KR100839859B1 - 노광장치 및 디바이스 제조방법 - Google Patents

노광장치 및 디바이스 제조방법 Download PDF

Info

Publication number
KR100839859B1
KR100839859B1 KR1020060113670A KR20060113670A KR100839859B1 KR 100839859 B1 KR100839859 B1 KR 100839859B1 KR 1020060113670 A KR1020060113670 A KR 1020060113670A KR 20060113670 A KR20060113670 A KR 20060113670A KR 100839859 B1 KR100839859 B1 KR 100839859B1
Authority
KR
South Korea
Prior art keywords
optical system
vacuum chamber
heat
temperature
projection optical
Prior art date
Application number
KR1020060113670A
Other languages
English (en)
Other versions
KR20070053134A (ko
Inventor
쿄이치 미야자키
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20070053134A publication Critical patent/KR20070053134A/ko
Application granted granted Critical
Publication of KR100839859B1 publication Critical patent/KR100839859B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70841Constructional issues related to vacuum environment, e.g. load-lock chamber
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring

Abstract

원판의 패턴을 기판에 노광하는 노광장치는, 원판을 조명하는 조명 광을 조사하는 조명 광학계와, 조명 광에 의해 조명된 패턴을 기판에 투영하는 투영 광학계와, 조명 광학계 및 투영 광학계의 적어도 어느 하나를 수용하는 진공 챔버를 구비하고, 조명 광학계 및 투영 광학계의 적어도 어느 하나의 온도변화를 억제하기 위해서, 노광장치에는, 진공 챔버 내에서 발생하는 열 및 외부에서 진공 챔버로 들어가는 열을 흡수하도록 구성된 흡열체가 설치되어 있다.
Figure R1020060113670
노광장치, 조명 광학계, 투영 광학계, 흡열체

