KR100838166B1 - 가스 분리 방법 및 그 장치 - Google Patents

가스 분리 방법 및 그 장치 Download PDF

Info

Publication number
KR100838166B1
KR100838166B1 KR1020037013477A KR20037013477A KR100838166B1 KR 100838166 B1 KR100838166 B1 KR 100838166B1 KR 1020037013477 A KR1020037013477 A KR 1020037013477A KR 20037013477 A KR20037013477 A KR 20037013477A KR 100838166 B1 KR100838166 B1 KR 100838166B1
Authority
KR
South Korea
Prior art keywords
gas
product
adsorption
component
adsorbent
Prior art date
Application number
KR1020037013477A
Other languages
English (en)
Other versions
KR20040010623A (ko
Inventor
카와이마사토
나카무라아키히로
히다노타츄야
Original Assignee
다이요 닛산 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다이요 닛산 가부시키가이샤 filed Critical 다이요 닛산 가부시키가이샤
Publication of KR20040010623A publication Critical patent/KR20040010623A/ko
Application granted granted Critical
Publication of KR100838166B1 publication Critical patent/KR100838166B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/116Molecular sieves other than zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/11Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40052Recycled product or process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40077Direction of flow
    • B01D2259/40081Counter-current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/053Pressure swing adsorption with storage or buffer vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

가스 혼합물로부터 다수 성분을 동시에 고순도로 분리 채취하여 얻는, 장치 설비가 간단하며 조작이 용이하고 저렴한 PSA법에 의한 가스 분리 방법과 장치를 제공한다. 2성분 이상의 주요 가스 성분을 함유하는, 예를 들면 공기MA를 원료 가스 혼합물M으로 하여 압축기1에서 가압하고, 제1 주요 가스 성분 산소에 대하여 흡착하기 어려운 특성이고, 제2 주요 가스 성분 질소에 대하여 흡착하기 쉬운 특성인 흡착제를 충진한 흡착관2A에 유통시키고, 제1 주요 가스 성분인 산소 부화 가스M0를 제1 제품 가스로 하여 분리 채취하는 공정과, 상기 가압 후의 원료 가스 혼합물M의 공기 MA를 제1 주요 가스 성분 산소에 대하여 흡착하기 쉬운 특성이고, 제2 주요 가스 성분 질소에 대하여 흡착하기 어려운 특성인 제2 흡착제를 충진한 흡착관2B에 유통시키고, 제2 주요 가스 성분인 질소 부화 가스MN을 제2 제품 가스로서 분리 채취하는 공정을, 교대로 운전하고, 상기 가스 혼합물로부터 제1 제품 가스와 제2 제품 가스를 병산한다.

