를 해석하는데 많은 시간과 인력이 필요하다. 또한 핵형분석법으로는 보통 1 mega base이상의 염색체 변화만을 관찰할 수 있는데, FISH (fluorescent in situ hybridization) 방법으로 이러한 민감도를 보완할 수 있다. 그러나 FISH도 또한 많은 시간과 인력을 필요할 뿐 아니라 보통 한 번에 4가지 이상의 목표 유전자의 변화를 측정하지는 않는다 (Klinger등, 1992). 또한 핵형분석법을 자동화하기 위한 한 방법으로 다중칼라 염색체 페인팅법 (multicoloar chromosome painting)이 소개되었는데, 이것은 각 염색체의 부분을 서로 다른 색의 형광물질로 표지하여 쉽게 결실과 중복 혹은 전좌를 알아볼 수 있게 하였다 (US Patent, 6066459). 다중칼라 염색체 페인팅법(multicoloar chromosome painting)은 핵형분석법에 비해 민감도가 어느 정도 증가되기는 하지만, 기본적으로 핵형분석에 필요한 세포배양과 후처리 과정이 필요하다.
시간과 인력의 필요성을 극복하기 위해서 최근 분자적 방법을 이용하여 염색체 변화를 알아내려고 노력하고 있다. 어레이 (Array)를 기초로 한 CGH (comparative genomic hybridization)이 최근 소개된 방법으로, 유전질환을 진단하기 위해 여러 가지 시도가 진행되고 있으며, 암조직의 염색체 변화를 알아내는 데에 이용되고 있다 (Pinkel등, 1998; US Patent 6197501 과 6159685). 이 방법은 BAC 클론을 기판 (substrate) 표면에 고착시켜 어레이 (array)를 형성하고, 미리 표지한 표준 DNA와 샘플 DNA를 어레이에 하이브리드 (hybrid)를 형성시킨다. 표준 시료와 샘플 시료에서 오는 신호의 상대적인 양을 비교함으로써 결실과 중복과 같은 염색체 변화를 알아낼 수 있는 방법이다.
또한, 다중 PCR 방법으로 상대적인 증폭 정도를 측정함으로써 카피 수를 결정하는 방법이 있으며 (Rahil 등, 2002), 이를 변형한 방법으로 MLPA (multiplex ligation-dependent probe amplification)이 최근 소개되었다 (Schouten 등, 2002; Patent number WO9615271).
LOH (loss of heterozygosity)는 현재 염색체의 결실이나 중복을 발견하는데 가장 많이 사용되는 방법이다. LOH 연구를 위해 마이크로세털라이트 마커(microsatellite marker) (Call 등, 1990)를 가장 사용해 왔다. 그러나 마이크로세털라이트 (Microsatellit)를 이용한 LOH 방법은 동형접합 결실 (homozygous deletion)이 아니라면 염색체의 변화가 결실인지 또는 중복인지 구별하지 못하는 단점이 있었다.
Pont-Kindon과 Lyon (2003)은 염색체 이상을 발견하는데 SNP를 이용한 방법을 발표하였는데, 이들은 이형접합 대립유전자 (heterozyous allele)의 상대적인 양을 용융 곡선 분석법 (melting curve analysis)을 분석하는 방법을 이용하였다. 이 방법에서 두 대립 유전자의 상대적인 양이 정상과 달라지는 경우 삼염색체성 (trisomy)이 있다는 것을 알아내는 방법이다.
또한 SNP 어레이를 사용하여 염색체의 결실과 중복을 알아내는 방법이 소개되었는데 (Lindblad-Toh 등, 2000), 이 방법은 SNP 어레이에 무수히 많은 SNP를 측정할 수 있도록 확장이 가능하다는 면에서 무한한 가능성을 가지고 있다고 하겠다. 그러나 이 SNP 어레이를 이용한 염색체 변화 측정에는 반드시 측정하고자 하는 DNA 내에 이형접합 대립유전자 (heterozygous allele)가 존재하여야 한다는 단점이 있다. 비교적 흔한 SNP의 경우 5% 이상의 사람들에 존재하는 경우를 말하지만 하나의 유전자로 들어가면 CNV (copy number variation)를 위해 사용할 수 있는 SNP 수와 이형접합자 (heterozygote)로 나오는 빈도가 낮은 제약이 있다. 따라서 특정 유전자들에 특이적으로 SNP를 측정하기 위해서는 이 분야의 개선이 절실히 필요한 상황이다.
이에, 본 발명자들은 상기와 같은 문제점을 해결하고 보다 효율적인 염색체, 유전자 또는 특정 뉴클레오티드 서열의 카피 수를 측정방법을 개발하고자 예의 노력한 결과, 동형접합체 (homozygote)로 되어 있는 세포주의 DNA를 검체시료 DNA 와 혼합하여 상기 혼합된 DNA를 rare SNP를 측정하도록 고안된 SNP 어레이로 분석하여 각 시료에서 나온 신호의 차이를 비교하는 방법을 사용하면, 비용과 필요 노동력을 현저히 절감시킬 수 있을 뿐만 아니라 특정 유전자의 카피 수를 결정하는 다른 분자적 방법에 비해 정확한 값을 얻을 수 있다는 것을 확인하고 본 발명을 완성하였다.
본 발명의 목적은 (ⅰ) 동형접합체 (homozygote) DNA를 검체시료 DNA와 혼합하는 단계; (ⅱ) 상기 혼합한 DNA를 SNP 어레이로 분석하는 단계; 및 (ⅲ) 동형접합체 (homozygote) DNA 및 검체시료 DNA 에서 나온 신호의 차이를 측정하여 염색체, 유전자 또는 특정 뉴클레오티드 서열의 카피 수를 결정하는 단계를 포함하는, 염색체, 유전자 또는 특정 뉴클레오티드 서열의 카피 수 측정 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 하나의 양태로서, 본 발명은 (ⅰ) 동형접합체 (homozygote) DNA를 검체시료 DNA와 혼합하는 단계; (ⅱ) 상기 혼합한 DNA를 SNP 어레이로 분석하는 단계; 및 (ⅲ) 동형접합체 (homozygote) DNA 및 검체시료 DNA 에서 나온 신호의 차이를 측정하여 염색체, 유전자 또는 특정 뉴클레오티드 서열의 카피 수를 결정하는 단계를 포함하는, 염색체, 유전자 또는 특정 뉴클레오티드 서열의 카피 수 측정 방법에 관한 것이다.
구체적으로, 단계 (ⅰ) 에서 동형접합체 DNA는 동형접합체 (homozygote)로 되어 있는 세포주라면 제한 없이 사용가능하며, 본 발명의 목적상, 예컨대 처녀생식 세포주 혹은 포상기태 (hydatidiform mole) 세포주에서 유래한 동형접합체가 바람직하다.
본 발명에서 용어, 처녀생식 세포주란 미수정 상태의 난자 (n)가 분열하여 이배체 (2n)가 형성된 세포주를 말하며, 포상기태 (hydatidiform mole) 세포주란 비정상적인 배아조직 덩어리의 세포주로서 DNA (2n)가 정자 (n)로부터만 유래하여 발생한 것을 말한다. 따라서, 처녀생식 세포주 및 포상기태 세포주의 DNA는 모두 동형접합체 (homozygote) DNA이다.
본 발명에서 사용되는 동형접합체는 상기 기술한 포상기태 세포주 또는 처녀생식 세포주 외에, 해플로타입 (haplotype)만으로 이루어진 세포주 또는 BAC clone DNA 를 이용할 수도 있다. 상기 혼합된 DNA는 증폭된 후, 다음 단계인 SNP 어레이에 사용된다.
본 발명에서 용어, "증폭 (Amplification)"은 표적 서열이 더 합성되도록 하는 과정을 의미하고, 상기 증폭 과정은 당업계에서 사용되는 통상적인 증폭 방법이 제한 없이 사용될 수 있으며, 바람직하게는 PCR (polymerase chain reaction)이 사용될 수 있다. 이는 시료의 유전체를 충분하게 확보하기 위한 것으로, 일반적인 증폭 과정은 어닐링 (annealing), 합성 (extension or elongation), 및 변성 (denature) 과정을 포함한다. 상기와 같은 방법을 통하여 시료 서열이 증폭된 후, SNP 어레이에 사용하게 된다.
