KR100919716B1 - 화상표시소자 및 화상표시장치 - Google Patents

화상표시소자 및 화상표시장치 Download PDF

Info

Publication number
KR100919716B1
KR100919716B1 KR1020047005838A KR20047005838A KR100919716B1 KR 100919716 B1 KR100919716 B1 KR 100919716B1 KR 1020047005838 A KR1020047005838 A KR 1020047005838A KR 20047005838 A KR20047005838 A KR 20047005838A KR 100919716 B1 KR100919716 B1 KR 100919716B1
Authority
KR
South Korea
Prior art keywords
light
optical element
transmissive
hologram
incident
Prior art date
Application number
KR1020047005838A
Other languages
English (en)
Other versions
KR20040047936A (ko
Inventor
무카와히로시
Original Assignee
소니 가부시끼 가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소니 가부시끼 가이샤 filed Critical 소니 가부시끼 가이샤
Publication of KR20040047936A publication Critical patent/KR20040047936A/ko
Application granted granted Critical
Publication of KR100919716B1 publication Critical patent/KR100919716B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H1/0252Laminate comprising a hologram layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133521Interference filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • G03H2001/0413Recording geometries or arrangements for recording transmission holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • G03H2001/267Polarisation multiplexing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2250/00Laminate comprising a hologram layer
    • G03H2250/41Polarisation active layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/12Photopolymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/30Details of photosensitive recording material not otherwise provided for
    • G03H2260/33Having dispersed compound

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

본 발명은, 화상표시장치를 구성하는 투과형적층 홀로그램 광학소자이며, 회절 수용입사각이 서로 다른 복수의 투과형 홀로그램 광학소자(13, 14, 15)가 적층되어 있다. 각 투과형 홀로그램 광학소자는, 가시영역의 임의의 파장에 있어서 각각의 회절수용 입사각의 중심입사각에 대한 출사각이 서로 다르게 됨으로써, 입사광의 광회절수용각이 넓게 되며, 광이용효율이 높게 되며, 공간 광변조소자의 색화소와의 사이의 거리를 이용효율면에서 볼 때에 최적으로 설정하는 것을 가능하게 한다.