Description

가스 분리 방법 및 그 장치{Method And System for Separating Gas}
본 발명은, 다수의 성분을 함유하는 가스 혼합물로부터, 유용한 가스 성분을 분리 회수하는 가스 분리 방법과 그 장치에 관한 것이다. 특히, 공기 중으로부터 산소 가스 및 질소 가스를 분리하고, 이들을 제품 가스로서 회수하거나, 또는, 미량 가스 질소와 가스 혼합물로부터 미량 가스와 질소 각각을 분리하고, 회수하는 것에 적합한 가스 분리 방법과 그 장치에 관한 것이다.
공기를 원료로 하여, 공기를 구성하는 산소 및 질소 양성분을 분리하고, 회수하는 방법으로서, 종래부터 심냉 공기 분리 방법이 광범위하게 채용되고 있다. 이 방법은 원료 공기를 액화하고, 산소와 질소와의 비점의 차이를 이용하여 정류(精溜) 분리하는 것으로, 이를 위한 분리 장치 설비에 많은 투자가 필요하게 되기 때문에, 비교적 다량으로 소비하는 설비로 공급하기 위한, 대규모 생산에 적당하다.
또한, 상기 공기 성분의 분리 회수 방법으로서, 흡착제를 사용하여 분리하는 압력 변동 흡착(PressureㆍSwingㆍAdsorption, 이하 'PSA'라고 약칭한다)법에 의한 분리 방법은, 최근 넓게 이용되고 있다. 이 방법은, 예를 들면, 공기를 원료로 하여 산소를 제품으로서 분리 회수하도록 하는 경우, 흡착제로서 제올라이트를 사용 하여, 이 제올라이트를 충진한 흡착관에, 공기를 가압하여 유통시키면, 흡착되기 쉬운 성분인 질소가 상기 제올라이트 흡착제에 흡착 고정되고, 한편 흡착되기 어려운 성분인 산소가 흡착관을 통과하여 유출한다(흡착 공정). 이어서, 제올라이트 흡착제를 충진한 흡착관을 상기 흡착 공정보다도 낮은 압력으로 감압하도록, 흡착관 내를 대기압을 향하여 해방하면, 상기 흡착 공정 제올라이트 흡착제에 흡착 고정된 질소가 탈착되고, 흡착관으로부터 유출하여 회수된다(재생 공정).
이와 같은 PSA법에 의한 가스 분리 방법에서는, 상대적으로 높은 압력에서 흡착 공정을 하고, 또한 상대적으로 낮은 압력에서 재생 공정을 행하고, 이를 짧은 시간에 순차적으로 반복하기 때문에, 흡착제의 단위 질량당 소망 제품의 회수 채취량을 높게 하는 것이 용이하며, 이 때문에, 설비가 콤팩트한 장치가 되는 이점이 있다.
예를 들면, 2관의 흡착관을 이용하여, 상기 흡착 공정, 재생 공정의 PSA 조작을 각각의 관에서 다른 공정으로 하여 교대로 행하면, 동일한 소망 제품을 연속적으로 채취할 수 있다. 그리고, 많은 경우, 흡착제에 흡착 고정되지 않고 흡착관을 통과하여 유출하는 흡착되기 어려운 성분을 고순도의 제품으로 하여 채취한다. 이것은, 흡착관으로부터 유출되는 성분의 순도에 의한 것이 크고, 흡착되기 쉬운 성분을 소망하는 채취 제품으로 하는 경우, 흡착제에는 흡착되기 쉬운 성분이 흡착되면 동시에 흡착되기 어려운 성분이 적게 흡착되고, 흡착제 사이의 공극에도 흡착되기 어려운 성분이 존재하기 때문에, 흡착관의 감압 재생 공정에서 흡착관으로부터 탈착 가스와 함께 흡착되기 어려운 가스가 유출된다. 따라서, 제품으로 해야 할 흡착되기 쉬운 성분 중에는 꽤 많은 양의 흡착되기 어려운 성분을 포함하게 된다. 또한, 이 재생 공정에서 탈착 도출되는 흡착되기 쉬운 성분과 흡착되기 어려운 성분과의 혼합 비율은, 사용하는 흡착제의 특성에 의존한다.
이와 같은 것에 의해, 상기 흡착되기 쉬운 성분을 고순도화하여 제품으로서 채취하는 경우에는, 재생 공정에서 흡착 공정으로 들어가기 전에, 제품으로 된 흡착되기 쉬운 성분(전 공정에서 탈착 도출하여 채취된 것)을 이용하여, 흡착 공정 종료 후의 상태인 흡착관 내를 제거하는 공정을 행할 필요가 있고, 분리 채취하기 위한 공정을 복잡화함과 동시에, 상기 제거를 위한 압축기를 추가하는 것이 필요한 점 등, 설비의 구성 기구를 증대시켜 왔다.
또한, PSA법에 의한 가스의 분리 방법과 장치에 있어서, 소망하는 고순도의 제품 가스를 분리 채취하기 위하여, 다수 성분으로 된 가스 혼합물 중의 1성분만을 목표 성분으로 하는 것이 많았다.
PSA법에 의해, 가스 혼합물을 구성하는 성분으로부터 다수 성분을 고순도 제품으로 하여 분리 채취하도록 하는 시도는, 예를 들면 특개소 55-147119호 공보에 개시된 기술이 있다. 상기 공보에 개시된 기술은, 공기를 원료로 하여, 공기 중에 포함된 H2O 및 CO2를 선택적으로 흡착하는 흡착제를 충진한 주된 컬럼으로 된 흡착 장치를 사용한 것으로, 산소를 부화(富化)한 산소 부화 공기와 고순도의 질소와의 2종의 제품을 분리 채취하는 방법에 관한 것이다.
상기한 특개소 55-147119호 공보에 개시된, 종래의 PSA법에 의한 공기의 분 리 방법에 관하여, 도3의 계통 개략도를 참조하여 설명한다.
이 방법에 사용하는 PSA법 공기 분리 장치50에서는, H2O 및 CO2를 선택적으로 흡착하는 흡착제를 충진한 예비 처리 컬럼Y1, Y2, 및 질소를 선택적으로 흡착하는 제올라이트와 같은 흡착제를 충진한 주된 컬럼Z1, Z2는, 각각 예비 처리 컬럼Y1-주된 컬럼Z1, 예비 처리 컬럼Y2-주된 컬럼Z2와 연결하여 2조의 처리 장치가, 원료 공기의 공급을 상호 반복 가능하게 행하도록 연결되어 있다. 그리고, 일방의 1조에 원료 공기를 공급하여 질소 성분을 흡착하고 산소 부화 공기를 채취하는 사이(흡착 공정), 타방의 1조는 전 공정인 흡착 공정에서 흡착제에 흡착된 질소 성분을 탈착하여 고순도 질소를 도출하여 채취한다(재생 공정).
즉, 예를 들면, 예비 처리 컬럼Y1-주된 컬럼Z1 조가 흡착 공정에서, 예비 처리 컬럼Y2-주된 컬럼Z2 조가 재생 공정에 있는 경우에는, 다음과 같은 운전 상태가 된다.
예비 처리 컬럼Y1-주된 컬럼Z1에서의 흡착 공정에서는, 원료 공기MA가 관로51로 도입되고, 밸브V51을 통하여 송풍기52에서 소정 압력으로 가압된 상태로 관로53, 밸브V52, 및 관로54를 통하여 예비 처리 컬럼Y1으로 공급된다. 그리고 상기 예비 처리 컬럼Y1에서 H2O 및 CO2가 흡착 제거되고, 이어서 밸브V53을 통하여 흡착제 제올라이트가 충진된 주된 컬럼Z1에 공급된다. 그리고 주된 컬럼Z1을 통과하는 때에, 공기M 중의 질소 성분이 흡착제에 흡착되고, 흡착되지 않은 산소 성분이 부화되어 산소 부화 공기가 되고, 이 산소 부화 공기가 관로55로 도출되고, 밸브V54, 관로56을 통하여 산소 부화 공기 저장조57로 채취 저장된다. 그리고 관로58에 의해 사용처로 공급된다.