본 발명에서 용어, "시료"는 생명체에서 얻어지는 생물학적 물질들이고, 대부분 인간 유래의 생물학적 물질을 말하며, "검체시료"는 염색체, 유전자 혹은 특정 뉴클레오티드 서열의 카피 수를 측정하고자 하는 대상이 되는 시료를 말한다. 검체시료로 사용 가능한 시료의 종류는 제한이 없으나, 바람직하게는 염색체 수의 이상 또는 변화가 있다고 여겨지는 개체로부터 수득한 시료일 수 있다. 본 발명의 바람직한 실시예에서는 다운증후군에 대한 시료를 검체시료로 하여 유전자 카피 수의 변화 양상을 분석하였다.
단계 (ⅱ) 는 증폭된 DNA를 단편화하고 표지 (labeling)하여 상기 표지된 DNA 를 SNP 어레이 칩 (SNP array chip) 상에서 혼성화 (hybridization)하는 단계이다. 이 때, SNP를 일으키는 염기의 종류에 따라 다른 종류의 형광물질을 표지하는 것이 바람직하다. 동형접합체 DNA를 시료 DNA와 섞어서 SNP 어레이로 분석하면 두 가지 세포에서 나온 대립인자 (allele), 혹은 염기가 서로 다른 경우 두 염기로부터 나오는 신호의 비율을 얻을 수 있는데, 결실 또는 증폭 등의 염색체 이상이 있는 경우에는 그 비율이 정상적인 부위와 달라지게 된다. 본 발명에서 SNP 어레이는 당업계에서 일반적으로 사용하는 SNP 어레이 방법을 사용할 수 있으며, 이미 상용화된 SNP 어레이 칩, 예컨대 Affymetrix 사의 SNP 어레이 칩 (10K, 100K, 500K 등)을 사용할 수 있다.
본 발명에서 용어, "SNP (single nucleotide polymorphism)"는 단일 뉴클레오티드에서의 다형성 (polymorphism)이다. 즉, 어느 집단에 있어 전체 게놈 (genomome)에 있는 하나의 염기가 염색체 마다 다른 경우가 존재하는데, 통상적으로 SNP는 300 내지 1000개의 염기에 하나 정도 존재하기 때문에 인간 게놈 DNA 전 체에는 적어도 300만개의 SNP가 존재하게 된다.
SNP의 종류로는, 프로모터 영역 등의 전사활성 조절에 관계하는 영역에 존재하는 rSNP (regulatory SNP), 엑손 (exon) 부분에서 아미노산 변이를 일으키는 cSNP (coding SNP), 인트론 (intron) 영역에 존재하는 iSNP (intronic SNP), 엑손 부분에서 사일런스 (silence) 변이를 일으키는 sSNP (silent SNP), 및 그 외 게놈 영역에서 나타나는 gSNP (genome SNP)와 같은 SNP가 존재하나, 상기 예들에 의해 본 발명에서 분석 가능한 SNP의 종류가 제한되는 것은 아니다.
게놈 유전자의 99.9%는 개체 내에서 공통적이고, 나머지의 0.1%가 특정 질환에 대한 감수성이나 약제에 대한 부작용 등과 관련한 개체 차이에 관여하고 있다고 여겨지고 있는데, 이러한 감수성 또는 부작용과 직접적으로 관련 있다고 생각되는 것이 바로 SNP이다. SNP는 출현 빈도가 높고, 게놈 전체 상에 거의 균등하게 분포하고 있기 때문에, 상기 감수성 또는 부작용과 유전자의 관련성을 연구하는 신뢰성 높은 유전자 다형이라고 판단되고 있다. 따라서 이러한 SNP의 변화를 효과적으로 분석하는 경우, 자연적인 유전자 변형과 관련된 각종 질환과의 연관성 뿐만 아니라 약제의 감수성 또는 부작용과 관련된 정보를 효과적으로 분석할 수 있어, 향후 유전적 질환의 스크리닝 및 개인별 맞춤 치료에 큰 기여를 할 수 있다.
이러한 SNP의 위치는 보통 매우 보존된 서열들이 그 전후로 존재하게 된다. SNP는 보통 특정 위치의 한 염기가 다른 염기로 치환되어 일어나게 되는데, 뉴클레오티드의 결실이나 중복에 의해서도 일어난다. 특히, 대립유전자형 (allele)의 빈 도가 5% 이하인 경우를 rare SNP (레어 SNP)라고 하며, 대립 유전자형의 빈도가 5% 이상인 경우에는 common SNP (커먼 SNP)라고 한다. rare SNP는 민족 별 또는 인종 별로 다르게 나타날 수 있다. 이러한 rare SNP 본 발명의 목적상, 일정하게 정의된 집단 (population)의 정의를 인류 전체로 볼 것인지, 특정 집단에 한정하여 볼 것인지에 따라 rare SNP의 범위가 변화할 수 있고, 한 집단에서 common SNP로 보이는 변이라 하더라도, 다른 집단에서는 rare SNP의 양상을 나타낼 수 있음은 자명하다. 따라서 비교 대상이 되는 범위에 따라 특정 집단에서만 rare SNP를 나타내는 경우라도, 본 발명의 rare SNP에 해당한다. 상기 서술한 바와 같이 민족 또는 인종 간의 차이가 비교적 큰 rare SNP를 이용하는 경우, 효과적인 어레이 (arrary) 구성이 가능해질 수 있다. 따라서 분석하고자 하는 집단의 특이성에 따라 집단 규모를 다르게 설정할 수 있고, 이에 따라 rare SNP로 보는 범위가 변화할 수 있음은 자명하며, 이에 따라 특정 집단별, 나아가 전 인류에 대한 질환 모델을 스크리닝 할 수 있다.
본 발명에서 용어, "다형성 부위 (Polymorphic site)"는 여러 가지 염기가 발견되는 유전자좌 (locus)를 말한다. 보통 SNP는 최소한 두 가지의 대립유전자 (allele)가 존재하며 빈도는 일반인에서 1% 이상 나타나는 경우를 말한다. 가장 흔히 나타나는 대립유전자의 형태를 야생형이라고 하고, 적게 나타나는 형태를 돌연변이 대립유전자 (allele)라고 한다.
본 발명에서 용어, "대립유전자 (allele)"는 상동염색체의 동일한 유전자좌 (locus)에 존재하는 한 유전자의 여러 타입을 말한다. 대립유전자는 다형성을 나타내는데 사용되기도 하며, 예컨대, SNP는 두 종류의 대립인자 (biallele)를 갖는다.
본 발명에서 용어, SNP 어레이 칩 (SNP array chip)이란 유리, 실리콘, 또는 나일론 등의 재질로 된 작은 고형의 기판 위에 프로브 역할을 할 수 있는 핵산들, 예컨대 그 서열이 알려진 DNA, DNA 단편, cDNA, 올리고뉴클레오티드, RNA 또는 RNA 단편 등의 핵산들을 적게는 수백 개부터 많게는 수십만 개까지 일정한 간격으로 배열하여 부착시킴으로써 시료 DNA에 포함된 SNP 존재 여부를 탐지할 수 있는 생물학적 마이크로칩을 말한다. 시료에 함유되어 있는 핵산과 표면에 고정된 프로브는 염기 서열의 상보성 정도에 따라 각기 다른 정도로 결합하여 혼성화 (hybridization) 상태를 이루게 되며, 이를 검출하고 해석함으로써 시료가 함유하는 핵산 전체에 관한 정보를 동시에 얻을 수 있다.
단계 (ⅲ) 은 동형접합 (homozygote) DNA 및 검체시료 DNA로부터 나온 신호를 검출하여 염색체, 유전자 또는 특정 뉴클레오티드 서열의 카피 수 변화를 결정하는 단계이다.
신호의 검출은 일반적으로 당업계에서 사용하는 방법들을 제한 없이 사용할 수 있으며, 예컨대 레이저 유발 형광 검출법, 전기화학적 검출법, 질량 검출법 또는 표면 플라즈몬 공명 (Surface Plasmon Resonance, SPR) 검출법 등을 사용할 수 있다. 레이저 유발 형광 검출법은 시료 DNA에 형광 물질을 결합시키고 혼성화 반응 후에 형광 검출 기기로 결과를 판독함으로써 광학적으로 혼성화 여부를 구별하는 방법이고, 전기화학적 검출법은 시료의 결합이 일어난 전극 상에서 다른 화학물질의 전기화학반응, 즉 산화환원반응의 정도를 이용하여 혼성화 여부를 검출하는 방법이다. 질량 검출법은 프로브와 시료 DNA 간의 상호 반응을 전기 신호화 하여 검출하는 방법으로, 질량 검출법의 대표적인 예로는 고주파 수로 진동하는 수정 위에 고정된 프로브의 무게에 따라 진동수가 변화하는 것을 측정하는 진동수정저울 (Electrochemical Quartz Crystal Microbalance: QCM)이 있다. 마지막 예로서, 표면 플라즈몬 공명 (SPR) 검출법은 단백질과 같은 생체물질이 센서 표면에 결합될 경우 신호 변화를 일으키는 현상으로서, 금속 표면과 같은 도체 표면을 따라 전파되는 자유전자의 양자화된 진동과 같은 광학적 방법에 의해 프로브 질량의 변화에 의해 신호의 차이를 검출하는 방법이며, 상기 방법은 시료에 별도의 형광 물질을 표지하지 않아도 질량 차이에 의해 DNA의 결합 친화도를 측정할 수 있는 방법이다. 바람직하게는, 레이저 유발 형광 검출법을 사용할 수 있다.