Description

노광장치 및 디바이스 제조방법{EXPOSURE APPARATUS AND DEVICE MANUFACTURING METHOD}
도 1a는, 본 발명의 제1 실시 예에 따른 노광장치의 전체 구성을 나타내는 측면도다.
도 1b는, 도 1a의 화살표 A의 방향에서 본 도면이다.
도 1c는, 도 1a에 나타낸 B부의 상세도다.
도 2는, 본 발명의 제2 실시 예로서, 도 1a에 나타낸 C부를 상세히 도시한 도면이다.
도 3a는, 본 발명의 제3 실시 예에 따른 노광장치의 전체구성을 나타내는 측면도다.
도 3b는, 진공 챔버에 배치된 냉각 재킷의 도면이다.
도 4는, 도 1a∼도 3a에 공통되는 광학계의 상세 구성을 도시한 도면이다.
도 5는, 종래 예에 따른 노광장치의 전체 구성을 도시한 도면이다.
도 6은, 미소 디바이스의 제조 플로우를 설명하는 도면이다.
도 7은, 웨이퍼 처리를 설명하는 도면이다.
본 발명은, 예를 들면 파장 200nm 내지 10nm의 극단 자외선 영역 또는 X선 영역의 광을 사용하여, 반도체 웨이퍼용의 단결정 기판이나 액정 디스플레이(LCD)용의 글라스 기판 등의 물체를 노광하는 기술에 관한 것이다.
종래에는, 포토리소그라피(인화) 기술을 사용해서 반도체 메모리나 논리회로 등의 미세한 반도체 소자를 제조할 때에, 레티클 또는 마스크(이하, "원판"이라고 함.)에 형성된 회로패턴을 투영 광학계를 통해서 웨이퍼 등에 투영해서 전사하는 축소 투영 노광장치가 사용되었다.
이 축소 투영 노광장치에서는, 전사할 수 있는 최소의 사이즈(해상도)는, 노광에 사용된 광의 파장에 비례하고, 투영 광학계의 개구수(NA)에 반비례한다. 따라서, 파장을 짧게 할수록, 해상도는 증가한다. 이 때문에, 최근의 반도체 소자의 미세화에의 요구에 따라 노광 광의 파장이 점점 더 짧아지고 있다. 이와 같이, 초고압 수은 램프(i선(파장 약 365nm)), KrF 엑시머 레이저(파장 약 248nm), 및 ArF 엑시머 레이저(파장 약 193nm) 등, 사용되는 자외선 광의 파장은 짧아지고 있다.
그렇지만, 반도체 소자의 미세화가 급속하게 증가하고 있어, 자외선 광을 사용하는 리소그라피에서는 그것의 제조에 한계가 있다. 따라서, 0.1㎛ 이하의 대단히 미세한 회로패턴을 효율적으로 전사하기 위해서는, 자외선 광 파장보다도 짧은, 파장 10∼15nm 정도의 극단 자외선 영역의 광을 사용하는 EUV 노광장치가 개발되고 있다.
노광 광의 단파장화에 따라 물질에 의한 광의 흡수가 대단히 커지므로, 가시광이나 자외선 광으로 사용될 수 있는 광의 굴절을 이용하는 굴절소자, 즉, 렌즈를 사용하는 것은 어렵다. 또한, EUV 광의 파장영역에서 사용될 수 있는 글라스가 존재하지 않으므로, 광 반사를 이용하는 반사소자, 즉, 미러 부재(예를 들면, 다층 미러)만으로 광학계를 구성하는 반사형 광학계를 사용한다.
미러 부재는 노광 광을 모두 반사하는 것은 아니고, 30% 이상의 노광 광을 흡수한다. 흡수된 노광 광은, 부분적인 열로 변화되고 미러의 표면 형상을 변형시켜서 그것의 광학성능(특히, 결상 성능)의 열화를 일으킨다. 그 결과, 미러는, 온도변화에 의한 미러 형상의 변화를 줄이기 위해서, 예를 들면 10ppb의 선 팽창률 등의 선 팽창률이 작은 저열 팽창 글라스로 구성된다.
상술한 저열 팽창 글라스의 대표적인 예로서는 Zerodur(SHOTT제)가 있다. 이 Zerodur의 경우에는, 그것의 열 팽창률이 실온 부근에서 제로가 되는 온도(제로 크로싱 온도)가 존재하므로, 그 온도 부근에서 Zerodur를 사용하는 것이 고려되고 있다.
EUV 노광장치는, 0.1㎛ 이하의 회로패턴의 노광에 사용되기 때문에, 선폭 정밀도가 대단히 엄격하고, 미러의 표면 형상은 0.1nm 정도 이하의 변형밖에 허용되지 않는다. 따라서, 미러의 선 팽창율을 10ppb로 해도, 온도가 서서히 상승하고, 미러 표면의 형상이 변화한다. 예를 들면, 미러의 두께가 50mm이라고 하면, 0.2℃의 온도상승에 의해, 미러 표면의 형상이 0.1nm 변화한다.
이 문제를 해결하기 위해서, EUV 노광장치가 진공 중에 배치되기 때문에, 광 학계의 미러를 둘러싸도록 설치된 냉각판으로부터의 복사나 열 전달을 포함하는 방법 등의 다양한 방법이 제안되어 있다.
그렇지만, EUV 노광장치에 의해 발생한 열은 노광 열뿐만이 아니다. 대표적인 열원은 진공 챔버에 부착되는 진공 펌프(진공 챔버에 대하여 외부의 열)이거나, 조명 광학계 혹은 투영 광학계 등의 내부에 배치되는 액추에이터나 센서(진공 챔버에 대하여 내부의 열)이다.
일본국 공개특허공보 특개 2002-124461호에는, 이 문제를 해결하는 방법이 제안되어 있다.
상기 언급한 일본국 공개특허공보 특개 2002-124461호에 개시된 방법에 대해서 도 5를 사용하여 설명한다.
도 5에 있어서, 광원(LA)으로부터 사출되는 EUV 광(PB)은 방사 시스템(IL)을 통해서 마스크(MA)에 집광되고, 그 다음 투영 시스템(PL)을 통해서 기판(W) 위에 집광된다. 참조문자 MT 및 WT는, 마스크(MA) 및 기판(W)을 각각 주사하기 위한 테이블이다.
