JP2004080025A - 冷却装置及び方法、当該冷却装置を有する露光装置 - Google Patents

冷却装置及び方法、当該冷却装置を有する露光装置 Download PDF

Info

Publication number
JP2004080025A
JP2004080025A JP2003284379A JP2003284379A JP2004080025A JP 2004080025 A JP2004080025 A JP 2004080025A JP 2003284379 A JP2003284379 A JP 2003284379A JP 2003284379 A JP2003284379 A JP 2003284379A JP 2004080025 A JP2004080025 A JP 2004080025A
Authority
JP
Japan
Prior art keywords
optical member
radiation
temperature
cooling
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003284379A
Other languages
English (en)
Other versions
JP2004080025A5 (ja
Inventor
Shinichi Hara
原 真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003284379A priority Critical patent/JP2004080025A/ja
Publication of JP2004080025A publication Critical patent/JP2004080025A/ja
Publication of JP2004080025A5 publication Critical patent/JP2004080025A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02B30/66

Abstract

【課題】 結像性能の劣化となる光学部材の熱膨張による変形を低減することで所望の光学性能をもたらす冷却装置及び方法、当該冷却装置を有する露光装置を提供する。
【解決手段】 真空雰囲気下に置かれた光学部材を冷却する冷却装置であって、前記光学部材と非接触で配置され、前記光学部材に対して輻射により当該光学部材を冷却する輻射冷却部と、前記輻射冷却部の温度を制御する制御部とを有することを特徴とする冷却装置を提供する。
【選択図】     図1