동형접합 (homozygote) DNA 및 검체시료 DNA로부터 나온 신호를 측정하면 염색체, 유전자 또는 특정 뉴클레오티드 서열의 카피 수 변화 여부를 용이하게 알 수 있다. 본 발명의 카피 수 변화 측정 방법은 증가적 카피의 수뿐만 아니라 감소적 카피의 수를 모두 측정할 수 있다. 즉, 염색체의 중복으로 인한 증가적 카피 수{예컨대, 상염색체의 경우 삼염색체성 (trisomy) 혹은 사염색체성 (tetrasomy)} 뿐만 아니라, 염색체의 결실로 인한 감소적 카피 수 {예컨대, 상염색체의 경우 일염색체 성 (monosomy)}를 측정할 수 있다.
구체적으로, 이형 동형접합 대립인자 (alter homozygote allele)인 경우, 다시 말해 검체시료 DNA의 SNP 대립인자가 동형접합체이면서 동형접합체 세포주 DNA에 존재하는 대립인자와 염기가 서로 다른 경우에는, 검체시료 SNP 대립인자와 동형접합체 세포주 DNA에서 나온 SNP 대립인자가 서로 다르므로 다음과 같이 각각의 DNA에서 나온 SNP 신호의 비율 (SR, signal ratio)을 측정함으로써 카피 수 변화 여부를 알 수 있다.
Figure 112009013618350-pat00001
예컨대, 시료 DNA와 동형접합세포주의 DNA를 1:1로 혼합하여 SNP 어레이를 하면 각각의 DNA에서 나온 SNP 신호의 비율 (SR, signal ratio)은 1:1이 될 것이다. 이 때, 이 비율이 1:1이 아닌 경우 카피 수 변화가 있는 것으로 판단할 수 있다. 실험과정에서 정확히 DNA의 비율이 1:1로 섞지 못하는 경우에는 두 가지 DNA에서 얻을 수 있는 전체적인 신호의 비율을 확인하여 SR 을 교정함으로써 더 정확히 카피 수 변화를 측정할 수 있게 된다.
또한, 검체시료 DNA가 이형접합 대립인자 (heterozygote allele)인 경우에는, 본 발명과정의 분석에 의해 분석하면 두가지 염기로부터의 신호의 크기가 1:3 혹은 3:1의 비율로 나오는데, 카피 수에 변화가 있는 경우 이 비율이 달라지게 되어 검체시료가 이형접합 대립인자의 경우에도 카피 수 분석이 가능하게 된다.
이와 같이, 본 발명에 의할 경우 정상적인 DNA를 단독으로 분석하는 기존의 방법과 비교했을 때보다 효율적으로 카피 수 변화에 대한 정보를 얻을 수 있는 효과가 있다. 본 발명의 바람직한 일 실시예에 따르면, 기존의 검체시료만을 이용하여 분석한 경우 (도 6 및 도 7)와 비교할 때, 본 발명의 방법은 효과면에 있어서 훨씬 적은 SNP로도 특정 물질의 유전자의 증폭 및 결실 여부를 보다 쉽고 정확하게 판별할 수 있음을 확인하였다 (도 5).
본 발명에서 용어, "이형 동형접합 대립인자 (alter homozygote allele)"는 검체시료 DNA의 SNP 대립인자가 동형접합체이면서 동형접합체 세포주 DNA에 존재하는 대립인자와 염기가 서로 다른 경우의 SNP를 말하며, 본 발명을 용이하게 표현하기 위하여 본 발명자가 도입한 용어이다.
바람직한 양태로서, 본 발명은 rare SNP를 측정하도록 고안된 SNP 어레이를 사용하는 경우에 카피 수 변화에 대한 정보를 얻기에 더욱 유용하다.
예컨대, 도 1 및 도 2 에 나타난 바와 같이, 정상적인 DNA 시료를 단독으로 분석했을 때는 SNP 어레이에서 이용할 수 있는 SNP는 6개의 SNP 중 2개 만이 이용될 수 있다. 그러나 일반적으로 잘 나타나지 않는 rare SNP들 중 동형접합체 세포주의 DNA에 나타나는 SNP들 만을 골라 만든 SNP 어레이를 이용하는 경우 적은 수의 SNP들만을 분석해도 많은 정보를 얻을 수 있게 된다. 즉, 5% 정도 나타나는 SNP들로 구성된 SNP 어레이의 경우 100개의 SNP를 분석하면 10개 정도의 SNP에서 이형접합자 (heterozygote)가 나오고 이로부터 카피 수 변화에 관한 정보를 알 수 있다. 반면, 1% 이하의 출현빈도를 가지는 rare SNP 100개로 구성된 어레이의 경우는 반대로 array에 존재하는 98% 이상의 이형접합 대립인자 (heterozygote allele)를 이용할 수 있는 장점이 있다. 또한 출현 빈도가 낮은 SNP를 모두 이용할 수 있어서 처녀생식 세포주 중 rare SNP가 많은 세포주를 이용하거나 다른 인종의 동형접합체 세포주를 이용하는 경우 특정부위의 카피 수 변화를 좀 더 정밀하게 찾을 수 있는 장점이 있다.
이와 같이, 본 발명의 카피 수 결정 방법은 rare SNP만으로 구성된 SNP 어레이를 사용하는 경우 그 유용성이 극대화되지만, rare SNP와 common SNP가 혼합되어 있는 이미 상용화된 SNP 어레이를 사용하는 경우에도 적용이 가능하다. 즉, 이미 상용화된 SNP 어레이에 이형 동형접합 대립인자 (alter homozygote allele)들만을 따로 분석함으로써 카피 수 결정이 가능하다.
본 발명은 유기화학, 고분자 기술, 분자생물학 (재조합 기술 포함), 세포 생물학, 생화학 및 면역학 분야에 널리 알려진 기술들, 예컨대, 고분자 어레이 합성, 혼성화 (hybridization), 라이게이션 (ligation), 표지(label)를 이용한 혼성화 검출(detection)과 같은 기술을 포함한다. 이러한 기술들은 Genome Analysis: A Laboratory Manual Series (Vols. I-IV), Using Antibodies: A Laboratory Manual, Cells: A Laboratory Manual, PCR Primer: A Laboratory Manual, Molecular Cloning: A Laboratory Manual (all from Cold Spring Harbor Laboratory Press)와 같은 표준 실험 메뉴얼, Biochemistry (Stryer, L. Freeman, New York), Oligonucleotide Synthesis: A Practical Approach (Gait, 1984, IRL Press, London) Lehninger Principles of Biochemistry (Nelson and Cox, 2000, W. H. Freeman Pub., New York) 및 Biochemistry (Berg et al. 2002, W. H. Freeman Pub., New York) 등에 자세히 기술되어 있으며, 상기 문헌들의 내용은 본 발명에 참고로 포함된다.