이들 광학계는 진공펌프(VP)를 갖는 진공 챔버(VC)에 수용되어 있고, 진공펌프(VP)의 복사열을 복사율이 낮은 열 전향판(TB)을 이용해 전향해서 투영 시스템(PL) 등에 영향을 미치지 않도록 구성되어 있다. 또한, 이 시스템은, 투영 시스템(PL)이나 기판 테이블(WT) 등으로부터 발생하는 열을 밀폐체인 복사율이 높은 판 TE로 둘러싸도록 구성되어 있다.
상기한 바와 같이, 진공 분위기를 필요로 하는 노광장치에 따르면, 진공펌 프(VP)으로부터의 복사열을, 복사율이 낮은 판 TB 등으로 전향하고, 그 밖의 열원으로부터의 열을, 복사율이 높은 판 TE 등으로 흡수한다.
그렇지만, 전향된 열이나 흡수된 열은, 진공 분위기로 인해 진공 챔버(VC) 밖으로 방출되는 것이 어렵기 때문에, 진공 챔버(VC) 내부의 온도는 상승한다. 진공 분위기 내에서 사용되는 저열 팽창 글라스(Zerodur)는, 상술한 바와 같이 제로 크로싱 온도 부근에서 사용된다. 이 때문에, 진공 챔버(VC) 내의 온도를 일정하게 유지하더라도, 진공펌프(VP) 등으로부터의 복사열의 영향으로 인해 글라스 주변의 온도는 제로 크로싱 온도 이상 상승하고, 이상적인 온도 환경에서는 글라스를 사용할 수 없다고 하는 문제가 있다.
본 발명은, 상기의 문제를 감안해서 이루어진 것이고, 본 발명의 목적은, 온도 변화에 기인하는 미러 부재의 변형에 의한 수차 변동을 줄일 수 있는 기술을 달성하는 것에 있다.
상기 목적을 달성하기 위해, 본 발명에 따르면, 원판의 패턴을 기판에 노광하는 노광장치로서,
상기 원판을 조명하는 조명 광을 조사하도록 구성된 조명 광학계와,
상기 조명 광에 의해 조명되는 상기 패턴을 상기 기판에 투영하도록 구성된 투영 광학계와,
상기 조명 광학계 및 상기 투영 광학계의 적어도 어느 하나를 수용하도록 구 성된 진공 챔버를 구비하고,
상기 조명 광학계 및 상기 투영 광학계의 적어도 어느 하나의 온도변화를 억제하기 위해서, 상기 노광장치에, 상기 진공 챔버 내에서 발생하는 열 및 외부에서 상기 진공 챔버로 들어가는 열을 흡수하도록 구성된 흡열체를 설치한 것을 특징으로 하는 노광장치가 제공된다.
본 발명에 따르면, 진공 챔버 내에서 발생한 열이나 외부에서 진공 챔버로 들어가는 열에 의한 온도상승을 억제하는 것과, 진공 챔버 내부의 온도를 일정하게 유지하는 것이 가능하다. 따라서, 진공 챔버 내부의 미러 온도를 일정한 온도(제로 크로싱 온도)로 유지할 수 있고, 또 미러 부재의 변형을 줄일 수 있다. 또한, 이 온도변화에 기인하는 미러 부재의 변형에 의한 수차 변동도 감소한다.
더 나아가서 본 발명의 특징들은 (첨부된 도면을 참조하여) 이하에 예시한 실시 예의 설명으로부터 명확해질 것이다.
이하에, 본 발명의 실시 예를 첨부된 도면에 의거하여 상세히 설명한다. 이하에 설명하는 실시 예는, 본 발명을 실현하기 위한 예이며, 본 발명이 적용되는 장치의 구성 및 각종 조건에 따라 적당하게 수정 또는 변경되어야 한다. 예를 들면, 본 발명은, EUV 광뿐 아니라, X선을 광원으로서 이용할 수 있고, 반도체 웨이퍼용의 단결정 기판이나 액정 디스플레이(LCD)용의 글라스 기판을 노광하는 노광장치뿐만 아니라 디바이스 제조방법에도 적용가능하다.
[제1 실시 예]
도 1a는 본 발명의 제1 실시 예에 따른 노광장치의 전체 구성을 나타내는 측 면도이고, 도 1b은 화살표 A의 방향에서 본 도면이며, 도 1c은 B부의 상세도다.
도 1a-1c에 있어서, 참조번호 100은 광원, 참조번호 12는 광원(100)을 둘러싸는 진공 챔버, 참조번호 21은 진공 챔버(12)의 내부를 진공 분위기로 만들기 위한 진공펌프, 참조번호 22는 진공 챔버(12)와 진공펌프(21)를 연결하는 결합 부재다.
참조번호 200은 조명 광학계(경통), 참조번호 400은 투영 광학계(경통), 참조번호 350은 마스크(300)를 구동하는 마스크 스테이지, 참조번호 550은 피처리체(웨이퍼;500)를 구동하는 웨이퍼 스테이지다. 또한, 참조번호 14는 상술한 각 구성물을 둘러싸는 진공 챔버, 참조번호 23은 진공 챔버(14) 내부를 진공 분위기로 만들기 위한 진공펌프, 참조번호 24는 진공 챔버(14)와 진공펌프(23)를 연결하는 결합 부재다.
여기서는, 광원(100), 조명 광학계(200) 및 투영 광학계(400)에 대해서 도 4를 사용해서 상세히 설명한다.
도 4에 있어서, 노광장치(10)는 노광용의 조명 광으로서 EUV 광(예를 들면 파장 13.4nm)을 사용해서 스텝 앤드 스캔(step and scan) 방식에 따른 투영 노광을 행하고, 광원(100), 조명 광학계(200), 마스크(300), 투영 광학계(400), 및 피처리체(500)를 포함한다. 노광장치(10)는, 마스크(300)가 탑재되는 마스크 스테이지(350) 및 피처리체(500)가 탑재되는 웨이퍼 스테이지(550)를 더 포함한다. 마스크 스테이지(350)와 웨이퍼 스테이지(550)는 미도시된 제어기에 접속되어서 구동제어된다.