한편, 재생 공정에 있는 예비 처리 컬럼Y2-주된 컬럼Z2는, 우선 밸브V65를 연 상태로 하여, 주된 컬럼Z2에 체류하는 산소 성분을 포함하는 질소 가스를 관로65로부터 도출하고, 밸브V65, 관로69, 및 관로60을 통하여 배출 가스 저장조61로 저장한다. 상기 배출 가스는 예비 처리 컬럼Y1, Y2의 재생 세정용에 사용된다. 그 후, 상기 밸브V65를 폐지하고, 밸브V63, V66을 연 상태로 함과 동시에, 진공 펌프62를 구동하여, 주된 컬럼Z2의 흡착제에 흡착되어 있는 질소 성분을 탈착하고, V63, 예비 처리 컬럼Y2, 관로64, 밸브V66, 관로63, 관로67을 통하여 진공 펌프 62로 흡인하고, 질소 저장조68에 제품으로서 고순도 질소 가스를 채취 저장한다. 그리고, 관로70에 의해 사용처로 공급된다.
이와 같이 하여, 예비 처리 컬럼Y1-주된 컬럼Z1 조와 예비 처리 컬럼Y2-주된 컬럼Z2 조는, 흡착 공정과 재생 공정을 적절히 밸브 조작에 의해 공정을 교대로 바꾸어 운전된다. 그런데, 상기 제품 질소를, 순도를 유지하여 채취하기 위하여, 재생 공정 후, 흡착 공정에 앞서서, 채취된 질소를 질소 저장조68로부터 관로71의 밸브V67, 관로72의 순환 송풍기73, 관로74의 밸브V75 또는 밸브V76을 통하여 주된 컬럼Z1, 또는 Z2에 도입하고, 세정 공주된 컬럼여, 주된 컬럼Z1, 또는 Z2 내의 질소 성분 농도를 보다 한층 높여 두고, 제품 질소의 고순도화를 달성시키고 있다.
그렇지만, 재생 공정에서의 질소 탈착은, 흡착 공정에서 원료 공기의 도입류에 대하여 행하기 위하여, 재생 공정에서 탈착하여 얻어진 고순도 질소는 예비 처 리 컬럼을 통하여 도출되기 때문에, 예비 처리 컬럼에서 흡착되어 있는 H2O, CO2가 도출되는 고순도 질소에 동반되어 오고, 고순도 질소의 불순물로서 함유되게 된다. 그 결과, 이들을 제거할 필요가 생기고, 이들을 제거하기 위하여, 추가 송풍기 등의 송기 수단과, 건조기 등의 정제 수단이 필요하게 되고, 설비 전체의 구성이 복잡화됨과 동시에, 증대되고, 특히 설비 비용이 높아지게 된다.
또한, 특개평 1-297119호 공보에는, 상기 특개소 55-147119호 공보에 개시되어 있는 공기의 분리 방법과 기본적인 구성은 유사하나, 농축하여 얻어진 제품 질소에 의해 주된 컬럼을 세정하는 세정 공정에서 배출되는 산소를 비교적 고농도로 함유하는 배출 가스를, 특개소 55-147119호 공보의 방법에서는 원료 공기의 계류로 회수한 것을, 특개평 1-297119호 공보의 방법에서는, 제품으로서 산소 부화 공기의 일부로 하여 채취하도록 한 점에서 차이가 있다. 그런데, 채취하는 제품 질소에 불순물로서 H2O, CO2가 함유된다는 단점과, 전체 구성이 복잡한 점 등은, 양자가 공통된다.
또한, 특개소52-52181호 공보에는, 흡착 특성이 다른 2종류의 흡착제, 분자체 활성탄(molecular sieves carbon, 이하 'MSC'로 약칭한다)과 제올라이트를 이용하여, 이들 흡착제를 충진한 흡착 컬럼을 연쇄하여 연결되도록 하여 구성하고, 이들의 연쇄적으로 연결한 흡착 컬럼에 원료를 순차적으로 접촉 통과하도록 하여, 99%의 고순도 산소 가스를 채취하는 방법이 개시되어 있다. 이 방법은, 제올라이트를 흡착제로서 사용하여 공기로부터 산소를 채취하는 방법이나, 제올라이트의 흡 착 특성으로부터 채취되는 제품 산소 중에 아르곤이 함유되고, 흡착 분리 후의 산소 농도의 상한이 기껏해야 95% 정도이며, 95% 이상의 농도의 산소를 얻기 위하여, 원료 가스 혼합물의 조성에 대응하여, 각각의 조성에 따라서 다른 흡착 특성의 흡착제를 이용하고, 흡착 분리하도록 하여, 채취해야 하는 산소의 농도의 고농도화를 나타내는 것이다.
그러나, 이 특개소 52-52181호 공보에 개시되어 있는 흡착 분리 방법은, 제1 흡착제를 충진한 흡착 컬럼으로부터 도출하여 얻어진 가스 혼합물이, 원료 가스에 대하여 주요 가스 성분의 함유 비율이 높게되는 상태에 있어서, 연쇄되어 있는 다음의 제2 흡착 컬럼으로의 공급 원료로 하여 사용되거나, 혹은 연쇄 연결되어 있는 흡착 컬럼의 최후 흡착 컬럼으로부터 제품 가스로서 사용되는 것을 특징으로 한다. 그 결과, 장치의 구성으로서, 일방의 흡착 컬럼으로부터의 탈착 가스를 타방의 흡착 컬럼 또는 자신의 흡착 컬럼에 재순환하는 송기용 펌프 유닛을 설비할 필요가 있고, 장치 구성이 복잡하게 되고, 설비 비용도 고가가 되는 피할 수 없는 단점이 있었다.
이상과 같이, 종래의 PSA법에 의한 가스 분리 방법과 장치에 있어서, 채취되는 고순도의 제품은, 원료인 가스 혼합물 중의 1성분만을 대상으로 하여 분리 채취하는 것이 많고, 다수의 성분을 고순도로 분리 채취하여 제품으로 하는 것에 적합한 우수한 방법과 장치가 없어, 그 출현이 기대되고 있었다.
본 발명은, 상기 사정을 감안하여 이루어진 것으로서, 가스 혼합물로부터 이를 구성하는 다수 성분을 동시에 고순도의 농도로 분리 채취하는 것이 가능하고, 또한 장치 설비가 간단하며 장치 비용이 저렴함과 동시에, 조작이 용이한 PSA법에 의한 가스 분리 방법과 장치를 제공하는 것이다.
상기의 과제를 해결하기 위하여,
청구항1에 따른 발명의 가스 분리 방법은, 적어도 2성분의 주요 가스 성분을 함유하는 가스 혼합물을 압력 변동 흡착 방법에 의해, 상기 주요 성분을 분리하여 채취하는 가스 분리 방법으로서, 상기 가스 혼합물을 가압한 후, 제1의 주요 가스 성분에 대하여 흡착하기 어려운 특성이고 제2 주요 가스 성분에 대하여 흡착하기 쉬운 특성인 제1 흡착제를 이용하여 제1 주요 가스 성분을 제1 제품 가스로서 분리하는 공정과, 상기 가압 후의 가스 혼합물을 상기 제1 주요 가스 성분에 대하여 흡착하기 쉬운 특성이고 상기 제2 주요 가스 성분에 대하여 흡착하기 어려운 특성인 제2 흡착제를 이용하여 제2 주요 가스 성분을 제2 제품 가스로서 분리하는 공정을, 교대로 반복하는 것에 의해, 상기 가스 혼합물로부터 제1 제품 가스 및 제2 제품 가스를 병산하는 것을 특징으로 하는 것이다.