본 발명에서 사용하는 폴리머 어레이 합성에 적용되는 기술 및 방법은 U.S. Ser. No. 09/536,841, WO 00/58516, U.S. Pat. Nos. 5,143,854, 5,242,974, 5,252,743, 5,324,633, 5,384,261, 5,405,783, 5,424,186, 5,451,683, 5,482,867, 5,491,074, 5,527,681, 5,550,215, 5,571,639, 5,578,832, 5,593,839, 5,599,695, 5,624,711, 5,631,734, 5,795,716, 5,831,070, 5,837,832, 5,856,101, 5,858,659, 5,936,324, 5,968,740, 5,974,164, 5,981,185, 5,981,956, 6,025,601, 6,033,860, 6,040,193, 6,090,555, 6,136,269, 6,269,846 및 6,428,752, WO 99/36760 및 WO 01/58593 등에 기술되어 있으며, 상기 문헌들의 내용은 본 발명에 참고로 포함된다.
핵산 어레이에 관하여는 U.S. Pat. Nos. 5,412,087, 6,147,205, 6,262,216, 6,310,189, 5,889,165 및 5,959,098 등에 기술되어 있으며, 동일한 기술이 폴리펩티드 어레이에도 적용될 수 있다.
본 발명은 유전자 발현 모니터링, 프로파일링, 라이브러리 스크리닝 및 지노타이핑(genotyping) 기술을 사용할 수 있으며, 이러한 기술들은 U.S. Pat. Nos. 5,800,992, 6,013,449, 6,020,135, 6,033,860, 6,040,138, 6,177,248 및 6,309,822 등에 기술되어 있다. 지노타이핑 및 그 사용은 U.S. Ser. Nos. 10/442,021, 10/013,598, U.S. Pat. Nos. 5,856,092, 6,300,063, 5,858,659, 6,284,460, 6,361,947, 6,368,799 및 6,333,179 등에 기술되어 있다.
본 발명은 지놈 시료를 PCR 등 다양한 메커니즘에 의해 증폭하는 과정을 포함하는데, 이러한 기술은 PCR Technology: Principles and Applications for DNA Amplification (Ed. H. A. Erlich, Freeman Press, NY, N.Y., 1992); PCR Protocols: A Guide to Methods and Applications (Eds. Innis, et al., Academic Press, San Diego, Calif., 1990); Mattila et al., Nucleic Acids Res. 19, 4967 (1991); Eckert et al., PCR Methods and Applications 1, 17 (1991); PCR (Eds. McPherson et al., IRL Press, Oxford); 및 U.S. Pat. Nos. 4,683,202, 4,683,195, 4,800,159 4,965,188, 5,333,675 등에 상세히 기술되어 있다.
혼성화 분석 과정에 관하여는 Maniatis et al. Molecular Cloning: A Laboratory Manual (2.sup.nd Ed. Cold Spring Harbor, N.Y, 1989); Berger and Kimmel Methods in Enzymology, Vol. 152, Guide to Molecular Cloning Techniques (Academic Press, Inc., San Diego, Calif., 1987); Young and Davism, P.N.A.S, 80: 1194 (1983) 등에 상세히 기술되어 있다.
혼성화의 신호를 탐지하는 방법은 U.S. Pat. Nos. 5,143,854, 5,578,832; 5,631,734; 5,834,758; 5,936,324; 5,981,956; 6,025,601; 6,141,096; 6,185,030; 6,201,639; 6,218,803; 및 6,225,625, WO99/47964 등에 상세히 기술되어 있다.
본 발명은 기존의 생물학적 방법, 소프트웨어 및 시스템을 포함할 수 있으며, 컴퓨터 소프트웨어는 컴퓨터로 실행가능한 명령어들을 갖는 컴퓨터로 판독 가능한 기록매체, 예컨대, 플로피 디스크, CD-ROM/DVD/DVD-ROM, 하드 디스크 드라이브, 플래시 메모리, ROM/RAM, 자가 테이프 등이 있다. 컴퓨터로 실행 가능한 명령어들은 적당한 컴퓨터 언어 또는 다양한 언어의 조합이 사용될 수 있다. 기본적인 생물 정보학 방법은 Introduction to Computational Biology Methods (PWS Publishing Company, Boston, 1997); Computational Methods in Molecular Biology, (Elsevier, Amsterdam, 1998); Bioinformatics Basics: Application in Biological Science and Medicine (CRC Press, London, 2000) 및 Bioinformatics: A Practical Guide for Analysis of Gene and Proteins (Wiley & Sons, Inc., 2.sup.nd ed., 2001) 등에 상세히 기술되어 있다.
본 발명은 또한, 프로브 디자인, 데이타 관리, 분석 및 장치 작동 등의 목적으로 다양한 컴퓨터 프로그램 및 소프트웨어를 사용할 수 있으며, U.S. Pat. Nos. 5,593,839, 5,795,716, 5,733,729, 5,974,164, 6,066,454, 6,090,555, 6,185,561, 6,188,783, 6,223,127, 6,229,911 및 6,308,170 를 참고할 수 있다.
본 발명은, 삼염색체성 (trisomy), 일염색체성 (monosomy), 성 (sex) 염색체 이상과 같은 중복과 결실에 의한 염색체 이상을 진단하고 스크리닝 하는데 사용할 수 있다. 또한 이 방법은 뒤시엔느 (Duchenne) 근이형성증과 같은 작은 염색체의 결실로 인한 유전 질환의 진단과 정신지체, 알츠하이머 (Alzheimer) 질환, 당뇨병과 같이 여러 원인에 의해 생기는 유전적 소인이 있는 질환의 염색체에의 작은 변화를 알아내는데 유용하다. 암조직에서 암유전자 (oncogene)와 암 억제유전자 (tumor suppressor gene)의 카피 수 변화, 혹은 전반적인 염색체의 수 이상을 분석하는 데에도 이용할 수 있다. 또한 개인마다 유전자의 카피 수 차이가 있으며 이러한 카피 수 변이 (copy number variation)가 일부의 질환과 관련이 있다는 보고가 있는데 (Iafrate et al., 2004), 개인 간의 카피 수 변이를 측정하는 데에도 본 발명을 이용할 수 있다. 특히 본 발명의 분석 방법을 이용하는 경우, 기존 방법에 비하여 3n이 아닌 더 큰 배수의 증폭에 대해서도 높은 분석능을 가지는 분석 결과가 명확하게 도출되며, 염색체의 작은 부위에서만 증폭이 일어난 경우에도 효과적인 분석이 가능하다.
이하, 본 발명을 하기의 실시예에 의하여 더욱 구체적으로 설명한다. 그러나 하기의 실시예는 본 발명의 예시일 뿐 본 발명이 이에 의해 한정되지 않는다.
본 발명에 따른 염색체, 유전자 및 특정 뉴클레오티드 카피 수 분석 키트 및 측정 방법은, 염색체의 변화를 분석함에 있어서, 시간과 필요 노동력을 현저히 절감시킬 수 있을 뿐만 아니라, 특정 유전자의 카피 수를 결정하는 다른 분자적 방법에 비해 분석능을 높일 수 있는 우수한 효과가 있어, 기존의 분석 방법에 비해 염색체 혹은 유전자의 증폭과 결실을 쉽게 판별할 수 있다.
실시예 1. 카피수 증가에 따른 SNP array