Description

화상표시소자 및 화상표시장치{Image display element and image display device}
본 발명은, 넓은 화면각의 투과형적층 홀로그램 광학소자에 관한 것이며, 더욱이, 이 투과형적층 홀로그램 광학소자를 이용하는 화상표시소자 및 화상표시장치에 관한 것이다.
본 출원은, 일본 2001년 10월 31일에 출원된 일본특허 출원번호 2001-335404를 기초로 하여 우선권을 주장한 것이며, 이 출원은 참조함으로써, 본 출원에 원용한다.
종래, 반사형 공간 광변조소자, 예를 들면, 반사형 TN액정패널을 이용하는 투사형의 화상표시장치로서 도 1에 도시한 바와 같이 구성된 것이 제안되어지고 있다. 이 화상표시장치에 있어서는, 램프광원(107)에서 출사된 광속은, 광속 단면형상의 보정, 강도의 균일화, 발산각 제어등의 기능을 가지는 조명광학계(108)에 입사한다. 이 조명광학계(108)는, 도시하지 않은 P-S편광변조기를 가지고 있다. 이 P-S편광변조기는, 무편광상태의 광속을, P편광, S편광중 어느 쪽의 하나의 편광에 50%이상의 효율로 구비시키는 기능을 가지고 있다.
여기에 도시한 화상표시장치에 있어서, 조명광학계(108)를 통과한 광속은, 주로 도 1의 지면에 수직인 방향으로 전기벡터가 진동하는 편광상태로 되어 있다. 이 편광상태는, 다음에 입사하는 적색반사광의 다이크로익 미러(109)의 반사면에 대한 S편광이 되는 편광방향이다. 즉, 조명광학계(108)를 통과한 광속은, 적색반사광의 다이크로익 미러(109)에 의해 적색광 성분만을 진행방향을 90°편향시킨다. 적색광 성분의 광속은, 미러(110)에 의해 반사되며, 적색광용 편광빔 스플리터(이하, 적색용 PBS라고 한다.)(111)에 입사한다. 이 적색용 PBS(111)의 유전체막(111a)에 있어서, S편향성분만이 반사되며, 입사편광(112)으로서, 적색광용 반사형 TN액정패널(113)에 입사한다.
적색광용 반사형 TN액정패널(113)에 있어서, 입사광속은, 표시화상에 대응하여 편광상태를 변조시켜 반사한다. 이 적색광용 반사형 TN액정패널(113)에서 반사된 광속은, 다시, 적색용PBS(111)의 유전체막(111a)에 입사한다. 이 유전체막(111a)에 있어서, P편광만이 투과하도록 검파되므로, 편광변조가 휘도변조로 변환된다. 이와 같이 하여 휘도변조로 변환된 출사광속은, 크로스 다이크로익 프리즘(114)에 입사한다.
한편, 적색광 반사의 다이크로익 미러(109)를 투과한 광속은, 다음의 녹색광 반사의 다이크로익 미러(115)에 입사한다. 여기에서, 녹색광 성분만이 반사되며, 나머지의 청색광 성분은 투과한다. 분리된 녹색광 및 청색광은, 각각, 전술의 적색광과 마찬가지로, 녹색용 PBS(116) 및 청색용 PBS(118)에 의해 S편광성분만이 반사되며, 녹색광용 반사형 TN액정패널(117) 및 청색광용 반사형 TN액정패널(119)에 각각 입사한다.
녹색광용 반사형 TN액정패널(117) 및 청색광용 반사형 TN액정패널(119)에 의해 편광상태를 변조함으로써 반사되는 광속은, 녹색용 PBS(116) 및 청색용 PBS(118)의 유전체막(116a, 118a)에 입사하며, 여기에서 P편광성분만이 투과하도록 검파되며, 편광변조가 휘도변조로 변환된다. 휘도변조로 변환된 청색 및 녹색의 출사광속은, 각각 크로스 다이크로익 프리즘(114)에 입사한다.
크로스 다이크로익 프리즘(114)에 입사된 청색광, 녹색광 및 청색광은, 이 크로스 다이크로익 프리즘(114)에 있어서 합성되며, 투사광학계(120)에 입사한다.
이 투사광학계(120)는, 입사된 광속을 화면(121)상에 결상시킨다. 이 화면(121)상에는, 화상이 소정의 화상으로 표시된다.
반사형 공간 광변조소자용의 조명장치로서, 예를 들면, 특개평10-48423호 공보에 기재된 것이 있다. 이 공보에 기재된 조명장치는, 2매의 투과형 홀로그램 광학소자를 적층하고, 홀로그램의 파장분산을 이용하는 홀로그램 칼라필터이다.
이 홀로그램 칼라필터는, 도 2에 도시한 바와 같이, 소정의 입사각(θ)의 조명광(101)에 대해서 서로 회절효율의 파장의존성이 다른 2매의 홀로그램(102, 103)이 적층되어 구성되어 있다. 이 홀로그램 칼라필터에 있어서는, 회절효율의 파장의존성이 적으며, R(적색), G(녹색), B(청색) 3색의 색균형이 보정되어 밝은 칼라필터를 제공하는 것이 가능하다.
이 홀로그램 칼라필터에 있어서 2매의 홀로그램(102, 103)의 회절효율의 파장의존성은, 도 3에 도시한 바와 같이, 파장분산에 의한 공간적인 파장분포가 일치하지 않도록 설정되어 있다. 그러므로, 입사측의 홀로그램(102)에서 회절된 적색광은 출사측의 홀로그램(103)에서 회절되지 않은 적색화소(104)를 조명하며, 입사측의 홀로그램(102)에서 회절되지 않는 청색광, 녹색광은 출사측 홀로그램(103)에 의해 회절, 분광되며, 각각 대응하는 색화소(105, 106)에 집광된다.
게다가, 반사형 공간 광변조소자용의 조명장치로서는, 도 4에 도시한 바와 같이, 적층된 홀로그램 칼라필터(124r, 124g, 124b)를 이용하는 것이, 예를 들면, 특개평9-189809호 공보에 있어서 제안되고 있다.
이 조명장치에 있어서는, 도시하지 않은 조명광원에서 방출된 독출광은, 결합 프리즘(126), 유리기판(125)을 경유하여, 홀로그램 칼라필터(124r, 124g, 124b)에 입사한다. 이 홀로그램 칼라필터(124r, 124g, 124b)는, 각각 적색용, 녹색용, 청색용의 체적 홀로그램렌즈이다. 이러한 홀로그램 칼라필터(124r, 124g, 124b)는, 미리, 레이져노광에 의해, 간섭고가 부착되며, 거의 1화소(R, G, B의 각 색화소, 총 3화소로 구성되는 조)의 크기에 대응하는 면적을 가지는 각 색광용 미소렌즈가 적층되어 있는 기능을 가진다.
이러한 홀로그램 칼라필터(124r, 124g, 124b)는, 독출광(RL)의 스펙트럼의 적색광 성분, 녹색광 성분, 및 청색광 성분을 반사형 액정패널의 커버유리(123), 공통전극(124), 배향막(133), 액정층(132), 배향막(131) 및 유전체 미러막(130)으로 투과시키고, 화소전극층(129)상의 각각 대응하는 색화소전극(129r, 129g, 129b)상에 집광시킨다.
이 홀로그램 렌즈는, 입사광의 편광특성에 대해서 의존성을 가진다. 즉, 홀로그램 렌즈의 입사광중, S편광성분이 주로 회절하고, P편광성분의 회절효율은, 이보다도 낮아지게 된다.
이것은, 결합웨이브 이론(Coupled-wave theory)의 엄밀해(참고논문 : M. G. Moharam and T. K. Gayload : Rigourous Coupled-wave theory analysis of planar grating diffraction, J. Opt.Soc.Am. 71,811-818(1997), M. G. Moharam and T. K. Gayload :Rigourous Coupled-wave theory analysis of grating diffraction E-mode polarization and lossws, J. Opt.Soc.Am. 73,451-455(1893))에 의해, 예를 들면, 반사형의 두꺼운 홀로그램의 경우에 있어서, 홀로그램의 두께(t)와 홀로그램내의 간섭고의 피치(Λ)에 의해 결정되는 값(t/Λ)이 1 내지 5의 경우에는, TE(S편광) 및 TM(P편광)의 회절효율에는 차이가 발생하며, S편광의 회절효율은 P편광의 회절효율에 비해 최대 45%정도 크게 된다는 것이 기술되어 있다.
이 현상에 의해, 이 조명장치에 있어서는, 홀로그램 칼라필터(124r, 124g, 124b)에 대해서 경사지게 입사한 독출광(RL)중에서 S편광성분의 광이 주로 회절된다. 그리고, 액정패널(122)에 거의 수직으로 입사된 조명광중, 편향방향이 90°변조되어 반사된 광(P편광성분)(PL)은, 회절효과가 낮으므로, 많은 광이 홀로그램 칼라필터(124r, 124g, 124b)에 의해 회절작용을 받지 않으며, 이 홀로그램 칼라필터(124r, 124g, 124b)로부터 수직으로 출사한다.
투과형체적 홀로그램의 회절효율의 입사편광특성의 전형적인 예로서, 굴절율 변조도 0.04, 두께 3㎛, 홀로그램 매질 중에서의 입사각 60°, 출사각 0°, 제조파장 및 재생파장도 532㎚의 경우에 있어서는, 도 5에 도시한 바와 같이, S편광(SP)의 회절효율이 70%가 되는 것에 대해서, P편광(PP)의 회절효율은 25%가 되며, 입사편광에 의한 회절효율의 의존성이 나타나게 된다.
도 6에 도시한 바와 같이, 투과형 액정화상 표시소자의 외관의 개구율을 증가시켜 투과율을 향상시키므로, 굴절형의 마이크로렌즈 배열(137)을 이용하는 투과형 액정화상 표시소자가 제안되고 있다.
이 투과형 액정화상 표시소자에 있어서는, 입사측 편광판(135)에 입사하여 이 입사측 편광판(135)에 의해 직선편광이 된 조명광은, 입사측 유리기판(136)으로부터 입사하고, 마이크로렌즈 배열(137)에 의해, 액정층(138)을 투과하여 TFT의 화소개구부(139)상에 집광된다. 이 입사광은, 이 화소개구부(139)에 있어서 편광상태를 변조시키고, 출력측 유리기판(140)으로 출사된다. 이 조명광은, 다음에 출사측 편광판(141)을 투과하고, 이 출사측 편광판(141)에 있어서, 편광상태의 변조를 휘도변조로 변환시킨다.
상술한 바와같은 투과형 홀로그램에 있어서는, 입사광의 회절수용각이 좁으며, 또한, 회절수용각 및 출사각이 충분히 분리되어 있지 않으므로, 광이용효율이 낮다.
상술의 투과형 홀로그램을 칼라필터로서 사용하는 화상표시소자에 있어서는, 홀로그램의 파장분산을 이용하여 색분리를 하고 있으므로, 각 색광의 분리각 설정에 자유도가 없으며, 칼라필터와 공간 광변조소자의 색화소와의 사이의 거리를 제조난이도와 광이용효율의 면으로부터 보았을 때에 최적으로 설정하는 것이 가능하지 않다.
이 화상표시소자를 이용하는 화상표시장치에 있어서는, 동일화소 피치의 공간 광변조소자를 전제로 하는 경우, 각 색광의 분리각을 크게 하는 것이 가능하지 않으므로, 칼라필터와 공간 광변조소자의 색화소와의 사이의 거리를, 예를 들면 50㎛이하로 하는 근거리로 설정하는 것이 가능하지 않다. 즉, 이 화상표시장치에 있어서는, 칼라필터로의 조명광의 광화각화, 광대역화에 의해 광이용효율의 향상을 도모하는 것이 가능하지 않으며, 밝은 화상을 얻는 것이 가능하지 않다.