진공 챔버(12) 내에서 발생한 EUV 광속(160)은, 윈도우(210)를 통해서 조명 광학계(200) 및 투영 광학계(400)가 배치되어 있는 진공 챔버(14)로 들어간다. 그 후에, EUV 광속(16)은 조명 광학계(200)의 미러 군에 의해 반사되고, 미러(286)에 의해 위쪽으로 방사되어 마스크(300)에 입사된다. 그 다음, 이 마스크(300) 상의 패턴이 투영 광학계(400)를 통해서 피처리체(웨이퍼; 500)에 결상된다.
도 1a-1c의 설명으로 돌아가서, 진공 챔버(14)의 내벽 부근에는, 광원(100)로부터의 광이 통과하는 윈도우(210)와, 진공펌프(23)가 결합 부재(24)를 통해서 장치에 부착되어 있는 부분을 제외하고, 전체 영역 위에 열 흡수판(26)이 배치되어 있다. 더욱, 열 흡수판(26)은 열전도체(33)를 통해서 진공 챔버(14)의 벽에 열 교환가능하게 연결되어 있다.
상술한 구성에 대해서는 도 1c에 상세히 나타나 있다. 예를 들면, 열전도체(33)의 양단에 수나사가 삽입되는데, 일단은 진공 챔버(14)의 벽에 형성된 암나사에 고정되고, 타단은 열 흡수판(26)을 끼운 후 너트(35)와 체결된다.
별도의 구성으로서, 열 흡수판(26)과 진공 챔버(14)의 벽 사이의 공간을, 인듐 등의 열전도율이 큰 유연한 금속으로 채우고, 열 흡수판(26)을 나사 등으로 진공 챔버(14)의 벽에 체결해도 된다. 금속이 유연하다고 하는 조건은, 열 흡수판(26) 및 진공 챔버(14)의 벽을 밀착시키기 위해서 필요하다.
이상의 예 외에도, 열 흡수판(26)과 진공 챔버(14)의 벽 사이에서 열 교환 가능하게 열 흡수판(26)이 진공 챔버(14)의 벽과 연결되어 있으면 별도의 형태를 적용해도 된다.
열 흡수판(26)에 필요한 조건은, 진공 챔버(14) 내부로 향하는 면의 복사율이 높은 것과 열 흡수판(26)의 모재의 열전도율이 큰 것이다. 이들 조건은, 예를 들면 모재로서 구리(열전도율:403W/m·K) 또는 알루미늄(열전도율:238W/m·K)을 사용하고, 표면처리로서 A1203(알루미나 세라믹; 복사율:0.6정도) 또는 A1203과 SiO2의 혼합물(복사율:0.85정도)로 열 분무를 행할 때 충족된다.
열전도체(33)에 필요한 조건은, 열전도율이 큰 것이다. 이것은 예를 들면 구리(열전도율:403W/m·K), 알루미늄(열전도율:238W/m·K) 또는 SiC(열전도율:150W/m·K)를 이용함으로써 달성될 수 있다.
더욱, 진공 챔버(14)의 벽은 큰 열전도율을 갖고, 이것은 예를 들면 알루미늄(열전도율:238W/m·K)을 사용함으로써 달성될 수 있다.
진공 챔버(14)는, 온도 조절 챔버(27) 내에 배치된다. 온도 조절 챔버(27)로부터는 일정한 온도로 관리되는 공기류(31)가 분출한다. "일정한 온도"란, 예를 들면 투영 광학계(400) 내부 또는 조명 광학계(200) 내부의 온도가 제로 크로싱 온도가 되는 온도를 말한다. 이와 관련하여, 상술한 공기류(31) 대신에, 제로 크로싱 온도로 관리되는 다른 냉각매체(불활성 가스 등)를 사용해서 열을 제거해도 된다.
투영 광학계(경통;400) 내에는, 경통내 온도 센서(39)가 배치되어 있다. 그 온도정보가 온도 조절 챔버(27)의 온도 제어를 행하는 온도 조절 챔버의 온도 제어기(38)에 전달된다. 그리고, 예를 들면, 경통내 온도 센서(39)가 검출한 경통 내부의 온도가 제로 크로싱 온도보다 높으면, 온도 조절 챔버(27)로부터 분출하는 공기 류(31)의 온도를 하강시킴으로써, 투영 광학계(경통;400) 내의 온도를 제로 크로싱 온도로 할 수 있다.
또한, 투영 광학계(400) 내부의 온도와 진공 챔버(14) 외부의 온도 사이의 상호관계를 미리 알 수 있으면, 경통내 온도 센서(39)의 검출 온도를 피드백하지 않고, 진공 챔버 벽 온도센서(40)의 검출 온도를, 온도 조절 챔버 온도 제어기(38)로 피드백해도 된다. 또한, 피드백 제어를 위한 기본정보가 되는 온도는, 경통내 온도센서(39)로부터의 온도가 아니고, 미도시된 조명 광학계(경통;200) 내에 배치된 온도센서로부터의 온도여도 좋다.
상술한 진공 챔버(14) 내에 배치된 조명 광학계(200) 및 투영 광학계(400)의 각 미러는, 일정한 온도 환경에서 사용하는 것이 바람직하다. 왜냐하면, 온도변화에 의해 면 변형이 발생하고, 그러한 변형의 크기가 변화되어 수차 변동을 일으키기 때문이다. 특히, 다양한 미러 중에서, EUV 노광장치에서 사용할 가능성이 높은 저열 팽창 글라스인 Zerodur(SHOTT제)에 대해서는, 그것의 열팽창율이 실온 부근에서 제로가 되는 온도(제로 크로싱 온도)가 존재한다. 따라서, 그 온도에서 일정하게 온도를 유지함으로써 면 변형을 제로(또는 면 변형을 감소)로 만드는 것이 가능하기 때문에, 온도를 제로 크로싱 온도로 유지하는 것은 대단히 중요하다.