정상적인 검체시료 DNA를 단독으로 분석했을 때와 정상적인 검체시료 DNA를 동형접합체 DNA와 1:1로 섞은 다음 분석한 경우를 각각 대립인자 (allele) 신호의 상대적인 크기를 나타낸 것이다. 도의 왼편에는 정상적인 검체시료 (Normal)인 경우이고, 오른편에는 카피 수가 세 개 (Trisomy)로 변화되었을 때 각각 대립인자 (allele) 신호의 상대적인 크기를 나타내었다. 또한 카피 수가 세 개로 변화되었을 경우 각각의 DNA 사슬 (strand)가 변화된 경우를 둘로 나누어 도식하였다. 검체시료와 동형접합체 DNA의 모든 대립인자 (allele)에 대한 정보를 분석한 다음, 다시 본 발명의 방법으로 각각의 대립인자 (allele)를 SNP array로 분석하였을 때 카피 수의 측정이 가능한 경우를 o으로 표시하였고, 측정이 불가능한 경우를 x로 표시하였으며, p는 특정 대립인자 (allele)의 상대적 신호의 크기만으로 카피 수의 증가 혹은 감소를 알 수는 없으나 변화되었다는 것은 알 수 있으며, 전체 신호의 크기를 보면 증감을 알 수 있는 경우이다.
실시예 2. 카피 수 감소에 따른 SNP array
대립인자 (allele) 하나가 결실이 있는 경우 각각 대립인자 (allele) 신호의 상대적인 크기를 나타내었다. 또한 결실이 각각의 사슬 (strand)에 일어날 경우를 나누어서 두 가지 모두 도식하였다. 결실이 있는 경우 검체시료만을 가지고 SNP array로 분석하면 하나의 대립인자 (allele)로부터 얻은 결과로는 결실여부를 판단할 수 없고 인접한 여러 대립인자 (allele)의 분석을 통하여 결실되어 있을 가능성을 알 수 있었다. 그러나 본 발명의 방법으로 분석하는 경우 하나하나의 대립인자 (allele)를 분석하여 결실 여부를 알 수 있으며, 이전의 방법에 비해 분해능이 훨씬 좋아질 수 있음을 알 수 있다 (도 2).
실시예 3. 동형접합체 세포주인 포상기태 (hydatidiform mole) 세포주 DNA와 다운증후군 환자의 SNP array
동형접합체 세포주인 포상기태 (hydatidiform mole) 세포주 DNA와 21번 염색체가 세 개인 다운증후군 환자의 DNA를 1:1로 혼합한 후, SNP array를 사용하여 카피 수를 분석한 그림이다. 21번 염색체와 X 염색체를 제외한 경우 SR이 1:1, 1:3, 3:1인 것을 확인 할 수 있으며, 21번 염색체는 SR이 2:3, 3:2, 1:4, 4:1인 것을 확인할 수 있다. 21번 염색체의 2:3 혹은 3:2인 경우는 다운증후군 검체시료 DNA의 21번 염색체가 세 개이기 때문에 나오는 결과임을 알 수 있다 (도 4).
실시예 4. 다운증후군과 정상적인 대조군 DNA에서의 Illumina SNP array
다운증후군과 정상적인 대조군 DNA를 시료로 사용하여 포상기태 세포 DNA와 각각 절반씩 (1:1) 섞은 후 Illumina SNP array (317K Duo)를 사용하여 SNP 분석 실험을 실시하였다. 포상기태 세포에서 AA이면서, 다운증후군 세포에서는 BB인 경우만을 따로 분석하였으며, 1번 염색체 및 21번 염색체에서 해당 SNP를 각각 300개씩만 추출, 분석하였다 (도 5). 그 결과, 21번 염색체는 다운증후군에서 3n으로 변화되어 있는 염색체로, 정상적인 2n 상태의 염색체인 1번 염색체의 카피 수 상태와 용이하게 구별될 수 있음을 확인하였다.
본 발명의 검출방법의 유용성을 확인하기 위하여, 다운 증후군 DNA를 시료로 (동형 접합체인 대조군 DNA 시료 없이, 정상적인 1번 염색체 및 3n 상태의 21번 염색체 만을 시료로 사용), Illumina SNP array (317 DUO)를 사용하여 SNP 분석을 수행하였다. 이러한 분석은 통상적으로 수행되는 방법인, 신호 강도 (signal intensity)를 비교하는 방법, 및 A 및 B 대립인자 (allele)의 신호 강도를 비율로 분석하는 방법으로 실시하였다. 각 방법은 본 발명의 방법과 마찬가지로 300개의 SNP 결과를 추출한 후 각각 그래프로 결과를 표시하였다 (도 6 및 도 7).
그 결과, 정상 대조군 시료와의 혼합 없이, 신호 강도만으로 분석한 경우 (도 6)에 비해 본 발명의 방법 (도 5)을 이용하는 경우, 염색체 또는 유전자가 증 폭된 경우와 증폭되지 않은 경우를 구별하기가 훨씬 용이하였다. 구체적으로 검체시료만 사용하여 신호 강도를 비교 분석하는 방법은, 21번 염색체의 신호 강도 (다이아몬드형으로 표시)가 1번 염색체의 신호 강도에 비해 증가되어 있기는 하지만, 전반적으로 변이가 커서 구별이 쉽지 않았다.
또한 각각의 피크 (peak)로부터 나온 신호 강도의 비율로 분석하는 방법 (도 7)은 그 비율값이 0.5에서 위 또는 아래로 변화할 수 있어, 신호가 증폭되었는지 감소되었는지에 대한 구별이 어려웠다. 구체적으로 정상적인 1번 염색체의 경우, 이형접합 (heterozygote)의 비율값은 0.5 부근이 되는데, 3n 상태의 21번 염색체는 0.66 및 0.33 부근의 비율값을 갖게 되어, 시료의 21번 염색체가 증가되어 있는지 감소되어 있는지 구별하는데 어려움이 따랐다 (도 7). 아울러 유전자 증폭이 3n이 아닌 8n 또는 그 이상의 증폭이 있는 경우, 또는 염색체의 작은 부위에서만 증폭이 일어난 경우, 배경 (background)과의 구별이 어렵다는 단점이 존재한다. 예를 들면, 염색체 또는 유전자의 증폭이 4배 또는 5배 이상 증폭이 있는 경우, 비율값은 1 또는 0에 근접하게 되어 분석이 어려워진다.
상기와 같은 기존 방법의 단점과 비교하여, 본 발명의 정상 대조군과 검체시료를 혼합하여 분석하는 방법은, 증폭된 경우 및 증폭되지 않은 경우에 대한 구분이 용이하고, 3n이 아닌 더 큰 배수의 증폭에 대해서도 분석 결과가 명확하게 제시될 수 있으며, 염색체의 작은 부위에서만 증폭이 일어난 경우에도 효과적인 분석이 가능함을 확인하였다.
도 1은 정상적인 검체시료 DNA를 단독으로 분석했을 때와 정상적인 검체시료 DNA를 동형접합체 DNA와 1:1로 섞은 다음 분석한 경우를 각각 대립인자 (allele) 신호의 상대적인 크기를 나타낸 그림이다.
도 2는 대립인자(allele) 하나가 결실이 있는 경우 각각 대립인자 (allele) 신호의 상대적인 크기를 나타낸 그림이다.
도 3은 본 발명의 실험과정과 분석방법을 모식화하여 나타낸 그림이다.
도 4는 동형접합체 세포주인 포상기태 (hydatidiform mole) 세포주 DNA와 다운증후군 환자의 DNA를 1:1로 혼합한 후, SNP array를 사용하여 카피 수를 분석한 그림이다.
도 5는 다운증후군의 시료 (검체시료) 및 정상적인 대조군 DNA (동형접합체)를 시료로 사용하여 Illumina SNP array (317K Duo)를 사용하여 SNP분석 실험을 실시한 후, 카피 수 변화를 나타낸 그림이다. 삼각형은 1번 염색체에 대한 SNP 분석 결과이고, 다이아몬드형은 21번 염색체에 대한 SNP 분석 결과를 나타낸다.
도 6은 다운증후군 DNA (1번 염색체 및 21번 염색체)를 시료 (검체시료)로 사용하여 Illumina SNP array (317K Duo)를 사용하여 SNP 분석 실험을 실시한 후, 신호 강도 (signal intensity)를 비교 분석한 그림이다. 삼각형은 1번 염색체에 대한 SNP 분석 결과이고, 다이아몬드형은 21번 염색체에 대한 SNP 분석 결과를 나타낸다.
도 7은 다운증후군 DNA (1번 염색체 및 21번 염색체)를 시료 (검체시료)로 사용하여 Illumina SNP array (317K Duo)를 사용하여 SNP 분석 실험을 실시한 후, 각 SNP마다 신호 비율(signal ratio)을 나타낸 그림이다. 삼각형은 1번 염색체에 대한 SNP 분석 결과이고, 다이아몬드형은 21번 염색체에 대한 SNP 분석 결과를 나타낸다.