본 발명의 목적은, 종래의 화상표시장치가 가지는 문제점을 해소할 수 있는 신규의 투과형적층 홀로그램 광학소자 및 이 광학소자를 이용하는 화상표시장치를 제공하는 데에 있다.
본 발명의 다른 목적은, 입사광의 회절수용각을 넓히고 광이용효율을 높이고, 공간 광변조소자의 색화소와의 사이의 거리를, 제조난이도와 광이용효율의 면으로부터 보았을 때에 최적으로 설정하는 것이 가능한 투과형적층 홀로그램 광학소자를 제공하는 데에 있다.
본 발명의 또 다른 목적은, 상술의 목적을 달성할 수 있는 투과형적층 홀로그램 광학소자를 이용함으로써, 밝은 화상을 표시하는 것이 가능한 화상표시소자 및 화상표시장치를 제공하는 데에 있다.
상술의 목적을 달성하기 위해 제안된 본 발명에 관한 투과형적층 홀로그램 광학소자는, 회절수용 입사각이 서로 다른 복수의 투과형 홀로그램 광학소자를 적층하여 구성한 투과형적층 홀로그램 광학소자에 있어서, 상기 투과형 홀로그램 광학소자는, 가시영역의 임의의 파장에 있어서 각각의 회절수용 입사각의 중심입사각에 대한 출사각이 서로 다르게 되어 있다.
본 발명에 관한 화상표시소자는, 투과형적층 홀로그램 광학소자와, 상기 투과형적층 홀로그램 광학소자로부터의 출사광을 변조하는 공간 광변조소자를 구비하며, 상기 투과형적층 홀로그램 광학소자는, 회절수용 입사각이 서로 다르며 가시영역의 임의의 파장에 있어서 각각의 회절수용 입사각의 중심입사각에 대한 출사각이 서로 다른 복수의 투과형 홀로그램 광학소자가 적층되어 구성되어 있다.
본 발명에 관한 화상표시소자는, 조명광을 발하는 조명광원과, 입사광을 회절시키는 투과형적층 홀로그램 광학소자와, 상기 조명광을 상기 투과형적층 홀로그램 광학소자에 입사광으로 유도하는 조명광학계와, 상기 투과형적층 홀로그램 광학소자로부터 출사되는 조명광을 변조하는 공간 광변조소자와, 상기 공간 광변조소자에 의해 변조된 조명광을 확대하여 결상시키는 확대광학계를 구비하며, 상기 투과형적층 홀로그램 광학소자는, 회절수용 입사각이 서로 다르며 가시영역의 임의의 파장에 있어서 각각의 회절수용 입사각의 중심입사각에 대한 출사각이 서로 다른 복수의 투과형 홀로그램 광학소자가 적층되어 구성되어 있다.
본 발명에 관한 화상표시장치는, 조명광을 발하는 조명광원과, 회절율의 입사편광 방위의존성이 서로 다른 2개의 영역이 순차배열된 구조를 가지는 회절수용입사각이 서로 다른 복수의 투과형 홀로그램 광학소자가 적층되어 구성되며, 입사광을 회절시키는 투과형 편광선택성 홀로그램 광학소자와, 상기 조명광을 유도하며, 상기 투과형 편광선택성 홀로그램 광학소자에 대해서, 이 투과형 편광선택성 홀로그램 광학소자의 조명광 수광면의 법선에 대해서 30°이상 90°미만의 입사각으로 입사시키는 조명광학계와, 상기 투과형 편광선택성 홀로그램 광학소자에 의해 회절된 조명광의 편광상태를 변조하는 반사형 공간 광변조소자와, 상기 반사형 공간 광변조소자에 의해 변조된 표시상을 확대하는 확대광학계를 구비하며, 상기 투과형 편광선택성 홀로그램 광학소자를 구성하는 각 투과형 홀로그램 광학소자는, 가시영역의 임의의 파장에 있어서 각각의 회절수용 입사각의 중심입사각에 대한 출사각이 서로 다르며, 수광하는 조명광의 P편광성분, 또는 S편광성분을 주로 반사형 공간 광변조소자로 향하여 회절시킴과 동시에, 상기 반사형 공간 광변조소자에 의해 위상변조되어 재입사하는 조명광중, 일회째의 입사에 있어서 주로 회절되는 편광성분과 직교하는 편광성분에 대한 회절효율이 10%이하가 되는 것에 의해 상기 성분의 70% 이상을 투과시킨다.
본 발명의 또 다른 목적은, 본 발명에 의해 얻어지는 구체적인 이점은, 이하에 있어서 도면을 참조하여 설명된 실시의 형태의 설명으로부터 한층 더 명확하게 된다.
도 1은, 종래의 화상표시장치의 일예를 도시한 평면도이다.
도 2는, 종래의 화상표시소자의 다른 예를 도시한 종단면도이다.
도 3은, 종래의 화상표시소자에 이용되는 홀로그램 광학소자의 회절효율의 파장의존성을 도시한 그래프이다.
도 4는, 종래의 화상표시소자의 또 다른 예를 도시한 종단면도이다.
도 5는, 종래의 화상표시소자에 이용되는 투과형체적 홀로그램의 회절효율의 파장의존성을 도시한 그래프이다.
도 6은, 마이크로렌즈 배열을 이용하는 종래의 화상표시소자를 도시한 종단면도이다.
도 7은, 본 발명에 관한 투과형적층 홀로그램 광학소자를 구성하는 투과형 편광선택성 홀로그램 광학소자의 구성을 도시한 종단면도이다.
도 8은, 본 발명에 관한 투과형적층 홀로그램 광학소자의 제 1의 실시의 형태를 도시한 종단면도이다.
도 9는, 투과형적층 홀로그램 광학소자를 구성하는 각 투과형 편광선택성 홀로그램의 회절효율의 입사각 의존성을 도시한 그래프이다.
도 10은, 투과형적층 홀로그램 광학소자를 구성하는 각 투과형 편광선택성 홀로그램의 회절효율의 출사각 의존성을 도시한 그래프이다.
도 11은, 본 발명에 관한 화상표시소자의 제 1의 실시의 형태의 구성을 도시한 종단면도이다.
도 12는, 화상표시소자에 있어서, 투과형 편광선택성 홀로그램에 집광기능을 부가한 구성을 도시한 종단면도이다.
도 13은, 본 발명에 관한 화상표시소자의 제 2의 실시의 형태의 구성을 도시 한 종단면도이다.
도 14는, 본 발명에 관한 화상표시소자의 제 3의 실시의 형태의 구성을 도시한 종단면도이다.
도 15는, 본 발명에 관한 화상표시소자의 제 4의 실시의 형태의 구성을 도시한 종단면도이다.
도 16은, 본 발명에 관한 화상표시소자의 제 5의 실시의 형태의 구성을 도시한 종단면도이다.
도 17은, 본 발명에 관한 화상표시장치의 제 1의 실시의 형태의 구성을 도시한 평면도이다.
도 18은, 본 발명에 관한 화상표시장치의 제 2의 실시의 형태의 구성을 도시한 평면도이다.
도 19는, 화상표시장치에 있어서, 청, 녹색용 반사형 액정소자의 화소구성을 도시한 정면도이다.
도 20은, 화상표시장치에 있어서, 적색용 반사형 액정소자의 화소구성을 도시한 정면도이다.
도 21은, 본 발명에 관한 화상표시장치의 제 3의 실시의 형태의 구성을 도시한 평면도이다.
이하, 본 발명의 실시의 형태에 대해서 도면을 참조하여 상세하게 설명한다.
[1] 편광선택성 홀로그램 광학소자
우선, 본 발명에 이용되는 투과형 편광선택성 홀로그램 광학소자(이하, 홀로그래픽 PDLC라고 한다.)(1)의 구조 및 그 제조과정에 대해서, 도 7을 참조하여 설명한다.
본 발명에 이용되는 홀로그래픽 PDLC를 제조하기 위해서는, 우선, 광중합을 일으키기 전에 고분자(이하, 프레폴리머라고 한다.), 네마틱액정, 개시제, 색소등이 혼합된 PDLC를 유리기판(2,3) 사이에 삽입한다. 이때, 네마틱액정의 중량비율은, 전체의 40%정도로 한다. PDLC의 층 두께(이하, 셀캡이라고 한다.)는, 3㎛내지 15㎛의 범위에서, 편광선택성 홀로그램 광학소자의 사양에 부합하는 최적치를 선택한다.
다음에, 홀로그래픽 PDLC패널(1)에 간섭고를 기록하기 위해, 도시하지 않은 레이져 광원으로부터 물체광(4) 및 참조광(5)을, 홀로그래픽 PDLC패널(1)에 조사하고, 간섭에 의한 광의 강약(A)을 발생시킨다. 이때, 간섭고가 밝은 곳, 즉, 광자의 에너지가 큰 장소에서는, 그 에너지에 의해, PDLC중의 프레폴리머가 광중합을 야기하여 폴리머화한다. 그러므로, 프레폴리머가 주변부로부터 차차 공급되며, 결과적으로 폴리머화된 프레폴리머가 조밀한 영역과, 소밀한 영역으로 분리된다. 프레폴리머가 소밀한 영역은, 네마틱액정의 농도가 높게 된다. 그리하여, 고분자고밀도 영역(6)과 액정고밀도 영역(7)의 두 개의 영역이 형성된다. 이 실시의 형태의 경우, 물체광(4)과 참조광(5)이 홀로그래픽 PDLC패널(1)에 대해서 동일측으로부터 조사되므로, 제조된 홀로그래픽 PDLC패널(1)은, 투과형으로 된다.
이와 같이 하여 제조된 홀로그래픽 PDLC패널(1)의 고분자고밀도 영역(6)은, 굴절율에 관해서 등방적이며, 그 값은, 예를 들면, 1.5로 된다. 한편, 액정고밀도영역(7)에 있어서는, 네마틱액정분자가, 장축방향을 고분자고밀도 영역(6)과의 경계면에 대해서 거의 수직으로 배열된다. 그러므로, 이 액정고밀도 영역(7)에서는, 굴절율이 입사편광 방위의존성을 가지고 있다. 이 경우, 상광성으로 된다는 것은, 홀로그래픽 PDLC패널(1)의 광입사면(8)에 입사하는 재생광(9)을 고려한 경우 S편광성분이다.
이 액정고밀도 영역(7)의 상광선 굴절율(nlo)을 고분자고밀도 영역(6)의 굴절율(np)과 거의 동등하게 하며, 예를 들어, 굴절율차가 0.01이하로 하면, 입사S 편광성분에 대한 굴절율의 변조는 극히 작으므로, 회절현상은 거의 일어나지 않는다. 일반적으로, 네마틱액정의 상광선 굴절율(nlo)과 이상광선 굴절율(nle)과의 차( Δn)는, 0.1 내지 0.2 정도이다. 그러므로, 입사방향이 동등한 재생광(9)에 대해서, 그 P편광성분에 대해서는, 고분자고밀도 영역(6)과 액정고밀도 영역(7)과의 사이에 굴절율차가 있으며, 이 홀로그래픽 PDLC패널(1)은, 위상변조형 홀로그램으로서 기능하고 회절효과를 발생시킨다.
이것이, 홀로그래픽 PDLC를 이용한 투과형 편광선택성 홀로그램 광학소자의 동작원리이다.
[2] 본 발명에 관한 투과형적층 홀로그램 광학소자
본 발명에 관한 투과형적층 홀로그램 광학소자는, 도 8에 도시한 바와 같이, 양측을 유리기판(11, 12)에 의해 사이에 배치되며, 이러한 유리기판(11, 12) 사이에 있어서, 제 1 내지 제 3의 투과형 편광선택성 홀로그램(13, 14, 15)이 서로의 사이에 배리어층(barrier layer: 16, 17)을 통해 3층 적층된 구조를 가지고 있다.
투과형 편광선택성 홀로그램(13, 14, 15)의 재생파장(λplay)을 532㎚로 하는 경우의 회절효율의 입사각도 의존성을 도 9에 도시하고 있다. 여기에서, 모든 투과형 편광선택성 홀로그램(13, 14, 15)에 공통의 사양은, 홀로그램층의 두께(t)가 5㎛, 굴절율변조도(Δn)가 0.05, 노광파장(λrec)이 532㎚이다.