청구항2에 따른 발명의 가스 분리 방법은, 상기 청구항1에 따른 발명의 가스 분리 방법으로서, 제1 제품 가스로서 분리하는 공정과 제2 제품 가스로서 분리하는 공정은, 각 제품 가스 분리 공정 중에서 분리하는 제품 가스를, 제품 저장조에 축적하는 공정을 마련함과 동시에, 각 제품 가스 분리 공정의 후에 상기 제품 저장조에 축적한 제품 가스를, 상기 각 제품 가스로서 분리한 흡착제를 제거 세정하는 공정을 행하는 것을 특징으로 한다.
청구항3에 따른 발명의 가스 분리 방법은, 상기 청구항1 또는 제2항에 따른 발명의 가스 분리 방법으로서, 상기 가스 혼합물이 공기인 것을 특징으로 한다.
청구항4에 따른 발명의 가스 분리 방법은, 상기 청구항1 또는 제2항에 따른 발명의 가스 분리 방법으로서, 상기 가스 혼합물의 주요 성분은, 크립톤 및 크세논의 적어도 1성분을 함유하는 질소로 이루어진 것을 특징으로 한다.
청구항5에 따른 발명의 가스 분리 방법은, 상기 청구항1 또는 제2항에 따른 발명의 가스 분리 방법으로서, 상기 제1 흡착제는 제올라이트이고, 상기 제2 흡착제는 분자체 활성탄인 것을 특징으로 한다.
청구항6에 따른 발명의 가스 분리 방법은, 상기 청구항1 또는 제2항에 따른 발명의 가스 분리 방법으로서, 상기 주요 성분은, 크립톤 및 크세논의 적어도 1성분을 함유하는 질소로 이루어지고, 상기 제1 흡착제는 질소를 선택적으로 흡착하는 Na-A형 제올라이트이고, 상기 제2 흡착제는 크립톤 및 크세논을 선택적으로 흡착하는 활성탄인 것을 특징으로 한다.
또한, 청구항7에 따른 발명은 가스 분리 장치로서, 적어도 2개의 주요 가스 성분을 함유하는 가스 혼합물을 압력 변동 흡착 장치에 의해 주요 가스 성분으로 분리하는 가스 분리 장치로서, 가스 혼합물을 가압하는 수단과, 가스 혼합물 중의 제1 주요 가스 성분에 대하여 흡착하기 어려운 특성이고 제2 주요 가스 성분에 대하여 흡착하기 쉬운 특성인 제1 흡착제를 충진한 제1 흡착관과, 상기 제1 주요 가스 성분에 대하여 흡착하기 쉬운 특성이고 상기 제2 주요 가스 성분에 대하여 흡착하기 어려운 특성인 제2 흡착제를 충진한 제2 흡착관과, 상기 제1 흡착관과 상기 제2 흡착관을 서로 교환하여 가스 혼합물을 유통하도록 하여, 상기 제1 주요 가스 성분과 제2 주요 가스 성분을 각각 도출하도록 배치한 관로 및 밸브 수단을 마련한 것을 특징으로 한다.
또한, 청구항8에 따른 발명의 가스 분리 장치는, 상기 청구항7에 따른 발명의 가스 분리 장치로서, 상기 제1 주요 가스 성분과 제2 주요 가스 성분을 각각 도출하도록 상기 제1 흡착관과 상기 제2 흡착관에 배치된 각각의 관로에, 제1 흡착관에 부속하여, 분리하여 도출된 제1 주요 성분을 저장하는 제1 제품 저장조와 상기 제1 제품 저장조로부터 상기 제1 흡착관으로 제품 가스를 역류시키는 관로를 설치하고, 또한 제2 흡착관에 부속하여, 분리하여 도출된 제2 주요 성분을 저장하는 제2 제품 저장조와 상기 제2 제품 저장조로부터 상기 제2 흡착관으로 제품 가스를 역류시키는 관로를 마련한 것을 특징으로 한다.
도1은, 본 발명의 PSA법에 의한 가스 분리 장치의 제1 실시 형태를 설명하는 계통도이다.
도2는, 본 발명의 PSA법에 의한 가스 분리 장치의 제2 실시 형태를 설명하는 계통도이다.
도3은, 종래의 PSA법에 의한 공기 분리 방법의 일례를 나타내는 계통 개략도이다.
이하 본 발명의 가스 분리 방법 및 장치의 실시 형태에 관하여 도면을 참조 하여 설명한다.
<제1 실시 형태>
도1은, 본 발명의 PSA법에 의한 가스 분리 장치의 제1 실시 형태를 설명하는 계통도이다. 이 제1 실시 형태에서는, 원료 가스 혼합물M으로서 공기 MA를 이용하고, 그 주요 가스 성분인 산소 및 질소를 제품 가스로서 분리 채취하는 것이다.
본 실시 형태의 장치는, 원료 가스 혼합물M으로서 공기 MA를 압축하는 압축기1, 공기MA의 주요 가스 성분인 산소(O2) 및 질소(N2)에 대하여, 각각 다른 흡착 특성을 가지는 흡착제를 충진한 흡착관2A, 2B가 마련되어 있다. 즉, 흡착관2A에는 질소를 선택적으로 흡착하고, 산소 성분은 흡착하기 어려운 제올라이트를 충진하고, 흡착관2B에는 산소를 선택적으로 흡착하고, 질소 성분은 흡착하기 어려운 분자체 활성탄(MSC, 'Molecular Sieves Carbon'의 약칭)을 충진하여 이루어진 것이다. 그리고 이들 원료 가스의 압축기1, 흡착관2A, 및 흡착관2B의 구성 기구는, 원료 공기MA를 흡착관2A, 2B 각각 교대로 도입하고, 유통하도록 하며, 도입 가스를 회수하도록 관로와 필요한 밸브에 의해 연결되어 있다.
원료 공기MA는 압축기1에서 100㎪~1000㎪의 압력(이하, 게이지 압력으로 나타낸다), 바람직하게는 200㎪~800㎪의 압력까지 압축되고, 관로3, 관로4를 유통하여, 원료 공급 밸브5a부터 흡착관2A에 도입된다. 흡착관2A에는 전술한 것과 같은 질소를 선택적으로 흡착하는 제올라이트가 충진되어 있기 때문에, 도입된 원료 공기MA로부터 흡착되기 쉬운 성분인 질소(N2)를 우선적으로 흡착하고, 흡착하기 어려 운 성분인 산소(O2)가 출구 측으로 도출되며, 제품 도출 밸브6a를 통하여 관로7로부터 산소 농도85~95%(이하 %는 용적%를 나타낸다)의 산소 부화 가스M0가 제품으로서 얻어진다.
이 때, 흡착관2A에는, 흡착 개시로부터 시간의 경과와 함께, 충진되어 있는 제올라이트는 질소를 흡착한 영역이 흡착관2A의 출구를 향하여 순차적으로 진행한다. 그리고, 흡착관2A의 출구의 관로7로부터 도출되는 산소 부화 가스M0의 중에 포함되는 질소 부분이 허용할 수 있는 범위를 초과한 때, 상기 흡착관2A에서의 흡착 공정을 종료시킨다. 즉, 원료 공급 밸브5a와 제품 도출 밸브6a를 닫는다. 이것과 함께, 흡착관2B에 연결되어 있는 원료 공급 밸브5b와 제품 도출 밸브6b를 연 상태로 한다.