그러나, 진공 챔버(14) 내에는 다양한 요인에 의해 열이 발생해 온도가 상승한다.
우선 고려되는 요인은, 미러에 조사하는 노광 광에 의해 발생하는 열이고, 조명 광학계(200) 및 투영 광학계(400) 내에 배치되는 미러 구동용의 액추에이터나 미러 위치 판정용 센서로부터 발생하는, 진공 챔버(14) 내에서 발생한 열이다.
이들 종류의 열이 발생하면, 결국은 복사열이 되고, 진공 챔버(14)의 내벽 부근에 배치되는 열 흡수판(26)에 도달한다. 그 다음, 그 열은 열전도체(33) 및 진공 챔버(14)의 벽을 통해서 진공 챔버(14)의 외벽에 도달한다. 진공 챔버(14)의 외벽은, 온도 조절 챔버(27)로부터 분출되는 공기류(31)에 노출되기 때문에, 그 열이 제거되고, 일정한 온도로 관리되는 공기류(31)에 의해, 진공 챔버(14) 내부의 온도가 일정해진다.
다음에 고려될 수 있는 요인은, 진공 챔버(14)에 부착되는 진공펌프(23) 등, 외부로부터의 열이다. 도 1b에 나타나 있는 바와 같이, 이 열(34)은 투영 광학계(400) 등에 복사열로서 도달하는 경우가 있다. 광학계에 도달한 열은, 투영 광학계(400) 내에 배치된 미러의 온도를 상승시키고, 면 변형을 악화시킨다.
이러한 종류의 문제를 해결하기 위해서, 투영 광학계(400)의 외벽의 적어도 일부를, 복사율이 낮은(반사율이 큰) 열 반사판(32)으로 덮으면 된다. 이렇게 함으로써, 투영 광학계(400)에 도달한 열은 열 반사판(32)에 의해 반사되고, 열 흡수판(26)에 도달한다. 그 후에 내부에서 발생한 열과 같이 되므로, 여기에서는 그 원리 및 효과 등에 관한 설명은 생략한다.
상술한 열 반사판(32)을, 진공펌프(23)로부터의 열 등, 외부로부터의 복사열에 대하여 효과적인 부분에 배치하는 것이 중요하다. 본 실시 예에서는, 투영 광학계(400) 부근에 열 반사판(32)을 설치했지만, 노광장치 전체의 배치에 근거한 효과적인 장소가 조명 광학계(200)인 경우에는, 열 반사판(32)을, 조명 광학계(200)의 외벽에, 또는, 조명 광학계(200) 및 투영 광학계(400) 양쪽에 배치하면 된다.
또한, 열 반사판(32)은, 투영 광학계(400)의 경통에 별도의 부재로 부착될 수 있거나, 또는, 투영 광학계(400)의 경통 자체가 복사율이 낮은 부재로 구성되어도 된다.
상술한 바와 같이, 진공 챔버(14) 내에서 발생한 열과, 진공 챔버(14) 외부에서 발생한 열 양쪽 모두가, 최종적으로 열 흡수판(26)에 도달하고, 열전도체(33) 및 진공 챔버(14)를 통해서 외벽에 도달하며, 일정 온도로 관리된 온도 조절 챔버(27)로부터의 공기류(31)에 노출된다. 이 때문에, 진공 챔버(14) 내부의 온도를 제로 크로싱 온도로 일정하게 유지하는 것이 가능하다. 따라서, 온도 변화에 기인하는 미러 부재의 변형에 의한 수차 변동을 제로로 하거나 줄이는 것이 가능하다.
[제2 실시 예]
제2 실시 예는, 특히 진공 챔버(14) 외부에서 발생하는 진공펌프(23)로부터의 열을 효과적으로 제거하는 구성에 관한 것이다.
도 2는, 본 발명에 따른 제2 실시 예로서, 도 1a의 C부를 상세히 도시한 도면이다.
도 2에 있어서, 진공 펌프(23)와 진공 챔버(14)를 연결하는 결합부재(24)의 내벽에는 표면 처리층(30)이 형성되어 있다. 표면 처리층(30)에 필요한 조건은, 복사율이 높은 것이다. 이것은, 제1 실시 예에서도 설명한 대로, 표면 처리로서 A1203(알루미나 세라믹, 복사율:0.6 정도) 또는 A1203과 SiO2의 혼합물(복사율:0.85 정도)로 열 분무를 행함으로써 달성된다.
이러한 종류의 구성에 따르면, 진공펌프(23)에서 발생한 열(34)은, 표면 처리층(30)에 의해 흡수되어서 결합부재(24)의 외벽에 도달하고, 그 다음 온도 조절 챔버(27)로부터 분출하는 공기류(31)에 의해 냉각된다. 이 때문에, 열(34)이 진공 챔버(14) 내부로 침입하는 것이 제거되거나 감소하고, 진공 챔버(14) 내부의 온도환경을 제로 크로싱 온도로 일정하게 유지하는 효과가 증가한다.
본 실시 예에서는 결합부재(24)의 냉각을, 온도 조절 챔버(27)로부터 분출하는 공기류(31)로서 설명했지만, 냉각 재킷을 결합부재(24)에 감고, 제로 크로싱 온도로 관리되는 냉각매체를 흘려보내는 것으로 열(34)을 제거해도 된다. 또한, 결합부재(24)의 내벽을 복사율이 높은 표면 처리층(30)으로 덮는 구성을 채택하지만, 도 1a에 나타낸 바와 같이, 열전도체(33)를 통해서 열 흡수판(26)을 결합부재(24)의 내벽 부근에 배치해도 된다.
[제3 실시 예]
제3 실시 예는, 진공 챔버(14)의 냉각에 공기류(31)가 아니고, 냉각 재킷(25)을 사용하는 점에서 제1 제1 실시 예와 다르다.
도 3a는, 본 발명의 제3 실시 예에 따른 노광장치의 전체 구성을 나타내는 측면도이고, 도 3b는, 진공 챔버에 배치되는 냉각 재킷의 도면이다. 이하에서는, 도 1a-1c와 동일한 구성에는 동일한 부호를 부착하고 그 설명은 생략한다.