노광시의 물체광, 참조광의 입사각도는, 각 투과형 편광선택성 홀로그램(13, 14, 15)마다 각각 다르다. 구체적으로는, 입사측의 제 1의 투과형 편광선택성 홀로그램(13)에 대해서는, 참조광 입사각 = 38°, 물체광 입사각 = -11°, 중간의 제 2의 투과형 편광선택성 홀로그램(14)에 대해서는, 참조광 입사각 = 47°, 물체광 입사각 = 0°, 출사측의 제 3의 투과형 편광선택성 홀로그램(15)에 대해서는, 참조광 입사각 = 58°, 물체광 입사각 = 13°으로 된다.
따라서, 각각의 투과형 편광선택성 홀로그램(13, 14, 15)은, 브래그(Bragg)조건을 만족하는 회절수용각의 중심치가 약 10°씩 다르므로, 게다가, 이러한 3개의 홀로그램으로부터의 출사광의 출사각의 중심치도, 12° 전후씩 다르게 되어 있다.
그러므로, 도 8에 도시한 투과형적층 홀로그램 광학소자(10)는, 회절수용각이 넓고, 그 때의 각 투과형 편광선택성 홀로그램(13, 14, 15)으로부터의 각각의 회절광(A, B, C)의 회절효율의 출사각 의존성은, 도 10에 도시한 바와 같이, 회절 수용각범위에 비해 작게 되어 있다. 즉, 도 9 및 도 10을 비교하면 알 수 있는 바와 같이, 각 투과형 편광선택성 홀로그램(13, 14, 15)의 출사각 범위는, 회절수용각 범위에 비해 작게 되어 있는 것이다.
이것은, 본 발명에 관한 투과형적층 홀로그램 광학소자(10)에 대한 입사각이, 출사각에 비해 작으므로, 이것에 의해, 회절수용각은 크지만 회절후의 출사각은 작다는 특징을 가지고 있는 투과형적층 홀로그램 광학소자가 실현되었다. 따라서, 출사광의 화각을 입사화각에 비해 과도하게 크게 하지 않고, 제 1 및 제 2의 투과형 편광선택성 홀로그램(13, 14)의 출사광의 제 2 및 제 3의 투과형 편광선택성 홀로그램(14, 15)에 의한 재회절을 억제하는 것이 가능하게 된다.
[3] 본 발명에 관한 화상표시소자
이어서, 상술의 홀로그래픽 PDLC(편광선택성 홀로그램 광학소자)를 이용하는 본 발명에 관한 반사형 표시소자에 있어서, 도 11을 참조하여 설명한다.
이 화상표시소자는, 도 11에 도시한 바와 같이, 상술한 홀로그래픽 PDLC(10)를, 반사형 수직배향 액정소자(18)에 대해, 두께 약 50㎛의 유리기판(19)을 통해 광학적으로 밀착시켜 구성되어 있다. 이 실시의 형태에 있어서 홀로그래픽 PDLC(10)는, 도 8에 도시한 투과형적층 홀로그램 광학소자에 상당하는 것이다.
이 화상표시소자는, P편광성분과 S편광성분의 양방을 포함하는 3개의 입사광(22, 23, 24)으로 구성되는 입사광(21)이, 입사각(θ1±α, θ2±β, θ3 ±γ)에서 홀로그래픽 PDLC(10)의 유리기판(11)으로부터 입사한다. 여기에서, α, β,γ는, 3개의 입사광(22, 23, 24)의 확산각을 나타내고 있다.
입사광은, 우선, 제 1의 투과형 편광선택성 홀로그램(13)에 입사한다. 여기에서, 제 1의 투과형 편광선택성 홀로그램(13)의 회절수용각내의 입사각(θ3 ±γ)의 P편광광만이 회절되며, 회절광(25)으로 된다. 이 회절광(25)은, 반사형 수직배향 액정소자(18)의 반사면(20)에 대한 입사각(θ3' ±γ')의 방향으로 진행한다.
이 때, 전술한 바와 같이, γ < γ'가 만족되고 있다. 이 회절광(25)은, 제 2의 투과형 편광선택성 홀로그램(14)과 제 3의 투과형 편광선택성 홀로그램(15)의 회절수용각과는 다르기 때문에, 도중에서 다시 한 번 회절되지 않고, 반사형 수직배향 액정소자(18)의 액정층(33)을 경유하여 반사면(20)에 도달한다.
이 회절광(25)은, 액정층(33)을 왕복하는 사이에, 위상상태를 제어하고, 하얀 표시때에는, 편광방위가 90°회전되며, 검은 표시때에는 입사시의 편광상태가 보존된다. 이와 같이 하여 액정층(33) 및 반사면(20)에 의해 변조되어 반사된 변조광은, 각 투과형 편광선택성 홀로그램(13, 14, 15)에 재입사한다.
변조광이 각 투과형 편광선택성 홀로그램(13, 14, 15)에 재입사할 때에, P편광에 의해, 그리고, 각 투과형 편광선택성 홀로그램(13, 14, 15)의 회절수용각 범위에 들어가는 성분은, 다시 회절되고, 입사광(22, 23, 24)의 역방향으로 돌아간다. 그리고, 변조광의 P편광광 중에서 회절되지 않은 나머지 성분과, S편광성분은, 각 투과형 편광선택성 홀로그램(13, 14, 15)에 있어서 회절되지 않고, 홀로그래픽 PDLC(10)로부터 출사광(29)으로 출사한다.
입사광(23, 24)에 대해서도, 상술과 마찬가지로, 출사각의 차이 α', β'는, 입사각 차이 α, β보다도 작게 되어 있다.
즉, 제 2의 투과형 편광선택성 홀로그램(14)은, 입사광중, 제 2의 투과형 편광선택성 홀로그램(14)의 회절수용각내의 입사각(Θ2±β)의 P편광광만이 회절되며, 회절광(26)으로 된다. 이 회절광(26)은, 반사형 수직배향 액정소자(18)의 반사면(20)에 대한 입사각(θ2' ±β')의 방향으로 진행한다. 여기에서, β< β'가 만족되고 있다. 이 회절광(26)은, 제 3의 투과형 편광선택성 홀로그램(15)과는 다르기 때문에, 도중에서 다시 한 번 회절되지 않고, 반사형 수직배향 액정소자(18)의 액정층(33)을 경유하여 반사면(20)에 도달한다. 이 회절광(26)은, 액정층(33) 및 반사면(20)에 의해 변조광은, 각 투과형 편광선택성 홀로그램(13, 14, 15)에 재입사한다.
이 변조광중, P편광에 의해, 그리고, 각 투과형 편광선택성 홀로그램(13, 14, 15)의 회절수용각 범위에 들어가는 성분은 다시 회절되고, 입사광(22, 23, 24)의 역방향으로 돌아간다. 그리고, 변조광의 P편광광 중에서 회절되지 않은 나머지 성분과, S편광성분은, 각 투과형 편광선택성 홀로그램(13, 14, 15)에 있어서 회절되지 않고, 홀로그래픽 PDLC(10)로부터 출사광(30)으로 출사한다.
제 3의 투과형 편광선택성 홀로그램(15)에 있어서는, 입사광중, 제 3의 투과형 편광선택성 홀로그램(15)의 회절수용각내의 입사각(Θ1±α)의 P편광광만이 회절되며, 회절광(27)으로 된다. 이 회절광(27)은, 반사형 수직배향 액정소자(18)의 반사면(20)에 대한 입사각(θ1' ±α')의 방향으로 진행한다. 여기에서, α< α'가 만족되고 있다. 이 회절광(27)은, 액정층(33) 및 반사면(20)에 의해 변조광은, 각 투과형 편광선택성 홀로그램(13, 14, 15)에 재입사한다.
이 변조광중, P편광에 의해, 그리고, 각 투과형 편광선택성 홀로그램(13, 14, 15)의 회절수용각 범위에 들어가는 성분은 다시 회절되고, 입사광(22, 23, 24)의 역방향으로 돌아간다. 그리고, 변조광의 P편광광 중에서 회절되지 않은 나머지 성분과, S편광성분은, 각 투과형 편광선택성 홀로그램(13, 14, 15)에 있어서 회절되지 않고, 홀로그래픽 PDLC(10)로부터 출사광(31)으로 출사한다.
한편, 여기에 도시한 홀로그래픽 PDLC(10)는, 집광기능을 가지고 있으며, 도 12에 도시한 바와 같이, 반사형 수직배향 액정소자(18)의 반사면(20)으로 향하여 입사광(21)을 집광시킨다. 즉, 이 경우의 홀로그래픽 PDLC(10)의 각 투과형 편광선택성 홀로그램(13, 14, 15)의 간섭고의 피치는, 도 12중에 도시한 화살표 A방향에 있어서, 중심 0으로부터 주변으로 감에 따라 가늘게 된다.
실제의 화상표시에 있어서는, 화소마다에 반사형 수직배향 액정소자(18)의 액정층(33)이 제어되며, 반사광의 편광상태가 변조되므로, 주로 S편광성분을 가지는 반사광(32)을 이용하여 화상표시가 가능하게 된다.
여기에서, [두꺼운 홀로그램]에 대해서 설명한다. 여기에서 말하는 [두꺼운 홀로그램]은, 다음의 식에 의해 표시되는 Q값이 10이상 되는 것을 말한다.
Q = 2πλt/ (nΛΛ)
여기에서, λ는 재생파장, t는 홀로그램층의 두께, n은 홀로그램층의 평균굴절율, Λ는 간섭고의 피치이다.
또한, 이하의 식에 의해 표시되는 관계가 성립한다.
Λ= λc / λㅣ2sin{Θs - Θr)/2}ㅣ
여기에서, λc는 제조파장, Θs는 물체광의 입사각, Θr은 참조광의 입사각이다.
가령, λc를 0.532㎛, Θs를 40°, Θr을 0°, λ를 0.532㎛, t를 8㎛, n을 1.5로 하면, 간섭고의 피치 Λ는, 0.68㎛로 되며, Q는 28.9로 되므로, 상술한 [두꺼운 홀로그램]의 정의에 합당한다.
[두꺼운 홀로그램]은, 회절효율이 높지만, 제조시의 물체광 및 참조광의 사용파장과 입사각등의 조건으로부터, 재생광의 조건이 틀리면, 회절효율이 비교적 급격하게 저하한다는 특징을 가지고 있다. 즉, 어느 재생파장에 있어서, 회절효율의 피치를 부여한 입사각으로부터 재생광의 입사각이 크게 차이나면, 회절효율이 나타나지 않게 된다. 그러므로, 전술한 바와 같이, 반사광(32)은, 예를 들어 P편광성분이 되더라도, 각 투과형 편광선택성 홀로그램(13, 14, 15)에 있어서 회절되기가 어렵게 된다.
본 발명에 관한 편광선택성 홀로그램 광학소자는, 높은 회절효율을 목적으로, 간섭고의 피치(Λ)를 작게 하므로, 밴드각, 즉, ㅣΘs - Θrㅣ을, 30°이상으로 설정하고 있다.
이어서, 전술의 홀로그래픽 PDLC(편광선택성 홀로그램 광학소자)를 이용하는 본 발명에 관한 반사형의 화상표시소자의 제 2의 실시의 형태에 대해서, 도 7을 참조하여 설명한다. 이 실시의 형태에 있어서 투과형적층 홀로그램 광학소자(36)는, 도 13에 도시한 바와 같이, 유리기판(81, 82)과의 사이에 설치된 청색광용 홀로그램층(34)과, 유리기판(82, 83)과의 사이에 설치된 녹색광용 홀로그램층(35)의 2층의 적층구조로 되며, 청, 녹색광용 반사형 액정소자(37)와 일체적으로 구성되어 있다.
이 화상표시소자는, 청색광(A)과 녹색광(B)을 서로 다른 입사각으로 입사시킨다. 청색광용 홀로그램층(34)과 녹색광용 홀로그램층(35)은, 회절수용각이 서로 다르다.
청색광용 홀로그램층(34)에 있어서 회절된 청색광은, 이 청색광용 홀로그램층(34)의 한 방향에 대해서만 집광력을 가지는 렌즈(원통형 렌즈)의 기능에 의해, 청, 녹색광용 반사형 액정소자(37)의 청색광용 화소전극(38)상에 집광된다.