Description

 本発明は、一般には、冷却装置に係り、特に、半導体ウェハ用の単結晶基板、液晶ディスプレイ(LCD)用のガラス基板などの被処理体を露光する露光装置に用いられる光学素子を冷却する冷却装置に関する。本発明は、特に、露光光源として紫外線や極端紫外線(EUV:extreme ultraviolet)光を利用する露光装置に用いられる光学素子を冷却する冷却装置に好適である。
 フォトリソグラフィー(焼き付け)技術を用いて半導体メモリや論理回路などの微細な半導体素子を製造する際に、レチクル又はマスク(本出願ではこれらの用語を交換可能に使用する。)に描画された回路パターンを投影光学系によってウェハ等に投影して回路パターンを転写する縮小投影露光装置が従来から使用されている。
 縮小投影露光装置で転写できる最小の寸法(解像度)は、露光に用いる光の波長に比例し、投影光学系の開口数(NA)に反比例する。従って、波長を短くすればするほど、解像度はよくなる。このため、近年の半導体素子の微細化への要求に伴い露光光の短波長化が進められ、超高圧水銀ランプ(i線(波長約365nm))、KrFエキシマレーザー(波長約248nm)、ArFエキシマレーザー(波長約193nm)と用いられる紫外線光の波長は短くなってきた。
 しかし、半導体素子は急速に微細化しており、紫外線光を用いたリソグラフィーでは限界がある。そこで、0.1μm以下の非常に微細な回路パターンを効率よく転写するために、紫外線光よりも更に波長が短い、波長10nm乃至15nm程度の極端紫外線(EUV)光を用いた縮小投影露光装置(以下、「EUV露光装置」と称する。)が開発されている。
 露光光の短波長化が進むと物質による光の吸収が非常に大きくなるので、可視光や紫外光で用いられるような光の屈折を利用した屈折素子、即ち、レンズを用いることは難しく、更に、EUV光の波長領域では使用できる硝材が存在しなくなり、光の反射を利用した反射素子、即ち、ミラー(例えば、多層膜ミラー)のみで光学系を構成する反射型光学系が用いられる。
 ミラーは、露光光を全て反射するわけではなく、30%以上の露光光を吸収する。吸収した露光光は、分熱となりミラーの表面形状を変形させて光学性能(特に、結像性能)の劣化を引き起こしてしまう。そこで、ミラーは、温度変化によるミラー形状の変化を小さくするために線膨張係数の小さな、例えば、線膨張係数が10ppbといった低熱膨張ガラスで構成される。
 EUV露光装置は、0.1μm以下の回路パターンの露光に使用されるため、線幅精度が非常に厳しく、ミラーの表面形状は0.1nm程度以下の変形しか許されない。従って、ミラーの線膨張係数を10ppbとしても、温度が除々に上昇し、ミラー表面の形状が変化してしまう。例えば、ミラーの厚さが50mmであるとすると、0.2℃の温度上昇により、ミラー表面の形状が0.1nm変化することになる。
 そこで、図9に示すように、ミラー5000に継手5100を接合し、水路配管5200と継手5100をつないでミラー5000に形成された流路5300に水などの冷却媒体を流してミラー5000を冷却する方法が一般的に行われている。ここで、図9は、従来のミラー5000の冷却方法を示す図であって、図9(a)は、ミラー5000の概略透視平面図、図9(b)は、ミラー5000の概略断面図である。
 しかし、ミラー5000を構成する低熱膨張ガラスは非常に柔らかく、ミラー5000に継手5100を接合する際にミラー5000に力が加わり、表面形状が0.1nm以上変化してしまう。また、ミラー5000を冷却する際に、冷却媒体に圧力を加えながら流路5300に流さなければならないが、かかる圧力によってミラー5000の表面形状が変化してしまう。
 一方、ミラーに気体を吹き付けるなどの対流熱伝達を用いて、ミラーに力を与えずに非接触で冷却する方法が考えられる。しかし、EUV露光装置においては、露光光路中に含まれる残留ガス(高分子有機ガスなど)成分とEUV光との反応によりミラー表面にコンタミが付着し、反射率が低下することを防ぐために、露光光路雰囲気中は、1×10−6[Pa]程度の高真空に維持されているため、気体を用いることができない。
 そこで、本発明は、結像性能の劣化となる光学部材の熱膨張による変形を低減することで所望の光学性能をもたらす冷却装置及び方法、当該冷却装置を有する露光装置を提供することを例示的目的とする。
 上記目的を達成するために、本発明の一側面としての冷却装置は、真空雰囲気下に置かれた光学部材を冷却する冷却装置であって、前記光学部材と非接触で配置され、前記光学部材に対して輻射により当該光学部材を冷却する輻射冷却部と、前記輻射冷却部の温度を制御する制御部とを有することを特徴とする。前記光学部材の温度を検出する検出部を更に有し、前記制御部は、前記検出部の検出する前記光学部材の温度が所定の値となるように、前記輻射冷却部を制御する。前記制御部は、前記輻射冷却部に形成された流路に冷媒を流す冷媒供給部を有してもよい。前記冷媒の温度は、実質的に一定である。前記制御部は、前記光学部材の温度が所定の値となるように、前記輻射冷却部の温度を制御し、前記冷媒の温度は、前記所定の値と実質的に同じである。前記輻射冷却部が前記光学部材以外から輻射により熱を吸収することを防止する輻射遮蔽部材を更に有してもよい。前記輻射冷却部は、前記光学部材に対して温度差を形成する輻射板と、前記制御部に制御され、前記輻射板に接合してペルチェ効果により前記輻射板を冷却するペルチェ素子と、冷媒が流れるための流路を有し、前記ペルチェ素子の排熱を回収する放熱ブロックとを有し、前記制御部は、前記冷媒を前記流路に流す冷媒供給部を有してもよい。前記冷媒の温度は、実質的に一定である。前記制御部は、前記検出部の検出する前記光学部材の温度が所定の値となるように、前記輻射冷却部を制御し、前記冷媒の温度は、前記所定の値と実質的に同じである。前記輻射冷却部が前記光学部材以外から輻射により熱を吸収することを防止する輻射遮蔽部材を更に有してもよい。前記冷媒供給部は、前記冷媒を前記流路に沿って循環させる。前記光学部材は、ミラーである。
 本発明の別の側面としての冷却方法は、真空雰囲気下に置かれた光学部材を冷却する冷却方法であって、前記光学部材の温度を検出するステップと、前記検出ステップで検出した前記光学部材の温度が所定の値となるように、前記光学部材と対向する位置に非接触で配置されると共に前記光学部材の熱を吸収する輻射板を冷却することを特徴とする。前記冷却ステップは、前記輻射板に接合されたペルチェ素子の排熱側に設けられた放熱ブロック内に設けられた流路に、実質的に一定の温度の冷媒を流すことが好ましい。前記冷却ステップは、前記輻射板に接合されたペルチェ素子の排熱側に設けられた放熱ブロック内に設けられた流路に、前記所定の値と実質的に同じ温度の冷媒を流すことが好ましい。
 本発明の更に別の側面としての露光装置は、上述の冷却装置と、前記冷却装置により冷却された光学部材を介してマスク又はレチクルに形成されたパターンを被処理体に露光する光学系とを有することを特徴とする。前記光学系が有し、前記マスク又はレチクルから前記被処理体に至る光路中に配置された光学素子は、全てミラーから構成される。前記マスク又はレチクルから前記光学系を介して前記被処理体に至る光の波長が10nm乃至15nmである。
 本発明の更に別の側面としてのデバイス製造方法は、上述の露光装置を用いて被処理体を投影露光するステップと、投影露光された前記被処理体に所定のプロセスを行うステップとを有することを特徴とする。