도 3a-3b에 나타나 있는 바와 같이, 진공 챔버(14) 내부 또는 외부에서 발생한 열은, 열 흡수판(26) 및 열전도체(33)를 통해서 진공 챔버(14)의 벽에 도달한 다.
진공 챔버(14)의 외부는, 열교환 가능하게 부착되는 냉각 재킷(25)으로 덮여 있다. 냉각 재킷(25)은, 구체적으로는, 도 3b에 나타나 있는 바와 같이, 파이프(25A) 및 튜브(25B)로 구성되고, 칠러(chiller;36)로 온도 제어된 냉각 매체가 그것을 통해서 순환한다. 냉각매체로서는, 물 등의 열용량이 큰 유체가 최상이다.
칠러(36)의 용도는, 냉각매체를 일정한 온도로 유지함으로써 투영 광학계(400) 또는 조명 광학계(200)의 내부를 제로 크로싱 온도로 하는 것과, 그 냉각매체를 공급관(28)을 통해서 공급하는 동시에 회수관(29)을 통해서 회수함으로써 냉각매체를 순환시키는 것이다.
투영 광학계(경통; 400) 내에는, 경통내 온도센서(39)가 배치되어 있고, 그것의 온도정보가 칠러(36)의 온도를 제어하는 칠러 온도 제어기(41)에 전달된다. 그리고, 예를 들면 경통내 온도센서(39)가 검출한 경통 내부의 온도가 제로 크로싱 온도보다 높으면, 칠러(36)로부터 흐르는 냉각매체의 온도를 하강시킴으로써, 투영 광학계(경통;400) 내부의 온도를 제로 크로싱 온도로 하는 것이 가능하다.
또한, 투영 광학계(400) 내부의 온도와 진공 챔버(14) 외부의 온도 간의 상호 관계를 미리 알 수 있으면, 경통내 온도센서(39)의 검출 온도를 칠러 온도 제어기(41)로 피드백하지 않고, 진공 챔버 벽 온도센서(40)의 검출 온도를 피드백해도 된다.
또한, 피드백 제어의 기본정보가 되는 온도는, 투영 광학계(경통;400) 내에 배치된 경통내 온도센서(39)로부터의 온도가 아니고, 미도시된 조명 광학계(경 통;200) 내에 배치된 온도센서로부터의 온도여도 된다.
상술한 바와 같이, 진공 챔버(14) 내에서 발생한 열과, 진공 챔버(14) 외부에서 발생한 열 양쪽 모두가, 최종적으로 열 흡수판(26)에 도달하고, 열전도체(33)와 진공 챔버(14)를 통해서 외벽에 도달하며, 일정 온도로 관리된 칠러(36)로부터의 냉각 매체가 흐르는 냉각 재킷(25)에 접촉한다. 이 때문에, 투영 광학계(경통;400) 내부의 온도, 또는 조명 광학계(경통;200) 내부의 온도를, 제로 크로싱 온도로 일정하게 유지하는 것이 가능하다. 따라서, 온도 변화에 기인하는 미러 부재의 변형에 의한 수차 변동을 제로로 하거나 줄이는 것이 가능하다.
[디바이스 제조방법]
다음에는 상술한 노광장치를 이용하는 디바이스 제조방법의 일 실시 예를 설명한다.
도 6은, 미소 디바이스(IC 또는 LSI, 액정 패널, CCD, 박막 자기 헤드, 또는 마이크로 머신 등의 반도체 칩)의 제조 플로우를 나타낸다. 스텝 S1(회로 설계)에서는, 반도체 소자의 회로를 설계한다. 스텝 S2(노광 제어 데이터 작성)에서는, 노광장치의 노광 제어 데이터를, 설계된 회로 패턴에 근거해서 작성한다. 스텝 S3(웨이퍼 제조)에서는, 실리콘 등의 재료를 이용해서 웨이퍼를 제조한다. 전처리라고 불리는 스텝 S4(웨이퍼 처리)에서는, 준비된 노광 제어 데이터를 수신한 노광장치와 웨이퍼를 이용하는 리소그라피에 의해 웨이퍼 위에 실제의 회로를 형성한다. 후처리라고 불리는 스텝 S5(조립)은, 스텝 S4에서 제조된 웨이퍼를 이용해서 반도체 칩을 형성하는 스텝이다. 이 스텝은 조립(다이싱 및 본딩) 및 포장(칩 캡슐화) 등 의 처리를 포함한다. 스텝 S6(검사)에서는, 스텝 S5에서 제조된 반도체 소자에 대하여 작동 확인 테스트 및 내구력 테스트 등의 검사를 한다. 이들 스텝 후, 반도체 소자를 완성해서 출하한다(스텝 7).
도 7은 웨이퍼 처리의 상세 플로우를 나타낸다. 스텝 S11(산화)에서는, 웨이퍼 표면을 산화한다. 스텝 S12(CVD)에서는, 웨이퍼 표면 위에 절연막을 형성한다. 스텝 S13(전극 형성)에서는, 증기 증착으로 웨이퍼 위에 전극을 형성한다. 스텝 S14(이온 주입)에서는, 웨이퍼에 이온을 주입한다. 스텝 S15(레지스트 처리)에서는, 웨이퍼에 감광제를 인가한다. 스텝 S16(노광)에서는, 상술한 노광장치를 이용하는 노광에 의해 웨이퍼 위에 회로 패턴을 인쇄한다. 스텝 S17(현상)에서는, 노광된 웨이퍼를 현상한다. 스텝 S18(에칭)에서는, 현상된 레지스트 이미지 이외의 부분을 에칭한다. 스텝 S19(레지스터 박리)에서는, 에칭 후에 잔존하는 불필요한 레지스트를 제거한다. 이들 스텝을 반복해서 웨이퍼 위에 다수의 회로 패턴을 형성한다.
본 발명은, 예시한 실시 예를 참조하여 설명했지만, 본 발명은 이 예시한 실시 예에 한정되지 않는다는 것을 이해해야 한다. 이하의 청구범위의 청구항들의 범주는 그러한 모든 변형과 균등 구조 및 기능을 포함하도록 가장 넓게 해석되어야 한다.
본 발명에 의하면, 온도 변화에 기인하는 미러 부재의 변형에 의한 수차 변동을 줄일 수 있다.