녹색광용 홀로그램층(35)에 있어서 회절된 녹색광은, 이 녹광용 홀로그램층(35)의 한 방향에 대해서만 집광력을 가지는 렌즈(원통형 렌즈)의 기능에 의해, 청, 녹색광용 반사형 액정소자(37)의 녹색광용 화소전극(39)상에 집광된다. 청, 녹색광용 반사형 액정소자(37)는, 유리기판(83, 84)과의 사이에 액정층(85)을 설치하고, 유리기판(84)측에 색화소전극(38, 39)을 설치하여 구성된다.
각 색용 홀로그램층(34, 35)의 홀로그램 렌즈로서의 중심은, 대응하는 색화소전극(38, 39)의 중신에 거의 일치된다. 각 색용 홀로그램층(34, 35)으로부터의 출사각은, 서로 동등하지 않으므로, 도 13에 도시한 바와 같이, 두 개의 색광이 교차하도록 되어 집광된다.
각 색화소전극(38, 39)에 색분리, 집광된 조명광(A), (B)은, [하얀]의 표시에는, 입사편광방위가 90°회전되어 S편광광이 되어 반사된다. 이 반사광은, 청색광용 홀로그램층(34)과 녹색광용 홀로그램층(35)의 회절수용각으로부터 벗어나지 않으므로, P편광광이 되더라도 회절효율은 낮으며, 이러한 각 색용 홀로그램층(34, 35)에 있어서 회절되지 않고, 청, 녹색광용 반사형 액정소자(37)의 연직방향에 대해 서로 역방향의 각도를 가지고 출사된다.
이어서, 본 발명에 관한 화상표시소자의 제 3의 실시의 형태를 도 14를 참조하여 설명한다.
이 화상표시소자는, 도 14에 도시한 바와 같이, 청색광용 홀로그램층(34)과 녹색광용 홀로그램층(35)의 각각에 대해서, 입사각 수용범위가 다르며, 그리고 이에 대응하는 출사각이 다른 제 2의 청색광용 홀로그램층(40)과 제 2의 녹색광용 홀로그램층(41)을 추가함으로써, 조명광 (A) 내지 (A)' 및 (B) 내지 (B)'로 표시한 바와 같이, 입사각의 수용범위를 넓히고, 광이용효율을 향상시키는 것이 가능하다.
이어서, 본 발명에 관한 화상표시소자의 제 4의 실시를 도 15에 도시하고 있다. 도 15에 도시한 화상표시소자는, 도 15에 도시한 바와 같이, 홀로그래픽 PDLC(편광선택성 홀로그램 광학소자)에 의해, 백색 조명광을 적색광, 녹색광 및 청색광의 3색으로 분리, 집광하도록 구성되어 있다. 이 홀로그래픽 PDLC는, 전술의 2색 분리의 홀로그래픽 PDLC와 마찬가지로, 회절수용각과 그에 대응하는 출사각이 서로 다른 녹색광 회절용, 청색광 회절용 및 적색광 회절용의 3층의 홀로그램층(34, 35, 42)의 각각의 사이에 배리어층(16, 17)을 통해 적층되어 있다. 이 화상표시소자는, 이 홀로그래픽 PDLC가, 반사형 수직배향 액정소자(18)에 대해서, 두께 약 50㎛의 유리기판(19)을 통해 광학적으로 밀착되어 구성되어 있다.
이 화상표시소자에 있어서는, 입사면(F)측에 위치하는 녹색광 회절용, 청색광 회절용 홀로그램층(34, 35)으로부터의 출사광이, 출사면(H)측에 위치하는 청색광 회절용, 적색광 회절용 홀로그램층(35, 42)에 의해, 가능한한 재회절되지 않도록, 3개의 색광을 서로 교차하여 집광한다. 녹색광, 청색광 및 적색광은, 각각 반사형 수직배향 액정소자(18)에 대응하는 색화소상에 집광되어, 반사된다.
투과형 액정화상표시소자에 이용되는 통상의 마이로렌즈 배열 대신에, 조명광 입사화각을 향상시킨 본 발명에 관한 화상표시소자의 제 5의 실시의 형태를 도 1을 참조하여 설명한다.
여기에서는, 편의상, R, G, B중 어느 색광의 조명광을 그 입사각도에 의해 조명광(A)과 조명광(B)으로 분리하여 생각한다. 조명광(A)과 조명광(B)은, 각각 30°이상의 입사각(ΘA, ΘB)을 중심으로 ±Δ ΘA, ±Δ ΘB의 각도범위를 가지는 조명광이며, ΘA + ΔΘA = ΘB - ΔΘB라는 관계로 된다.
입사측 유리기판(43)으로부터 입사한 조명광은, 우선, 제 1의 홀로그램 렌즈배열(44)에 입사한다. 이때, 제 1의 홀로그램 렌즈배열(44)은, 주로 조명광(A)의 입사각도에 대응하는 회절수용각을 가지며, 주로 조명광(A)을 회절시킨다. 이 회절광은, 제 1의 홀로그램 렌즈배열(44)상에 있어서 한 변이 화소피치 크기를 가지는 조명광마다 배리어층(45), 제 2의 홀로그램 렌즈배열(46), 대향전극부착 유리기판(47) 및 액정층(48)을 투과하여, TFT개구부(50)의 면적내에 집광된다.
배리어층(45)을 통해 배치된 제 2의 홀로그램 렌즈배열(46)에 있어서는, 동일한 이유에 의해, 주로 조명광(B)이 회절된다. 여기에서도, 제 2의 홀로그램 렌즈배열(46)상에 있어서 한 변이 화소피치 크기를 가지는 조명광마다 배리어층(45), 제 2의 홀로그램 렌즈배열(46), 대향전극부착 유리기판(47) 및 액정층(48)을 투과하여, TFT개구부(50)의 면적내에 집광된다.
즉, 1개의 TFT개구부(50)에 대해서, 제 1의 홀로그램 렌즈배열(44)과 제 2의 홀로그램 렌즈배열(46)과의 2 개의 마이크로 렌즈에 의해, 조명광이 집광된다. 그리고, 이러한 제 1 및 제 2의 홀로그램 렌즈배열(44, 46)은, 각각 독립된 마이크로 렌즈배열로서 진동하므로, 통상의 굴절형의 시스템 마이크로 렌즈배열에 비해, 커다란 수용각을 확보하는 것이 가능하다.
여기에서 이용하는 제 1의 홀로그램 렌즈배열(44)과 제 2의 홀로그램 렌즈배열(46)은, 어느 것도 굴절율의 이방성을 가지는 재료를 포함하지 않으며, 따라서, 커다란 편광선택성은 가지고 있지 않다.
[4] 본 발명에 관한 화상표시장치
본 발명에 관한 화상표시장치로서, 화상표시소자에 3개의 반사형 액정소자를 이용하며, 색분리 합성수단으로서, 2개의 다이크로익 미러를 이용하는 3판식 투사형 화상표시장치의 구성과 동작원리를, 도 17을 참조하여 설명한다.
이 화상표시장치는, UHP램프 광원(51)에서 출사된 광속이, 광속단면형상의 보정, 광강도 분포의 균일화, 발산각 제어등의 기능을 가지는 조명광학계(52)에 입사한다. 이 조명광학계(52)에는, P-S편광 변환기가 포함되어 있다. 이 P-S변환기는, 무편광상태의 입사광속을, P편광, 또는 S편광중 어느 것의 편광에 50%이상의 효율로 구비시키는 기능을 가지는 편광변환수단이다. 이 실시의 형태의 경우, 조명광학계(52)를 투과한 광속은, 주로 도 17의 지면에 평행한 방향으로 전기벡터가 진동하는 편광상태, 즉, 다음에 입사하는 미러(53)에 대한 P편광광이 되도록 변환된다.
조명광은, 미러(53)에 의해 반사되며, 적색반사의 다이크로익 미러(54)에 입사한다. 이 다이크로익 미러(54)에 있어서는, 주로 적색광만이, 적색광용 공간 광변조소자(55)를 향하여 반사된다. 이 적색광용 공간 광변조소자(55)에 있어서는, 적색광은, 입사각 약 50°±15°로 입사한다.
한편, 적색반사의 다이크로익 미러(54)를 투과한 청, 녹색광은, 다음에, 청색광 반사용 다이크로익 미러(56)에 입사한다. 이 청색광 반사용 다이크로익 미러(56)에 있어서는, 청색광만이, 청색광용 공간 광변조소자(57)를 향하여 반사된다. 이 청색광용 공간 광변조소자(57)에는, 청색광은, 입사각 약 50°±15°로 입사한다.
청색광 반사용의 다이크로익 미러(56)를 투과한 녹색광은 녹색광용 공간 광변조소자(58)에 대하여 입사각 약 50°±15°에서 입사한다.
야기에서, 청색광 반사용 다이크로익 미러(56)로부터 녹색광용 공간 광변조소자(58)에 이르는 광로상에는, 570㎚ 전후의 파장보다도 긴 파장측의 스펙트럼을 반사하는 오렌지색 커트필터(59)가 착탈가능하게 배치되어 있다. 오렌지색 커트필터(59)는, 표시화상의 색재현성을 향상시키는 경우에는, 광로상에 삽입하여 둔다. 그리고, 색재현성 보다도 밝기를 우선으로 하는 경우는, 오렌지색 커트필터(59)를 광로외에 배치함으로써, UHP램프 광원(51)으로부터의 조명광에 포함된 580㎚ 근방의 오렌지 색광을 녹색광용 공간 광변조소자(58)에 조사시키고, 표시화상의 결상에 기여하게 된다.
녹색광용 공간 광변조소자(58), 청색광용 공간 광변조소자(57), 적색광용 공간 광변조소자(55)는, 상술의 화상표시소자의 제 1의 실시의 형태에서 도시한 바와 같이, 각각, 편광선택성 적층형 홀로그램 광학소자(58a, 57a, 55a)와, 반사형 공간 광변조소자(58b, 57b, 55b)가 조합되어 구성되어 있다. 따라서, 이러한 녹색광용 공간 광변조소자(58), 청색광용 공간 광변조소자(57), 적색광용 공간 광변조소자(55)에 각각 입사하는 주로 P편광성분을 가지는 녹색광, 청색광, 적색광은, P편광성분만이 회절되며, 각 반사형 공간 광변조소자(58b, 57b, 55b)에 입사각 ±10°로 입사한다. 이러한 녹색광, 청색광, 적색광은, 각각의 반사형공간 광변조소자(58b, 57b, 55b)의 화소마다에 편광상태를 변조시킨 후, 출사각 ±15°에서, 다시 한 번 편광선택성 적층형 홀로그램 광학소자(58a, 57a, 55a)로부터 공기 중으로 출사된다.
한편, 반사형공간 광변조소자(58b, 57b, 55b)의 각 액정층의 두께는, 각각 변조하는 색광의 차이에 대응하여 최적화된다.
녹색광용 공간 광변조소자(58)와, 적색광용 공간 광변조소자(55)는, 적색반사의 다이크로익 미러(54)에 대해서, 공역인 위치에 배치되어 있다. 청색광용 공간 광변조소자(57)와, 녹색광용 공간 광변조소자(58)는, 청색반사의 다이크로익 미러(56)에 대해서, 공역인 위치에 배치되어 있다.
따라서, 청색광용 공간 광변조소자(57)와, 녹색광용 공간 광변조소자(58), 적색광용 공간 광변조소자(55)에 의해 변조된 각 색광의 조명광은, 청색반사의 다이크로익 미러(56), 적색반사의 다이크로익 미러(54)에 의해 다시 합성된다. 이 조명광은, 예를 들면, 편광판과 같이, S편광투과의 편광선택수단(60)을 경유하여, 투사광학계(61)에 입사된다. 투사광학계(61)는, 입사된 조명광을 도시하지 않은 화면상에 결상시킨다. 화면상에는, 화상이 표시된다.
한편, 청색반사의 다이크로익 미러(56), 적색반사의 다이크로익 미러(54)는, 색분리를 행하는 부분의 박막특성과 색합성을 행하는 부분의 박막특성을 다르게 하여 작성하여도 좋다.