이와 같이 하여 원료 공급 밸브5b와 제품 도출 밸브6b를 연 상태로 한 결과, 원료 공기MA는 흡착관2A로의 도입에 대신하여, 관로8, 원료 공급 밸브5b를 통하여 흡착관2B로 도입된다. 흡착관2B에는 상기한 바와 같이 산소를 선택적으로 흡착하는 분자체 활성탄(MSC)이 충진되어 있고, 상기 흡착관2B에 도입된 원료 공기MA는 분자체 활성탄(MSC)에서 흡착하기 쉬운 성분인 산소(O2)가 선택적으로 흡착되고, 흡착하기 어려운 성분인 질소(N2)가 출구 측으로 압출되고 제품 도출 밸브6b를 통하여 관로9로 유출하여 질소 농도 99~99.99%의 질소 부화 가스 MN이 제품으로서 얻어진다.
이 사이, 흡착관2B에서, 흡착 개시로부터 시간 경과와 함께, 충진되어 있는 분자체 활성탄(MSC)은 산소를 흡착한 영역이 흡착관2b의 출구로 향하여 순차 전진한다. 그리고, 흡착관2b의 출구의 관로9로부터 도출되는 질소 부화 가스MN 중에 포함되는 산소 부분이 허용할 수 있는 범위를 초과한 때에, 원료 공급 밸브5b와 제품 도출 밸브6b를 폐지하고, 흡착관2B의 흡착 공정을 중단한다. 그리고 동시에, 이것에 대신하여, 흡착관2A에 연접하는 원료 공급 밸브5a, 제품 도출 밸브6a를 연 상태로 하고, 원료 공기MA를, 앞선 흡착 공정 후의 재생 공정에 의해 충진되어 있는 제올라이트를 재생시켜 둔 흡착관2A에, 공급하도록 변경하여, 다시 산소 부화 가스M0를 제품으로서 채취한다.
이하 유사한 밸브 교체 조작을 반복하여, 원료 공기MA를 흡착관2A와 흡착관2B로 교환하여 공급하도록 하여, 일방의 흡착관2A로부터 산소 부화 가스M0을 제품으로서 채취하고, 타방의 흡착관2B로부터 질소 부화 가스MN을 제품으로서 채취한다.
상기한 바와 같이, 일방의 흡착관2A 또는 2B가 흡착 공정으로 운전하는 사이, 타방의 흡착관2B 또는 2A는, 각각의 흡착관에 충진되어 있는 흡착제가 전 공정인 흡착 공정에서 흡착되기 쉬운 성분에 의해 포화 상태가 되기 때문에, 이를 탈착시켜 배제하여 재생 공정이 행해진다.
이 재생 공정은 다음과 같은 상태에서 행해진다.
예를 들면, 전 공정에서 흡착 공정을 끝낸 흡착관2A를 재생 공정으로 하는 경우, 원료 공급 밸브5a 및 제품 도출 밸브6a를 닫은 후, 흡착관2A에 배설한 배기 밸브10a를 열어 흡착관2A 내를 대기로 개방하여, 흡착제 및 관 내에 있는 가스를 관로11로부터 대기로 방출한다. 이것에 의해, 흡착관2A 내의 압력이 낮아짐과 동시에, 흡착제(제올라이트)에 흡착되어 있던 질소 부분이 탈착하고, 재생하는 것이다. 재생 후는 상기 배기 밸브10a를 폐지하고 다음 회의 흡착 공정의 운전까지 대기한다.
또한, 흡착관2B에 있어서 재생 공정도 유사한 형태에서 행해지는 것이다. 이 경우, 원료 공급 밸브5b 및 제품 도출 밸브6b를 닫은 후, 흡착관2B에 배설한 배기 밸브10b를 열고 흡착관2B 내를 대기로 개방하여, 흡착제 및 관 내에 있는 가스를 관로12로부터 대기로 방출한다. 재생 후는 상기 배기 밸브10b를 폐지하고 다음 회의 흡착 공정의 운전까지 대기한다.
여기서, 양 흡착관2A, 2B에 있어서 흡착 공정/재생 공정, 즉 흡착관2A의 흡착 공정 시에 있어서 흡착관2B의 재생 공정 시간, 흡착관2A의 재생 공정 시에 있어서 흡착관2B의 흡착 공정 시간과 같이, 흡착 공정과 재생 공정과의 각각 상호 간의 시간은, 대응한 관계인 것이 바람직하나, 어느 쪽의 공정을 길게 하는 것도 가능하다. 이 때, 시간을 길게 하는 필요가 없는 공정은 그대로 공정을 계속하거나, 혹은 전체 밸브를 닫아서 휴지 대기 상태로 하는 것도 좋다.
상기한 실시 형태에서는, 공기MA를 원료 가스 혼합물M으로 하고, 산소 부화 가스M0와 질소 부화 가스MN을 각각 분리 채취하는 예에 관하여 설명하였으나, 원료 가스 혼합물M으로서, 주요 가스 성분을 크립톤 및 질소로 한 경우에는, 다른 흡착 특성을 가지는 흡착제로서, 제올라이트와 활성탄을 사용하는 것에 의해서도, 이들을 분리 채취하는 것이 가능하다.
이 경우, 100㎪~2000㎪의 압력, 바람직하게는 200㎪~1000㎪의 압력까지 압축된 가스 혼합물을, 크립톤 농도 99~99.999%의 크립톤 부화 가스와, 질소 농도 99~99.999%의 질소 부화 가스로 분리하고, 양자가 제품으로서 얻어진다.
<제2 실시 형태>
다음은 제2 실시 형태를 도2에 도시한 계통도를 참조하여 설명한다. 이 제2 실시 형태의 특징은, 상기한 도1에 도시한 제1 실시 형태에서는, 흡착관2A 및 흡착관2B의 각각의 제품을 도출하는 관로7 및 관로9에, 제품 저장조13A, 13B를 연달아 설치하여 마련하고, 각각의 흡착관2A 및 흡착관2B에서의 흡착 공정에서 채취되는 각 제품을 각각, 이들 제품 저장조13A 및 제품 저장조13B에 저장함과 동시에, 각 흡착관2A, 2B의 재생 공정에서 각 흡착관에 제거 가스로서 흐르도록 하는 것이다. 이하 이를 설명한다.
도2에서, 도1과 공통하는 기기에 관하여는 도1과 동일 부호를 부여하고 상세한 설명은 생략한다.
상기한 제1 실시 형태에서와 같은 흡착관2A의 흡착 공정에서, 제품 도출 밸브6a, 관로7로부터 도출한 제품 산소 부화 가스M0는, 산소 부화 가스 제품 저장조13A에 도입되어 저장되고, 저장된 제품은 관로14로부터 적당한 사용처로 공급된다. 그리고 흡착관2A의 흡착 공정이 종료하면, 흡착 공정은 흡착관2B로 바꾸어 밸브 조작되고 상기 흡착관2B에 원료 공기M이 도입되며, 흡착관2A는 재생 공정으로 조작 운전된다.
이 실시 형태의 흡착관2A의 재생 공정에서는, 제거 밸브16a, 배기 밸브10a를 열고, 제품 저장조13A로부터 관로15, 제거 밸브16a를 통하여 제품 저장조13A에 저장되어 있는 산소 부화 가스M0를 역류시키고 흡착관2A 내에 도입하며, 흡착제 제올라이트에 흡착되어 있는 질소(N2)를 탈착 동반하여 배기 밸브10a, 관로11로부터 계 외로 방출된다. 이와 같이 하여 흡착관2A 내의 흡착제(제올라이트)에 흡착되어 있는 성분(질소)이, 흡착 공정 중에 제품으로서 채취된 흡착되기 어려운 성분(산소 부화 가스M0)으로 제거되고, 흡착하기 쉬운 성분의 탈착이 촉진된다.