 本発明の更なる更なる目的又はその他の特徴は、以下、添付図面を参照して説明される好ましい実施例によって明らかにされるであろう。
 本発明の冷却装置及び方法によれば、真空雰囲気下に置かれた光学部材であっても、光学部材に接触することなく光学部材を冷却することが可能であるので、結像性能の劣化となる光学部材の熱膨張による変形を低減させて所望の光学性能を実現することができる。
 以下、添付図面を参照して本発明の例示的一形態である冷却装置及び冷却方法について説明する。なお、各図において、同一の部材については、同一の参照番号を付し、重複する説明は省略する。ここで、図1は、本発明の冷却装置1の構成を示す概略断面図である。
 冷却装置1は、真空チャンバVC内に置かれた光学部材Mを冷却する冷却装置である。真空チャンバVC内は、残留ガス(高分子有機ガスなど)成分と露光光Lとの反応により光学部材Mの表面にコンタミが付着し、反射率が低下することを低減させるために、図示しない真空ポンプによって1×10−6[Pa]程度の真空に維持されている。光学部材Mは、真空チャンバVC内において、光学部材支持定盤MPに支持された光学部材支持部材MBを介して所定の場所に位置決めされ、反射、屈折及び回折等を利用して光を結像させる。光学部材Mは、例えば、ミラー、レンズ、平行平板ガラス、プリズム及びフレネルゾーンプレート、キノフォーム、バイナリオプティクス、ホログラム等の回折光学素子を含む。本実施形態においては、光学部材Mとしてミラーを例に説明する。冷却装置1は、図1によく示されるように、検出部100と、輻射冷却機構200と、制御部300とを有する。
 検出部100は、光学部材Mの露光光Lが照射される照射領域以外に取り付けられ、光学部材Mの温度を検出する。光学部材Mの温度は、露光光Lが照射されることによって、照射領域は高温、照射領域以外は低温となる(即ち、温度分布を生じる)ため、検出部100は、光学部材M全体の平均の温度を検出するように構成する。また、検出部100は、検出した光学部材Mの温度を後述する制御部300に送信する。検出部100は、例えば、熱電対、抵抗温度センサー、赤外線温度センサーなどの温度センサーから構成される。なお、本実施形態では、検出部100を光学部材Mに取り付けている(接触させている)が、光学部材Mと非接触に検出部100を構成し、光学部材Mの温度を検出してもよい。
 輻射冷却機構200は、光学部材Mと対向する位置(露光光Lが入射する入射側に対して反対側)に非接触で配置され、光学部材Mに対して輻射により光学部材Mから熱を吸収する。輻射冷却機構200は、輻射板210と、循環部220とを有する。
 輻射板210は、輻射板支持定盤212に支持された輻射板支持部材214によって、光学部材Mに対して間隔Cを有して固定される。輻射板210と光学部材Mとの間隔Cは、光学部材Mから熱を吸収する効率を上げるために短くすることが好ましい。輻射板支持定盤212及び輻射板支持部材214は、一般的に、軽く、堅く、線膨張係数の小さいセラミクスなどから構成される。なお、光学部材支持定盤MPと輻射板支持定盤212を別体構造とすることで、後述するように、輻射板210に形成された流路216に冷媒が流れることによる輻射板210(及び輻射板支持定盤212)の振動が光学部材Mに伝わることを防止することができる。従って、振動によって光学部材Mの表面形状が変形することなく、所望の光学性能を発揮することができる。
 輻射板210は、後述する循環部220が供給する冷媒が流れるための流路216を有する。流路216は、パイプ222を介して循環部220と接続される。流路216は、輻射板210中の全面に亘って形成され、輻射板210全面に一様に冷媒が流れるように構成される。輻射板210は、冷媒により冷却されて光学部材Mに対して低温となり温度差を形成する。即ち、輻射板210は、光学部材Mとの温度差により、光学部材Mの熱を吸収する。輻射板210は、比較的熱伝導率がよく輻射率の高い材料、例えば、セラミクスの窒化アルミニウム(AlN)からなる。
 循環部220は、パイプ222と接続し、パイプ222を介して冷媒を流路216に供給及び循環させる。循環部220は、後述する制御部300に制御され、冷媒の温度を変化させる。冷媒は、輻射板210に形成された流路216を流れることで輻射板210を冷却し、かかる冷媒の温度によって冷却される輻射板210の温度が決まる。なお、本実施形態では、循環部220は、冷媒として水(液体)を供給及び循環させているが、気体等を用いてもよい。また、ここでは冷媒を循環させているが、必ずしも循環させる必要は無く、冷媒を供給する供給部と冷媒を排出する排出部とを設けても良い。また、冷媒貯蔵庫を設けて、流路を通った冷媒を冷媒貯蔵庫に入れ、この冷媒貯蔵庫から流路に冷媒を供給するようにしても良い。このように冷媒貯蔵庫を設けると、冷媒の温度を一定温度に保つのが比較的容易になる。
 制御部300は、検出部100の検出する光学部材Mの温度が所定の値となるように、輻射冷却機構200を制御する。制御部300は、より詳細には、循環部220が輻射板210(の流路216)に供給及び循環させる冷媒の温度を変化させることで輻射板210の温度を制御する。かかる制御によって、輻射板210が光学部材Mから吸収する熱量を調節し、光学部材Mの温度を所定の値にする。換言すれば、制御部300は、光学部材Mの温度を一定に保つ機能を有する。
 例えば、輻射によって、絶対温度T[K]、面積A[m]の物質Yが絶対温度T[K]、面積A[m]の物質Xから吸収する熱量は、物質Xの輻射率をE、物質Yの輻射率をE、輻射形態係数(即ち、物質Xから出たエネルギーが物質Yへ到達する割合)をF12とした場合に、熱流速密度Q[W/m]を用いて以下の数式で表される。但し、T>Tとする。
Figure 2004080025
 つまり、光学部材Mが1.5[W]の露光光Lを吸収した場合、光学部材Mの温度を所定の値、例えば、23℃に保ち、且つ、輻射板210が1.5[W]の熱を吸収するためには、制御部300は、輻射板210の温度を10℃前後に制御する必要がある。従って、制御部300は、輻射板210の温度を10℃前後とするために循環部220が供給及び循環させる冷媒の温度を10℃前後に制御する。
 なお、上述したように、光学部材Mの厚さが50mmであるとすると、0.2℃の温度上昇により、光学部材Mの表面の形状が0.1nm変化するため、制御部300は、光学部材Mの温度を所定の値から1℃以下、好ましくは、0.2℃以下の範囲で制御することが好ましい。
 ここで、図2を参照して、冷却装置1を用いた光学部材Mの冷却方法について説明する。図2は、真空雰囲気下に置かれた光学部材Mを冷却する冷却方法1000を説明するためのフローチャートである。