이어서, 본 발명에 관한 화상표시장치의 제 2의 실시의 형태를 도 18에 도시하고 있다. 이 화상표시장치는, 도 18에 도시한 바와 같이, 화상표시소자로서의 반사형 액정소자(62, 63)를 이용하여, 색합성수단으로서 다이크로익 미러(64)를 이용하고, 2개의 반사형 액정소자(62, 63)에 대한 색분리수단으로서 다이크로익 미러(65, 66, 67)를 이용하여, 한 개의 반사형 액정소자(62)에 대한 색분리집광수단으로서 편광선택성 적층형 홀로그램 광학소자(62a)를 이용하는 2판식 투사형 화상표시장치의 구성과 동작원리에 대해서 설명한다.
UHP램프 광원(51)에서 출사된 광속은, 광속단면형상의 보정, 광강도 분포의 균일화, 발산각 제어 등의 기능을 가지는 조명광학계(52)에 입사한다. 이 조명광학계(52)에는, P-S편광 변환기(68)가 포함되어 있다. 이 P-S변환기(68)는, 무편광상태의 광속을, P편광, 또는 S편광 중 어느 한쪽의 편광에 50%이상의 효율로 구비시키는 기능을 가지는 편광변환수단이다. 이 실시의 형태의 경우, 조명광학계(52)를 투과한 광속은, 주로 도 18의 지면에 평행한 방향으로 전기벡터가 진동하는 편광상태, 즉, 다음에 입사하는 녹색반사의 다이크로익 미러(65)에 대한 P편광광이 되도록 변환된다.
조명광은, 녹색반사의 다이크로익 미러(65) 및 청색반사의 다이크로익 미러(66)에 있어서, 녹색광 성분 및 청색광 성분을 반사시키고, 각각 다른 각도에서, 녹, 청색용 반사형 표시소자(62)에 입사한다. 청색광의 입사각은 약 45°이다. 녹색광의 입사각은 약 55°이다.
녹색반사의 다이크로익 미러(65) 및 청색반사의 다이크로익 미러(66)를 투과한 조명광은, 콘덴서렌즈(69)를 경유하여, 적색반사의 다이크로익 미러(67)에서 반사되며, 적색용 반사형 표시소자(63)에 약 45°의 입사각으로 입사한다.
이 실시의 형태에 의해 이용되는 녹, 청색용 반사형 표시소자(62)는, 화상표시소자의 제 3의 실시의 형태에 의해 서술된 것과 동일하며, 청색광 및 녹색광을 각각에 대응하는 색화소에 집광시키는 복수의 홀로그램층을 가지는 편광선택성 적층형 홀로그램 광학소자(62a)와, 청색용, 녹색용의 2개의 색화소를 가지는 반사형 액정소자(62b)가 광학적으로 밀착된 구조를 구비한다.
적색용 반사형 표시소자(63)는, 화상표시소자의 전술한 투과형 액정소자를 반사형 액정소자를 대신하는 것에 상당하며, 적색광에 대응하는 색화소에 집광하는 복수의 홀로그램층을 가지는 편광선택성 적층형 홀로그램 광학소자(63a)와 적색용의 색화소를 가지는 반사형 액정소자(63b)가 광학적으로 밀착된 구조로 되어 있다.
각 반사형 표시소자(62, 63)에 입사한 주로 P편광성분으로 구성되는 조명광은, 화소마다에 편광상태를 변조하며, 각 반사형 표시소자(62, 63)에 의해 편광상태를 변조한 상태에서 반사된다. P편광성분은, 편광선택성 적층형 홀로그램 광학소자(62a)에 다시 입사될 때에 회절되어 편향된다. S편광성분은, 편광선택성 적층형 홀로그램 광학소자(62a, 63a)에 다시 입사될 때에도 회절되지 않고, 편광선택성 적층형 홀로그램 광학소자(62a, 63a)를 투과한다.
편광선택성 적층형 홀로그램 광학소자(62a, 63a)를 투과한 S편광성분으로 구성되는 2개의 변조광은, 다이크로익 미러(64)에 의해 색합성된 후, S편광투과의 편광판(60)을 경유하여, 투사광학계(61)에 입사한다. 투사광학계(61)는, 입사된 조명광을 도시하지 않은 화면상에 결상시킨다. 화면상에는, 화상이 표시된다.
청, 녹색용 반사형 액정소자(62b)는, 도 19에 도시한 바와 같이, 녹색용화소(G)와 청색용화소(B)가 교차적으로 배열된 화소구조를 가지고 있다. 적색용 반사형 액정소자(63b)는, 도 20에 도시된 바와 같이, 적색용화소(R)만으로 구성되며, 청, 녹색용 반사형 액정소자(62b)와 동일한 화소구조를 가지고 있다. 이 적색용 반사형 액정소자(63b)에 있어서는, 2개에 대한 기본화소는, 1화소로서 동등하게 구동된다.
한편, 반사형 공간 광변조소자(62, 63)에 있어서 각 액정층의 두께는, 각각 변조하는 색광의 차이에 대응하여 최적화된다.
이어서, 본 발명에 관한 화상표시장치의 제 3의 실시의 형태를 도 21에 도시하고 있다.
도 21에 도시한 화상표시장치는, 단판식 투사형 화상표시장치이며, 반사형 액정소자(18)에 대한 색분리집광수단으로서 편광선택성 적층형 홀로그램 광학소자를 이용하고 있다. 이 장치에 있어서, UHP램프 광원(51)에 의해 출사된 조명 광속은, 광속단면형상의 보정, 광강도 분포의 균일화, 발산각 제어 등의 기능을 가지는 조명광학계(52)에 입사한다. 이 조명광학계(52)에는, P-S편광 변환기(68)가 포함되어 있다. 이 P-S변환기(68)는, 무편광상태의 광속을, P편광, 또는 S편광중 어느 한쪽의 편광에 50%이상의 효율로 구비시키는 기능을 가지는 편광변환수단이다. 이 실시의 형태의 경우, 조명광학계(52)를 투과한 광속은, 주로 도 15의 지면에 평행한 방향으로 전기벡터가 진동하는 편광상태, 즉, 다음에 입사하는 다이크로익 미러(66, 65, 67)에 대한 P편광광이 되도록 변환된다.
조명광은, 녹색반사의 다이크로익 미러(65) 및 청색반사의 다이크로익 미러(66), 적색반사의 다이크로익 미러(67)에 있어서, 녹색성분, 청색성분 및 적색성분을 각각 반사시키고, 각각이 다른 각도에서, 결합 프리즘(70)을 통해 반사형 표시소자(72)에 입사한다. 이 결합 프리즘(70)은, 반사형 표시소자(72)의 편광선택성 적층형 홀로그램 광학소자(73)로의 입사각을, 예를 들면 55°정도로 크게 하기 위해서는, 반사형 표시소자(72)와 광학적으로 밀착되어 부착되어 있다.
이 실시의 형태에 이용되는 반사형 표시소자(72)는, 화상표시소자의 제 4의 실시의 형태에 도시된 것과 기본적으로 동일한 것이다. 여기에서 이용되는 편광선택성 적층형 홀로그램 광학소자(73)는, 홀로그래픽 PDLC 광학소자이며, P 편광을 회절시키고 S편광을 회절시키지 않는 것으로 되어 있다. R, G, B의 각 색광용의 홀로그램(34, 35, 36)은, 3층 적층된 구조를 가지며, 반사형 액정소자(18)와 일체적으로 구성되어 있다.
각 색광용의 홀로그램(34, 35, 36)은, 반사형 액정소자(18)의 대응하는 각 기본화소에 조명광이 교차하여 집광하도록, 한 방향에 대해서 집광력을 거지는 원통형 렌즈의 기능을 가지고 있다.
각 색광용의 홀로그램(34, 35, 36)에 의해, R, G, B의 각 색화소전극(74, 75, 76)에 색분리되어 집광된 조명광은, 편광상태가 변조되어 반사된다. 이 반사광 중에 S편광성분은, 각 색광용의 홀로그램(34, 35, 36)에 다시 입사될 때에, 회절되지 않으며, 반사형 표시소자(72)에 대해서 일정한 출사각을 가지고 출사된다.
이 반사광은, S편광광 투과의 편광판(60)에 의해 검파되며, 투사광학계(61)에 입사한다. 투사광학계(61)는, 입사된 조명광을 도시하지 않은 화면(71)상에 결상시킨다. 화면(71)상에는, 화상이 표시된다.
한편, 본 발명은, 도면을 참조하여 설명한 상술의 실시예에 제한되지 않으며, 첨부의 청구항의 범위 및 그 주지를 일탈하지 않고, 여러 가지 변경, 치환 또는 그 동등의 것을 행하는 것이 가능하다는 것은 당업자에게 명확하다.
상술한 바와 같이, 본 발명은, 회절수용각이 서로 다르며, 게다가, 가시영역의 임의의 파장에 있어서 각각의 회절수용 입사각의 중심입사각에 대한 출사각이 서로 다른 복수의 투과형 홀로그램 광학소자를 적층함으로써, 입사광의 회절수용각이 넓은 투과형적층 홀로그램 광학소자를 실현하고 있다.
본 발명에 관한 화상표시소자는, 각 투과형 홀로그램 광학소자가 마이크로렌즈 배열의 기능을 가지는 투과형적층 홀로그램 광학소자와, 색화소를 가지는 공간 광변조소자를 조합함으로써, 홀로그램 칼라필터를 가지는 칼라화상표시소자로서 구성되어 있다. 따라서, 이 화상표시소자는, 색화소를 이용하는 흡수형의 칼라필터, 단층구조의 홀로그램 칼라필터, 혹은, 적층구조를 가지는 서로의 회절수용각 및 출사각이 충분히 분리되어 있지 않은 홀로그램 칼라필터에 비해, 광이용효율이 높은 화상표시소자로 되어 있다.
이 화상표시소자는, 각 투과형 홀로그램 광학소자가 칼라필터로서의 기능을 가지지 않는 경우라도, 투과형액정 화상표시소자와 함께, 종래부터 이용되어온 마이크로렌즈 배열의 대체로서 사용함으로써, 조명광을 받아들이는 화각을 넓게 하고, 광이용효율이 높은 화상표시소자로 구성하는 것이 가능하다.
이 화상표시소자는, 회절수용각이 서로 다른 복수의 투과형 홀로그램 광학소자에, 각각 R(적색), G(녹색), 및 B(청색)의 색광중에서 단지 1개의 색광만을 그 회절수용각에 의해 입사시킴으로써, 홀로그램의 파장분산을 이용하지 않는 색분리가 가능하게 된다.
이에 의해, 각 색광의 분리각 설정에 자유도가 얻어지며, 홀로그램 칼라필터와 공간 광변조소자의 색화소와의 사이의 거리가, 제조난이도와 광이용효율의 면으로부터, 최적의 거리에 설정하는 것이 가능하다. 동일 화소피치의 공간 광변조소자를 전제로 하는 경우, 특히 각 색광의 분리각을 크게 함으로써, 홀로그램 칼라필터와 공간 광변조소자의 색화소와의 사이의 거리를, 예를 들면, 50㎛ 이하로 설정하는 것이 가능하게 된다. 그리고, 홀로그램 칼라필터에 대한 조명광의 광화각화, 광대역화에 의해, 광이용효율이 향상된 밝은 화상표시소자가 실현가능하다.
투과형적층 홀로그램 광학소자의 각 홀로그램층을 편광선택성 홀로그램 광학소자로 구성함으로써, 광수용각의 편광분리소자가 실현가능하다.
본 발명에 관한 화상표시장치는, 상술의 투과형적층 홀로그램 광학소자와, 반사형 공간 광변조소자를 이용함으로써, PBS(편광빔 스플리터)가 불필요하며, 소형경량, 고효율, 저비용의 화상표시장치로서 구성되어 있다.
이 화상표시장치에 있어서는, 마이크로렌즈 배열에 의해 칼라필터기능을 부가함으로써, 색합성수단이 불필요하며, 소형이며 저비용이 들어가는 화상표시장치로서 구성하는 것이 가능하다.
본 발명은, 입사광의 광회절수용각을 넓게 하고, 광이용효율을 높게 하고, 공간 광변조소자의 색화소와의 사이의 거리를 제조난이도와 광이용효율의 면으로부터, 최적의 거리에 설정하는 것이 가능한 투과형적층 홀로그램 광학소자를 제공하며, 이 투과형적층 홀로그램 광학소자를 이용하여 밝은 화상을 표시할 수 있는 화상표시소자 및 화상표시장치를 제공하는 것이 가능하다.