또한, 흡착관2B의 재생 공정에서도 유사한 조작에 의해 제품인 질소 부화 가스MN에 의해 제거하여 흡착관2B에 충전되어 있는 흡착제 분자체 활성탄MSC를 재생한다. 즉, 이 경우, 제거 밸브16b, 배기 밸브10b를 열고, 제품 저장조13B로부터 관로18, 제거 밸브16b를 통하여, 흡착 공정 시에 분리 채취하여 제품 저장조 13B에 저장되어 있는 질소 부화 가스MN을 역류시키고 흡착관2B 내로 도입하며, 흡착제 분자체 활성탄MSC에 흡착하고 있는 산소(O2)를 탈착 동반하여 배기 밸브10b, 관로12로부터 계외로 방출한다. 이와 같이 하여 흡착관2B 내의 흡착제(분자체 활성탄MSC)에 흡착되어 있는 성분(산소)이, 흡착 공정 중에 제품으로서 채취된 흡착되기 어려운 성분(질소 부화 가스MN)으로 제거되고, 흡착되기 쉬운 성분의 탈착이 촉진되며, 효율은 좋고, 또한 탈착 효과를 향상시켜 재생하는 것이 가능하다.
상기 제1 실시 형태 및 제2 실시 형태에서 가스 분리 장치의 흡착관2A 및 흡착관2B 각각의 출구측의 관로7 및 9에 별개로 균압 탱크(미도시)를 배설하여 두고, 흡착 공정 종료 후의 재생 공정에 앞서서 흡착관 내의 제품에 가까운 농도의 가스를 균압 탱크로 도입하여 회수하고 저장하여 둔다. 그리고, 재생 공정 종료 후에, 보다 저압 상태에 있는 해당 흡착관에, 상기 균압 탱크에 회수한 제품에 가까운 농도 가스를, 양자가 등압이 되도록 균압 탱크로부터 돌려보내는 것에 의해, 공급한 원료 가스를 간결하고 유효하게 사용할 수 있고, 제품의 회수율을 향상시킬 수 있게 된다.
또한, 상기 실시 형태에서는, 주요 성분이 2성분에서의 분리예에 관하여 설명하였으나, 본 발명은 여기에 한정되지 않고, 다른 가스 성분이 혼재하고 있는 다성분계에서도, 각 가스 성분에 대응하는 흡착제를 이용한 흡착관을 설비 부가하는 것에 의해, 상기 각 실시의 형태와 유사하게, 각종 다른 성분을 각각 동시에 채취할 수 있는 작용 효과를 이루는 것은 물론이다.
<실시예1>
도1에 도시한 장치를 이용하여, 일방의 흡착관2A에 Na-X형 제올라이트, 타방의 흡착관2B에 분자체 활성탄MSC를 충진하여 사용하였다. 양흡착관 각각 흡착제의 원료 공기 유입단측에 수분 흡착 제거용으로서 활성 알루미늄을 충진하여 배치하였다. 압축기1을 이용하여 공기MA를 700㎪로 압축하여, 원료 가스 혼합물M으로서 흡착관2A 및 흡착관2B로 각각 공급하였다. 그리고, Na-X형 제올라이트를 충진한 흡착관2A로부터는 산소 93%의 산소 부화 가스를, 분자체 활성탄MSC를 충진한 흡착관2B로부터는 질소 99%의 질소 부화 가스를 얻을 수 있었다.
또한, 본 실시예에서는, 제올라이트는 Na-X형에 한정하지 않고, Na-X형 제올라이트의 Na 이온의 일부 또는 전부를 다른 알칼리 혹은 알칼리토류 금속으로 이온 교환한 제올라이트, Ca-X형 제올라이트, 모데나이트 등을 사용하는 것도 가능하다.
<실시예2>
도1에 도시한 장치를 이용하여, 일방의 흡착관2A에 Na-X형 제올라이트, 타방의 흡착관2B에 활성탄을 충진하여 이용하였다. 압축기1을 이용하여 건조한 질소와 크립톤 가스 혼합물을 원료 가스 혼합물M으로서 700㎪로 압축한 후, 흡착관2A 및 흡착관2B 각각으로 공급하고, 제올라이트를 충진한 흡착관2A로부터는 순도 99.99%의 크립톤 부화 가스를, 활성탄을 충진한 흡착관2B로부터는 순도 99.5%의 질소 부화 가스를 얻을 수 있었다.
한편, 본 실시예2에서, 원료 가스 혼합물M을 질소와 크세논 가스 혼합물로 변경하여 압축기1에 의하여 상기와 동일한 압력으로 가압하여, 상기 흡착제를 충진한 각 흡착관2A 및 흡착관2B로 공급한 점, 크립톤과 유사하게 제올라이트를 충진한 흡착관2A로부터, 순도 99.99%의 크세논 부화 가스가 도출되고, 활성탄을 충진한 흡착관2B로부터는, 순도 99.5%의 질소 부화 가스를 얻을 수 있었다.
본 실시예2에서 분리 채취한 크립톤 및 크세논은 매우 희소한 가스이고, 상기 가스를 분리계의 계외로 배출하는 것은 경제적으로 적당하지 않다. 따라서, 도1에 도시된 배기 가스의 관로11, 관로12를 압축기1의 원료 흡입 관로에 합류시키고, 배기 가스를 순환시키도록 배관하는 것에 의해, 희소하며 고가인 크립톤, 크세논의 분리에 따른 손해를 저감시키는 것이 효과적이었다.
본 발명의 가스 분리 방법 및 장치는 상기한 바와 같은 형태로 실시되고, 이하와 같은 산업상 이용 가능성을 가진다.
흡착 특성이 상이한 흡착제를 충진한 흡착관을 설비한 가스 분리 장치에, 다수 성분으로 된 원료 가스 혼합물을 도입하고, 각각의 복수 성분을 각각 분리 채취하도록 한 것으로서, 매우 간략한 PSA 장치 구성으로 원료 가스 혼합물로부터 2개의 성분을 각각 농축하여 제품으로서 취출할 수 있다.
게다가, 이들 제품 가스는 흡착 공정에서 흡착되기 어려운 성분으로서 취출되기 위하여, 원료 가스 혼합물의 흡착관으로의 도입 압력을 지닌 상태로 얻어지기 때문에, 본 발명의 가스 분리 장치에 의해 제조한 가스 제품은, 사용처로 공급하는 때에, 압송하기 위한 압축기의 설치를 필요로 하지 않아, 설비비를 절감할 수 있고, 운전비도 절감할 수 있다.
또한, 원료 가스 혼합물의 압축기는, 두 개의 흡착관에 대하여 상호 원료 가스를 공급하기 위하여, 휴지하는 시간이 없기 때문에 효과적으로 작동시킬 수 있다.
이 때문에, 원료 가스 혼합물의 압축기는, 1관식 PSA에서와 같이 압축 조작과 배기 조작을 상호 반복하도록 과혹한 운전을 할 필요가 없고, 정상 구동 상태를 연속하여 운전할 수 있기 때문에, 기계의 수명을 연장할 수 있다.
또한, 제품 저장조를 각 흡착관의 제품 도출 관로로 연결하여 부가하여 마련하고, 상기 제품 저장조에 흡착 공정에서 채취하여 저장한 제품 가스를, 각 흡착관 의 재생 공정에서의 흡착제에 흡착된 흡착되기 쉬운 성분의 탈착을 위한 제거 가스로 사용하여, 제거 공정을 실시하는 것에 의해, 대폭적으로 수율 향상을 나타낼 수 있다.
또한, 각 흡착관에 연결하여 개별 균압 탱크를 배설하여 마련한 것에 의해, 흡착관의 재생 공정 후의 저압 상태에 있는 흡착관에, 흡착 공정 후의 재생 공정에서 흡착관으로부터 배출하는 가스를 균압 탱크로 회수하여 둔 상기 배출 가스를, 공급하여 균압화하는 균압 공정에 이용하는 것에 의해, 도입한 원료 가스 혼합물을 간단하게 배출하지 않고, 유효 활용하게 되어 회수율의 향상을 나타내는 등의 효과가 있다.