 まず、検出部100は、露光光Lが照射されていない状態(初期状態)の光学部材Mの温度を検出し、検出した初期状態の温度を制御部300に送信する。制御部300は、受信した光学部材Mの初期状態の温度を所定の値として記憶する(ステップ1002)。但し、初期状態では、光学部材Mは表面形状に変化がないものとする。次に、光学部材Mに露光光Lが照射されると、検出部100が光学部材Mの温度を検出する(ステップ1004)。検出部100が検出した光学部材Mの温度は制御部300に送信され、制御部300は、検出部100が検出した光学部材Mの温度と所定の値が等しいかどうか判断する(ステップ1006)。検出した光学部材Mの温度と所定の値が等しい場合、光学部材Mに露光光Lが照射されている間(即ち、露光中)は、ステップ1004以下を繰り返す。検出した光学部材Mの温度と所定の値が異なる場合、制御部300は、光学部材Mの温度が所定の値となるために必要な輻射板210の温度を求める(ステップ1008)。この際、輻射板210が吸収しなければならない熱量を算出し、かかる熱量から輻射板210の温度を決定する。制御部300は、求めた輻射板210の温度に基づいて、輻射により光学部材Mの温度が所定の値となるように、循環部220が供給及び循環させる冷媒の温度を調節し、輻射板210を冷却する(ステップ1010)。即ち、ステップ1010は、光学部材Mと輻射板210との間に温度差を形成する。従って、輻射により光学部材Mの熱を輻射板210が吸収し、光学部材Mの温度を所定の値にすることができる。以下、光学部材Mに露光光Lが照射されている間(即ち、露光中)は、ステップ1004以下を繰り返す。
 従って、冷却装置1及び冷却方法1000によれば、真空雰囲気下に置かれた光学部材であっても、光学部材に接触することなく光学部材を冷却することが可能であり、結像性能の劣化となる光学部材の熱膨張による変形を低減させて所望の光学性能を実現することができる。
 ここで、図2のフローチャートのステップ1002において、必ずしも「光学部材Mの初期状態の温度」を「所定の値」とする必要は無く、光学部材Mが設計値通りの形状になるような温度を「所定の値」とすればよい。例えば、光学部材Mが23℃であれば、設計値通りの形状となることが分かっていれば、「所定の値」は23℃とすればよい。勿論、この値は装置によって異なるが、20℃から25℃の間、好ましくは22℃から24℃の間に設定するのがよい。
 また、光学部材Mに温度分布がある場合を考えると、検出部100の取り付け場所によっては、検出部100で検出される温度と光学部材Mの全体の平均温度、もしくは検出部100で検出される温度と光学部材Mの光の当たる(入射する)領域の平均温度との差が大きな場合がある。このような場合、検出部100で検出される温度から、光学部材Mの温度(平均温度等)を推測してもよいし、検出部100で検出される温度と図示しない温度計等(温度検出手段)により検出したチャンバVC内の温度とにより、光学部材Mの温度を推測し、その推測された温度に従って冷却するようにしてもよい。
 次に、図3乃至図5を参照して、冷却装置1の変形例である冷却装置1Aについて説明する。冷却装置1Aは、冷却装置1と比べて輻射冷却機構200A及び制御部300Aについて異なる。ここで、図3は、図1に示す冷却装置1の変形例である冷却装置1Aの構成を示す概略断面図である。但し、図3においては、図1に示した光学部材Mを所定の場所に位置決めする光学部材支持定盤MP及び光学部材支持部材MB、及び、輻射板210Aを所定の場所に位置決めする輻射板支持定盤212及び輻射板支持部材214は省略している。
 冷却装置1Aは、冷却装置1と同様、図示しない真空ポンプによって1×10−6[Pa]程度の真空に維持された真空チャンバVC内に置かれた光学部材Mを冷却する冷却装置である。本実施形態においては、光学部材Mとしてミラーを例に説明する。冷却装置1Aは、図3によく示されるように、検出部100と、輻射冷却機構200Aと、制御部300Aとを有する。
 輻射冷却機構200Aは、光学部材Mと対向する位置(露光光Lが入射する入射側に対して反対側)に非接触で配置され、光学部材Mに対して輻射により光学部材Mから熱を吸収する。輻射冷却機構200Aは、輻射板210Aと、ペルチェ素子240と、放熱ブロック250と、循環部220Aとを有する。
 輻射板210Aは、図示しない輻射板支持定盤に支持された輻射支持部材によって、光学部材Mに対して間隔Cを有して固定される。輻射板210Aは、後述するペルチェ素子240が接合され、ペルチェ素子240のペルチェ効果により冷却されて光学部材Mに対して低温となり温度差を形成する。即ち、輻射板210Aは、光学部材Mとの温度差により、光学部材Mの熱を吸収する。輻射板210Aとペルチェ素子240との接合は、放出ガス量が低く、且つ、熱伝導性のよい蒸着、半田等の金属のメタライズによって行う。輻射板210Aとペルチェ素子240との接合を金属によって行うことで、接着剤を使用する場合に発生してしまう放出ガスをなくし、光学部材Mの表面にコンタミが付着することを防止することができる。輻射板210Aは、比較的熱伝導性がよく輻射率の高い材料、例えば、セラミクスの窒化アルミニウム(AlN)からなる。
 輻射板210Aが輻射により、光学部材M以外の部材、例えば、基準位置部材400を冷却してしまう場合は、図4に示すように、輻射遮蔽部材260を設ければよい。基準位置部材400とは、ステージの位置を検出するレーザー干渉計を固定する固定部材410や光学部材Mを支持する光学部材支持部材MBなどの位置変動すると、光学部材Mを位置変動させて光学部材Mの光学性能の劣化を引き起こしてしまう部材のことである。ここで、図4は、輻射冷却機構200Aの要部拡大断面図である。なお、輻射遮蔽部材260は、図1に示す冷却装置1に設けることも可能であることは言うまでもない。
 輻射遮蔽部材260は、断熱材から構成され、輻射板210Aと基準位置部材400との間に配置される。輻射遮蔽部材260は、輻射板210Aが光学部材M以外の部材、例えば、基準位置部材400から輻射により熱を吸収することを防止する。従って、輻射遮蔽部材260は、輻射板210Aによる基準位置部材400の冷却を防止し、基準位置部材400の温度変化による位置変動がなく、光学部材Mの光学性能を劣化させることがない。
 また、輻射遮蔽部材260は、図5に示すように、平板262と冷媒を流すための流路264を備えた構成としてもよい。平板262は、輻射板210Aと基準位置部材400との間に配置され、輻射板210Aが光学部材M以外の基準位置部材400から輻射により熱を吸収することを防止する。平板262は、流路264に冷媒が流れることで、かかる冷媒の温度と等しい温度となる。従って、基準位置部材400の温度と等しい冷媒を流路264に流すことで、平板262は基準位置部材400と等しい温度となり(即ち、温度差がなくなり)、基準位置部材400の温度変化による位置変動を防止することができる。また、流路264を備えた平板262で輻射遮蔽部材260を構成することにより、断熱材で構成するよりも省スペース化が可能となる。ここで、図5は、輻射冷却機構200Aの要部拡大断面図である。
 ここで、輻射遮蔽部材260は、図4に示したように、輻射板210Aやペルチェ素子240を覆うように設けても良いし、図5に示したように、輻射板210Aの側面側に設けても良い。
 ペルチェ素子240は、例えば、p型半導体及びn型半導体を熱的に並列に配置して構成される。ペルチェ素子240は、後述する制御部300Aに制御され、輻射板210Aと接合してペルチェ効果により輻射板210Aを冷却する。「ペルチェ効果」とは、2種類の導体や半導体の接点に電流を流すと電導率の違いから熱の移動が起こるという現象である。本実施形態では、ペルチェ素子240は、p型半導体及びn型半導体で構成しているので、p型半導体からn型半導体の領域では電子が流れにくいため熱を吸収する吸熱面242を形成し、n型半導体からp型半導体の領域では電子が流れやすいため熱を放出する放熱面244を形成する。従って、ペルチェ素子240の吸熱面242を輻射板210Aと接合することで、輻射板210Aから熱を吸収して冷却することができる。また、ペルチェ素子240が吸収できる熱量は、印加電圧によって調節することができる。ペルチェ素子240は、応答性が高いために高精度に輻射板210Aの温度を制御して、光学部材Mの温度を所定の値にすることができる。ペルチェ素子240の放熱面244には、放熱ブロック250が接合されている。