Claims (65)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 투과형적층 홀로그램 광학소자와,
    상기 투과형적층 홀로그램 광학소자로부터의 출사광을 변조하는 공간 광변조소자를 구비하며,
    상기 투과형적층 홀로그램 광학소자는, 회절수용 입사각이 서로 다르며 가시영역의 임의의 파장에 있어서 각각의 회절수용 입사각의 중심입사각에 대한 출사각이 서로 다른 복수의 투과형 홀로그램 광학소자가 적층되어 구성되어 있는 것을 특징으로 하는 화상표시소자.
  10. 제 9항에 있어서,
    상기 각 투과형 홀로그램 광학소자는, 회절수용 입사각내의 임의의 입사각범위에 대응하는 출사각범위가, 입사각범위보다 작다는 것을 특징으로 하는 화상표시소자.
  11. 제 9항에 있어서,
    상기 각 투과형 홀로그램 광학소자는, 굴절율의 입사편광 방위의존성이 서로 다른 2개의 영역이 순차배열된 구성을 가지는 편광선택성 홀로그램 광학소자로 이루어지는 것을 특징으로 하는 화상표시소자.
  12. 제 9항에 있어서,
    상기 각 투과형 홀로그램 광학소자는, 고분자분산 액정재료를 포함하는 편광선택성 홀로그램 광학소자로 이루어지는 것을 특징으로 하는 화상표시소자.
  13. 제 9항에 있어서,
    상기 각 투과형 홀로그램 광학소자는, 집광기능을 가지는 것을 특징으로 하는 화상표시소자.
  14. 제 9항에 있어서,
    상기 각 투과형 홀로그램 광학소자는, 마이크로렌즈 배열을 구성하며, 공간 광변조소자의 대응하는 각 화소에, 조명광을 집광하는 것을 특징으로 하는 화상표시소자.
  15. 제 14항에 있어서,
    상기 각 투과형 홀로그램 광학소자로부터 공간 광변조소자의 대응하는 각 화소에 집광되는 조명광의 주광선은, 적어도 일조 이상이 서로 교차하는 것을 특징으로 하는 화상표시소자.
  16. 제 9항에 있어서,
    상기 투과형 홀로그램 광학소자는, 마이크로렌즈 배열을 구성하며, 공간 광변조소자의 대응하는 각 화소에 조명광을 분리하여 집광하는 칼라필터기능을 가지고 있는 것을 특징으로 하는 화상표시소자.
  17. 제 16항에 있어서,
    상기 각 투과형 홀로그램 광학소자에 의해 공간 광변조소자의 대응하는 각 화소에 집광되는 조명광의 주광선은, 적어도 일조 이상이 서로 교차하는 것을 특징으로 하는 화상표시소자.
  18. 제 9항에 있어서,
    상기 투과형 홀로그램 광학소자의 적층수는, 3이상으로 이루어지는 것을 특징으로 하는 화상표시소자.
  19. 제 9항에 있어서,
    상기 투과형적층 홀로그램 광학소자는, 가시영역의 임의의 파장에 있어서 각각의 회절수용 입사각의 중심입사각에 대한 출사각이, 서로 5도 이상 다른 것을 특징으로 하는 화상표시소자.
  20. 제 9항에 있어서,
    상기 공간 광변조소자는, 반사형 공간 광변조소자이며, 투과형적층 홀로그램 광학소자의 투과형 홀로그램 광학소자에 의해 입사된 조명광을 변조하며, 다시 상기 투과형적층 홀로그램 광학소자에 입사시키는 것을 특징으로 하는 화상표시소자.
  21. 제 9항에 있어서,
    상기 투과형적층 홀로그램 광학소자의 홀로그램면과 공간 광변조소자의 광변조면은, 평행하게 되는 것을 특징으로 하는 화상표시소자.
  22. 제 9항에 있어서,
    상기 투과형적층 홀로그램 광학소자의 홀로그램면과 공간 광변조소자의 광변조면과의 간격은, 50㎛이하가 되는 것을 특징으로 하는 화상표시소자.
  23. 조명광을 발하는 조명광원과,
    입사광을 회절시키는 투과형적층 홀로그램 광학소자와,
    상기 조명광을 상기 투과형적층 홀로그램 광학소자에 입사광으로 유도하는 조명광학계와,
    상기 투과형적층 홀로그램 광학소자로부터 출사되는 조명광을 변조하는 공간 광변조소자와,
    상기 공간 광변조소자에 의해 변조된 조명광을 확대하여 결상시키는 확대광학계를 구비하며,
    상기 투과형적층 홀로그램 광학소자는, 회절수용 입사각이 서로 다르며 가시영역의 임의의 파장에 있어서 각각의 회절수용 입사각의 중심입사각에 대한 출사각이 서로 다른 복수의 투과형 홀로그램 광학소자가 적층되어 구성되어 있는 것을 특징으로 하는 화상표시장치.
  24. 제 23항에 있어서,
    상기 각 투과형 홀로그램 광학소자는, 회절수용 입사각내의 임의의 입사각범위에 대응하는 출사각범위가, 입사각범위보다 작다는 것을 특징으로 하는 화상표시장치.
  25. 제 23항에 있어서,
    상기 투과형 홀로그램 광학소자는, 조명광학계에 의해, 30도 이상 90도 미만의 입사각에 의해 조명광을 입사시키고, 입사된 조명광 중 제 1의 편광방위가 되는 조명광의 회절효율이 50%이상이며, 이 제 1의 편광방위에 직교하는 제 2의 편광방위의 조명광의 회절효율이 10%이하가 되는 것을 특징으로 하는 화상표시장치.
  26. 제 25항에 있어서,
    상기 제 1의 편광방위는, P편광이 되는 것을 특징으로 하는 화상표시장치.
  27. 제 23항에 있어서,
    상기 각 투과형 홀로그램 광학소자는, 굴절율의 입사편광 방위의존성이 서로 다른 2개의 영역이 순차배열된 구성을 가지는 편광선택성 홀로그램 광학소자가 되는 것을 특징으로 화상표시장치.
  28. 제 23항에 있어서,
    상기 각 투과형 홀로그램 광학소자는, 고분자분산 액정재료를 포함하는 편광선택성 홀로그램 광학소자가 되는 것을 특징으로 화상표시장치.
  29. 제 23항에 있어서,
    상기 투과형 홀로그램 광학소자는, 집광기능을 가지는 것을 특징으로 하는 화상표시장치.
  30. 제 23항에 있어서,
    상기 투과형 홀로그램 광학소자는, 마이크로렌즈 배열을 구성하며, 공간 광변조소자의 대응하는 각 화소에, 조명광을 집광하는 것을 특징으로 하는 화상표시장치.
  31. 제 30항에 있어서,
    상기 각 투과형 홀로그램 광학소자에 의해 공간 광변조소자의 대응하는 각 화소에 집광되는 조명광의 주광선은, 적어도 일조 이상이 서로 교차하는 것을 특징으로 하는 화상표시장치.
  32. 제 23항에 있어서,
    상기 각 투과형 홀로그램 광학소자는, 마이크로렌즈 배열을 구성하며, 공간 광변조소자의 대응하는 각 화소에 조명광을 분리하여 집광하는 칼라필터기능을 가지고 있는 것을 특징으로 하는 화상표시장치.
  33. 제 32항에 있어서,
    상기 각 투과형 홀로그램 광학소자에 의해 공간 광변조소자의 대응하는 각 화소에 집광되는 조명광의 각 색광의 주광선은, 적어도 일조 이상이 서로 교차하는 것을 특징으로 하는 화상표시장치.
  34. 제 32항에 있어서,
    상기 조명광학계는, 조명광의 서로 다른 색광을 각 투과형 홀로그램 광학소자에 대해서 각 투과형 홀로그램 광학소자의 회절수용각에서 입사시킴으로써, 상기 조명광의 색분리와 집광을 행하는 것을 특징으로 하는 화상표시장치.
  35. 제 23항에 있어서,
    상기 투과형 홀로그램 광학소자의 적층수는, 3이상으로 이루어지는 것을 특징으로 하는 화상표시장치.
  36. 제 23항에 있어서,
    상기 투과형적층 홀로그램 광학소자는, 가시영역의 임의의 파장에 있어서 각각의 회절수용 입사각의 중심입사각에 대한 출사각이, 서로 5도 이상 다른 것을 특징으로 하는 화상표시장치.
  37. 제 23항에 있어서,
    상기 공간 광변조소자는, 반사형 공간 광변조소자가 되는 것을 특징으로 하는 화상표시장치.
  38. 제 23항에 있어서,
    상기 투과형적층 홀로그램 광학소자의 홀로그램면과 공간 광변조소자의 광변조면은, 평행하게 되는 것을 특징으로 하는 화상표시장치.
  39. 제 23항에 있어서,
    상기 투과형적층 홀로그램 광학소자의 홀로그램면과 공간 광변조소자의 광변조면과의 간격은, 50㎛이하가 되는 것을 특징으로 하는 화상표시장치.
  40. 제 23항에 있어서,
    상기 투과형적층 홀로그램 광학소자는, 조명광의 주광선을 공간 광변조소자에 대해서 경사지게 입사시키는 것을 특징으로 하는 화상표시장치.
  41. 제 23항에 있어서,
    상기 조명광학계는, 색분리수단을 가지며, 투과형적층 홀로그램 광학소자에 대해서 조명광의 스펙트럼의 일부만을 입사시키는 것을 특징으로 하는 화상표시장치.
  42. 제 23항에 있어서,
    상기 조명광학계는, 색분리수단을 가지며, 적어도 1개의 투과형 홀로그램 광학소자에 대해서 조명광의 스펙트럼중 다른 복수의 파장대역의 광을 서로 다른 입사각으로 입사시키는 것을 특징으로 하는 화상표시장치.
  43. 제 42항에 있어서,
    상기 투과형 홀로그램 광학소자에 입사되는 서로 다른 파장대역의 광은, 청색광 및 녹색광이 되는 것을 특징으로 하는 화상표시장치.
  44. 제 42항에 있어서,
    상기 투과형 홀로그램 광학소자에 입사되는 서로 다른 파장대역의 광은, 청색광 및 적색광이 되는 것을 특징으로 하는 화상표시장치.
  45. 제 23항에 있어서,
    상기 공간 광변조소자와 투사광학계와의 사이의 광로중에, 편광선택수단을 구비하고 있는 것을 특징으로 하는 화상표시장치.
  46. 조명광을 발하는 조명광원과,
    회절율의 입사편광 방위의존성이 서로 다른 2개의 영역이 순차배열된 구조를 가지는 회절수용입사각이 서로 다른 복수의 투과형 홀로그램 광학소자가 적층되어 구성되며, 입사광을 회절시키는 투과형 편광선택성 홀로그램 광학소자와,
    상기 조명광을 유도하며, 상기 투과형 편광선택성 홀로그램 광학소자에 대해서, 이 투과형 편광선택성 홀로그램 광학소자의 조명광 수광면의 법선에 대해서 30°이상 90°미만의 입사각으로 입사시키는 조명광학계와,
    상기 투과형 편광선택성 홀로그램 광학소자에 의해 회절된 조명광의 편광상태를 변조하는 반사형 공간 광변조소자와,
    상기 반사형 공간 광변조소자에 의해 변조된 표시상을 확대하는 확대광학계를 구비하며,
    상기 투과형 편광선택성 홀로그램 광학소자를 구성하는 각 투과형 홀로그램 광학소자는, 가시영역의 임의의 파장에 있어서 각각의 회절수용 입사각의 중심입사각에 대한 출사각이 서로 다르며, 수광하는 조명광의 P편광성분, 또는 S편광성분을 반사형 공간 광변조소자로 향하여 회절시킴과 동시에, 상기 반사형 공간 광변조소자에 의해 위상변조되어 재입사하는 조명광중, 일회째의 입사에 있어서 회절되는 편광성분과, 직교하는 편광성분에 대한 회절효율이 10%이하가 되어 있음으로써, 상기 직교하는 편광성분의 70% 이상을 투과시키는 것을 특징으로 하는 화상표시장치.
  47. 제 46항에 있어서,
    상기 각 투과형 홀로그램 광학소자는, 회절수용 입사각내의 임의의 입사각범위에 대응하는 출사각범위가, 입사각범위보다 작다는 것을 특징으로 하는 화상표시장치.
  48. 제 46항에 있어서,
    제 1의 편광방위는, P편광이 되는 것을 특징으로 하는 화상표시장치.
  49. 제 46항에 있어서,
    상기 각 투과형 홀로그램 광학소자는, 고분자분산 액정재료를 포함하는 편광선택성 홀로그램 광학소자가 되는 것을 특징으로 화상표시장치.
  50. 제 46항에 있어서,
    상기 각 투과형 홀로그램 광학소자는, 집광기능을 가지는 것을 특징으로 하는 화상표시장치.
  51. 제 46항에 있어서,
    상기 투과형 홀로그램 광학소자의 적층수는, 3이상으로 이루어지는 것을 특징으로 하는 화상표시장치.
  52. 제 46항에 있어서,
    상기 복수의 투과형 홀로그램 광학소자의 각각은, 가시영역의 임의의 파장에 있어서 각각의 회절수용 입사각의 중심입사각에 대한 출사각이, 서로 5도 이상 다른 것을 특징으로 하는 화상표시장치.
  53. 제 46항에 있어서,
    상기 각 투과형 홀로그램 광학소자는, 마이크로렌즈 배열을 구성하며, 상기 반사형 공간 광변조소자의 대응하는 각 화소에, 조명광을 집광하는 것을 특징으로 하는 화상표시장치.
  54. 제 53항에 있어서,
    상기 각 투과형 홀로그램 광학소자로부터 상기 반사형 공간 광변조소자의 대응하는 각 화소에 집광되는 조명광의 주광선은, 적어도 일조 이상이 서로 교차하는 것을 특징으로 하는 화상표시장치.
  55. 제 46항에 있어서,
    상기 각 투과형 홀로그램 광학소자는, 마이크로렌즈 배열을 구성하며, 상기 반사형 공간 광변조소자의 대응하는 각 색화소에 조명광을 색 분리하여 집광하는 칼라필터기능을 가지고 있는 것을 특징으로 하는 화상표시장치.
  56. 제 55항에 있어서,
    상기 각 투과형 홀로그램 광학소자로부터 상기 반사형 공간 광변조소자의 대응하는 각 색화소에 집광되는 조명광의 주광선은, 적어도 일조 이상이 서로 교차하는 것을 특징으로 하는 화상표시장치.
  57. 제 55항에 있어서,
    상기 조명광학계는, 조명광의 서로 다른 색광을 각 투과형 홀로그램 광학소자에 대해서 각 투과형 홀로그램 광학소자의 회절수용각에서 입사시킴으로써, 상기 조명광의 색분리와 집광을 행하는 것을 특징으로 하는 화상표시장치.
  58. 제 46항에 있어서,
    상기 투과형 편광선택성 홀로그램 광학소자의 홀로그램면과 상기 반사형 공간 광변조소자의 광변조면은, 평행하게 되는 것을 특징으로 하는 화상표시장치.
  59. 제 46항에 있어서,
    상기 투과형 편광선택성 홀로그램 광학소자의 홀로그램면과 상기 반사형 공간 광변조소자의 광변조면과의 간격은, 50㎛이하가 되는 것을 특징으로 하는 화상표시장치.
  60. 제 46항에 있어서,
    상기 투과형 편광선택성 홀로그램 광학소자는, 조명광의 주광선을 상기 반사형 공간 광변조소자에 대해서 경사지게 입사시키는 것을 특징으로 하는 화상표시장치.
  61. 제 46항에 있어서,
    상기 조명광학계는, 색분리수단을 가지며, 상기 투과형 편광선택성 홀로그램 광학소자에 대해서 조명광의 스펙트럼의 일부만을 입사시키는 것을 특징으로 하는 화상표시장치.
  62. 제 46항에 있어서,
    상기 조명광학계는, 색분리수단을 가지며, 적어도 1개의 투과형 홀로그램 광학소자에 대해서 조명광의 스펙트럼중 다른 복수의 파장대역의 광을 서로 다른 입사각으로 입사시키는 것을 특징으로 하는 화상표시장치.
  63. 제 62항에 있어서,
    상기 투과형 홀로그램 광학소자에 입사되는 서로 다른 파장대역의 광은, 청색광 및 녹색광이 되는 것을 특징으로 하는 화상표시장치.
  64. 제 62항에 있어서,
    상기 투과형 홀로그램 광학소자에 입사되는 서로 다른 파장대역의 광은, 청색광 및 적색광이 되는 것을 특징으로 하는 화상표시장치.
  65. 제 46항에 있어서,
    상기 반사형 공간 광변조소자와 투사광학계와의 사이의 광로중에, 편광선택수단을 구비하고 있는 것을 특징으로 하는 화상표시장치.
KR1020047005838A 2001-10-31 2002-10-29 화상표시소자 및 화상표시장치 KR100919716B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2001-00335404 2001-10-31
JP2001335404A JP2003139958A (ja) 2001-10-31 2001-10-31 透過型積層ホログラム光学素子、画像表示素子及び画像表示装置
PCT/JP2002/011241 WO2003038485A1 (fr) 2001-10-31 2002-10-29 Element optique holographique stratifie de type transmission et dispositif d'affichage d'images comprenant ledit element optique