Claims (9)

  1. 원판의 패턴을 기판에 노광하는 노광장치에 있어서,
    상기 원판을 조명하는 조명 광을 조사하도록 구성된 조명 광학계와,
    상기 조명 광에 의해 조명되는 상기 패턴을 상기 기판에 투영하도록 구성된 투영 광학계와,
    상기 조명 광학계 및 상기 투영 광학계의 적어도 어느 하나를 수용하도록 구성된 진공 챔버를 구비하고,
    상기 조명 광학계 및 상기 투영 광학계의 적어도 어느 하나의 온도변화를 억제하기 위해서, 상기 노광장치에, 상기 진공 챔버 내에서 발생하는 열과 외부에서 상기 진공 챔버로 들어가는 열을 흡수하도록 구성된 흡열체를 설치한 것을 특징으로 하는 노광장치.
  2. 제 1 항에 있어서,
    상기 흡열체는,
    상기 조명 광학계 및 상기 투영 광학계의 경통 외표면의 적어도 일부에 배치되는 제1 판재와,
    상기 제1 판재의 복사율 보다 큰 복사율을 갖고 상기 조명 광학계 및 상기 투영 광학계의 상기 경통 주위에 배치되는 제2 판재와,
    상기 각 제2 판재 및 상기 진공 챔버의 벽과 열교환 가능하게 접합되는 열전도체와,
    상기 진공 챔버를 둘러싸는 챔버로부터 상기 진공 챔버의 외벽으로 분출하는 공기류 또는 냉각매체를 갖는 것을 특징으로 하는 노광장치.
  3. 제 1 항에 있어서,
    상기 진공 챔버 내에 들어가는 열은, 상기 진공 챔버에 연결되는 진공펌프의 복사열이며,
    그 복사열을, 상기 진공 챔버와 상기 진공펌프를 연결하는 결합부재가 흡수하고, 상기 결합부재를, 상기 챔버로부터 분출하는 공기류 또는 냉각매체가 냉각하는 것을 특징으로 하는 노광장치.
  4. 제 3 항에 있어서,
    상기 진공 챔버의 벽은,
    상기 진공 챔버 내의 열을 흡수하고 상기 챔버로부터 분출하는 공기류 또는 냉각매체에 의해 냉각되도록 표면 처리층을 갖는 것을 특징으로 하는 노광장치.
  5. 제 3 항에 있어서,
    상기 결합부재의 내벽은,
    상기 진공펌프에 의해 발생한 열을 흡수하고 상기 챔버로부터 분출하는 공기류 또는 냉각매체에 의해 냉각되도록 표면 처리층을 갖는 것을 특징으로 하는 노광장치.
  6. 제 1 항에 있어서,
    상기 흡열체는,
    상기 조명 광학계 및 상기 투영 광학계의 경통 외표면의 적어도 일부에 배치되는 제1 판재와,
    상기 제1 판재의 복사율 보다 큰 복사율을 갖고 상기 조명 광학계 및 상기 투영 광학계의 상기 경통 주위에 배치되는 제2 판재와,
    상기 각 제2 판재 및 상기 진공 챔버의 벽과 열교환 가능하게 접합되는 열전도체와,
    상기 진공 챔버의 외벽에 냉각 매체를 순환시키는 냉각 통로를 갖는 것을 특징으로 하는 노광장치.
  7. 제 1 항에 있어서,
    상기 진공 챔버 내의 온도는,
    상기 공기류 또는 상기 냉각 매체의 온도를 제어함으로써 상기 조명 광학계 및 상기 투영 광학계의 적어도 하나에 포함된 광학부재의 열에 대한 선 팽창률이 10ppb 이하와 제로 사이에 있는 값이 되도록 유지되는 것을 특징으로 하는 노광장치.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    상기 조명 광학계는 파장 200nm~10nm의 극단 자외선 영역 또는 X선 영역의 광을 발생하고,
    상기 조명 광학계 및 투영 광학계는, 상기 극단 자외선 영역 또는 X선 영역의 광을 반사시키는 미러 부재를 구비하는 것을 특징으로 하는 노광장치.
  9. 청구항 1 내지 7 중 어느 한 항에 기재된 노광장치를 사용해서 기판을 노광하는 공정과,
    상기 기판을 현상하는 공정을 포함하는 것을 특징으로 하는 디바이스 제조방법.
KR1020060113670A 2005-11-18 2006-11-17 노광장치 및 디바이스 제조방법 KR100839859B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2005-00334464 2005-11-18
JP2005334464A JP2007142190A (ja) 2005-11-18 2005-11-18 露光装置及びデバイス製造方法