 放熱ブロック250は、ペルチェ素子240の放熱面244に金属によって接合されている。放熱ブロック250とペルチェ素子240との接合に金属を用いるのも、上述したように、放出ガス量を抑え、熱伝導性を高めるためである。放熱ブロック250は、後述する循環部220Aが供給する冷媒が流れるための流路252を有する。流路252は、パイプ222Aを介して循環部220Aと接続される。流路252は、放熱ブロック250中の全面に亘って形成され、放熱ブロック250全面に一様に冷媒が流れるように構成される。放熱ブロック250は、冷媒により冷却されてペルチェ素子240の放熱面244から排熱される輻射板210Aを介して吸収した光学部材Mの熱を回収する。放熱ブロック250は、例えば、セラミクスの窒化アルミニウム(AlN)からなる。
 循環部220Aは、パイプ222Aと接続し、パイプ222Aを介して冷媒を放熱ブロック250の流路252に供給及び循環させる。循環部220Aが流路252に供給及び循環させる冷媒は、放熱ブロック250の排熱面252からの排熱を回収するためである。従って、冷媒の温度は、可変とする必要がなく、また、極端に低温とする必要もない。例えば、光学部材Mの温度を23℃(所定の値)に保ちたい場合、冷媒の温度は23℃で十分である。即ち、循環部220Aは、一定の温度(例えば、光学部材Mの保ちたい温度)の冷媒を供給及び循環させればよい。これにより、引き回し途中でパイプ222Aが、温度変化することで光学部材が位置ずれを起こし、光学部材の光学性能を劣化させてしまう部材(即ち、図4及び図5に示した基準位置部材400)、例えば、レーザー干渉計固定部材、光学部材支持部材の冷却を防止することができる。勿論、循環部220Aに供給及び/又は循環させる冷媒、特に、循環部220Aからパイプ222Aに供給及び/又は循環させる冷媒の温度T(220)と、光学部材Mを保ちたい温度T(M)とが、以下の数式2を満足するのが良い。
Figure 2004080025
 より好ましくは以下の数式3を、更に好ましくは以下の数式4を満足することが望ましい。
Figure 2004080025
Figure 2004080025
 制御部300Aは、検出部100の検出する光学部材Mの温度が所定の値となるように、輻射冷却機構200Aを制御する。制御部300Aは、より詳細には、ペルチェ素子240に印加する印加電圧を変化させることで輻射板210Aの温度を制御する。即ち、制御部300Aは、輻射板210Aが吸収しなければならない熱量を算出し、かかる熱量から輻射板210Aの温度を決定する。更に、制御部300Aは、決定した輻射板210Aの温度に基づいて、ペルチェ素子240に印加する印加電圧を調節する。かかる制御によって、輻射板210Aが光学部材Mから吸収する熱量が調節され、光学部材Mの温度が所定の値となる。換言すれば、制御部300Aは、光学部材Mの温度を一定に保つ機能を有する。
 冷却装置1Aによれば、輻射冷却機構200Aに温度の応答性に優れたペルチェ素子240を用いることで、輻射板210Aの温度制御が向上し、光学部材Mの温度を高精度に安定させることができる。また、輻射遮蔽部材260により、光学部材M以外の部材、特に、基準位置部材400の温度変化を防止し、温度変化による位置変動をなくすことができる。従って、真空雰囲気下に置かれた光学部材であっても、光学部材に接触することなく光学部材を冷却することが可能であり、結像性能の劣化となる光学部材の熱膨張による変形を低減させて所望の光学性能を実現することができる。なお、冷却装置1Aを用いた光学部材Mの冷却方法については、図2を参照して説明した冷却方法1000と同様であるので、ここでは詳しい説明は省略する。
 以下、図6を参照して、本発明の冷却装置100を適用した例示的な露光装置500について説明する。ここで、図6は、本発明の例示的な露光装置500の構成を示す概略断面図である。
 本発明の露光装置500は、露光用の照明光としてEUV光(例えば、波長13.4nm)を用いて、例えば、ステップ・アンド・スキャン方式やステップ・アンド・リピート方式でマスク520に形成された回路パターンを被処理体540に露光する投影露光装置である。かかる露光装置は、サブミクロンやクオーターミクロン以下のリソグラフィー工程に好適であり、以下、本実施形態ではステップ・アンド・スキャン方式の露光装置(「スキャナー」とも呼ばれる。)を例に説明する。ここで、「ステップ・アンド・スキャン方式」とは、マスクに対してウェハを連続的にスキャン(走査)してマスクパターンをウェハに露光すると共に、1ショットの露光終了後ウェハをステップ移動して、次の露光領域に移動する露光方法である。「ステップ・アンド・リピート方式」は、ウェハの一括露光ごとにウェハをステップ移動して次のショットの露光領域に移動する露光方法である。
 図6を参照するに、露光装置500は、照明装置510と、マスク520と、マスク520を載置するマスクステージ525と、投影光学系530と、被処理体540と、被処理体540を載置するウェハステージ545と、アライメント検出機構550と、フォーカス位置検出機構560とを有する。
 また、図6に示すように、EUV光は、大気に対する透過率が低く、残留ガス(高分子有機ガスなど)成分との反応によりコンタミを生成してしまうため、少なくとも、EUV光が通る光路中(即ち、光学系全体)は真空雰囲気VCとなっている。
 照明装置510は、投影光学系530の円弧状の視野に対する円弧状のEUV光(例えば、波長13.4nm)によりマスク520を照明する照明装置であって、EUV光源512と、照明光学系514とを有する。
 EUV光源512は、例えば、レーザープラズマ光源が用いられる。これは、真空容器中のターゲット材に高強度のパルスレーザー光を照射し、高温のプラズマを発生させ、これから放射される、例えば、波長13nm程度のEUV光を利用するものである。ターゲット材としては、金属膜、ガスジェット、液滴などが用いられる。放射されるEUV光の平均強度を高くするためにはパルスレーザーの繰り返し周波数は高い方がよく、通常数kHzの繰り返し周波数で運転される。
 照明光学系514は、集光ミラー514a、オプティカルインテグレーター514bから構成される。集光ミラー514aは、レーザープラズマからほぼ等方的に放射されるEUV光を集める役割を果たす。オプティカルインテグレーター514bは、マスク520を均一に所定の開口数で照明する役割を持っている。また、照明光学系514は、マスク520と共役な位置に、マスク520の照明領域を円弧状に限定するためのアパーチャ514cが設けられている。かかる照明光学系514を構成する光学部材である集光ミラー514a及びオプティカルインテグレーター514bに本発明の冷却装置1及び冷却方法1000を適用することができ、冷却装置1により集光ミラー514a及びオプティカルインテグレーター514bを冷却することで熱膨張による変形を防止して、優れた結像性能を発揮することができる。