Claims (7)

  1. (ⅰ) 동형접합체(homozygote) DNA를 검체시료 DNA 와 혼합하는 단계;
    (ⅱ) 상기 혼합한 DNA를 SNP 어레이로 분석하는 단계; 및
    (ⅲ) 동형접합체(homozygote) DNA 및 검체시료 DNA에서 나온 신호의 차이를 측정하여 염색체, 유전자 또는 특정 뉴클레오티드 서열의 카피 수를 결정하는 단계를 포함하는, 염색체, 유전자 또는 특정 뉴클레오티드 서열의 카피 수 측정 방법.
  2. 제1항에 있어서, 상기 동형접합체(homozygote) DNA는 처녀생식세포주의 DNA 또는 포상기태(hydatidiform mole) 세포주의 DNA인 방법.
  3. 제1항에 있어서, 상기 동형접합체(homozygote) DNA는 클로닝된 DNA 절편인 방법.
  4. 제1항에 있어서, 상기 (ⅰ) 단계의 동형접합체(homozygote) DNA 및 검체시료 DNA의 혼합비율은 1:1인 방법.
  5. 제1항에 있어서, 상기 SNP 어레이는 rare SNP를 측정하도록 고안된 SNP 어레이인 방법.
  6. 제1항에 있어서, (ⅲ) 단계에서 동형접합체(homozygote) DNA 및 검체시료 DNA가 이형 동형접합 대립인자(alter homozygote allele)인 경우, 동형접합체(homozygote) DNA 및 검체시료 DNA 각각의 DNA에서 나온 SNP 대립인자 사이의 신호 비율(SR, signal ratio)을
    Figure 112009013618350-pat00002
    에 의해 측정하여, SR이 다른 부위에서 측정한 값과 다른 경우에 염색체, 유전자 또는 특정 뉴클레오티드 서열의 카피 수의 변화가 있는 것으로 판단하는 방법.
  7. 제1항에 있어서, 검체시료 DNA가 이형접합 대립인자 (heterozygote allele)인 경우, 두 가지 염기로부터의 신호의 크기가 다른 부위에서 측정한 값과 다른 경우에 염색체, 유전자 또는 특정 뉴클레오티드 서열의 카피 수의 변화가 있는 것으로 판단하는 방법.
KR1020090018949A 2008-03-11 2009-03-05 Snp 어레이를 이용한 염색체, 유전자, 또는 특정 뉴클레오티드 서열의 카피 수 측정방법 KR101030476B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20080022500 2008-03-11
KR1020080022500 2008-03-11