Publications (2)

Publication Number Publication Date
KR20070053134A KR20070053134A (ko) 2007-05-23
KR100839859B1 true KR100839859B1 (ko) 2008-06-20

Family

ID=37846925

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060113670A KR100839859B1 (ko) 2005-11-18 2006-11-17 노광장치 및 디바이스 제조방법

Country Status (4)

Country Link
US (1) US7804578B2 (ko)
EP (1) EP1788447A3 (ko)
JP (1) JP2007142190A (ko)
KR (1) KR100839859B1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103060B2 (ja) * 2007-06-05 2012-12-19 東京応化工業株式会社 冷却装置及び基板の処理装置
WO2009039883A1 (en) * 2007-09-26 2009-04-02 Carl Zeiss Smt Ag Optical imaging device with thermal stabilization
JP5171482B2 (ja) * 2008-08-27 2013-03-27 キヤノン株式会社 露光装置およびデバイス製造方法
JP2010129687A (ja) * 2008-11-26 2010-06-10 Nikon Corp 真空装置、光源装置、露光装置及びデバイスの製造方法
JP5495547B2 (ja) * 2008-12-25 2014-05-21 キヤノン株式会社 処理装置、およびデバイス製造方法
JP2011029511A (ja) * 2009-07-28 2011-02-10 Nikon Corp 光学系、露光装置及びデバイスの製造方法
US8872142B2 (en) 2010-03-18 2014-10-28 Gigaphoton Inc. Extreme ultraviolet light generation apparatus
KR102002269B1 (ko) * 2010-07-30 2019-07-19 칼 짜이스 에스엠티 게엠베하 Euv 노광 장치
DE102011086457A1 (de) * 2011-11-16 2012-12-20 Carl Zeiss Smt Gmbh Euv-abbildungsvorrichtung
CN110291462B (zh) * 2017-02-01 2021-07-20 卡尔蔡司Smt有限责任公司 设备和操作设备的方法
US10943761B2 (en) 2017-03-07 2021-03-09 Asml Netherlands B.V. System for evacuating a chamber
NL2020353A (en) * 2017-04-11 2018-10-17 Asml Netherlands Bv Lithographic apparatus
JP7163073B2 (ja) * 2018-06-04 2022-10-31 株式会社ニューフレアテクノロジー 真空装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142395A (ja) * 2001-11-08 2003-05-16 Canon Inc 温度制御流体供給装置、及びその装置を備える露光装置と半導体デバイス製造方法
KR20040007454A (ko) * 2001-02-26 2004-01-24 가부시키가이샤 니콘 극단 자외광 발생장치, 이를 사용한 노광장치 및 반도체제조방법
JP2004336026A (ja) * 2003-04-15 2004-11-25 Canon Inc 温度調節装置及びそれを有する露光装置、デバイスの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877843A (en) * 1995-09-12 1999-03-02 Nikon Corporation Exposure apparatus
AU1053199A (en) * 1997-11-14 1999-06-07 Nikon Corporation Exposure apparatus and method of manufacturing the same, and exposure method
US6630984B2 (en) 2000-08-03 2003-10-07 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
TW589915B (en) * 2002-05-24 2004-06-01 Sanyo Electric Co Electroluminescence display device
JP4065528B2 (ja) 2003-03-10 2008-03-26 キヤノン株式会社 恒温真空容器及びそれを用いた露光装置
EP1491955A1 (en) 2003-06-27 2004-12-29 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
JP2005142382A (ja) * 2003-11-07 2005-06-02 Canon Inc 露光装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040007454A (ko) * 2001-02-26 2004-01-24 가부시키가이샤 니콘 극단 자외광 발생장치, 이를 사용한 노광장치 및 반도체제조방법
JP2003142395A (ja) * 2001-11-08 2003-05-16 Canon Inc 温度制御流体供給装置、及びその装置を備える露光装置と半導体デバイス製造方法
JP2004336026A (ja) * 2003-04-15 2004-11-25 Canon Inc 温度調節装置及びそれを有する露光装置、デバイスの製造方法

Also Published As

Publication number Publication date
JP2007142190A (ja) 2007-06-07
US7804578B2 (en) 2010-09-28
EP1788447A3 (en) 2009-12-09
EP1788447A2 (en) 2007-05-23
US20070115444A1 (en) 2007-05-24
KR20070053134A (ko) 2007-05-23

Similar Documents

Publication Publication Date Title
KR100839859B1 (ko) 노광장치 및 디바이스 제조방법
US10324383B2 (en) Chucks and clamps for holding objects of a lithographic apparatus and methods for controlling a temperature of an object held by a clamp of a lithographic apparatus
US7212274B2 (en) Cooling system, exposure apparatus having the same, and device manufacturing method
US7158209B2 (en) Holding mechanism in exposure apparatus, and device manufacturing method
JP4965829B2 (ja) 真空用露光装置
JP2006216733A (ja) 露光装置、光学素子の製造方法及びデバイス製造方法
JP2008270739A (ja) 光学装置、多層膜反射鏡、露光装置、及びデバイス製造方法
JP4307130B2 (ja) 露光装置
US20090103063A1 (en) Cooling apparatus for optical member, barrel, exposure apparatus, and device manufacturing method
EP1569036B1 (en) Exposure apparatus and device manufacturing method
US20050128446A1 (en) Exposure apparatus and device manufacturing method
JP2004247438A (ja) 冷却装置
JP2004228456A (ja) 露光装置
US7102727B2 (en) Optical system for use in exposure apparatus and device manufacturing method using the same
JP2005175490A (ja) リソグラフィ装置及びデバイス製造方法
JP2005033179A (ja) 露光装置及びデバイス製造方法
JP2004080025A (ja) 冷却装置及び方法、当該冷却装置を有する露光装置
JP2006073895A (ja) 冷却装置、露光装置及びデバイス製造方法
JP4393227B2 (ja) 露光装置、デバイスの製造方法、露光装置の製造方法
US7053989B2 (en) Exposure apparatus and exposure method
JP3526162B2 (ja) 基板保持装置および露光装置
JP4893249B2 (ja) 露光装置とそれを用いた半導体素子または液晶素子の製造方法
JP4393226B2 (ja) 光学系及びそれを用いた露光装置、デバイスの製造方法
JP2005228875A (ja) 露光装置、デバイスの製造方法
JP2006173245A (ja) 露光装置及びデバイスの製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130528

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140527

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150527

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160525

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170526

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180525

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190612

Year of fee payment: 12