 マスク520は、反射型マスクで、その上には転写されるべき回路パターン(又は像)が形成され、マスクステージに支持及び駆動されている。マスク520から発せられた回折光は、投影光学系530で反射されて被処理体540上に投影される。マスク520と被処理体540とは、光学的に共役の関係に配置される。露光装置500は、ステップ・アンド・スキャン方式の露光装置であるため、マスク520と被処理体540を走査することによりマスク520のパターンを被処理体540上に縮小投影する。
 マスクステージ525は、マスク520を支持して図示しない移動機構に接続されている。マスクステージ525は、当業界周知のいかなる構造をも適用することができる。図示しない移動機構は、リニアモーターなどで構成され、少なくともX方向にマスクステージ525を駆動することでマスク520を移動することができる。露光装置500は、マスク520と被処理体540を同期した状態で走査する。ここで、マスク520又は被処理体540面内で走査方向をX、それに垂直な方向をY、マスク520又は被処理体540面内に垂直な方向をZとする。
 投影光学系530は、複数の反射ミラー(即ち、多層膜ミラー)530aを用いて、マスク520面上のパターンを像面である被処理体540上に縮小投影する。複数のミラー530aの枚数は、4枚乃至6枚程度である。少ない枚数のミラーで広い露光領域を実現するには、光軸から一定の距離だけ離れた細い円弧状の領域(リングフィールド)だけを用いて、マスク520と被処理体540を同時に走査して広い面積を転写する。投影光学系530の開口数(NA)は、0.2乃至0.3程である。かかる投影光学系530を構成する光学部材であるミラー530aに本発明の冷却装置1及び冷却方法1000を適用することができ、冷却装置1によりミラー530aを冷却することで熱膨張による変形を防止して、優れた結像性能を発揮することができる。
 被処理体540は、本実施形態ではウェハであるが、液晶基板その他の被処理体を広く含む。被処理体540には、フォトレジストが塗布されている。フォトレジスト塗布工程は、前処理と、密着性向上剤塗布処理と、フォトレジスト塗布処理と、プリベーク処理とを含む。前処理は、洗浄、乾燥などを含む。密着性向上剤塗布処理は、フォトレジストと下地との密着性を高めるための表面改質(即ち、界面活性剤塗布による疎水性化)処理であり、HMDS(Hexamethyl−disilazane)などの有機膜をコート又は蒸気処理する。プリベークは、ベーキング(焼成)工程であるが現像後のそれよりもソフトであり、溶剤を除去する。
 ウェハステージ545は、ウェハチャック545aによって被処理体545を支持する。ウェハステージ545は、例えば、リニアモーターを利用してXYZ方向に被処理体540を移動する。マスク520と被処理体540は、同期して走査される。また、マスクステージ525の位置とウェハステージ545との位置は、例えば、レーザー干渉計などにより監視され、両者は一定の速度比率で駆動される。
 アライメント検出機構550は、マスク520の位置と投影光学系530の光軸との位置関係、及び、被処理体540の位置と投影光学系530の光軸との位置関係を計測し、マスク520の投影像が被処理体540の所定の位置に一致するようにマスクステージ525及びウェハステージ545の位置と角度を設定する。
 フォーカス位置検出機構560は、被処理体540面でZ方向のフォーカス位置を計測し、ウェハステージ545の位置及び角度を制御することによって、露光中、常時被処理体540面を投影光学系530による結像位置に保つ。
 露光において、照明装置510から射出されたEUV光はマスク520を照明し、マスク520面上のパターンを被処理体540面上に結像する。本実施形態において、像面は円弧状(リング状)の像面となり、マスク520と被処理体540を縮小倍率比の速度比で走査することにより、マスク520の全面を露光する。
 ここで、露光装置においては、光学性能は投影光学系の光学部材の形状変化に対して敏感なので、前述のような輻射冷却機構は投影光学系の光学部材に用いることが多い。特に、光量の多いマスク側の光学部材に用いることが多い。但し、照明光学系に用いても構わない。特に、最も光源に近い反射光学部材は、光学部材の中で最も多量の光が入射するので、必然的に吸収する熱量も大きくなり、その吸収した熱による光学部材の形状の変化量も大きくなる。それを防ぐために、前述のような輻射冷却機構により、多量の光を吸収することによる温度上昇を防ぐことができ、光学部材の形状変化を低減することができる。
 図8は、ステップ4のウェハプロセスの詳細なフローチャートである。ステップ11(酸化)では、ウェハの表面を酸化させる。ステップ12(CVD)では、ウェハの表面に絶縁膜を形成する。ステップ13(電極形成)では、ウェハ上に電極を蒸着などによって形成する。ステップ14(イオン打ち込み)では、ウェハにイオンを打ち込む。ステップ15(レジスト処理)では、ウェハに感光剤を塗布する。ステップ16(露光)では、露光装置500によってマスクの回路パターンをウェハに露光する。ステップ17(現像)では、露光したウェハを現像する。ステップ18(エッチング)では、現像したレジスト像以外の部分を削り取る。ステップ19(レジスト剥離)では、エッチングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによってウェハ上に多重に回路パターンが形成される。本実施形態のデバイス製造方法によれば、従来よりも高品位のデバイスを製造することができる。このように、露光装置500を使用するデバイス製造方法、並びに結果物としてのデバイスも本発明の一側面を構成する。
 以上、本発明の好ましい実施例について説明したが、本発明はこれらの実施例に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。例えば、本発明の冷却装置及び方法は、ArFエキシマレーザーやFレーザーなどのEUV光以外の波長200nm以下の紫外線用の光学部材に適用することもでき、マスクやウェハにも適用可能である。
本発明の冷却装置の構成を示す概略断面図である。 本発明の冷却方法を説明するためのフローチャートである。 図1に示す冷却装置の変形例である冷却装置の構成を示す概略断面図である。 図3に示す輻射冷却機構の要部拡大断面図である。 図3に示す輻射冷却機構の要部拡大断面図である。 本発明の例示的な露光装置の構成を示す概略断面図である。 デバイス(ICやLSIなどの半導体チップ、LCD、CCD等)の製造を説明するためのフローチャートである。 図7に示すステップ4のウェハプロセスの詳細なフローチャートである。 従来のミラーの冷却方法を示す図であって、図9(a)は、ミラーの概略透視平面図、図9(b)は、ミラーの概略断面図である。
符号の説明
1       冷却装置
100     検出部
200     輻射冷却機構
210     輻射板
212     輻射板支持定盤
214     輻射板支持部材
216     流路
220     循環部
300     制御部
1A      冷却装置
200A    輻射冷却機構
240     ペルチェ素子
250     放熱ブロック
500     露光装置
514     照明光学系
514a    集光ミラー
514b    オプティカルインテグレーター
530     投影光学系
530a    反射ミラー