Claims (9)

  1. 적어도 2성분의 주요 가스 성분을 함유하는 가스 혼합물을 압력 변동 흡착 방법에 의해, 상기 주요 성분을 분리하여 채취하는 가스 분리 방법으로서,
    상기 가스 혼합물의 주요 성분은, 크립톤 및 크세논의 적어도 1성분을 함유하는 질소로 이루어지고,
    상기 가스 혼합물을 가압한 후, 제1의 주요 가스 성분에 대하여 흡착하기 어려운 특성이고 제2 주요 가스 성분에 대하여 흡착하기 쉬운 특성인 제1 흡착제를 이용하여 제1 주요 가스 성분을 제1 제품 가스로서 분리하는 공정과, 상기 가압 후의 가스 혼합물을 상기 제1 주요 가스 성분에 대하여 흡착하기 쉬운 특성이고 상기 제2 주요 가스 성분에 대하여 흡착하기 어려운 특성인 제2 흡착제를 이용하여 제2 주요 가스 성분을 제2 제품 가스로서 분리하는 공정을, 상호 반복하는 것에 의해, 상기 가스 혼합물로부터 제1 제품 가스 및 제2 제품 가스를 병산하며,
    제1 제품 가스로서 분리하는 공정과 제2 제품 가스로서 분리하는 공정은, 각 제품 가스 분리 공정 중에서 분리하는 제품 가스를, 제품 저장조에 축적하는 공정을 마련함과 동시에, 각 제품 가스 분리 공정의 후에 상기 제품 저장조에 축적한 제품 가스를, 상기 각 제품 가스로서 분리한 흡착제를 제거 세정하는 공정을 행하며,
    적어도 하나의 상기 제1 흡착제 또는 제2 흡착제에 의해 흡착된 가스가 상기 가스 혼합물로 합류되는 것을 특징으로 하는 가스 분리 방법.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 제1항에 있어서,
    상기 제1 흡착제는 질소를 선택적으로 흡착하는 Na-A형 제올라이트이고, 상기 제2 흡착제는 크립톤 및 크세논을 선택적으로 흡착하는 활성탄인 것을 특징으로 하는 가스 분리 방법.
  7. 적어도 2개의 주요 가스 성분을 함유하는 가스 혼합물을 압력 변동 흡착 장치에 의해 주요 가스 성분으로 분리하는 가스 분리 장치로서,
    가스 혼합물을 가압하는 수단과,
    가스 혼합물 중의 크립톤 및 크세톤으로 구성된 그룹으로부터 선택된 적어도 한 가스 성분에 대하여 흡착하기 어려운 특성이고 질소에 대하여 흡착하기 쉬운 특성인 제1 흡착제를 충진한 제1 흡착관과,
    상기 크립톤 및 크세톤으로 구성된 그룹으로부터 선택된 적어도 한 가스 성분에 대하여 흡착하기 쉬운 특성이고 상기 질소에 대하여 흡착하기 어려운 특성인 제2 흡착제를 충진한 제2 흡착관과,
    상기 제1 흡착관과 상기 제2 흡착관을 서로 교환하여 가스 혼합물을 유통하도록 하여, 상기 크립톤 및 크세톤으로 구성된 그룹으로부터 선택된 적어도 한 가스 성분과 질소를 각각 도출하도록 배치한 관로 및 밸브 수단을 마련하며,
    상기 제1 흡착관 및 상기 제2 흡착관으로 상기 가스 혼합물을 교대로 도입하기 위해 상기 관로에 접합하는 제1 배기 관로 및 제2 배기 관로와,
    상기 제1 및 제2 흡착관에서 얻어진 크립톤 및 크세톤으로 구성된 그룹으로부터 선택된 적어도 한 가스 성분 및 질소을 축적하기 위한 제1 제품 저장조 및 제2 제품 저장조와,
    상기 제1 및 제2 흡착관을 재생하기 위해 상기 제1 및 제2 흡착관으로 상기 제1 및 제2 제품 저장조에 축적된 상기 크립톤 및 크세톤으로 구성된 그룹으로부터 선택된 적어도 한 가스 성분 및 질소를 흐르도록 하는 관로를 포함하는 것을 특징으로 하는 가스 분리 장치.
  8. 삭제
  9. 제7항에 있어서,
    상기 제1 흡착제는 Na-A형 제올라이트이고, 상기 제2 흡착제는 활성탄인 것을 특징으로 하는 가스 분리 장치.
KR1020037013477A 2001-04-16 2002-03-20 가스 분리 방법 및 그 장치 KR100838166B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001116836A JP3902416B2 (ja) 2001-04-16 2001-04-16 ガス分離方法
JPJP-P-2001-00116836 2001-04-16
PCT/JP2002/002656 WO2002085496A1 (fr) 2001-04-16 2002-03-20 Procede et systeme de separation de gaz