Publications (2)

Publication Number Publication Date
KR20040047936A KR20040047936A (ko) 2004-06-05
KR100919716B1 true KR100919716B1 (ko) 2009-10-06

Family

ID=19150398

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020047005838A KR100919716B1 (ko) 2001-10-31 2002-10-29 화상표시소자 및 화상표시장치

Country Status (6)

Country Link
US (1) US7139109B2 (ko)
EP (1) EP1452893A4 (ko)
JP (1) JP2003139958A (ko)
KR (1) KR100919716B1 (ko)
CN (1) CN100595611C (ko)
WO (1) WO2003038485A1 (ko)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4200026B2 (ja) * 2003-02-06 2008-12-24 新オプトウエア株式会社 光情報記録媒体
KR100741980B1 (ko) * 2005-07-06 2007-07-23 엘지전자 주식회사 다초점 렌즈
US7612859B2 (en) 2005-10-31 2009-11-03 Hewlett-Packard Development Company, L.P. Ultra-violet radiation absorbing grid
US7876400B2 (en) 2005-10-31 2011-01-25 Hewlett-Packard Development Company, L.P. Optical modulation system
GB0522968D0 (en) 2005-11-11 2005-12-21 Popovich Milan M Holographic illumination device
US7679041B2 (en) * 2006-02-13 2010-03-16 Ge Inspection Technologies, Lp Electronic imaging device with photosensor arrays
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
US7693030B2 (en) * 2007-04-13 2010-04-06 International Business Machines Corporation Dual-path optical recording media and an apparatus for accessing thereof
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
WO2012136970A1 (en) 2011-04-07 2012-10-11 Milan Momcilo Popovich Laser despeckler based on angular diversity
WO2013027004A1 (en) 2011-08-24 2013-02-28 Milan Momcilo Popovich Wearable data display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
WO2013102759A2 (en) 2012-01-06 2013-07-11 Milan Momcilo Popovich Contact image sensor using switchable bragg gratings
CN106125308B (zh) 2012-04-25 2019-10-25 罗克韦尔柯林斯公司 用于显示图像的装置和方法
US9456744B2 (en) 2012-05-11 2016-10-04 Digilens, Inc. Apparatus for eye tracking
CN102956160B (zh) * 2012-10-15 2015-05-20 上海交通大学 基于体积全息原理的高对比度oled显示装置
US9933684B2 (en) * 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
WO2014188149A1 (en) 2013-05-20 2014-11-27 Milan Momcilo Popovich Holographic waveguide eye tracker
US9727772B2 (en) 2013-07-31 2017-08-08 Digilens, Inc. Method and apparatus for contact image sensing
WO2016020632A1 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Method for holographic mastering and replication
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US10423222B2 (en) 2014-09-26 2019-09-24 Digilens Inc. Holographic waveguide optical tracker
CN107873086B (zh) 2015-01-12 2020-03-20 迪吉伦斯公司 环境隔离的波导显示器
JP6867947B2 (ja) 2015-01-20 2021-05-12 ディジレンズ インコーポレイテッド ホログラフィック導波路ライダー
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
US10459145B2 (en) 2015-03-16 2019-10-29 Digilens Inc. Waveguide device incorporating a light pipe
WO2016156776A1 (en) 2015-03-31 2016-10-06 Milan Momcilo Popovich Method and apparatus for contact image sensing
CN108474945B (zh) 2015-10-05 2021-10-01 迪吉伦斯公司 波导显示器
US10983340B2 (en) 2016-02-04 2021-04-20 Digilens Inc. Holographic waveguide optical tracker
US10859768B2 (en) 2016-03-24 2020-12-08 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US10890707B2 (en) 2016-04-11 2021-01-12 Digilens Inc. Holographic waveguide apparatus for structured light projection
US10649143B2 (en) 2016-06-20 2020-05-12 Akonia Holographics Llc Polarization management
WO2018071714A1 (en) * 2016-10-12 2018-04-19 Akonia Holographics, Llc Spatially varying skew mirrors
US11513350B2 (en) 2016-12-02 2022-11-29 Digilens Inc. Waveguide device with uniform output illumination
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
JP2018163307A (ja) * 2017-03-27 2018-10-18 ソニー株式会社 画像表示装置、及び画像表示素子
US10930710B2 (en) * 2017-05-04 2021-02-23 Apple Inc. Display with nanostructure angle-of-view adjustment structures
CN111373305A (zh) * 2017-08-04 2020-07-03 株式会社绘画缘 偏振分光器、面光源装置以及显示装置
US11782273B2 (en) 2017-10-04 2023-10-10 Akonia Holographics Llc Comb-shifted skew mirrors
CN116149058A (zh) 2017-10-16 2023-05-23 迪吉伦斯公司 用于倍增像素化显示器的图像分辨率的系统和方法
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
US10732569B2 (en) 2018-01-08 2020-08-04 Digilens Inc. Systems and methods for high-throughput recording of holographic gratings in waveguide cells
JP7487109B2 (ja) 2018-03-16 2024-05-20 ディジレンズ インコーポレイテッド 複屈折制御を組み込むホログラフィック導波管およびその加工のための方法
WO2020023779A1 (en) 2018-07-25 2020-01-30 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
KR20200077842A (ko) * 2018-12-21 2020-07-01 엘지디스플레이 주식회사 가상 이미지를 구현하는 디스플레이 장치
WO2020168348A1 (en) 2019-02-15 2020-08-20 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
CN113728258A (zh) 2019-03-12 2021-11-30 迪吉伦斯公司 全息波导背光及相关制造方法
US10964905B2 (en) 2019-04-08 2021-03-30 Interdigital Ce Patent Holdings Organic light emitting diode cell comprising a set of right circular hollow cylinders
CN114207492A (zh) 2019-06-07 2022-03-18 迪吉伦斯公司 带透射光栅和反射光栅的波导及其生产方法
EP4004646A4 (en) 2019-07-29 2023-09-06 Digilens Inc. METHODS AND APPARATUS FOR MULTIPLYING THE IMAGE RESOLUTION AND FIELD OF VIEW OF A PIXELATED DISPLAY SCREEN
KR20220054386A (ko) 2019-08-29 2022-05-02 디지렌즈 인코포레이티드. 진공 브래그 격자 및 이의 제조 방법
WO2022014754A1 (ko) * 2020-07-16 2022-01-20 엘지전자 주식회사 가변 컬러 구조물 및 전자 기기
US20220365264A1 (en) * 2021-05-17 2022-11-17 Facebook Technologies, Llc Apochromatic liquid crystal polarization hologram device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499118A (en) * 1994-08-31 1996-03-12 Hughes Aircraft Company System for copying multiple holograms

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3298433B2 (ja) 1995-11-08 2002-07-02 日本ビクター株式会社 カラーフィルタ及びカラー画像表示装置
JPH1048423A (ja) 1996-08-07 1998-02-20 Dainippon Printing Co Ltd ホログラムカラーフィルター
WO1999024852A1 (fr) 1997-10-16 1999-05-20 Matsushita Electric Industrial Co., Ltd. Dispositif de separation de la polarisation d'elements d'hologramme, dispositif d'eclairage par polarisation et affichage d'image
JPH11271536A (ja) 1997-10-16 1999-10-08 Matsushita Electric Ind Co Ltd 画像表示装置、偏光照明装置、偏光分離素子、回折光学素子、およびホログラム素子、ならびに回折光学素子およびホログラム素子の製造方法
JPH11258426A (ja) 1998-03-11 1999-09-24 Dainippon Printing Co Ltd 反射型ホログラムからなる色分離光学素子及びそれを用いたカラー液晶表示装置
EP0971247A1 (en) * 1998-07-07 2000-01-12 Denso Corporation A hologram screen and a method of producing the same
EP1114340A1 (en) 1998-09-14 2001-07-11 Digilens Inc. Holographic illumination system and holographic projection system
EP1160635A3 (en) * 2000-05-30 2010-03-31 Dai Nippon Printing Co., Ltd. Computer-generated hologram and its fabrication process, reflector using a computer-generated hologram, and reflective liquid crystal display
JP2006066011A (ja) * 2004-08-30 2006-03-09 Sharp Corp ホログラムレーザユニットおよび光ピックアップ装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499118A (en) * 1994-08-31 1996-03-12 Hughes Aircraft Company System for copying multiple holograms

Also Published As

Publication number Publication date
KR20040047936A (ko) 2004-06-05
EP1452893A4 (en) 2009-12-30
JP2003139958A (ja) 2003-05-14
US20040257628A1 (en) 2004-12-23
EP1452893A1 (en) 2004-09-01
WO2003038485A1 (fr) 2003-05-08
CN1578918A (zh) 2005-02-09
CN100595611C (zh) 2010-03-24
US7139109B2 (en) 2006-11-21

Similar Documents

Publication Publication Date Title
KR100919716B1 (ko) 화상표시소자 및 화상표시장치
KR100833809B1 (ko) 화상 표시 소자 및 화상 표시 장치
EP0777136B1 (en) Color image display employing a color filter
JP4148343B2 (ja) 偏光分離素子、偏光変換システムおよび投射型ディスプレイシステム
EP0659024B1 (en) Illumination system for a colour image projection device and circular polarizer suitable for use in such a system
JP3298433B2 (ja) カラーフィルタ及びカラー画像表示装置
KR100928161B1 (ko) 화상 표시 장치
JPH11271744A (ja) カラー液晶表示装置
JPH0756138A (ja) カラー表示装置
US6359719B1 (en) Optical modulator and projector
JP2002023107A (ja) 画像表示素子及び画像表示装置
JP3601576B2 (ja) カラー画像表示装置
KR100254335B1 (ko) 액정표시장치
JP3647206B2 (ja) 光学変調装置及びそれを用いた投影装置
JP2001324762A (ja) 単板式液晶プロジェクタの照明光学系
JP3356714B2 (ja) 空間光変調素子とカラー表示装置
JP3327513B2 (ja) 投影型カラー液晶表示装置
JP3461606B2 (ja) 投影型カラー画像表示装置
JP3952765B2 (ja) 画像表示装置
JP4908684B2 (ja) 投影画像表示装置
JP2001166148A (ja) 画像表示装置
KR19990072383A (ko) 공간변조소자및표시장치
JPH11305041A (ja) ホログラムカラーフィルタ
JPH11194331A (ja) 空間光変調装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120917

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130913

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140912

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150911

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160919

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190916

Year of fee payment: 11