Claims (19)

  1.  真空雰囲気下に置かれた光学部材を冷却する冷却装置であって、
     前記光学部材と非接触で配置され、前記光学部材に対して輻射により当該光学部材を冷却する輻射冷却部と、
     前記輻射冷却部の温度を制御する制御部とを有することを特徴とする冷却装置。
  2.  前記光学部材の温度を検出する検出部を更に有し、
     前記制御部は、前記検出部の検出する前記光学部材の温度が所定の値となるように、前記輻射冷却部を制御することを特徴とする請求項1記載の冷却装置。
  3.  前記制御部は、前記輻射冷却部に形成された流路に冷媒を流す冷媒供給部を有することを特徴とする請求項1記載の冷却装置。
  4.  前記冷媒の温度は、実質的に一定であることを特徴とする請求項3記載の冷却装置。
  5.  前記制御部は、前記光学部材の温度が所定の値となるように、前記輻射冷却部の温度を制御し、
     前記冷媒の温度は、前記所定の値と実質的に同じであることを特徴とする請求項3記載の冷却装置。
  6.  前記輻射冷却部が前記光学部材以外から輻射により熱を吸収することを防止する輻射遮蔽部材を更に有することを特徴とする請求項1記載の冷却装置。
  7.  前記輻射冷却部は、
     前記光学部材に対して温度差を形成する輻射板と、
     前記制御部に制御され、前記輻射板に接合してペルチェ効果により前記輻射板を冷却するペルチェ素子と、
     冷媒が流れるための流路を有し、前記ペルチェ素子の排熱を回収する放熱ブロックとを有し、
     前記制御部は、
     前記冷媒を前記流路に流す冷媒供給部を有することを特徴とする請求項1記載の冷却装置。
  8.  前記冷媒の温度は、実質的に一定であることを特徴とする請求項7記載の冷却装置。
  9.  前記制御部は、前記検出部の検出する前記光学部材の温度が所定の値となるように、前記輻射冷却部を制御し、
     前記冷媒の温度は、前記所定の値と実質的に同じであることを特徴とする請求項7記載の冷却装置。
  10.  前記輻射冷却部が前記光学部材以外から輻射により熱を吸収することを防止する輻射遮蔽部材を更に有することを特徴とする請求項7記載の冷却装置。
  11.  前記冷媒供給部は、前記冷媒を前記流路に沿って循環させることを特徴とする請求項7記載の冷却装置。
  12.  前記光学部材は、ミラーであることを特徴とする請求項1記載の冷却装置。
  13.  真空雰囲気下に置かれた光学部材を冷却する冷却方法であって、
     前記光学部材の温度を検出するステップと、
     前記検出ステップで検出した前記光学部材の温度が所定の値となるように、前記光学部材と対向する位置に非接触で配置されると共に前記光学部材の熱を吸収する輻射板を冷却することを特徴とする冷却方法。
  14.  前記冷却ステップは、前記輻射板に接合されたペルチェ素子の排熱側に設けられた放熱ブロック内に設けられた流路に、実質的に一定の温度の冷媒を流すことを特徴とする請求項13記載の冷却方法。
  15.  前記冷却ステップは、前記輻射板に接合されたペルチェ素子の排熱面に設けられた放熱ブロック内に設けられた流路に、前記所定の値と実質的に同じ温度の冷媒を流すことを特徴とする請求項13記載の冷却方法。
  16.  請求項1乃至12のうちいずれか一項記載の冷却装置と、
     前記冷却装置により冷却された光学部材を介してマスク又はレチクルに形成されたパターンを被処理体に露光する光学系とを有することを特徴とする露光装置。
  17.  前記光学系が有し、前記マスク又はレチクルから前記被処理体に至る光路中に配置された光学素子は、全てミラーであることを特徴とする請求項16記載の露光装置。
  18.  前記マスク又はレチクルから前記光学系を介して前記被処理体に至る光の波長が10nm乃至15nmであることを特徴とする請求項16記載の露光装置。
  19.  請求項16乃至18のうちいずれか一項記載の露光装置を用いて被処理体を投影露光するステップと、
     投影露光された前記被処理体に所定のプロセスを行うステップとを有することを特徴とするデバイス製造方法。
JP2003284379A 2002-07-31 2003-07-31 冷却装置及び方法、当該冷却装置を有する露光装置 Pending JP2004080025A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003284379A JP2004080025A (ja) 2002-07-31 2003-07-31 冷却装置及び方法、当該冷却装置を有する露光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002222911 2002-07-31
JP2003284379A JP2004080025A (ja) 2002-07-31 2003-07-31 冷却装置及び方法、当該冷却装置を有する露光装置