Publications (2)

Publication Number Publication Date
KR20040010623A KR20040010623A (ko) 2004-01-31
KR100838166B1 true KR100838166B1 (ko) 2008-06-13

Family

ID=18967500

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020037013477A KR100838166B1 (ko) 2001-04-16 2002-03-20 가스 분리 방법 및 그 장치

Country Status (7)

Country Link
US (1) US6955711B2 (ko)
EP (1) EP1380335A4 (ko)
JP (1) JP3902416B2 (ko)
KR (1) KR100838166B1 (ko)
CN (1) CN1267181C (ko)
TW (1) TWI299672B (ko)
WO (1) WO2002085496A1 (ko)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI238079B (en) * 2001-11-27 2005-08-21 Nippon Oxygen Co Ltd Method and device for separating gas
JP3899282B2 (ja) * 2002-04-15 2007-03-28 大陽日酸株式会社 ガス分離方法
FR2858606B1 (fr) * 2003-08-04 2006-01-20 Air Liquide Generateur autonome d'oxygene
US7306652B2 (en) * 2005-03-30 2007-12-11 Parker-Hannifin Corporation Siloxane removal process
US7507273B1 (en) * 2005-06-20 2009-03-24 6Solutions, Llc Chromatographic rectification of ethanol
US7862645B2 (en) * 2008-02-01 2011-01-04 Air Products And Chemicals, Inc. Removal of gaseous contaminants from argon
CN102482088A (zh) * 2009-09-09 2012-05-30 松下电器产业株式会社 吸附材料和使用该吸附材料的氙吸附设备
JP2011057491A (ja) * 2009-09-09 2011-03-24 Panasonic Corp ガス回収方法
JP5601829B2 (ja) * 2009-11-30 2014-10-08 住友精化株式会社 精製ガス・脱着ガス取得方法および精製ガス・脱着ガス取得装置
CN101985081A (zh) * 2010-06-10 2011-03-16 中国人民解放军63653部队 一种碳分子筛用于氡和氙气的分离方法
CN101985080A (zh) * 2010-06-10 2011-03-16 中国人民解放军63653部队 一种活性炭用于氙气的富集分离方法
US8496733B2 (en) 2011-01-11 2013-07-30 Praxair Technology, Inc. Large scale pressure swing adsorption systems having process cycles operating in normal and turndown modes
US8491704B2 (en) 2011-01-11 2013-07-23 Praxair Technology, Inc. Six bed pressure swing adsorption process operating in normal and turndown modes
US8551217B2 (en) 2011-01-11 2013-10-08 Praxair Technology, Inc. Six bed pressure swing adsorption process operating in normal and turndown modes
US8435328B2 (en) 2011-01-11 2013-05-07 Praxair Technology, Inc. Ten bed pressure swing adsorption process operating in normal and turndown modes
US10661633B2 (en) * 2012-03-29 2020-05-26 Signify Holding B.V. Heating device
CN103693623B (zh) * 2013-12-13 2016-03-02 合肥江航飞机装备有限公司 一种分子筛与中空纤维膜氧氮分离装置
US20150165388A1 (en) * 2013-12-17 2015-06-18 Pall Corporation Skinless polyethersulfone membrane
RU2729067C1 (ru) * 2016-12-13 2020-08-04 Линде Акциенгезелльшафт Способы отделения озона
JP6677181B2 (ja) 2017-01-19 2020-04-08 Jfeスチール株式会社 ガス分離回収方法及び設備
US11557462B2 (en) * 2019-03-13 2023-01-17 Kla Corporation Collecting and recycling rare gases in semiconductor processing equipment
CN111359371A (zh) * 2020-03-30 2020-07-03 浙江勤策空分设备有限公司 一种处理尾气的psa制氮设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0059831A2 (de) * 1981-03-07 1982-09-15 Paul Forkardt GmbH &amp; Co. KG Kraftbetätigtes Spannfutter
US4369048A (en) * 1980-01-28 1983-01-18 Dallas T. Pence Method for treating gaseous effluents emitted from a nuclear reactor
US4661125A (en) * 1984-05-22 1987-04-28 Seitetsu Kagaku Co., Ltd. Process for producing high concentration oxygen by a pressure-swing-adsorption method
JPH01184016A (ja) * 1988-01-20 1989-07-21 Tokico Ltd 気体分離装置
US4948391A (en) * 1988-05-12 1990-08-14 Vacuum Optics Corporation Of Japan Pressure swing adsorption process for gas separation
JP2000241590A (ja) * 1999-02-23 2000-09-08 Japan Atom Power Co Ltd:The 希ガス濃縮方法及び希ガス濃縮装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1551824A (en) 1975-07-17 1979-09-05 Boc Ltd Gas separation
US4190424A (en) * 1975-07-17 1980-02-26 Boc Limited Gas separation
GB2011272A (en) 1977-12-28 1979-07-11 Boc Ltd Air separation by adsorption
US4264340A (en) * 1979-02-28 1981-04-28 Air Products And Chemicals, Inc. Vacuum swing adsorption for air fractionation
DE3132572A1 (de) * 1981-08-18 1983-03-10 Linde Ag, 6200 Wiesbaden Verfahren zur adsorptiven zerlegung eines gasgemisches
US4386945A (en) * 1982-02-01 1983-06-07 Litton Systems, Inc. Process and compound bed means for evolving a first component enriched gas
JPS5992907A (ja) * 1982-11-19 1984-05-29 Seitetsu Kagaku Co Ltd 高濃度アルゴンの製造方法
DE3402533A1 (de) * 1984-01-26 1985-08-01 Bergwerksverband Gmbh, 4300 Essen Verfahren zur gewinnung von sauerstoff mit einem argon-anteil unter o,5 % aus feuchter luft
US4744803A (en) * 1985-08-19 1988-05-17 The Ohio State University Research Foundation Complementary pressure swing adsorption
JP2562326B2 (ja) * 1987-08-07 1996-12-11 住友精化株式会社 空気から高濃度酸素を取得する方法
US4810265A (en) * 1987-12-29 1989-03-07 Union Carbide Corporation Pressure swing adsorption process for gas separation
JP2691991B2 (ja) 1988-05-12 1997-12-17 豊 野口 気体分離方法
JPH0251405A (ja) 1988-08-12 1990-02-21 Yutaka Noguchi 窒素ガス分離方法
JPH02115016A (ja) 1988-10-24 1990-04-27 Yutaka Noguchi 酸素ガス分離方法
GB8812642D0 (en) * 1988-05-27 1988-06-29 Boc Group Plc Separation of gas mixtures
GB8826584D0 (en) * 1988-11-14 1988-12-21 Boc Group Plc Pressure swing adsorption process
US4914218A (en) * 1989-02-17 1990-04-03 Ravi Kumar Adsorptive process for separating multicomponent gas mixtures
GB9107999D0 (en) * 1991-04-16 1991-06-05 Boc Group Plc Improved apparatus for the separation of a gaseous mixture
FR2682611B1 (fr) * 1991-10-17 1993-12-03 Air Liquide Procede et installation d'epuration d'un gaz par adsorption.
US5328503A (en) 1992-11-16 1994-07-12 Air Products And Chemicals, Inc. Adsorption process with mixed repressurization and purge/equalization
CA2102775C (en) 1992-11-16 1999-01-19 Ravi Kumar Extended vacuum swing adsorption process
JP2534614B2 (ja) * 1993-06-03 1996-09-18 テイサン株式会社 ガス精製装置
JP3654658B2 (ja) 1994-03-28 2005-06-02 大陽日酸株式会社 圧力変動吸着式酸素製造方法及び装置
US5707425A (en) * 1994-10-21 1998-01-13 Nitrotec Corporation Helium recovery from higher helium content streams
US5658371A (en) * 1995-11-06 1997-08-19 Praxair Technology, Inc. Single bed pressure swing adsorption process for recovery of oxygen from air
JP3628439B2 (ja) 1996-05-20 2005-03-09 財団法人産業創造研究所 酸素−窒素混合ガス中のクリプトンの濃縮法
JP3891773B2 (ja) * 2000-10-20 2007-03-14 大陽日酸株式会社 ガスの分離精製方法及びその装置
US6500235B2 (en) * 2000-12-29 2002-12-31 Praxair Technology, Inc. Pressure swing adsorption process for high recovery of high purity gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4369048A (en) * 1980-01-28 1983-01-18 Dallas T. Pence Method for treating gaseous effluents emitted from a nuclear reactor
EP0059831A2 (de) * 1981-03-07 1982-09-15 Paul Forkardt GmbH &amp; Co. KG Kraftbetätigtes Spannfutter
US4661125A (en) * 1984-05-22 1987-04-28 Seitetsu Kagaku Co., Ltd. Process for producing high concentration oxygen by a pressure-swing-adsorption method
JPH01184016A (ja) * 1988-01-20 1989-07-21 Tokico Ltd 気体分離装置
US4948391A (en) * 1988-05-12 1990-08-14 Vacuum Optics Corporation Of Japan Pressure swing adsorption process for gas separation
JP2000241590A (ja) * 1999-02-23 2000-09-08 Japan Atom Power Co Ltd:The 希ガス濃縮方法及び希ガス濃縮装置

Also Published As

Publication number Publication date
EP1380335A4 (en) 2004-08-18
EP1380335A1 (en) 2004-01-14
TWI299672B (ko) 2008-08-11
US6955711B2 (en) 2005-10-18
US20040118278A1 (en) 2004-06-24
WO2002085496A1 (fr) 2002-10-31
KR20040010623A (ko) 2004-01-31
CN1503687A (zh) 2004-06-09
JP3902416B2 (ja) 2007-04-04
JP2002306918A (ja) 2002-10-22
CN1267181C (zh) 2006-08-02

Similar Documents

Publication Publication Date Title
KR100838166B1 (ko) 가스 분리 방법 및 그 장치
KR960004606B1 (ko) 공기로부터 고순도의 산소가스를 제조하는 방법
JP2744596B2 (ja) 供給ガス混合物の比較的吸着力の弱い成分から比較的吸着力の強い成分を選択的に分離する方法
US6475265B1 (en) Pressure swing adsorption method for production of an oxygen-enriched gas
KR100254295B1 (ko) 단일 흡착 베드를 이용한 압력 스윙 흡착 방법
JP2634022B2 (ja) 真空スイング吸着法によるガス成分の分離方法
EP0791388B1 (en) VSA adsorption process with energy recovery
JP3310249B2 (ja) 1つの吸着器と1つのブロワーを使用する酸素製造方法及び装置
EP1018359A2 (en) Pressure swing adsorption process and system with product storage tank(s)
EP1175934A2 (en) Improved oxygen production
JP2002191925A (ja) 原料ガス分離のための圧力スイング吸着方法
JPS60191002A (ja) 吸着法を使用して少なくとも水素を含む混合ガス中の水素を濃縮する方法
JPH10314531A (ja) 圧力スイング吸着方法及び装置
US5997611A (en) Single vessel gas adsorption system and process
JP3654658B2 (ja) 圧力変動吸着式酸素製造方法及び装置
JPH10272332A (ja) ガス分離装置及びその運転方法
JP4050415B2 (ja) ガス分離方法
JP7374925B2 (ja) ガス分離装置及びガス分離方法
JP7122191B2 (ja) ガス分離装置、ガス分離方法、窒素富化ガス製造装置及び窒素富化ガス製造方法
JPH11267439A (ja) ガス分離方法及びこの方法を実施するガス分離装置
JPH07110762B2 (ja) 高濃度酸素の製造方法
JPH07330306A (ja) 圧力変動吸着分離法による酸素発生方法
JP3610253B2 (ja) 混合ガス吸着分離方法
JPS6238281B2 (ko)
KR20200018042A (ko) 아르곤과 질소 혼합가스 또는 공기로부터 아르곤을 제거하고 질소를 농축하는 흡착분리방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130531

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140602

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160527

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170602

Year of fee payment: 10