Publications (2)

Publication Number Publication Date
KR20090097792A KR20090097792A (ko) 2009-09-16
KR101030476B1 true KR101030476B1 (ko) 2011-04-25

Family

ID=41065650

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090018949A KR101030476B1 (ko) 2008-03-11 2009-03-05 Snp 어레이를 이용한 염색체, 유전자, 또는 특정 뉴클레오티드 서열의 카피 수 측정방법

Country Status (8)

Country Link
US (1) US9012370B2 (ko)
EP (1) EP2253713B1 (ko)
JP (1) JP5683964B2 (ko)
KR (1) KR101030476B1 (ko)
CN (1) CN101918597B (ko)
AU (1) AU2009224170B2 (ko)
CA (1) CA2710807C (ko)
WO (1) WO2009113779A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024025361A1 (ko) * 2022-07-28 2024-02-01 국립암센터 차세대 염기서열분석 패널의 검증 방법

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888769B2 (ja) * 2011-09-20 2016-03-22 国立大学法人京都大学 相同組換えにより遺伝子改変された多能性幹細胞の簡便な検出法
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10400280B2 (en) 2012-08-14 2019-09-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
US9951386B2 (en) 2014-06-26 2018-04-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10533221B2 (en) 2012-12-14 2020-01-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
WO2014124336A2 (en) 2013-02-08 2014-08-14 10X Technologies, Inc. Partitioning and processing of analytes and other species
US10395758B2 (en) 2013-08-30 2019-08-27 10X Genomics, Inc. Sequencing methods
US9824068B2 (en) 2013-12-16 2017-11-21 10X Genomics, Inc. Methods and apparatus for sorting data
CN110548550B (zh) 2014-04-10 2022-03-08 10X基因组学有限公司 用于封装和分割试剂的流体装置、系统和方法及其应用
KR101663171B1 (ko) * 2014-05-27 2016-10-14 이원 다이애그노믹스 게놈센타(주) 다운증후군 진단을 위한 바이오마커 및 그의 용도
CA2953374A1 (en) 2014-06-26 2015-12-30 10X Genomics, Inc. Methods of analyzing nucleic acids from individual cells or cell populations
MX2016016713A (es) 2014-06-26 2017-05-23 10X Genomics Inc Procesos y sistemas para el montaje de secuencias de acido nucleico.
MX367432B (es) 2015-01-12 2019-08-08 10X Genomics Inc Procesos y sistemas para la preparación de bibliotecas de secuenciación de ácido nucleico y bibliotecas preparadas con estos.
EP3245605B1 (en) 2015-01-13 2022-04-20 10X Genomics, Inc. Systems and methods for visualizing structural variation and phasing information
EP3256606B1 (en) 2015-02-09 2019-05-22 10X Genomics, Inc. Systems and methods for determining structural variation
CN108779491B (zh) 2016-02-11 2021-03-09 10X基因组学有限公司 用于全基因组序列数据的从头组装的系统、方法和介质
US10011872B1 (en) 2016-12-22 2018-07-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
EP3625715A4 (en) 2017-05-19 2021-03-17 10X Genomics, Inc. DATA SET ANALYSIS SYSTEMS AND METHODS
EP3625361A1 (en) 2017-11-15 2020-03-25 10X Genomics, Inc. Functionalized gel beads
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
WO2019108851A1 (en) 2017-11-30 2019-06-06 10X Genomics, Inc. Systems and methods for nucleic acid preparation and analysis
US11639928B2 (en) 2018-02-22 2023-05-02 10X Genomics, Inc. Methods and systems for characterizing analytes from individual cells or cell populations
US11459607B1 (en) 2018-12-10 2022-10-04 10X Genomics, Inc. Systems and methods for processing-nucleic acid molecules from a single cell using sequential co-partitioning and composite barcodes
US11655499B1 (en) 2019-02-25 2023-05-23 10X Genomics, Inc. Detection of sequence elements in nucleic acid molecules
AU2022227563A1 (en) 2021-02-23 2023-08-24 10X Genomics, Inc. Probe-based analysis of nucleic acids and proteins

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030143554A1 (en) 2001-03-31 2003-07-31 Berres Mark E. Method of genotyping by determination of allele copy number

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1359801A (en) 1920-03-03 1920-11-23 Goldner Joe Combination mattress and pillow
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4965188A (en) 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US5333675C1 (en) 1986-02-25 2001-05-01 Perkin Elmer Corp Apparatus and method for performing automated amplification of nucleic acid sequences and assays using heating and cooling steps
US5721098A (en) 1986-01-16 1998-02-24 The Regents Of The University Of California Comparative genomic hybridization
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
US5856092A (en) 1989-02-13 1999-01-05 Geneco Pty Ltd Detection of a nucleic acid sequence or a change therein
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5242974A (en) 1991-11-22 1993-09-07 Affymax Technologies N.V. Polymer reversal on solid surfaces
US5744101A (en) 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US5527681A (en) 1989-06-07 1996-06-18 Affymax Technologies N.V. Immobilized molecular synthesis of systematically substituted compounds
US6040138A (en) 1995-09-15 2000-03-21 Affymetrix, Inc. Expression monitoring by hybridization to high density oligonucleotide arrays
US6309822B1 (en) 1989-06-07 2001-10-30 Affymetrix, Inc. Method for comparing copy number of nucleic acid sequences
US6346413B1 (en) 1989-06-07 2002-02-12 Affymetrix, Inc. Polymer arrays
US5800992A (en) 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
US5424186A (en) 1989-06-07 1995-06-13 Affymax Technologies N.V. Very large scale immobilized polymer synthesis
US5252743A (en) 1989-11-13 1993-10-12 Affymax Technologies N.V. Spatially-addressable immobilization of anti-ligands on surfaces
US5817462A (en) 1995-02-21 1998-10-06 Applied Spectral Imaging Method for simultaneous detection of multiple fluorophores for in situ hybridization and multicolor chromosome painting and banding
US5412087A (en) 1992-04-24 1995-05-02 Affymax Technologies N.V. Spatially-addressable immobilization of oligonucleotides and other biological polymers on surfaces
US5384261A (en) 1991-11-22 1995-01-24 Affymax Technologies N.V. Very large scale immobilized polymer synthesis using mechanically directed flow paths
US5550215A (en) 1991-11-22 1996-08-27 Holmes; Christopher P. Polymer reversal on solid surfaces
US5324633A (en) 1991-11-22 1994-06-28 Affymax Technologies N.V. Method and apparatus for measuring binding affinity
ATE262374T1 (de) 1991-11-22 2004-04-15 Affymetrix Inc Kombinatorische strategien für polymersynthese
US5491074A (en) 1993-04-01 1996-02-13 Affymax Technologies Nv Association peptides
US5837832A (en) 1993-06-25 1998-11-17 Affymetrix, Inc. Arrays of nucleic acid probes on biological chips
WO1995000530A1 (en) 1993-06-25 1995-01-05 Affymax Technologies N.V. Hybridization and sequencing of nucleic acids
US5858659A (en) 1995-11-29 1999-01-12 Affymetrix, Inc. Polymorphism detection
DE4344726C2 (de) 1993-12-27 1997-09-25 Deutsches Krebsforsch Verfahren zum Nachweis von nicht balanciertem genetischen Material einer Spezies oder zum Nachweis der Genexpression in Zellen einer Spezies
US5578832A (en) 1994-09-02 1996-11-26 Affymetrix, Inc. Method and apparatus for imaging a sample on a device
US6090555A (en) 1997-12-11 2000-07-18 Affymetrix, Inc. Scanned image alignment systems and methods
US5631734A (en) 1994-02-10 1997-05-20 Affymetrix, Inc. Method and apparatus for detection of fluorescently labeled materials
WO1995030774A1 (en) 1994-05-05 1995-11-16 Beckman Instruments, Inc. Oligonucleotide repeat arrays
US5571639A (en) 1994-05-24 1996-11-05 Affymax Technologies N.V. Computer-aided engineering system for design of sequence arrays and lithographic masks
US5795716A (en) 1994-10-21 1998-08-18 Chee; Mark S. Computer-aided visualization and analysis system for sequence evaluation
WO1996015271A1 (en) 1994-11-16 1996-05-23 Abbott Laboratories Multiplex ligations-dependent amplification
US5599695A (en) 1995-02-27 1997-02-04 Affymetrix, Inc. Printing molecular library arrays using deprotection agents solely in the vapor phase
US5959098A (en) 1996-04-17 1999-09-28 Affymetrix, Inc. Substrate preparation process
US5624711A (en) 1995-04-27 1997-04-29 Affymax Technologies, N.V. Derivatization of solid supports and methods for oligomer synthesis
US5968740A (en) 1995-07-24 1999-10-19 Affymetrix, Inc. Method of Identifying a Base in a Nucleic Acid
US5733729A (en) 1995-09-14 1998-03-31 Affymetrix, Inc. Computer-aided probability base calling for arrays of nucleic acid probes on chips
US6300063B1 (en) 1995-11-29 2001-10-09 Affymetrix, Inc. Polymorphism detection
US6147205A (en) 1995-12-15 2000-11-14 Affymetrix, Inc. Photocleavable protecting groups and methods for their use
EP0902885A4 (en) 1996-05-16 2006-09-27 Affymetrix Inc SYSTEMS AND METHODS FOR DETECTION OF BRANDED PRODUCTS
WO1998056954A1 (en) 1997-06-13 1998-12-17 Affymetrix, Inc. Method to detect gene polymorphisms and monitor allelic expression employing a probe array
US6333179B1 (en) 1997-06-20 2001-12-25 Affymetrix, Inc. Methods and compositions for multiplex amplification of nucleic acids
DE69823206T2 (de) 1997-07-25 2004-08-19 Affymetrix, Inc. (a Delaware Corp.), Santa Clara Verfahren zur herstellung einer bio-informatik-datenbank
US6223127B1 (en) 1997-08-15 2001-04-24 Affymetrix, Inc. Polymorphism detection utilizing clustering analysis
DE69829402T2 (de) 1997-10-31 2006-04-13 Affymetrix, Inc. (a Delaware Corp.), Santa Clara Expressionsprofile in adulten und fötalen organen
US6013449A (en) 1997-11-26 2000-01-11 The United States Of America As Represented By The Department Of Health And Human Services Probe-based analysis of heterozygous mutations using two-color labelling
US6428752B1 (en) 1998-05-14 2002-08-06 Affymetrix, Inc. Cleaning deposit devices that form microarrays and the like
US6269846B1 (en) 1998-01-13 2001-08-07 Genetic Microsystems, Inc. Depositing fluid specimens on substrates, resulting ordered arrays, techniques for deposition of arrays
US6201639B1 (en) 1998-03-20 2001-03-13 James W. Overbeck Wide field of view and high speed scanning microscopy
US6185030B1 (en) 1998-03-20 2001-02-06 James W. Overbeck Wide field of view and high speed scanning microscopy
US6020135A (en) 1998-03-27 2000-02-01 Affymetrix, Inc. P53-regulated genes
US5936324A (en) 1998-03-30 1999-08-10 Genetic Microsystems Inc. Moving magnet scanner
US6185561B1 (en) 1998-09-17 2001-02-06 Affymetrix, Inc. Method and apparatus for providing and expression data mining database
US6262216B1 (en) 1998-10-13 2001-07-17 Affymetrix, Inc. Functionalized silicon compounds and methods for their synthesis and use
WO2000024939A1 (en) 1998-10-27 2000-05-04 Affymetrix, Inc. Complexity management and analysis of genomic dna
US6177248B1 (en) 1999-02-24 2001-01-23 Affymetrix, Inc. Downstream genes of tumor suppressor WT1
WO2000058516A2 (en) 1999-03-26 2000-10-05 Whitehead Institute For Biomedical Research Universal arrays
US6218803B1 (en) 1999-06-04 2001-04-17 Genetic Microsystems, Inc. Position sensing with variable capacitance transducers
US7822555B2 (en) 2002-11-11 2010-10-26 Affymetrix, Inc. Methods for identifying DNA copy number changes
KR100808312B1 (ko) * 2004-07-26 2008-02-27 홍경만 인위적 에스엔피 서열의 동시증폭을 이용한 염색체,유전자, 혹은 특정 뉴클레오티드 서열의 카피 수 측정방법
DE102005051816A1 (de) 2005-10-28 2007-05-10 Advalytix Ag Verfahren zur relativen Bestimmung der Kopienzahl einer vorbestimmten Sequenz in einer biologischen Probe
DE102005059227A1 (de) 2005-12-12 2007-06-14 Advalytix Ag Verfahren zur Bestimmung des Genotyps aus einer biologischen Probe enthaltend Nukleinsäuren unterschiedlicher Individuen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030143554A1 (en) 2001-03-31 2003-07-31 Berres Mark E. Method of genotyping by determination of allele copy number