Publications (2)

Publication Number Publication Date
JP2004080025A true JP2004080025A (ja) 2004-03-11
JP2004080025A5 JP2004080025A5 (ja) 2006-09-07

Family

ID=32032785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003284379A Pending JP2004080025A (ja) 2002-07-31 2003-07-31 冷却装置及び方法、当該冷却装置を有する露光装置

Country Status (1)

Country Link
JP (1) JP2004080025A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116399B2 (en) 2003-05-13 2006-10-03 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
US7295284B2 (en) 2004-02-27 2007-11-13 Canon Kk Optical system, exposure apparatus using the same and device manufacturing method
US7315347B2 (en) 2003-12-12 2008-01-01 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
US7360366B2 (en) 2004-09-03 2008-04-22 Canon Kabushiki Kaisha Cooling apparatus, exposure apparatus, and device fabrication method
JPWO2007122856A1 (ja) * 2006-04-24 2009-09-03 株式会社ニコン 光学素子冷却装置および露光装置
JP2010245541A (ja) * 2009-04-09 2010-10-28 Carl Zeiss Smt Ag 光線束を案内するためのミラー
JP2012124520A (ja) * 2005-01-26 2012-06-28 Carl Zeiss Smt Gmbh 光学アセンブリ
KR101411251B1 (ko) * 2009-09-30 2014-06-24 칼 짜이스 에스엠티 게엠베하 광학 시스템, 특히 마이크로리소그래피 투영 노광 장치의 광학 장치
JP2014179624A (ja) * 2007-10-09 2014-09-25 Carl Zeiss Smt Gmbh 光学素子の温度制御装置
WO2016091486A1 (en) * 2014-12-12 2016-06-16 Asml Netherlands B.V. Reflector
JP2021515907A (ja) * 2018-03-06 2021-06-24 エーエスエムエル ネザーランズ ビー.ブイ. 放射遮蔽デバイス及びそのような遮蔽デバイスを備えた装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116399B2 (en) 2003-05-13 2006-10-03 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
US7315347B2 (en) 2003-12-12 2008-01-01 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
US7295284B2 (en) 2004-02-27 2007-11-13 Canon Kk Optical system, exposure apparatus using the same and device manufacturing method
US7360366B2 (en) 2004-09-03 2008-04-22 Canon Kabushiki Kaisha Cooling apparatus, exposure apparatus, and device fabrication method
JP2012124520A (ja) * 2005-01-26 2012-06-28 Carl Zeiss Smt Gmbh 光学アセンブリ
JPWO2007122856A1 (ja) * 2006-04-24 2009-09-03 株式会社ニコン 光学素子冷却装置および露光装置
JP2017021350A (ja) * 2007-10-09 2017-01-26 カール・ツァイス・エスエムティー・ゲーエムベーハー 光学素子の温度制御装置
JP2014179624A (ja) * 2007-10-09 2014-09-25 Carl Zeiss Smt Gmbh 光学素子の温度制御装置
US8717531B2 (en) 2009-04-09 2014-05-06 Carl Zeiss Smt Gmbh Mirror for guiding a radiation bundle
JP2010245541A (ja) * 2009-04-09 2010-10-28 Carl Zeiss Smt Ag 光線束を案内するためのミラー
KR101411251B1 (ko) * 2009-09-30 2014-06-24 칼 짜이스 에스엠티 게엠베하 광학 시스템, 특히 마이크로리소그래피 투영 노광 장치의 광학 장치
US9134504B2 (en) 2009-09-30 2015-09-15 Carl Zeiss Smt Gmbh Optical arrangement in an optical system, in particular in a microlithographic projection exposure apparatus
US9639007B2 (en) 2009-09-30 2017-05-02 Carl Zeiss Smt Gmbh Optical arrangement in an optical system, in particular in a microlithographic projection exposure apparatus
WO2016091486A1 (en) * 2014-12-12 2016-06-16 Asml Netherlands B.V. Reflector
US10216101B2 (en) 2014-12-12 2019-02-26 Asml Netherlands B.V. Reflector
JP2021515907A (ja) * 2018-03-06 2021-06-24 エーエスエムエル ネザーランズ ビー.ブイ. 放射遮蔽デバイス及びそのような遮蔽デバイスを備えた装置
JP7402808B2 (ja) 2018-03-06 2023-12-21 エーエスエムエル ネザーランズ ビー.ブイ. 放射遮蔽デバイス及びそのような遮蔽デバイスを備えた装置

Similar Documents

Publication Publication Date Title
US7191599B2 (en) Cooling apparatus and method, and exposure apparatus having the cooling apparatus
US7250616B2 (en) Temperature adjustment apparatus, exposure apparatus having the same, and device fabricating method
US7265812B2 (en) Cooling apparatus
US7212274B2 (en) Cooling system, exposure apparatus having the same, and device manufacturing method
US7158209B2 (en) Holding mechanism in exposure apparatus, and device manufacturing method
US7804578B2 (en) Exposure apparatus and device manufacturing method
JP2004363559A (ja) 光学部材保持装置
JP2004039851A (ja) ミラー冷却装置及び露光装置
US7360366B2 (en) Cooling apparatus, exposure apparatus, and device fabrication method
JP2004080025A (ja) 冷却装置及び方法、当該冷却装置を有する露光装置
JP4532835B2 (ja) 冷却装置、それを有する光学部材並びに露光装置
JP4311711B2 (ja) 露光装置及びデバイス製造方法
JP2004228456A (ja) 露光装置
TW200527499A (en) Lithographic apparatus and device manufacturing method
EP1447717A2 (en) Exposure apparatus, cooling method and device manufacturing method
JP2005175490A (ja) リソグラフィ装置及びデバイス製造方法
JP2004281653A (ja) 光学系、及びそれを用いた露光装置、デバイスの製造方法
US7053989B2 (en) Exposure apparatus and exposure method
JP4393227B2 (ja) 露光装置、デバイスの製造方法、露光装置の製造方法
JP2004336026A (ja) 温度調節装置及びそれを有する露光装置、デバイスの製造方法
JP2004247473A (ja) 冷却装置及び方法、当該冷却装置を有する露光装置
JP2004335585A (ja) 冷却装置及び方法、当該冷却装置を有する露光装置、デバイスの製造方法
JP2005026676A (ja) 光学素子保持装置、投影光学系、露光装置、及びデバイス製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211