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Genome Res. 2006 Dec;16(12):1575-84

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024025361A1 (ko) * 2022-07-28 2024-02-01 국립암센터 차세대 염기서열분석 패널의 검증 방법

Also Published As

Publication number Publication date
US20110105352A1 (en) 2011-05-05
KR20090097792A (ko) 2009-09-16
CA2710807C (en) 2015-09-08
EP2253713B1 (en) 2015-02-25
CN101918597B (zh) 2013-09-18
JP2011510626A (ja) 2011-04-07
AU2009224170B2 (en) 2012-03-29
WO2009113779A2 (ko) 2009-09-17
JP5683964B2 (ja) 2015-03-11
AU2009224170A1 (en) 2009-09-17
US9012370B2 (en) 2015-04-21
CN101918597A (zh) 2010-12-15
WO2009113779A3 (ko) 2009-12-10
EP2253713A2 (en) 2010-11-24
EP2253713A4 (en) 2012-03-21
CA2710807A1 (en) 2009-09-17

Similar Documents

Publication Publication Date Title
KR101030476B1 (ko) Snp 어레이를 이용한 염색체, 유전자, 또는 특정 뉴클레오티드 서열의 카피 수 측정방법
Amos et al. DNA pooling in mutation detection with reference to sequence analysis
JP2009519710A (ja) 遺伝子発現調節エレメントのハイスループットでの特徴付けのための機能性アレイ
JP2006520206A (ja) プローブ、バイオチップおよびそれらの使用方法
JP2014533949A5 (ko)
JP2010520745A5 (ko)
JP6937294B2 (ja) ゲノムターゲットエンリッチメント及び選択的dnaシーケンシングのための方法及び組成物
KR20190091708A (ko) 한우육의 동일성 확인용 바이오 마커 및 이의 용도
Brion et al. New technologies in the genetic approach to sudden cardiac death in the young
JP6596724B1 (ja) 白髪の遺伝的素因の判定方法
Galvin et al. Microarray analysis in cystic fibrosis
US20150376708A1 (en) Probes and methods for determining the presence or absence of genetic segments
US8221978B2 (en) Normalization probes for comparative genome hybridization arrays
JP4972737B2 (ja) Th2サイトカイン阻害剤への感受性の検査方法
Vattanaviboon et al. Detection and haplotype differentiation of Southeast Asian α-thalassemia using polymerase chain reaction and a piezoelectric biosensor immobilized with a single oligonucleotide probe
KR20110041668A (ko) 돼지의 단일뉴클레오타이드다형성 마커 및 이를 이용한 국내산 돈육의 원산지 판별방법
JP5644009B2 (ja) 一塩基多型を用いた炎症性疾患の判定方法
Belhassan et al. Current approaches to genetic testing in pediatric disease
US20050037357A1 (en) Method for analyzing translation-controlled gene expression
Ollikka et al. Minisequencing with acyclonucleoside triphosphates tethered to lanthanide (III) chelates
US8216787B2 (en) Biomarker for successful aging without cognitive decline
WO2006068111A1 (ja) PPARγ遺伝子の遺伝子多型に関連する表現型の判定方法
Mariana et al. DESENVOLVIMENTO DE UM MÉTODO DE DETEÇÃO DE CNVs ATRAVÉS DE qPCR
Whittock et al. Chemical Cleavage of Mismatch: Theory and Clinical Applications
JP2005110607A (ja) 高血圧性心肥大素因の検査方法

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140414

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160414

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170224

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180410

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee