KR100728858B1 - 액정 표시 장치 및 그 제조 방법 - Google Patents

액정 표시 장치 및 그 제조 방법 Download PDF

Info

Publication number
KR100728858B1
KR100728858B1 KR1020040098784A KR20040098784A KR100728858B1 KR 100728858 B1 KR100728858 B1 KR 100728858B1 KR 1020040098784 A KR1020040098784 A KR 1020040098784A KR 20040098784 A KR20040098784 A KR 20040098784A KR 100728858 B1 KR100728858 B1 KR 100728858B1
Authority
KR
South Korea
Prior art keywords
liquid crystal
region
substrates
crystal display
display device
Prior art date
Application number
KR1020040098784A
Other languages
English (en)
Other versions
KR20050113118A (ko
Inventor
가타오까신고
오무로가쯔후미
사사끼다까히로
다시로구니히로
Original Assignee
후지쯔 가부시끼가이샤
우 옵트로닉스 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 후지쯔 가부시끼가이샤, 우 옵트로닉스 코포레이션 filed Critical 후지쯔 가부시끼가이샤
Publication of KR20050113118A publication Critical patent/KR20050113118A/ko
Application granted granted Critical
Publication of KR100728858B1 publication Critical patent/KR100728858B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133761Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different pretilt angles

Abstract

본 발명은 반 투과형의 액정 표시 장치 및 그 제조 방법에 관한 것으로, 반사 및 투과의 양 모드에서 우수한 표시 특성이 얻어지는 반 투과형의 액정 표시 장치 및 그 제조 방법을 제공하는 것을 목적으로 한다. 대향 배치된 한 쌍의 기판(2, 4)과, 기판(2, 4) 사이에 밀봉된 액정(6)과, 기판(4) 측으로부터의 빛을 반사하는 반사 영역과, 기판(2) 측으로부터의 빛을 기판(4) 측에 투과시키는 투과 영역을 각각 구비한 복수의 화소 영역과, 액정(6)에 혼입된 모노머가 자외선에 의해 중합하여 반사 영역의 기판 계면에 형성되고, 반사 영역의 액정(6)을 배향 제어하는 자외선 경화물(52)을 갖도록 구성한다.
투과 영역, 반사 영역, 경화물, 중합, 계면, 배향 제어, CF층, 모노머

Description

액정 표시 장치 및 그 제조 방법{LIQUID CRYSTAL DISPLAY AND METHOD OF MANUFACTURING THE SAME}
도 1은 본 발명의 제1 실시 형태에 의한 액정 표시 장치의 원리를 도시하는 도면.
도 2는 본 발명의 제1 실시 형태에 의한 액정 표시 장치의 제1 기본 구성을 도시하는 도면.
도 3은 자외선 경화물을 형성하는 방법의 다른 예를 도시하는 도면.
도 4는 본 발명의 제1 실시 형태에 의한 액정 표시 장치의 제2 기본 구성을 도시하는 도면.
도 5는 본 발명의 제1 실시 형태의 실시예 1-1에 대한 비교예의 액정 표시 장치의 구성을 도시하는 도면.
도 6은 인가 전압에 대한 투과율 특성 및 반사율 특성을 나타내는 그래프.
도 7은 본 발명의 제1 실시 형태의 실시예 1-2의 액정 표시 장치에 UV 광을 조사하는 공정을 도시하는 도면.
도 8은 본 발명의 제1 실시 형태의 실시예 1-3의 액정 표시 장치의 제조 방법을 도시하는 도면.
도 9는 본 발명의 제1 실시 형태의 실시예 1-4의 액정 표시 장치의 구성을 도시하는 도면.
도 10은 일반적인 반 투과형 액정 표시 장치의 구성을 나타내는 단면도.
도 11은 본 발명의 제2 실시 형태에 의한 액정 표시 장치의 원리를 도시하는 도면.
도 12는 본 발명의 제2 실시 형태의 실시예 2-1의 액정 표시 장치의 구성을 도시하는 도면.
도 13은 본 발명의 제2 실시 형태의 실시예 2-1의 액정 표시 장치의 T-V 특성을 나타내는 그래프.
도 14는 본 발명의 제2 실시 형태의 실시예 2-2의 액정 표시 장치의 구성을 도시하는 도면.
도 15는 본 발명의 제2 실시 형태의 실시예 2-3의 액정 표시 장치의 구성을 도시하는 도면.
도 16은 본 발명의 제3 실시 형태에 의한 액정 표시 장치의 제1 기본 구성을 도시하는 도면.
도 17은 본 발명의 제3 실시 형태에 의한 액정 표시 장치의 제2 기본 구성을 도시하는 도면.
도 18은 반사 전극 및 투명 전극의 형상이 예를 도시하는 도면.
도 19는 본 발명의 제3 실시 형태에 의한 액정 표시 장치의 제3 기본 구성을 도시하는 도면.
도 20은 본 발명의 제3 실시 형태에 의한 액정 표시 장치의 제4 기본 구성의 전제로 되는 액정 표시 장치의 구성을 도시하는 도면.
도 21은 본 발명의 제3 실시 형태에 의한 액정 표시 장치의 제4 기본 구성을 도시하는 도면.
도 22는 본 발명의 제3 실시 형태의 실시예 3-1에 의한 액정 표시 장치의 구성을 도시하는 도면.
도 23은 본 발명의 제3 실시 형태의 실시예 3-2에 의한 액정 표시 장치의 구성을 도시하는 도면.
도 24는 본 발명의 제3 실시 형태의 실시예 3-3에 의한 액정 표시 장치의 구성을 도시하는 도면.
도 25는 본 발명의 제3 실시 형태의 실시예 3-4에 의한 액정 표시 장치의 제조 방법을 도시하는 도면.
도 26은 종래의 반 투과형 액정 표시 장치의 단면 구성을 도시하는 도면.
<도면의 주요부분에 대한 부호의 설명>
2 : TFT 기판
4 : 대향 기판
6 : 액정
8 : 액정 분자
10, 11 : 유리 기판
16 : 투명 전극
36, 37 : 배향막
42 : 공통 전극
50 : 모노머
52 : 자외선 경화물
54 : 차광 마스크
본 발명은 액정 표시 장치 및 그 제조 방법에 관한 것으로, 특히 반사 및 투과의 양 모드에서의 표시가 가능한 반 투과형의 액정 표시 장치 및 그 제조 방법에 관한 것이다.
최근, 액티브 매트릭스형의 액정 표시 장치에 있어서, 경량화, 박형화 및 저소비 전력화의 실현할 수 있는 반사형 액정 표시 장치가 주목받고 있다. 현재, 반사형 액정 표시 장치로서 실용화되어 있는 것은, TN(Twisted Nematic) 모드 액정을 이용한 한 장 편광판 방식이다(예를 들면, 특허 문헌1 및 특허 문헌2 참조). 그러나, 한 장 편광판 방식의 반사형 액정 표시 장치는, 주위의 밝기에 의해 시인성이 크게 좌우되기 때문에, 밝기가 어두운 환경 하에서는 시인성이 매우 저하한다고 하는 문제를 갖고 있다.
한편, 투과형 액정 표시 장치는, 백 라이트 유닛을 광원으로서 사용하기 때문에 소비 전력은 높지만, 어두운 환경 하에서도 콘트라스트가 높고 시인성이 높다고 하는 특징을 갖는다. 그러나, 투과형 액정 표시 장치는, 밝은 환경 하에서는 현저히 시인성이 저하하기 때문에, 반사형 액정 표시 장치보다도 표시 품위가 나빠진다고 하는 문제를 갖고 있다.
반사형 및 투과형의 액정 표시 장치가 갖는 상기 문제를 개선하는 기술로서, 반사형 액정 표시 장치와 프론트 라이트 유닛을 조합한 프론트 라이트 방식의 액정 표시 장치나, 화소 전극에 반 투과 반사막을 이용한 반 투과형 액정 표시 장치(예를 들면, 특허 문헌3 참조) 등이 있다. 그러나, 프론트 라이트 방식의 액정 표시 장치는, 어두운 환경 하에서는 투과형 액정 표시 장치보다 콘트라스트비가 낮아진다고 하는 문제를 갖음과 함께, 밝은 환경 하에서는 프론트 라이트 유닛의 도광판에서의 광 흡수에 의해서 통상의 반사형 액정 표시 장치보다 표시가 어둡게 된다고 하는 문제를 갖고 있다.
한편, 상기 반 투과형 액정 표시 장치의 반 투과 반사막에는, 일반적으로 막 두께 30nm 정도의 알루미늄(Al) 박막 등의 금속 박막이 이용된다. 그런데, 금속 박막은 광 흡수 계수가 크기 때문에, 광 이용 효율이 낮아진다고 하는 문제가 있다. 또한, 대면적으로 균일한 막 두께의 금속 박막을 형성하는 것은 매우 곤란하기 때문에, 막 두께의 변동에 의해 반 투과 반사막의 투과율의 면내 변동이 커져 버린다고 하는 문제가 있다.
상기 문제를 해결하는 기술로서, 빛을 반사하는 반사 전극이 형성된 반사 영역과, 빛을 투과시키는 투명 전극이 형성된 투과 영역을 화소마다 갖는 반 투과형 액정 표시 장치가 있다(예를 들면, 특허 문헌4 참조). 이 반 투과형 액정 표시 장치에 따르면, 반사 및 투과의 양 모드에서 비교적 높은 콘트라스트비로 밝은 표시 가 얻어져, 투과율의 면내 변동도 발생하지 않는다.
그런데 반 투과형 액정 표시 장치에서는, 투과 모드에서의 표시에서는 빛이 액정층을 1회밖에 통과하지 않는 데 대하여, 반사 모드에서의 표시에서는 빛이 액정층을 2회 통과하게 된다. 특허 문헌4에 기재된 구성에서는, 투과 영역과 반사 영역에서 셀 두께(액정층 두께) 및 액정의 배향이 거의 동일하기 때문에, 빛이 액정층을 2회 통과하는 것을 고려한 반사 영역의 실질적인 리터데이션(retardation)은, 투과 영역의 리터데이션의 약 2배로 된다. 반사 모드 및 투과 모드의 한쪽에 양호한 표시가 얻어지도록 셀 두께를 설정하면, 다른 쪽에서는 명도나 콘트라스트비가 저하한다. 따라서, 반사 모드 및 투과 모드의 쌍방에서 양호한 표시를 얻는 것은 불가능하다고 하는 문제가 있다.
상기 문제를 해결하는 기술로서, 반사 영역과 투과 영역에서 서로 다른 셀 두께를 갖는 이중 갭 방식의 반 투과형 액정 표시 장치가 있다(예를 들면, 특허 문헌5 참조). 도 26은 이 반 투과형 액정 표시 장치의 화소의 단면 구성을 도시하고 있다. 도 26에서는, 화소 영역의 투과 영역 T를 좌측에 나타내고, 반사 영역 R을 우측에 나타내고 있다. 도 26에 도시한 바와 같이, 반 투과형 액정 표시 장치는, 대향 배치된 박막 트랜지스터(TFT) 기판(102) 및 대향 기판(104)과, 양 기판(102, 104) 사이에 밀봉된 액정(106)을 갖고 있다. 또한, 양 기판(102, 104)을 사이에 두고, 한 쌍의 편광자(186, 187)가 배치되어 있다. TFT 기판(102)은 유리 기판(110) 상에 형성된 투명한 화소 전극(116)을 갖고 있다. 반사 영역 R의 화소 전극 (116) 상에는, 반사 영역 R의 셀 두께 dR을 투과 영역 T의 셀 두께 dT보다 얇게 하기 위해서, 막 두께 2㎛ 정도의 평탄화막(134)이 형성되어 있다. 평탄화막(134) 상에는 반사 전극(117)이 형성되어 있다. 한편, 대향 기판(104)은 유리 기판(111) 상에 형성된 투명한 공통 전극(142)을 갖고 있다.
동일 화소 내에서는 액정(106)에 인가되는 전압이 거의 동일하기 때문에, 투과 영역 T의 액정 분자(108T)와 반사 영역 R의 액정 분자(108R)는 거의 동일한 경사 각도로 경사한다. 따라서, 투과 영역 T의 굴절율 이방성 ΔnT와 반사 영역 R의 굴절율 이방성 ΔnR은 거의 동일하게 된다(ΔnT≒ΔnR). 한편, 반사 영역 R의 셀 두께 dR은 투과 영역 T의 셀 두께 dT보다 얇게 되어 있고(dT>dR), 예를 들면 셀 두께 dR은 셀 두께 dT의 1/2 정도로 되어 있다(dT≒ 2·dR). 이에 의해, 반사 영역 R의 실질적인 리터데이션과 투과 영역 T의 리터데이션이 거의 일치하여, 반사 모드 및 투과 모드의 쌍방에서 충분한 명도나 콘트라스트비가 얻어지게 된다.
그런데 이 반 투과형 액정 표시 장치는, 반사 영역 R에 평탄화막(134)을 형성할 필요가 있기 때문에 제조 프로세스가 복잡해져, 제조 비용이 증가한다고 하는 문제를 갖고 있다. 또한, 이 반 투과형 액정 표시 장치에서는, 반사 영역 R과 투과 영역 T의 사이에서 셀 두께가 서로 다르기 때문에, 액정(106)의 응답 속도가 달라진다. 또한, 평탄화막(134)의 막 두께는 투과 영역 T의 셀 두께의 약 절반이기 때문에, 반사 영역 R과 투과 영역 T의 사이의 경계에는 비교적 큰 단차가 형성된다. 이 단차는, 액정(106)의 배향 불량의 원인으로 됨과 함께, 배향막을 도포 형성할 때에 액체 고임이 발생하는 원인으로 되어 버린다.
또한, 상기 반 투과형 액정 표시 장치의 셀 두께의 유지에 구 형상 스페이서를 이용하는 경우, 구 형상 스페이서의 입경을 반사 영역 R 및 투과 영역 T중 한쪽 영역의 셀 두께에 정합하면, 그 구 형상 스페이서가 다른 쪽의 영역에 배치된 경우에 원하는 셀 두께가 얻어지지 않게 된다. 이와 같이, 이중 갭 방식의 반 투과형 액정 표시 장치는, 셀 두께의 제어가 곤란하다고 하는 문제를 갖고 있다.
또한, 반사 영역 R과 투과 영역 T에 있어서의 광로의 차이에 의해서, 반사 및 투과의 양 표시 모드의 사이에서 색 순도가 달라진다고 하는 문제가 있다. 즉, 투과 영역 T에서는 CF층을 1회 통과하는 데 대하여, 반사 영역 R에서는 CF층을 2회 통과하기 때문에 상대적으로 투과율이 저하한다. 이 때문에, 반사 모드에서의 표시 시에 밝은 표시가 얻어지도록 CF층의 색 순도를 조정하면, 투과 모드에서의 표시 시의 색 순도가 매우 낮아져 희미한 표시로 된다. 반대로, 투과 모드에서의 표시 시에 양호한 표시가 얻어지도록 CF층의 색 순도를 조정하면, 반사 모드에서의 표시 시의 투과율이 낮아져 매우 어두운 표시로 된다. 이를 개선하기 위해서, 반사 영역 R과 투과 영역 T에서 CF층의 색 순도를 서로 다르게 하는 기술이 특허 문헌6에 개시되어 있다. 상기 기술에서는, 투과 영역 T에는 전면에 CF층을 마련하고, 반사 영역 R에는 부분적으로 CF층을 형성함으로써 색 순도의 보정이 행하여지고 있다. 그러나, 이 기술에서는 CF층을 부분적으로 형성함으로써 발생하는 단차를 평탄화하는 공정을 새롭게 필요로 한다. 이 때문에, 통상의 CF층을 갖는 대향 기판(104)을 제작하는 공정보다도 제조 프로세스가 증가하여, 액정 표시 장치의 제조 비용이 증가한다.
<특허 문헌1> 일본 특허 공개 평성 5-232465호 공보
<특허 문헌2> 일본 특허 공개 평성 8-338993호 공보
<특허 문헌3> 일본 특허 공개 평성 7-333598호 공보
<특허 문헌4> 일본 특허 공개 평성 11-281972호 공보
<특허 문헌5> 일본 특허 제3380482호 공보
<특허 문헌6> 일본 특허 제3410664호 공보
<특허 문헌7> 일본 특허 공개 2002-296585호 공보
본 발명의 목적은 반사 및 투과의 양 모드에서 우수한 표시 특성이 얻어지는 반 투과형의 액정 표시 장치 및 그 제조 방법을 제공하는 데에 있다.
상기 목적은, 대향 배치된 한 쌍의 기판과, 상기 한 쌍의 기판 사이에 밀봉된 액정과, 상기 한 쌍의 기판의 한쪽 측으로부터의 빛을 반사하는 반사 영역과, 상기 한 쌍의 기판의 다른 쪽 측으로부터의 빛을 상기 한 쌍의 기판의 한쪽 측에 투과시키는 투과 영역을 각각 구비한 복수의 화소 영역과, 상기 액정에 혼입된 중합성 성분이 자외선에 의해 중합하여 상기 한 쌍의 기판과의 계면 근방의 일부에 형성되고, 상기 화소 영역 내의 상기 액정을 부분적으로 배향 제어하는 자외선 경화물을 갖는 것을 특징으로 하다 액정 표시 장치에 의해서 달성된다.
<실시예>
〔제1 실시 형태〕
본 발명의 제1 실시 형태에 의한 액정 표시 장치 및 그 제조 방법에 대하여 도 1 내지 도 9를 이용하여 설명한다. 본 실시 형태에서는, 반사 영역 R의 셀 두께와 투과 영역 T의 셀 두께를 서로 다르게 한 것이 아니고, 반사 영역 R의 액정이 빛에 부여하는 변조 작용과 투과 영역 T의 액정이 빛에 부여하는 변조 작용을 서로 다르게 하고 있다. 도 1은 본 실시 형태에 의한 반 투과형 액정 표시 장치의 원리를 도시하는 화소의 단면도이다. 도 1에서는, 화소 영역의 투과 영역 T를 좌측에 나타내고, 반사 영역 R을 우측에 나타내고 있다. 도 1에 도시한 바와 같이, 반 투과형 액정 표시 장치는, 대향 배치된 TFT 기판(2) 및 대향 기판(4)과, 양 기판(2, 4) 사이에 밀봉된 액정(6)을 갖고 있다. 액정(6)은 예를 들면 마이너스의 유전율 이방성을 갖고, 전압 무인가 시에 기판면에 거의 수직으로 배향하고 있다. 또한, TFT 기판(2) 및 대향 기판(4)을 사이에 두고, 한 쌍의 편광자(86, 87)가 배치되어 있다. 편광자(86, 87)로서는, 모두 직선 편광자가 이용된다든지, 모두 원 편광자(직선 편광자 및 1/4 파장판)가 이용된다든지, 혹은 직선 편광자와 원 편광자의 조합(한쪽에 직선 편광자, 다른 쪽에 원 편광자)이 이용된다. TFT 기판(2)은 유리 기판(10) 상의 화소 영역마다 형성된 투명 전극(16)을 갖고 있다. 반사 영역 R의 투명 전극(16) 상에는, 반사 전극(17)이 형성되어 있다. 대향 기판(4)은 유리 기판(11) 상의 거의 전면에 형성된 투명한 공통 전극(42)을 갖고 있다. 이에 의해, 도면 중의 화살표로 도시한 바와 같이, 투과 영역 T에서는 TFT 기판(2) 측으로부터의 빛을 투과시키고, 반사 영역 R에서는 대향 기판(4) 측으로부터의 빛을 반사하도록 되어 있다.
본 실시 형태에서는, 투과 영역 T와 반사 영역 R의 사이에서 액정(6)에 대한 배향 제어 능력이 서로 다르고, 투과 영역 T의 액정 분자(8T)는, 전압이 인가되었을 때에 반사 영역 R의 액정 분자(8R)보다 크게 경사하도록 되어 있다. 이에 의해, 투과 영역 T의 굴절율 이방성 ΔnT가 반사 영역 R의 굴절율 이방성 ΔnR보다 커져(ΔnT>ΔnR), 예를 들면 굴절율 이방성 ΔnR은 굴절율 이방성 ΔnT의 1/2 정도로 된다(ΔnT≒ 2·ΔnR). 또한 본 실시 형태에서는, 투과 영역 T의 셀 두께 dT와 반사 영역 R의 셀 두께 dR이 거의 동일(dT≒ dR)이거나, 혹은 셀 두께 dT가 셀 두께 dR보다 얇게 되어 있다(dT<dR).
본 실시 형태에 따르면, 반사 영역 R의 실질적인 리터데이션과 투과 영역 T의 리터데이션이 거의 일치하고, 반사 모드 및 투과 모드의 쌍방에서 충분한 명도나 콘트라스트비가 얻어지게 된다.
상기의 원리를 실현하기 위한 본 실시 형태에 의한 액정 표시 장치의 제1 기본 구성에 대하여 설명한다. 본 기본 구성에서는, 상기 한 바와 같이 투과 영역 T와 반사 영역 R의 사이에서 액정(6)에 대한 배향 제어 능력을 서로 다르게 하기 위해서, 액정(6)과 TFT 기판(2)의 계면 근방 및 액정(6)과 대향 기판(4)의 계면 근방(이하, 단순히 「기판 계면」이라고 함)의 일부에 부분적으로 자외선 경화물이 형성된다. 예를 들면 자외선 경화물은, 투과 영역 T및 반사 영역 R 중 어느 한쪽의 기판 계면에 형성된다. 자외선 경화물은 예를 들면 배향막과 함께, 액정을 배향 제어하는 배향 제어층으로서 기능한다. 도 2는 기판 계면의 일부에 자외선 경화물을 형성하는 방법을 도시하고 있다. 여기서는, 수직 배향막이 형성된 수직 배향 모드의 액정 표시 장치에 대하여 설명하지만, 이것에 한정되는 것이 아니라, 다른 배향 모드에 있어서도 마찬가지로 적용 가능하다. 도 2(a)에 도시한 바와 같이, TFT 기판(2) 상의 전면에 배향막(수직 배향막)(36)을 도포 형성하고, 대향 기판(4) 상의 전면에 배향막(37)을 도포 형성한다. 다음에, TFT 기판(2)과 대향 기판(4)을 접합하여, 광 중합성 성분인 모노머(50)가 혼입된 액정(6)을 양 기판(2, 4) 사이에 밀봉한다. 다음에, 부분적으로 차광 패턴이 형성된 차광 마스크(54)를 개재하여 액정(6)에 자외(UV) 광을 조사한다. 이에 의해, 도 2(b)에 도시한 바와 같이, UV 광이 조사된 영역 B에서는 모노머(50)가 중합하여, 기판 계면에 자외선 경화물(52)이 형성된다. 이 때, 차광된 영역 A 중의 모노머(50)의 대부분도 영역 B의 자외선 경화물(52) 중에 들어가 있다. 또한, 액정(6)에 혼입하는 모노머(50)는 1 종류에 한하지 않고 2종 이상의 혼합계이더라도 무방하다. 단, 그 중의 1종은 이관 또는 그 이상의 광 관능기를 갖는 것이 바람직하다. 자외선 경화물(52)은 액정(6)을 배향 제어하는 기능을 갖기 때문에, 자외선 경화물(52)이 형성된 영역 B와 자외선 경화물(52)이 형성되어 있지 않은 영역 A의 사이에서, 인가 전압에 대한 액정(6)의 스위칭 특성을 바꿀 수 있다. 즉, 상기 원리를 실현하기 위해서는, 화소 영역 중의 반사 영역 R에 자외선 경화물(52)을 형성하면 된다.
도 3은 기판 계면에 자외선 경화물(52)을 형성하는 방법의 다른 예를 도시하고 있다. 도 3(a)에 도시한 바와 같이, 기판면에 대하여 경사 방향(입사각 θ)에 입사하도록 UV 광을 액정(6)에 조사하고, 자외선 경화물(52)을 형성한다. 경사 방향에 입사한 빛에 의해 형성된 자외선 경화물(52)은, 기판면에 수직인 방향으로부터 해당 경사 방향으로 약간 경사진 방향에 액정 분자를 배향시키도록 된다. 이에 의해, 도 3(b)에 도시한 바와 같이, 전압이 인가되었을 때의 액정 분자(8)의 경사 방향(도면 중 굵은 화살표로 도시함)이 규정됨과 함께, 도 2(b)의 영역 B와 같이 기판면에 수직으로 UV 광을 입사되었을 때와 비교하여, 인가 전압에 대한 액정(6)의 스위칭 특성이 변화한다. 소정의 차광 마스크를 이용하여, 영역에 의해 서로 다른 입사각 θ로 UV 광을 조사하여 자외선 경화물(52)을 형성함으로써, 액정(6)의 스위칭 특성을 영역에 의해 서로 다르게 하는 것도 가능하다.
다음에, 본 실시 형태에 의한 액정 표시 장치의 제2 기본 구성에 대하여 설명한다. 도 4는 자외선 경화물을 형성하는 방법을 도시하고 있다. 상기 제1 기본 구성에서는, 배향막(36, 37)이 각각 기판 전면에 도포 형성되고, 자외선 경화물(52)이 배향막(36, 37) 상에 부분적으로 형성되는 예이다. 이에 대하여 본 기본 구성에서는, 도 4(a)에 도시한 바와 같이 배향막(수직 배향막)(36, 37)이 부분적으로 도포 형성되고, 도 4(b)에 도시한 바와 같이 자외선 경화물(52)은 기판 계면 전체에 형성된다. 배향막(36, 37)이 도포 형성되어 있지 않은 영역 B에서도, 자외선 경화물(52)을 형성함으로써, 액정 분자(8)를 수직 배향시키는 것이 가능하다. 배향막(36, 37)이 형성되어 있지 않은 영역 B에서는, 자외선 경화물(52)에만 의해서 액정 분자(8)가 속박되게 되기 때문에, 극각 앵커링 강도가 매우 약해진다. 이 때문에, 액정 분자(8)가 스위칭하기 쉬운 상태로 된다. 한편, 배향막(36, 37)이 형성된 영역 A에서는, 배향막(36, 37) 외에 자외선 경화물(52)에 의해서도 액정 분자(8)가 속박되기 때문에, 극각 앵커링 강도가 매우 강해진다. 이 때문에, 액정 분자(8)가 스위칭하기 어려운 상태로 된다. 본 기본 구성에서는, 이와 같이 액정(6) 의 스위칭 특성을 영역에 의해 서로 다르게 하는 것도 가능하다.
자외선 경화물(52)을 형성하는 광 중합성 모노머(50)에는, 액정(6)에 손상을 부여하지 않는 빛에 대하여 충분한 반응을 나타내는 것, 및 형성된 자외선 경화물(52)의 액정(6)에 대한 배향 규제력이 시간에 의해서 변화하지 않는 것이라고 하는 2가지 조건이 요구된다. 이들 특성이 불충분하면 패널의 베이크 등의 불량이 발생한다. 상기의 조건을 충족시키기 위해서는, 모노머(50)가 환 구조를 포함하는 환식 화합물일 필요가 있으며, 그 중에서도 환 구조로서 벤젠 환을 포함하는 것이 바람직하다는 것을 알았다. 그 외에 환 구조와 광 반응기의 사이에 스페이서(-CH2-)를 포함하지 않는 것이 바람직하다.
이하, 본 실시 형태에 의한 액정 표시 장치 및 그 제조 방법에 대하여, 구체적 실시예를 이용하여 설명한다.
(실시예 1-1)
실시예 1-1의 액정 표시 장치와 그것에 대한 비교예의 액정 표시 장치를 제작했다. 우선, 도 5에 도시하는 비교예의 액정 표시 장치를 이하와 같이 제작했다. 도 5에 도시한 바와 같이, 투명 전극(16) 상의 전면에 Al막을 스퍼터링에 의해 성막하여 패터닝하고, 도면 중 우측 절반의 영역에 반사 전극(17)을 형성했다. 다음에, JSR사제 폴리아민산 재료를 이용하여 TFT 기판(2) 및 대향 기판(4) 상의 전면에 배향막(36, 37)을 각각 도포 형성했다. 안티패러랠 러빙(antiparallel rubbing)으로 되도록, 양 기판(2, 4)을 각각 소정의 러빙 방향으로 러빙하고, 양 기판(2, 4)을 접합하여 빈 셀을 제작했다. 머크사제의 네가티브형 네마틱 액정을 빈 셀에 주입했다. 여기서, 셀 두께는 4.2㎛로 되도록 했다.
다음에, 본 실시예의 액정 표시 장치를 이하와 같이 제작했다. 상기의 빈 셀과 마찬가지의 빈 셀에, 광 중합성 이관능 모노머를 액정에 대하여 0.5wt% 첨가한 것을 주입했다. 그 후, 차광 마스크로 투과 영역 T를 차광하고, 반사 영역 R에 대하여 무 편광의 UV 광을 조사했다. UV 광의 조사 강도는 2mW/㎠로 하고, 조사 에너지는 9000mJ/㎠로 했다. 이에 의해, 반사 영역 R의 기판 계면에 자외선 경화물(52)을 형성했다.
도 6은 인가 전압에 대한 투과율 특성 및 반사율 특성을 나타내는 그래프이다. 도 6(a)은 비교예의 액정 표시 장치의 특성을 도시하고, 도 6(b)는 본 실시예의 액정 표시 장치의 특성을 도시하고 있다. 도 6(a), (b)의 횡축은 인가 전압(V)을 표시하고 있다. 종축은 투과율 또는 반사율의 상대 강도(a.u.)를 나타내고, 투과율 및 반사율의 최대치를 각각 1로 하고 있다. 그래프 중의 ● 표시는 투과율을 나타내고, ■ 표시는 반사율을 나타내고 있다. 도 6(a)에 도시한 바와 같이, 비교예의 액정 표시 장치에서는, 인가 전압 2V∼5V의 범위에서, 전압의 증가와 함께 투과율이 단조 증가하는 데 대하여, 반사율은 인가 전압 3.3V 부근에 피크를 갖고, 그것을 넘으면 전압의 증가와 함께 감소하고 있다. 이 때문에, 인가 전압 5V일 때, 투과율은 거의 최대치로 되는 데 대하여, 반사율은 최대치의 1/5 정도로 되어 버린다. 한편, 도 6(b)에 도시한 바와 같이, 본 실시예에 의한 액정 표시 장치에서는, 반사율 특성을 투과율 특성에 꽤 가깝게 할 수 있었다.
(실시예 1-2)
실시예 1-2의 액정 표시 장치와 그것에 대한 비교예의 액정 표시 장치를 제작했다. 본 실시예 및 비교예에서는, 대향 기판(4) 측의 유리 기판(11) 상에 컬러 필터(CF)층(40)을 형성했다. 투과 모드에서의 표시 시에는 광이 CF층(40)을 1회 밖에 통과하지 않는 데 대하여, 반사 모드에서의 표시 시에는 광이 CF층(40)을 2회 통과하게 되기 때문에, CF층(40)은 투과 영역 T에는 막 두께 d1로 형성되고, 반사 영역 R에는 막 두께 d1의 거의 절반의 막 두께 d2로 형성되어 있다(도 7 참조). 실시예 1-1과 마찬가지로 안티패러랠 러빙으로 되도록 양 기판(2, 4)을 러빙하고, 양 기판(2, 4)을 접합하여 빈 셀을 제작했다. 머크사제의 네가티브형 네마틱 액정을 빈 셀에 주입하여, 비교예의 액정 표시 장치를 제작했다. 여기서, 투과 영역 T의 셀 두께는 4.2㎛로 되도록 했다.
다음에, 상기와 마찬가지의 빈 셀에, 광 중합성 이관능 모노머를 액정에 대하여 0.5wt% 첨가한 것을 주입했다. 다음에, 차광 마스크를 이용하지 않고서, 무 편광의 UV 광을 대향 기판(4) 측으로부터 전면에 조사했다. UV 광의 조사 강도는 2mW/㎠로 하고, 조사 에너지는 9000mJ/㎠로 했다. 도 7은 UV 광을 조사하는 공정을 도시하고 있다. 반사 영역 R에서는 CF층(40)의 막 두께 d2가 비교적 얇기 때문에, 조사된 UV 광은 CF층(40)을 투과하여 액정(6)에 입사한다(도 7의 화살표 a). 한쪽 투과 영역 T에서는, 막 두께 d1이 두꺼운 CF층(40)이 마스크로 하여 기능하고, UV 광은 액정(6)에 거의 입사하지 않는다. 이 때문에, 반사 영역 R에는 기판 계면에 자외선 경화물이 형성되어 있지만, 투과 영역 T에는 자외선 경화물이 형성되어 있지 않았다. 이상의 공정에 의해, 본 실시예의 액정 표시 장치를 제작했다.
상기 비교예의 액정 표시 장치에 대하여 투과율 특성 및 반사율 특성을 평가한 바, 도 6(a)에 도시한 실시예 1-1에 대한 비교예의 액정 표시 장치의 특성과 거의 마찬가지였다. 단, 본 비교예의 액정 표시 장치에서는, 반사 영역 R에서의 CF층(40)의 막 두께 d2가 얇은 분만큼 반사 영역 R의 셀 두께가 두껍게 되어 있기 때문에, 반사율과 투과율의 특성의 차는 약간 커지는 방향이었다. 본 실시예의 액정 표시 장치에서는, 도 6(b)에 도시한 실시예 1-1의 액정 표시 장치와 마찬가지로, 반사율 특성을 투과율 특성에 꽤 가깝게 할 수 있었다. 이상과 같이, 본 실시예에서는, 차광 마스크를 이용하지 않고서 반사 영역 R에만 자외선 경화물을 형성할 수 있고, 투과 영역 T의 광학 특성을 변화시키지 않고서 반사 영역 R의 광학 특성을 변화시킬 수 있었다.
(실시예 1-3)
도 8은 실시예 1-3에 의한 액정 표시 장치의 제조 방법을 도시하고 있다. 본 실시예에서는, 도 8(a)에 도시한 바와 같이, 투과 영역 T에는 배향막(36, 37)을 도포 형성하지 않고, 레지스트를 이용하여 선형 돌기(댐)(44)를 형성했다. 반사 영역 R에는 배향막(36, 37)을 도포 형성했지만, 러빙은 행하지 않았다. 투과 영역 T에서의 셀 두께가 4.2㎛로 되도록 양 기판(2, 4)을 접합하여, 빈 셀을 제작했다.
다음에, 광 중합성 이관능 모노머와 알킬쇄를 갖는 단관능 모노머를 혼합한 혼합물을, 액정에 대하여 0.8wt% 첨가한 것을 빈 셀에 주입했다. 다음에, TFT 기판(2) 측으로부터 기판면에 거의 수직으로 입사하도록 UV 광을 조사했다. UV 광의 조사 강도는 2mW/㎠로 하고, 조사 에너지는 9000mJ/㎠로 했다. 도 8(b)은 TFT 기 판(2) 측으로부터 UV 광을 조사하는 공정을 도시하고 있다. 도 8(b)에 도시한 바와 같이, TFT 기판(2) 측으로부터 UV 광을 조사함으로써, 투과 영역 T에서는 액정(6)에 UV 광이 입사하는 데 대하여(도면 중 화살표 b), 반사 영역 R에서는 반사 전극(17)으로 차광되기 때문에 액정(6)에 UV 광이 입사하지 않는다. 이에 의해, 투과 영역 T에만 자외선 경화물이 형성된다.
계속해서, 대향 기판(4) 측에서 무 편광의 UV 광을 전면에 조사한다. 도 8(c)는 대향 기판(4) 측으로부터 UV 광을 조사하는 공정을 도시하고 있다. 도 8(c)에 도시한 바와 같이, UV 광은 기판면에 대한 입사각이 45°로 되도록 조사한다. UV 광의 조사 강도는 8mW/㎠로 하고, 조사 에너지는 9000mJ/㎠로 했다. 반사 영역 R에서는 CF층(40)의 막 두께 d2가 비교적 얇기 때문에, 조사된 UV 광은 CF층(40)을 투과하여 액정(6)에 입사한다(도면 중 화살표 c). 한쪽 투과 영역 T에서는, 막 두께 d1이 두꺼운 CF층(40)이 마스크로서 기능하고, UV 광은 액정(6)에 거의 입사하지 않는다. 이에 의해, 반사 영역 R에만 자외선 경화물이 형성된다. 즉, 투과 영역 T에는 기판면에 대하여 거의 수직으로 입사한 UV 광에 의해 자외선 경화물이 형성되고, 반사 영역 R에는 기판면에 대하여 비스듬히 입사한 UV 광에 의해 자외선 경화물이 형성되게 된다. 이상의 공정에 의해 본 실시예의 액정 표시 장치를 제작했다.
제작된 액정 표시 장치를 평가하였더니, 투과 영역 T에서는 배향막(36, 37)을 형성하지 않음에도 불구하고, 액정 분자가 수직 배향됨과 함께, 통상의 MVA 방식의 액정 표시 장치와 마찬가지로 스위칭시킬 수 있었다. 반사 영역 R에서는 러 빙 등의 배향 처리를 실시하고 있지 않음에도 불구하고, 액정 분자의 전압 인가 시의 경사 방향을 규제할 수 있었다. 또한, 반사율 특성을 투과율 특성에 꽤 가깝게 할 수 있었다.
(실시예 1-4)
도 9는 실시예 1-4에 의한 액정 표시 장치의 구성을 도시하고 있다. 도 9에 도시한 바와 같이, 배향막(36, 37)에는 JSR사제 폴리아민산 재료를 이용하여, 안티패러랠 러빙으로 되도록 양 기판(2, 4)을 러빙했다. 양 기판(2, 4)을 접합하여, 빈 셀을 제작했다. 광 중합성 이관능 모노머를 액정에 대하여 0.3wt% 첨가한 것을 빈 셀에 주입한 후, 전면에 무 편광의 UV 광을 조사했다. UV 광의 조사 강도는 8mW/㎠로 하고, 조사 에너지는 9000mJ/㎠로 했다. 여기서, 셀 두께는 4.2㎛로 했다. 이 때, 액정에 혼입하는 모노머로서 A∼G의 7 종류의 이관능 모노머를 이용하고, AC15Vpp의 전압을 액정에 24 시간 인가한 후의 액정 분자의 프리틸트각의 변화를 조사했다. 그 결과를 표 1에 나타낸다. 또한, 모노머 G는 모노머 F보다 분자 길이가 긴 것으로 한다. 표 1에 나타낸 바와 같이, 모노머 A∼E와 같이 환 구조를 갖는 재료를 이용하는 것이 프리틸트각의 변화가 적다. 그 중에서도, 모노머 A, C와 같이 환 구조와 광 관능기의 사이에 스페이서(-CH2-)의 수가 적은 (혹은 0)의 쪽이, 더욱 양호한 결과를 나타냈다.
[표 1]
모노머 환 구조 스페이서 n 관능기 프리틸트 변화
A 벤젠 환×2 0 아클릴레이트 <0.1
B 벤젠 환×3 1 아클릴레이트 0.2
C 벤젠 환×2 0 아클릴레이트 <0.1
D 지환×2 1 아클릴레이트 0.8
E 벤젠 환×2 2 아클릴레이트 0.7
F 없음 - 아클릴레이트 1.4
G 없음 - 아클릴레이트 1.7
다음에, 전압 유지율의 측정 결과의 비교를 표 2에 나타낸다. 표 2에 나타낸 바와 같이, 액정에 모노머를 혼입하여 자외선 경화물을 형성함으로서, 자외선 경화물을 형성하지 않은 액정 표시 장치보다도 대개 높은 전압 유지율이 얻어졌다.
[표 2]
모노머 16.67㎳ 측정 1.667S 측정
없음 99.0% 97.2%
A 99.7% 98.3%
C 99.5% 98.0%
이상 설명한 바와 같이, 본 실시 형태에 따르면, 반 투과형 액정 표시 장치, 특히 VA 모드의 액정을 이용한 반 투과형 액정 표시 장치에 있어서, 반사 영역 R의 셀 두께를 투과 영역 T의 셀 두께보다 얇게 하는 일없이, 반사 및 투과의 양 모드에서 양호한 표시 특성이 얻어진다. 반사 영역 R의 셀 두께와 투과 영역 T의 셀 두께가 거의 동일하면, 반사 영역 R과 투과 영역 T의 사이의 경계에 큰 단차가 형성되는 일이 없기 때문에, 액정(6)의 배향 불량이 발생하는 일이 없고, 또한 구 형상 스페이서를 이용한 셀 두께의 제어가 용이하게 된다. 또한, 반사 영역 R에만 평탄화막을 형성할 필요가 없기 때문에, 제조 프로세스가 간략화하고, 액정 표시 장치의 제조 비용을 저감할 수 있다.
또한 본 실시 형태에서는, 배향막을 형성하지 않고, 혹은 배향막에 러빙을 행하지 않고서 액정(6)을 배향 제어할 수 있기 때문에, 제조 프로세스가 간략해짐 과 함께 제조 수율이 향상되고, 액정 표시 장치의 제조 비용을 저감할 수 있다. 또한 본 실시 형태에서는, 배향막 및 자외선 경화물을 이용하여 액정(6)의 배향 제어를 행함으로써, 배향막만을 이용하여 액정(6)의 배향 제어를 행하는 종래의 액정 표시 장치보다도 신뢰성이 우수한 액정 표시 장치를 실현하는 것도 가능하게 된다.
〔제2 실시 형태〕
다음에, 본 발명의 제2 실시 형태에 의한 액정 표시 장치 및 그 제조 방법에 대하여 도 10 내지 도 15를 이용하여 설명한다. 종래, 액정 모니터 등에 널리 이용되고 있는 투과형 액정 표시 장치는, 실내 등의 비교적 어두운 환경 하에서는 충분한 시인성이 얻어지지만, 청천의 옥외 등, 밝은 환경 하에서는 광원으로부터의 빛의 영향에 의해, 시인성이 현저히 저하한다고 하는 문제를 갖고 있다. 한편, 탁상형 전자계산기 등에 이용되고 있는 반사형 액정 표시 장치는, 광원으로부터의 빛을 이용하여 표시를 행하는 것이기 때문에, 밝은 환경 하에서는 충분한 시인성이 얻어진다고 하는 특징을 갖는다. 그 반면, 어두운 환경 하에서는, 표시에 이용하는 광원으로부터의 빛의 강도가 낮기 때문에, 시인성이 현저히 저하한다고 하는 문제가 있다. 이러한 상황으로부터, 최근, 모든 환경 하에서 충분한 시인성이 얻어질 필요가 있는 기기(예를 들면 이동 기기 등)에 탑재 가능한 액정 표시 장치로서, 반사형과 투과형의 양 특성을 더불어 갖는 반사 투과형(반 투과형)의 액정 표시 장치가 주목되고 있다.
그러나, 반 투과형 액정 표시 장치는, 반사 영역과 투과 영역의 쌍방을 화소 영역마다 형성할 필요가 있는 것에 기인하여, 제조 프로세스가 복잡해진다고 하 는 문제를 갖는다. 도 10은 일반적인 반 투과형 액정 표시 장치의 화소의 단면 구성을 도시하고 있다. 도 10에 도시한 바와 같이, 반 투과형 액정 표시 장치의 제조 프로세스가 복잡해지는 제1 요인은, 빛을 반사하는 반사 전극(117)이나, 반사 전극(117)에 광 산란능을 부여하여 빛을 산란 반사시키기 위한 요철층(120)을 반사 영역 R에만 선택적으로 형성할 필요가 있다는 점이다. 또 제2 요인은, 반사 영역 R과 투과 영역 T에서 빛이 액정층을 통과하는 횟수가 서로 다르기 때문에, 양 영역 R, T에서 액정층의 리터데이션치를 서로 다르게 할 필요가 있다는 점이다. 종래, 액정층의 리터데이션치를 서로 다르게 하기 위해서는, 반사 영역 R에만 평탄화막(134)을 형성하고, 반사 영역 R의 셀 두께를 투과 영역 T의 셀 두께보다 얇게 할 필요가 있었다.
상기 제1 실시 형태에서는, 자외선 경화물을 반사 영역 R의 기판 계면에 형성하고, 반사 영역 R 및 투과 영역 T에서의 빛의 변조 작용을 서로 다르게 함으로써, 액정층의 리터데이션치를 양 영역 R, T에서 서로 다르게 하고 있다. 이에 의해, 평탄화막(134)의 형성이 불필요해져, 반 투과형 액정 표시 장치의 제조 프로세스가 비교적 간략해진다.
그러나, 제1 실시 형태에 의해서도 상기 제1 요인을 해소할 수는 없다. 예를 들면, 반사 전극(117)에 광 산란능을 부여하기 위해서는, 표면에 요철을 갖는 요철층(120)을 반사 영역 R의 반사 전극(117) 하층에 선택적으로 형성할 필요가 있다(특허 문헌1 및 특허 문헌7 참조). 이와 같이, 반 투과형 액정 표시 장치는, 반사형 액정 표시 장치나 투과형 액정 표시 장치에 비교하면, 여전히 제조 프로세스 가 복잡하게 되어 있다.
본 실시 형태의 목적은, 반사 및 투과의 양 모드에서 우수한 표시 특성이 얻어지고, 제조 프로세스를 더욱 간략화할 수 있는 반 투과형의 액정 표시 장치 및 그 제조 방법을 제공하는 데에 있다.
도 11은 본 실시 형태에 의한 액정 표시 장치의 원리를 도시하고 있다. 도 11(a)은 액정(6)에 혼입한 모노머를 중합화하기 전의 상태를 나타내고, 도 11(b)은 모노머를 중합화하여 경화물(56)을 형성한 상태를 나타내고 있다. 도 11(a), (b)에 도시한 바와 같이, 본 실시 형태에서는, 반사 영역 R과 투과 영역 T의 사이에서, 모노머의 중합화에 의해 기판 계면에 형성되는 경화물(56)의 형성 상태를 서로 다르게 하고 있다. 구체적으로는, 반사 영역 R에서의 경화물(56)을 요철 형상으로 형성하고, 광 산란능을 부여한다. 또한, 형성 상태를 서로 다르게 함으로써, 반사 영역 R과 투과 영역 T의 사이에서 인가 전압에 대한 액정(6)의 리터데이션의 변화를 서로 다르게 하는 것도 가능했다.
본 실시 형태에 따르면, 비교적 단순하고 용이한 제조 프로세스에 의해서, 반사 영역 R에 광 산란능을 부여할 수 있음과 함께, 반사 영역 R과 투과 영역 T의 사이에서 인가 전압에 대한 액정(6)의 리터데이션의 변화를 다르게 할 수 있다.
이하, 본 실시 형태에 의한 액정 표시 장치 및 그 제조 방법에 대하여, 구체적 실시예를 이용하여 설명한다.
(실시예 2-1)
우선, 도 11(a), (b)를 참조하면서, 본 실시 형태의 실시예 2-1에 대하여 설 명한다. 유리 기판(10, 11)에는, 일본 전기 유리제의 OA-2를 이용했다. 판 두께는 0.7㎜로 했다. 한쪽의 기판(4)에는 투명 전극인 공통 전극(42)을 전면에 형성했다. 다른 쪽의 기판(2)에는 거의 평탄한 반사면을 갖는 반사 전극(17)을 반사 영역 R에 형성하고, 투과 영역 T에 투명 전극(16)을 형성했다. 투명 전극(42, 16)의 형성 재료에는 ITO를 이용하고, 반사 전극(17)의 형성 재료에는 Al을 이용했다. 투명 전극(42) 상에 배향막(37)을 형성하고, 투명 전극(16) 및 반사 전극(17) 상에 배향막(36)을 형성했다. 배향막(36, 37)의 형성 재료로서는 JSR제의 폴리이미드를 이용했다. 도시하지 않은 스페이서를 개재하여 양 기판(2, 4)을 접합하여, 빈 셀을 제작했다. 스페이서로서는 스미토모정제 화학 제품제의 수지 스페이서를 이용했다. 스페이서 직경은 4㎛로 했다. 계속해서, 액정과 반응성 모노머의 혼합물을 빈 셀에 주입했다. 액정 재료에는, 머크제의 네가티브형 네마틱 액정을 이용했다. 반응성 모노머로서는 UV 광에 반응하여 중합화하는 이관능 모노머를 이용하고, 이것을 액정에 대하여 0.6% 혼합했다.
액정과 모노머의 혼합물을 주입한 셀에 UV 광(파장365 nm)을 조사하여 모노머를 폴리머화하고, 액정 배향을 규제하는 경화물(56)을 기판 계면에 형성했다. 이 때, 반사 영역 R과 투과 영역 T의 사이에서, UV 광의 조사 강도를 서로 다르게 했다. 투과 영역 T에서의 조사 강도는 1mW/㎠로 하고, 반사 영역 R에서의 조사 강도는 30mW/㎠로 했다. 또한, 조사 시간을 서로 다르게 함으로써, 조사 에너지는 양 영역 T, R 모두 9000mJ/㎠로 했다. 이상의 공정에 의해, 본 실시예의 액정 표시 장치를 제작했다.
도 12는 본 실시예의 액정 표시 장치의 양 영역 T, R의 경계 근방을 기판면에 거의 수직으로 본 도면이다. 도 12에 도시한 바와 같이, 높은 조사 강도(30mW/㎠)로 UV 광을 조사한 도면 중 위쪽의 반사 영역 R에, 광 산란능을 갖는 요철 구조가 형성되어 있는 것을 확인할 수 있었다.
여기서, UV 광의 조사 강도와 투과율 특성(T-V 특성)의 관계를 조사하기 위해서, 반사 전극(17)을 형성하지 않는 것을 제외하고 상기와 마찬가지의 공정에 의해 액정 표시 장치를 제작했다. 즉 이 액정 표시 장치에는 반사 영역 R이 형성되지 않고, 투과 영역 T내의 어떤 영역 A에 조사 강도 30mW/㎠로 UV 광이 조사되고, 다른 영역 B에 조사 강도1mW/㎠로 UV 광이 조사된다. 도 13은 이 액정 표시 장치의 영역 A, B의 T-V 특성을 도시하고 있다. 횡축은 인가 전압(V)을 나타내고, 종축은 투과율(%)을 나타내고 있다. 도 13에 도시한 바와 같이, 영역 A와 영역 B에서는 T-V 특성이 서로 다르고, 높은 조사 강도로 UV 광을 조사한 영역 A의 T-V 곡선은, 낮은 조사 강도로 UV 광을 조사한 영역 B의 T-V 곡선보다 고 전압측으로 시프트하고 있다. 이것은, 영역 A에서의 리터데이션이, 영역 B에서의 리터데이션에 비하여 작아지는 것을 의미하고, 높은 조사 강도로 UV 광을 조사한 영역 A를 반사 영역 R로서 이용하는 데 바람직한 방향이다.
따라서, 반사 영역 R에 투과 영역 T보다도 높은 조사 강도로 UV 광을 조사함으로써, 반사 영역 R에 광 산란능을 부여할 수 있음과 동시에, 반사 영역 R의 실질적인 리터데이션과 투과 영역 T의 리터데이션을 가깝게 할 수 있다. 또한, 본 실시예에서는, 반사 전극(17)의 반사면을 거의 평탄하게 했지만, 표면에 요철을 형성해도 된다. 이렇게 함으로써, 반사 전극(17) 표면의 요철에 의한 산란 반사와, 폴리머로 이루어지는 경화물(56)에 의한 산란의 상승 효과에 의해서, 보다 효과적으로 빛을 산란시킬 수 있다.
(실시예 2-2)
다음에, 본 실시 형태의 실시예 2-2에 대하여 설명한다. 도 14는 본 실시예의 액정 표시 장치의 구성을 도시하고 있다. 도 14(a)는 액정(6)에 혼입한 모노머를 중합화하기 전의 상태를 도시하고, 도 14(b)는 모노머를 중합화하여 경화물(56)을 형성한 상태를 도시하고 있다. 본 실시예의 액정 표시 장치는, 배향막(36, 37)을 도포 형성하지 않은 것과, 이관능 모노머와 알킬쇄를 갖는 단관능 모노머와의 혼합물을 액정에 대하여 2% 첨가한 것을 제외하고, 실시예 2-1과 마찬가지이다. 본 실시예의 액정 표시 장치에서는, 모노머 반응에 의해서 기판 계면에 형성되는 경화물(56)에만 의해서, 액정 배향이 규제된다. 본 실시예의 액정 표시 장치에서도, 실시예 2-1과 마찬가지의 광 산란능이나 T-V 곡선의 고 전압측으로의 시프트를 확인할 수 있었다.
(실시예 2-3)
다음에, 본 실시 형태의 실시예 2-3에 대하여 설명한다. 도 15는 본 실시예의 액정 표시 장치의 구성을 도시하고 있다. 도 15(a)는 액정(6)에 혼입한 모노머를 중합화하기 전의 상태를 도시하고, 도 15(b)는 모노머를 중합화하여 경화물(56)을 형성한 상태를 도시하고 있다. 본 실시예의 액정 표시 장치는, 반사 영역 R의 반사 전극(17) 상에, 모노머의 반응을 촉진시키는 반응 촉진층(58)이 형성되어 있 는 점을 제외하고, 실시예 2-2와 마찬가지이다. 반응 촉진층(58)으로서 예를 들면 광 중합 개시제를 포함하는 CF층을 이용하면, 일반적인 컬러 표시의 반사 투과형 액정 표시 장치와 비교하여 제조 프로세스가 증가하지 않는다. 이에 의해, 반사 전극(17) 측에 많은 폴리머(경화물(56))가 형성되게 되어, 보다 효과적으로 빛을 산란시킬 수 있다.
이상 설명한 바와 같이, 본 실시 형태에 따르면, 반사 및 투과의 양 모드에서 우수한 표시 특성이 얻어지는 반 투과형 액정 표시 장치를 간단한 제조 프로세스로 제작하는 것이 가능하게 된다.
〔제3 실시 형태〕
다음에, 본 발명의 제3 실시 형태에 의한 액정 표시 장치에 대하여 도 16 내지 도 25를 이용하여 설명한다. 도 16은 본 실시 형태에 의한 액정 표시 장치의 제1 기본 구성을 도시하고 있다. 도 16에 도시한 바와 같이, TFT 기판(2)은 반사 영역 R에 반사 전극(17)을 갖고 있다. 반사 전극(17) 상의 기판 전면에는 절연막(30)이 형성되어 있다. 투과 영역 T의 절연막(30) 상에는, 투명 전극(16)이 형성되어 있다. 투명 전극(16)은, 반사 전극(17) 상의 절연막(30)이 개구되어 형성된 컨택트홀(32)을 개재하여, 반사 전극(17)에 전기적으로 접속되어 있다. 액정(6)에 전압을 인가할 때에는, 투명 전극(16)과 반사 전극(17)이 동 전위로 된다. 그러나 반사 영역 R에서는, 반사 전극(17) 상에 절연막(30)이 형성되어 있기 때문에, 절연막(30)에서의 전압 손실에 의해, 액정(6)에 가해지는 실효 전압은 투과 영역 T의 액정(6)에 가해지는 실효 전압보다도 낮아진다. 이에 의해, 반사 영역 R의 임계치 전압은 투과 영역 T보다도 높아진다. 본 기본 구성에서는, 반사 영역 R의 실질적인 리터데이션과 투과 영역 T의 리터데이션을 가깝게 하여, 반사율 특성(R-V 특성)과 T-V 특성을 근접시키도록 되어 있다.
도 17은 본 실시 형태에 의한 액정 표시 장치의 제2 기본 구성을 도시하고 있다. 도 17에 도시한 바와 같이, 투과 영역 T에 형성된 투명 전극(16)은 반사 영역 R의 일부에까지 연장하고 있다. 투과 영역 T의 투명 전극(16)과 반사 영역 R의 투명 전극(16)은 서로 전기적으로 접속되어 있다.
도 18(a)∼(f)은 반사 전극(17) 및 투명 전극(16)을 기판면에 수직으로 본 형상의 예를 도시하고 있다. 도 18(a)∼(f)에서는, 좌측에 반사 영역 R을 나타내고, 우측에 투과 영역 T를 나타내고 있다.
도 18(a)에 도시하는 예에서는, 반사 영역 R의 거의 전역에는 반사 전극(17)이 형성되고, 투과 영역 T의 거의 전역에는 투명 전극(16)이 형성되어 있다. 또한 투명 전극(16)은 반사 영역 R의 일부에까지 연장하고 있다. 반사 영역 R의 투명 전극(16)은, 도면 중 위쪽 방향으로 연장되는 줄기부(16a)와, 줄기부(16a)로부터 분기하여 경사 방향으로 연장되는 복수의 브랜치부(16b)를 갖고 있다. 일부에만 투명 전극(16)이 형성된 반사 영역 R에서는, 거의 전역에 투명 전극(16)이 형성된 투과 영역 T보다도 액정(6)에 가해지는 실효 전압이 낮게 되도록 되어 있다. 또한, 반사 영역 R에서는, 투명 전극(16) 단부에 발생하는 경사 전계에 의해 액정 분자가 브랜치부(16b)의 연신 방향을 따라서 경사하기 때문에, 액정(6)을 배향 규제할 수 있게 되어 있다. 이와 같이, 반사 영역 R의 일부에 형성된 투명 전극(16) 은, 포화 전압이나 임계치 특성 등의 광학 특성을 투과 영역 T의 사이에서 일치시키는 것뿐만 아니라, 반사 영역 R의 액정(6)을 배향 분할하여 반사 표시 시의 시야각 특성을 향상하는 것도 가능하다.
도 18(b)에 도시하는 예에서는, 반사 영역 R의 투명 전극(16)은, 반사 영역 R의 거의 중앙부에서 방사 형상으로 연장되는 복수의 선형 전극(16c)을 갖고 있다. 반사 영역 R에서는, 액정 분자가 선형 전극(16c)의 연신 방향을 따라서 경사하기 때문에, 액정(6)을 배향 규제할 수 있게 되어 있다.
도 18(c)에 도시하는 예에서는, 반사 영역 R의 투명 전극(16)은, 매트릭스 형상으로 배열되는 복수의 원 형상의 개구부(18a)를 갖고 있다. 반사 영역 R에서는, 액정 분자가 각 개구부(18a)의 중심에서 외측을 향하여 경사하기 때문에, 액정(6)을 배향 규제할 수 있게 되어 있다. 개구부(18a)는, 다각 형상 또는 방사 형상 등의 다른 형상을 갖고 있더라도 무방하다.
도 18(d)에 도시하는 예에서는, 반사 영역 R의 투명 전극(16)은, 서로 병렬하여 도면 중 좌우 방향으로 연장되는 복수의 직선형의 개구부(18b)를 갖고 있다. 반사 영역 R에서는, 액정 분자가 개구부(18b)의 연신 방향을 따라서 경사하기 때문에, 액정(6)을 배향 규제할 수 있게 되어 있다.
도 18(e)에 도시하는 예에서는, 투과 영역 T의 투명 전극(16)은, 중심부에 배치된 장방형의 베타부(16d)와, 베타부(16d)의 외주부로부터 외측을 향하여 비스듬히 빗 형상으로 연장되는 빗 형상부(16e)를 갖고 있다. 반사 영역 R의 투명 전극(16)은, 반사 영역 R의 중앙부에 배치된 개구부(18c)와, 개구부(18c)를 틀 형상 으로 둘러싸는 틀 형상부(16f)와, 틀 형상부(16f)의 외주부로부터 외측을 향하여 비스듬히 연장되는 빗 형상부(16e)를 갖고 있다. 개구부(18c)는 반사 영역 R에서의 투명 전극(16)의 면적을 투과 영역 T의 투명 전극(16)의 면적보다도 작게 하여, 반사 영역 R의 액정(6)에 가해지는 실효 전압을 투과 영역 T의 액정(6)에 가해지는 실효 전압보다 낮게 하기 위해서 마련되어 있다. 투과 영역 T및 반사 영역 R에서는, 액정 분자가 빗 형상부(16e)를 따라서 경사하기 때문에, 액정(6)을 배향 규제할 수 있게 되어 있다. 이와 같이, 반사 영역 R뿐만 아니라 투과 영역 T의 투명 전극(16)도 액정(6)을 배향 규제할 수 있는 형상으로 형성함으로써, 투과 영역 T의 액정(6)을 배향 분할하여, 투과 표시 시의 시야각 특성을 개선할 수도 있다.
도 18(f)에 도시하는 예에서는, 투과 영역 T의 투명 전극(16)은 베타부(16d)와 빗 형상부(16e)를 갖고 있다. 반사 영역 R의 투명 전극(16)은, 도면 중 상하 방향으로 길게 연장되는 마름모 형상의 마름모 형상 전극(16k)을 복수개 갖고 있다. 각 마름모 형상 전극(16k)은 서로 전기적으로 접속되어 있다. 투과 영역 T에서는 액정 분자가 빗 형상부(16e)를 따라서 경사하고, 반사 영역 R에서는 액정 분자가 마름모 형상 전극(16k)의 연신 방향을 따라서 경사하기 때문에, 액정(6)을 배향 규제할 수 있게 되어 있다.
도 19는 본 실시 형태에 의한 액정 표시 장치의 제3 기본 구성을 도시하고 있다. 도 19에 도시한 바와 같이, 투과 영역 T에 형성된 투명 전극(16)은 반사 영역 R의 일부에까지 연장하고 있다. 투명 전극(16)과 반사 전극(17)은, 용량 C1을 개재하여 접속되어 있다. 반사 전극(17)과 공통 전극(42)의 사이에 소정의 교류 전압을 인가함으로써, 액정 용량과 용량 C1과의 용량비에 기초하여 액정(6)에 소정의 전압이 인가되도록 되어 있다. 또한, 일부에만 투명 전극(16)이 형성된 반사 영역 R에서는, 거의 전역에 투명 전극(16)이 형성된 투과 영역 T보다도 액정(6)에 가해지는 실효 전압이 낮게 되도록 되어 있다. 액정(6)에 전압을 인가할 때에는, 투명 전극(16)과 반사 전극(17)이 서로 다른 전위로 된다. 반사 영역 R의 투명 전극(16)은, 도 18(a)∼(f)과 마찬가지의 형상, 혹은 그 밖의 형상으로 형성된다.
다음에, 본 실시 형태에 의한 액정 표시 장치의 제4 기본 구성에 대하여 설명한다. 도 20은 본 기본 구성의 전제가(로) 되는 반 투과형 액정 표시 장치의 구성을 도시하고 있다. 도 20에 도시한 바와 같이, TFT 기판(2)은 투과 영역 T및 반사 영역 R에 형성된 투명 전극(16)을 갖고 있다. 반사 영역 R의 투명 전극(16) 상에는, 반사 영역 R의 셀 두께를 투과 영역 T의 셀 두께보다 좁게 하기 위한 수지층(48)이 형성되어 있다. 수지층(48)의 표면에는 요철이 형성되어 있다. 수지층(48) 상에는 반사 전극(17)이 형성되어 있다. 반사 전극(17)의 표면에는 수지층(48)의 표면을 본뜬 요철이 형성되어 있다. 반사 전극(17)과 투명 전극(16)은 서로 전기적으로 접속되어 있다.
한편, 대향 기판(4)은, 투과 영역 T의 거의 전역 및 반사 영역 R의 일부에 형성된 CF층(40)을 갖고 있다. CF층(40)을 반사 영역 R의 전역이 아니라 일부에 형성함으로써, 반사 및 투과의 양 표시 모드의 사이에서 색 순도를 일치시키도록 되어 있다. CF층(40) 상의 기판 전면에는 평탄화막(46)이 형성되어 있다. 평탄화막(46) 상에는 공통 전극(42)이 형성되어 있다.
이 반 투과형 액정 표시 장치에서는, 투과 영역 T와 반사 영역 R에서 셀 두께가 서로 다르기 때문에, 액정(6)의 배향 불량 등이 발생한다. 또한, 반사 영역 R에서 일부가 제거된 CF층(40) 상을 평탄화하는 평탄화막(46)이 필요하게 되기 때문에, 제조 공정이 증가한다.
도 21은 본 실시 형태에 의한 액정 표시 장치의 제4 기본 구성을 도시하는 단면도이다. 도 21에 도시한 바와 같이, 본 기본 구성의 반 투과형 액정 표시 장치는, TFT 기판(2) 측에 CF층(40)을 구비한 CF-on-TFT 구조를 갖고 있다. 반사 영역 R에는 수지층(48)이 형성되어 있다. 수지층(48)의 표면에는 요철이 형성되어 있다. 수지층(48) 상에는 반사 전극(17)이 형성되어 있다. 반사 전극(17)의 표면에는, 수지층(48) 표면의 요철을 본뜬 요철이 형성되어 있다. 반사 영역 R의 반사 전극(17) 상 및 투과 영역 T에는, 절연성을 갖는 CF층(40)이 형성되어 있다. CF층(40)의 표면은 거의 평탄하게 되어 있다. 투과 영역 T의 CF층(40) 상에는 투명 전극(16)이 형성되어 있다. 투명 전극(16)은 CF층(40)이 개구되어 형성된 컨택트홀(32)을 개재하여 반사 전극(17)에 전기적으로 접속되어 있다. 반사 영역 R의 CF층(40)의 막 두께는, 반사 전극(17) 및 수지층(48)의 막 두께 분만큼 투과 영역 T의 CF층(40)의 막 두께보다 얇게 되어 있다. 수지층(48)을 CF층(40)의 막 두께의 거의 절반의 막 두께로 형성함으로써, 반사 영역 R의 CF층(40)의 막 두께를 투과 영역 T의 CF층(40)의 막 두께의 거의 절반으로 할 수 있다. 액정(6)으로서는, TN 모드, VA 모드, 및 HAN(Hybrid Aligned Nematic) 모드 등이 이용된다. 또한, 투명 전극(16)을 반사 영역 R의 일부에도 소정의 형상으로 형성하고, 액정(6)을 배향 규 제하도록 하여도 된다. 또한, 반사 전극(17)보다도 관찰자측에 광 산란부로서 전방 산란막 등을 별도 배치하면, 반사 전극(17)의 표면을 경면 형상으로 형성해도 된다.
본 기본 구성에서는, CF층(40)의 표면은 거의 평탄하게 형성된다. 이 때문에, CF층(40) 상에 또 평탄화막(46)을 형성할 필요가 없기 때문에, 제조 공정이 간략해진다. 또한, 반사 영역 R의 CF층(40)의 막 두께를 투과 영역 T의 CF층(40)의 막 두께보다 얇게 형성할 수 있기 때문에, 반사 및 투과의 양 표시 모드의 사이에서 색 순도를 거의 일치시킬 수 있다.
이하, 본 실시 형태에 의한 액정 표시 장치 및 그 제조 방법에 대하여 구체적 실시예를 이용하여 설명한다.
(실시예 3-1)
우선, 본 실시 형태의 실시예 3-1에 의한 액정 표시 장치에 대하여 설명한다. 도 22는 본 실시예에 의한 액정 표시 장치의 구성을 도시하고 있다. 본 실시예는, 화소마다 TFT를 구비한 액티브 매트릭스형의 액정 표시 장치에, 도 17 및 도 18에 도시하는 구성을 적용한 경우의 예이다. 도 22에서는 3 화소분의 구성을 도시하고 있다. 도 22에 도시한 바와 같이, TFT 기판(2) 상에는 주사 신호를 공급하는 게이트 버스 라인(12)이 도면 중 상하 방향으로 연장되어 형성되어 있다. 게이트 버스 라인(12)에 절연막(도시하지 않음)을 개재하여 교차하고, 표시 신호를 공급하는 드레인 버스 라인(14)이 도면 중 좌우 방향으로 연장되어 형성되어 있다. 양 버스 라인(12, 14)의 교차 위치 근방에는 TFT(20)가 형성되어 있다. TFT(20)의 드레인 전극(21)은 드레인 버스 라인(14)에 전기적으로 접속되어 있다. 반사 전극(17) 및 투명 전극(16)은 게이트 버스 라인(12) 및 드레인 버스 라인(14)에 둘러싸인 영역에 형성되어 있다. 반사 전극(17)은 반사 영역 R의 거의 전역에, TFT(20)의 소스 전극(22)과 예를 들면 동일 층으로 일체적으로 형성되어 있다. 반사 전극(17)과 소스 전극(22)을 동일 층으로 형성함으로써, 액정 표시 장치의 제조 공정이 간략화한다. 또한 반사 전극(17)은, 축적 용량의 한쪽의 전극으로서 화소마다 형성되는 축적 용량 전극(중간 전극)과 일체적으로 형성할 수도 있다. 단, 반사 전극(17)의 표면에 요철이 형성되지 않는 경우에는, 편광판 등에 전방 산란막을 별도 마련할 필요가 있다.
도면 중 상하 방향으로 배열하는 3개의 화소 영역 중 상방의 화소 영역에서는, 투과 영역 T의 투명 전극(16)이, 중심부에 배치된 장방형 형상의 베타부(16d)와, 베타부(16d)의 외주부로부터 외측을 향하여 비스듬하게 빗 형상으로 연장되는 빗 형상부(16e)를 갖고 있다. 반사 영역 R의 투명 전극(16)은, 반사 영역 R의 중앙부에 배치된 개구부(18c)와, 개구부(18c)를 틀 형상으로 둘러싸는 틀 형상부(16f)와, 틀 형상부(16f)의 외주부로부터 외측을 향하여 비스듬히 연장되는 빗 형상부(16e)를 갖고 있다.
중앙의 화소 영역에서는, 투명 전극(16)이, 투과 영역 T의 거의 전역에 형성됨과 함께, 서로 병렬하여 도면 중 상하 방향으로 연장되는 복수의 직선형의 개구부(18b)를 반사 영역 R에 갖고 있다. 하방의 화소 영역에서는, 투명 전극(16)이 투과 영역 T의 거의 전역에 형성됨과 함께, 도면 중 상하 방향으로 길게 연장되어, 서로 전기적으로 접속된 복수의 마름모 형상 전극(16k)을 반사 영역 R에 갖고 있다. 또한, 본 예에서는 화소마다 서로 다른 형상의 투명 전극(16)을 나타내고 있지만, 투명 전극(16)의 형상은 각 화소로 동일하더라도 물론 된다.
(실시예 3-2)
다음에, 본 실시 형태의 실시예 3-2에 의한 액정 표시 장치에 대하여 설명한다. 상기의 실시예 3-1에 의한 액정 표시 장치에서는, 게이트 버스 라인(12)이나 드레인 버스 라인(14), TFT(20) 등으로 차광되는 것에 의한 광학적 손실이 커지는 경우가 있다. 이 때문에 본 실시예에서는, 게이트 버스 라인(12), 드레인 버스 라인(14), TFT(20) 등에 중첩되도록 반사 전극(17)을 배치하고 있다.
도 23(a), (b)은 본 실시예에 의한 액정 표시 장치의 구성을 도시하고 있다. 도 23(a), (b)에서는 도면 중 중앙에 반사 영역 R을 나타내고, 그 양측에 투과 영역 T를 나타내고 있다. 도 23(a), (b)에 도시한 바와 같이, 본 실시예에서는 반사 전극(17)이 TFT(20)에 중첩되도록 배치되어 있다. 투명 전극(16)은 투과 영역 T의 거의 전역에 형성되어 있다. 도 23(a) 상방의 화소 영역에서는, 반사 영역 R의 투명 전극(16)은, 반사 영역 R의 중앙부에 배치된 개구부(18c)와, 개구부(18c)를 틀 형상으로 둘러싸는 틀 형상부(16f)와, 틀 형상부(16f)의 외주부로부터 외측을 향하여 비스듬히 연장되는 빗 형상부(16e)를 갖고 있다. 도 23(a) 하방의 화소 영역에서는, 반사 영역 R의 투명 전극(16)은, 상하 방향으로 긴 마름모 형상이 좌우 방향으로 복수 접속된 형상의 개구부(18d)를 갖고 있다. 또한, 도 23(b)에 도시하는 화소 영역에서는, 반사 영역 R의 투명 전극(16)은, 상하 방향에 긴 마름모 형상의 개구부(18e)를 복수 갖고 있다. 본 실시예에서는 광학적 손실이 발생하는 영역이 적기 때문에, 광 이용 효율이 높고, 색 재현 범위가 넓은 고 품위의 반 투과형 액정 표시 장치를 실현할 수 있다.
(실시예 3-3)
다음에, 본 실시 형태의 실시예 3-3에 의한 액정 표시 장치에 대하여 설명한다. 도 24(a)는 본 실시예에 의한 액정 표시 장치의 1 화소의 구성을 도시하고, 도 24(b)는 도 24(a)의 A-A 선을 따라서 절단한 액정 표시 장치의 단면 구성을 모식적으로 도시하고 있다. 도 24(a), (b)에 도시한 바와 같이, 화소 영역은, 도면 중 좌우 방향에 인접하는 3개의 영역으로 대략 분할되어 있다. 화소 영역 중 좌측 부분은 반사 영역 R로 되어 있다. 중앙 부분 및 우측 부분은, 각각 투과 영역 T1 및 T2로 되어 있다. 유리 기판(10) 상의 반사 영역 R에는 TFT(20)가 형성되어 있다. 반사 영역 R의 TFT(20) 상에는 소정 막 두께의 수지층(48)이 형성되어 있다. 수지층(48) 상에는 반사 전극(17)이 형성되어 있다. 반사 전극(17)은 컨택트홀(32)을 개재하여 TFT(20)의 소스 전극(22)(및 축적 용량 버스 라인(19)에 대향 배치되는 축적 용량 전극)에 전기적으로 접속되어 있다. 반사 영역 R의 반사 전극(17) 상 및 투과 영역 T1 및 T2에는 CF층(40)이 형성되어 있다. CF층(40)의 표면은 거의 평탄하게되어 있다. CF층(40)의 반사 영역 R에서의 막 두께는, 투과 영역 T1, T2에서의 막 두께의 예를 들면 반으로 되어 있다.
CF층(40) 상에는 투명 전극(16)이 형성되어 있다. 투명 전극(16)은 투과 영역 T1, T2에 각각 형성된 전극 유닛(16h)과, 반사 영역 R에 형성되고, 전극 유닛 (16h)보다 전극 면적이 작은 전극 유닛(16i)과, 인접하는 전극 유닛(16h, 16i) 사이를 접속하는 접속 전극(16g)을 갖고 있다. 투과 영역 T1, T2의 전극 유닛(16h)은, 중심부에 배치된 베타부(16d)와, 베타부(16d)의 외주부로부터 외측을 향하여 비스듬히 빗 형상으로 연장되고, 액정(6)을 배향 규제하는 빗 형상부(16e)를 갖고 있다. 반사 영역 R의 전극 유닛(16i)은, 반사 영역 R의 거의 중앙부로부터 방사 형상으로 연장되는 복수의 선형 전극(16j)을 갖고 있다. 전극 유닛(16i)은 예를 들면 「*」자 형상으로 형성되어 있다. 투명 전극(16)은 반사 영역 R의 거의 중심부에 형성된 컨택트홀(32)을 지나고, 반사 전극(17)에 전기적으로 접속되어 있다. 반사 영역 R, 투과 영역 T1, T2의 각각 중심부의 대향 기판(4) 측에는, 액정(6)을 배향 규제하는 점형 돌기(45)가 형성되어 있다. 점형 돌기(45)를 마련함으로써, 화소 영역 내에서 액정(6)의 배향 방위를 복수로 분할하는 배향 분할이 러빙 없이 실현된다. 본 실시예에 따르면, 광 이용 효율이 높고, 색 재현 범위가 넓은 고 품위의 반 투과형 액정 표시 장치를 실현할 수 있다.
(실시예 3-4)
다음에, 본 실시 형태의 실시예 3-4에 의한 액정 표시 장치에 대하여 설명한다. 도 25는 본 실시예에 의한 액정 표시 장치의 구성 및 그 제조 방법을 도시하고 있다. 도 25(a)에 도시한 바와 같이, 본 실시예에 의한 액정 표시 장치의 TFT 기판(2)은, 반사 영역 R에 형성된 반사 전극(17)과, 반사 전극(17) 상의 기판 전면에 형성된 절연막(평탄화막)(30)과, 절연막(30) 상의 반사 영역 R 및 투과 영역 T의 거의 전역(혹은 반사 영역 R의 일부와 투과 영역 T의 거의 전역)에 형성된 투명 전극(16)을 갖고 있다. 본 실시예에서는, TFT 기판(2)과 대향 기판(4)을 접합하여, 아크릴레이트 등의 광 중합성 모노머를 첨가한 액정(6)을 양 기판(2, 4) 사이에 주입한다. 다음에, 투명 전극(16)과 공통 전극(42)의 사이에 소정의 전압 V1을 인가하면서, 투과 영역 T를 차광하는 차광 마스크(54a)를 개재하여 반사 영역 R에 UV 광을 조사한다. 이에 의해, 반사 영역 R의 액정(6) 중에 첨가된 광 중합성 모노머가 중합하여, 반사 영역 R의 기판 계면에 액정(6)을 배향 제어하는 폴리머층이 형성된다.
다음에, 도 25(b)에 도시한 바와 같이, 투명 전극(16)과 공통 전극(42)의 사이에 전압 V1보다 높은 전압 V2(V2>V1)를 인가하면서, 반사 영역 R을 차광하는 차광 마스크(54b)를 개재하여 투과 영역 T에 UV 광을 조사한다. 이에 의해, 투과 영역 T의 액정(6) 중에 첨가된 광 중합성 모노머가 중합하여, 투과 영역 T의 기판 계면에 폴리머층이 형성된다. 이와 같이, 서로 다른 전압 인가 조건 하에서 반사 영역 R과 투과 영역 T와 각각 UV 광을 조사함으로써, 폴리머층의 액정(6)에 대한 배향 제어 능력을 다르게 할 수 있고, 반사 영역 R 및 투과 영역 T에서의 액정(6)의 임계치 특성을 제어할 수 있다. 이에 의해, 반사 및 투과의 양 표시 모드에서의 광학 특성을 가깝게 할 수 있다.
(실시예 3-5)
다음에, 본 실시 형태의 실시예 3-5에 의한 액정 표시 장치에 대하여 설명한다. 본 실시예에서는, 예를 들면 실시예 3-1 내지 3-3과 마찬가지의 전극 구성을 갖는 TFT 기판(2) 및 대향 기판(4)을, 양 기판(2, 4)의 대향면에 배향막을 형성하 지 않고서 접합한다. 계속해서, 광 중합성 모노머를 첨가한 액정(6)을 주입하고, 투명 전극(16)과 공통 전극(42)의 사이에 소정의 전압을 인가하면서 UV 광을 조사한다. 이에 의해, 기판 계면에 폴리머층이 형성된다. 액정(6)에 가해지는 실효 전압은 반사 영역 R과 투과 영역 T의 사이에서 서로 다르기 때문에, 형성된 폴리머층의 액정(6)에 대한 배향 제어 능력은 반사 영역 R과 투과 영역 T의 사이에서 서로 다르다. 이에 의해, 반사 영역 R 및 투과 영역 T에서의 액정(6)의 임계치 특성을 제어할 수 있고, 반사 및 투과의 양 표시 모드에서의 광학 특성을 가깝게 할 수 있다. 본 실시예에 따르면, 배향막을 도포하는 공정을 삭감할 수 있기 때문에, 액정 표시 장치의 제조 프로세스를 더욱 간략화할 수 있다.
이상 설명한 바와 같이, 본 실시 형태에 따르면, 반 투과형 액정 표시 장치, 특히 VA 모드의 액정(6)을 이용한 반 투과형 액정 표시 장치에 있어서, 반사 영역 R의 셀 두께와 투과 영역 T의 셀 두께를 거의 동일하게 해도, 반사 및 투과의 양 모드에서 양호한 표시 특성이 얻어진다. 따라서, 반사 영역 R과 투과 영역 T의 사이의 경계에 큰 단차가 형성되는 일이 없기 때문에, 액정(6)의 배향 불량이 발생하는 일이 없고, 또한 구 형상 스페이서를 이용한 셀 두께의 제어가 용이하게 된다. 또한, 반사 영역 R과 투과 영역 T의 사이에서 액정(6)의 응답 속도가 거의 일치한다. 또한, 반사 영역 R에만 평탄화막을 형성할 필요가 없기 때문에, 제조 프로세스가 간략해지고, 액정 표시 장치의 제조 비용을 저감할 수 있다.
이상 설명한 제1 실시 형태에 의한 액정 표시 장치 및 그 제조 방법은, 이하와 같이 정리된다.
(부기 1)
대향 배치된 한 쌍의 기판과,
상기 한 쌍의 기판 사이에 밀봉된 액정과,
상기 한 쌍의 기판의 한쪽 측으로부터의 빛을 반사하는 반사 영역과, 상기 한 쌍의 기판의 다른 쪽 측으로부터의 빛을 상기 한 쌍의 기판의 한쪽 측에 투과시키는 투과 영역을 각각 구비한 복수의 화소 영역과,
상기 액정에 혼입된 중합성 성분이 자외선에 의해 중합하여 상기 한 쌍의 기판과의 계면 근방의 일부에 형성되고, 상기 화소 영역 내의 상기 액정을 부분적으로 배향 제어하는 자외선 경화물을 갖는 것을 특징으로 하다 액정 표시 장치.
(부기 2)
부기 1에 기재된 액정 표시 장치에 있어서,
상기 자외선 경화물은, 상기 반사 영역 또는 상기 투과 영역 중 어느 한쪽에 형성되어 있는 것을 특징으로 하는 액정 표시 장치.
(부기 3)
대향 배치된 한 쌍의 기판과,
상기 한 쌍의 기판 사이에 밀봉된 액정과,
상기 한 쌍의 기판의 한쪽 측으로부터의 빛을 반사하는 반사 영역과, 상기 한 쌍의 기판의 다른 쪽 측으로부터의 빛을 상기 한 쌍의 기판의 한쪽 측에 투과시키는 투과 영역을 각각 구비한 복수의 화소 영역과,
상기 한 쌍의 기판과 상기 액정의 계면 근방에 형성되고, 부분적으로 서로 다른 배향 제어 능력으로 상기 화소 영역 내의 상기 액정을 배향 제어하는 배향 제어층을 갖는 것을 특징으로 하는 액정 표시 장치.
(부기 4)
부기 3에 기재된 액정 표시 장치에 있어서,
상기 배향 제어층은, 상기 액정에 혼입된 중합성 성분이 자외선에 의해 중합하여 형성된 자외선 경화물과, 상기 기판 표면에 도포 형성된 배향막을 포함하는 것을 특징으로 하는 액정 표시 장치.
(부기 5)
부기 3 또는 4에 기재된 액정 표시 장치에 있어서,
상기 배향 제어 능력은, 상기 반사 영역과 상기 투과 영역의 사이에서 다른 것을 특징으로 하는 액정 표시 장치.
(부기 6)
부기 1 내지 5 중 어느 한 항에 기재된 액정 표시 장치에 있어서,
상기 반사 영역의 셀 두께는, 상기 투과 영역의 셀 두께에 거의 동일한 것을 특징으로 하는 액정 표시 장치.
(부기 7)
부기 1 내지 5 중 어느 한 항에 기재된 액정 표시 장치에 있어서,
상기 반사 영역의 셀 두께는, 상기 투과 영역의 셀 두께보다 두꺼운 것을 특징으로 하는 액정 표시 장치.
(부기 8)
부기 1 내지 7 중 어느 한 항에 기재된 액정 표시 장치에 있어서,
상기 자외선 경화물은, 환 구조를 갖는 환식 화합물을 포함하는 것을 특징으로 하는 액정 표시 장치.
(부기 9)
부기 1 내지 8 중 어느 한 항에 기재된 액정 표시 장치에 있어서,
상기 한 쌍의 기판과 상기 액정의 계면 근방 중 적어도 일부에, 상기 액정을 배향 제어하는 배향막이 도포 형성되어 있지 않은 것을 특징으로 하는 액정 표시 장치.
(부기 10)
대향 배치된 한 쌍의 기판의 한쪽 측으로부터의 빛을 반사하는 반사 영역과, 상기 한 쌍의 기판의 다른 쪽 측으로부터의 빛을 상기 한 쌍의 기판의 한쪽 측에 투과시키는 투과 영역을 각각 구비한 복수의 화소 영역을 갖는 액정 표시 장치의 제조 방법이며,
자외선에 의해 중합하는 중합성 성분을 포함하는 액정을 상기 한 쌍의 기판 사이에 밀봉하고,
부분적으로 차광 패턴이 형성된 차광 마스크를 개재하여 상기 액정에 자외선을 조사하고,
상기 중합성 성분을 중합시켜, 상기 한 쌍의 기판과 상기 액정의 계면 근방의 일부에 자외선 경화물을 형성하는 것을 특징으로 하는 액정 표시 장치의 제조 방법.
(부기 11)
대향 배치된 한 쌍의 기판의 한쪽 측으로부터의 빛을 반사하는 반사 영역과, 상기 한 쌍의 기판의 다른 쪽 측으로부터의 빛을 상기 한 쌍의 기판의 한쪽 측에 투과시키는 투과 영역을 각각 구비한 복수의 화소 영역을 갖는 액정 표시 장치의 제조 방법이며,
자외선에 의해 중합하는 중합성 성분을 포함하는 액정을 상기 한 쌍의 기판 사이에 밀봉하고,
상기 액정의 일부에, 상기 기판면에 대하여 경사 방향에 입사하도록 자외선을 조사하고,
상기 중합성 성분을 중합시켜, 상기 한 쌍의 기판과의 계면 근방의 일부에 자외선 경화물을 형성하는 것을 특징으로 하는 액정 표시 장치의 제조 방법.
이상 설명한 제2 실시 형태에 의한 액정 표시 장치 및 그 제조 방법은, 이하와 같이 정리된다.
(부기 12)
대향 배치된 한 쌍의 기판과,
상기 한 쌍의 기판 사이에 밀봉된 액정과,
상기 한 쌍의 기판의 한쪽 측으로부터의 빛을 반사하는 반사 영역과, 상기 한 쌍의 기판의 다른 쪽 측으로부터의 빛을 상기 한 쌍의 기판의 한쪽 측에 투과시키는 투과 영역을 각각 구비한 복수의 화소 영역과,
상기 액정에 혼입된 중합성 성분이 자외선에 의해 중합하여 상기 반사 영역 및 상기 투과 영역에 형성되고, 빛을 산란시키는 광 산란능을 상기 반사 영역에 부여하는 자외선 경화물을 갖는 것을 특징으로 하는 액정 표시 장치.
(부기 13)
부기 12에 기재된 액정 표시 장치에 있어서,
상기 투과 영역의 상기 자외선 경화물은 제1 조사 강도의 자외선에 의해 형성되고,
상기 반사 영역의 상기 자외선 경화물은, 상기 제1 조사 강도보다도 높은 제2 조사 강도의 자외선에 의해 형성되어 있는 것을 특징으로 하는 액정 표시 장치.
(부기 14)
부기 13에 기재된 액정 표시 장치에 있어서,
상기 반사 영역에 형성된 반사 전극은, 거의 평탄한 반사면을 갖고 있는 것을 특징으로 하는 액정 표시 장치.
(부기 15)
부기 12 내지 14 중 어느 한 항에 기재된 액정 표시 장치에 있어서,
상기 자외선 경화물은, 인가 전압에 대한 상기 액정의 리터데이션의 변화를 상기 반사 영역과 상기 투과 영역으로 다르게 한 것을 특징으로 하는 액정 표시 장치.
(부기 16)
부기 12 내지 15 중 어느 한 항에 기재된 액정 표시 장치에 있어서,
상기 반사 영역은, 상기 중합성 성분의 반응을 촉진시키는 반응촉진층을 갖 고 있는 것을 특징으로 하는 액정 표시 장치.
(부기 17)
부기 16에 기재된 액정 표시 장치에 있어서,
상기 반응촉진층은, 중합개시제를 함유하는 컬러 필터층인 것을 특징으로 하는 액정 표시 장치.
(부기 18)
부기 12 내지 17 중 어느 한 항에 기재된 액정 표시 장치에 있어서,
상기 한 쌍의 기판과 상기 액정의 계면 근방 중 적어도 일부에, 상기 액정을 배향 제어하는 배향막이 도포 형성되어 있지 않은 것을 특징으로 하는 액정 표시 장치.
(부기 19)
대향 배치된 한 쌍의 기판의 한쪽 측으로부터의 빛을 반사하는 반사 영역과, 상기 한 쌍의 기판의 다른 쪽 측으로부터의 빛을 상기 한 쌍의 기판의 한쪽 측에 투과시키는 투과 영역을 각각 구비한 복수의 화소 영역을 갖는 액정 표시 장치의 제조 방법이며,
자외선에 의해 중합하는 중합성 성분을 포함하는 액정을 상기 한 쌍의 기판 사이에 밀봉하고,
상기 반사 영역의 상기 액정과 상기 투과 영역의 상기 액정과 소정의 조사 조건으로 자외선을 각각 조사하여 상기 중합성 성분을 중합시키고,
광 산란능을 상기 반사 영역에 부여하는 자외선 경화물을 형성하는 것을 특 징으로 하는 액정 표시 장치의 제조 방법.
(부기 20)
부기 19에 기재된 액정 표시 장치의 제조 방법에 있어서,
상기 조사 조건은, 상기 반사 영역에서의 조사 강도가 상기 투과 영역에서의 조사 강도보다 높은 것을 특징으로 하는 액정 표시 장치의 제조 방법.
이상 설명한 제3 실시 형태에 의한 액정 표시 장치는, 이하와 같이 정리된다.
(부기 21)
대향 배치된 한 쌍의 기판과,
상기 한 쌍의 기판 사이에 밀봉된 액정과,
상기 한 쌍의 기판의 한쪽 측으로부터의 빛을 반사하는 반사 영역과, 상기 한 쌍의 기판의 다른 쪽 측으로부터의 빛을 상기 한 쌍의 기판의 한쪽 측에 투과시키는 투과 영역을 각각 구비한 복수의 화소 영역과,
상기 한 쌍의 기판의 다른 쪽의 상기 반사 영역에 형성된 반사 전극과,
상기 반사 전극 위 및 상기 투과 영역에 형성된 절연막과,
상기 투과 영역의 상기 절연막 위에 형성된 투명 전극을 갖는 것을 특징으로 하는 액정 표시 장치.
(부기 22)
부기 21에 기재된 액정 표시 장치에 있어서,
상기 투명 전극은, 상기 반사 영역의 일부에까지 연장하고 있는 것을 특징으 로 하는 액정 표시 장치.
(부기 23)
부기 22에 기재된 액정 표시 장치에 있어서,
상기 투명 전극은, 적어도 상기 반사 영역에서 상기 액정의 배향 규제가 가능한 형상을 갖고 있는 것을 특징으로 하는 액정 표시 장치.
(부기 24)
부기 22 또는 23에 기재된 액정 표시 장치에 있어서,
상기 투명 전극은, 적어도 상기 반사 영역에, 소정 형상의 개구부를 갖고 있는 것을 특징으로 하는 액정 표시 장치.
(부기 25)
부기 24에 기재된 액정 표시 장치에 있어서,
상기 소정 형상은, 직선형, 방사형, 다각 형상, 또는 원 형상인 것을 특징으로 하는 액정 표시 장치.
(부기 26)
부기 24 또는 25에 기재된 액정 표시 장치에 있어서,
상기 개구부는 상기 반사 영역에만 형성되어 있는 것을 특징으로 하는 액정 표시 장치.
(부기 27)
부기 21 내지 26 중 어느 한 항에 기재된 액정 표시 장치에 있어서,
상기 절연막은, 컬러 필터층을 포함하는 것을 특징으로 하는 액정 표시 장 치.
(부기 28)
부기 21 내지 27 중 어느 한 항에 기재된 액정 표시 장치에 있어서,
상기 반사 전극 및 상기 투명 전극은, 서로 전기적으로 접속되어 있는 것을 특징으로 하는 액정 표시 장치.
(부기 29)
부기 21 내지 27 중 어느 한 항에 기재된 액정 표시 장치에 있어서,
상기 반사 전극 및 상기 투명 전극은, 용량을 개재하여 서로 접속되어 있는 것을 특징으로 하는 액정 표시 장치.
(부기 30)
부기 29에 기재된 액정 표시 장치에 있어서,
상기 반사 전극의 전위 및 상기 투명 전극의 전위는 서로 다른 것을 특징으로 하는 액정 표시 장치.
(부기 31)
부기 21 내지 30 중 어느 한 항에 기재된 액정 표시 장치에 있어서,
상기 반사 전극은, 빛을 산란 반사하는 요철 형상의 반사면을 갖고 있는 것을 특징으로 하는 액정 표시 장치.
(부기 32)
부기 21 내지 30 중 어느 한 항에 기재된 액정 표시 장치에 있어서,
상기 반사 전극은 거의 평탄한 반사면을 갖고,
빛을 산란시키기 위해서 상기 반사 전극으로부터 상기 한 쌍의 기판의 한쪽 측에 배치된 광 산란부를 더 갖고 있는 것을 특징으로 하는 액정 표시 장치.
(부기 33)
부기 21 내지 32 중 어느 한 항에 기재된 액정 표시 장치에 있어서,
상기 액정은, 상기 화소 영역 내에서 복수에 배향 분할되어 있는 것을 특징으로 하는 액정 표시 장치.
(부기 34)
부기 21 내지 33 중 어느 한 항에 기재된 액정 표시 장치에 있어서,
상기 액정에 혼입된 중합성 성분이 자외선에 의해 중합하여 상기 한 쌍의 기판과의 계면 근방에 형성되고, 상기 반사 영역과 상기 투과 영역의 사이에서 서로 다른 배향 제어 능력으로 상기 액정을 배향 제어하는 자외선 경화물을 더 갖는 것을 특징으로 하는 액정 표시 장치.
(부기 35)
부기 34에 기재된 액정 표시 장치에 있어서,
상기 자외선 경화물은, 상기 반사 영역의 상기 액정과 상기 투과 영역의 상기 액정과 서로 다른 전압을 인가하면서 자외선을 각각 조사하여 형성되는 것을 특징으로 하는 액정 표시 장치.
(부기 36)
부기 34 또는 35에 기재된 액정 표시 장치에 있어서,
상기 한 쌍의 기판과 상기 액정의 계면 근방 중 적어도 일부에, 상기 액정을 배향 제어하는 배향막이 도포 형성되어 있지 않은 것을 특징으로 하는 액정 표시 장치.
(부기 37)
부기 21 내지 36 중 어느 한 항에 기재된 액정 표시 장치에 있어서,
복수의 버스 라인과, 상기 복수의 버스 라인의 교차 위치 근방에 배치된 박막 트랜지스터를 더 갖고,
상기 반사 전극은, 상기 버스 라인상 또는 상기 박막 트랜지스터상에 배치되어 있는 것을 특징으로 하는 액정 표시 장치.
(부기 38)
부기 21 내지 36 중 어느 한 항에 기재된 액정 표시 장치에 있어서,
복수의 버스 라인과, 상기 복수의 버스 라인의 교차 위치 근방에 배치된 박막 트랜지스터를 더 갖고,
상기 반사 전극은, 상기 박막 트랜지스터의 소스 전극과 일체적으로 형성되어 있는 것을 특징으로 하는 액정 표시 장치.
(부기 39)
부기 1 내지 9또는 12 내지 18또는 21 내지 38 중 어느 한 항에 기재된 액정 표시 장치에 있어서,
상기 액정은 마이너스의 유전율 이방성을 갖고, 전압 무인가 시에 상기 기판면에 거의 수직으로 배향하는 것을 특징으로 하는 액정 표시 장치.
(부기 40)
부기 1 내지 9 또는 12 내지 18또는 21 내지 39 중 어느 한 항에 기재된 액정 표시 장치에 있어서,
상기 한 쌍의 기판을 끼워 한 쌍의 편광자가 배치되고,
상기 한 쌍의 편광자는, 함께 직선 편광자, 함께 원 편광자, 또는 직선 편광자와 원 편광자의 조합인 것을 특징으로 하는 액정 표시 장치.
본 발명에 따르면, 반사 및 투과의 양 모드에서 우수한 표시 특성이 얻어지는 반 투과형의 액정 표시 장치를 실현할 수 있다.

Claims (11)

  1. 대향 배치된 한 쌍의 기판과,
    상기 한 쌍의 기판 사이에 밀봉된 액정과,
    상기 한 쌍의 기판의 한쪽 측으로부터의 빛을 반사하는 반사 영역과, 상기 한 쌍의 기판중 나머지 한쪽 측으로부터의 빛을 상기 한 쌍의 기판의 한쪽 측에 투과시키는 투과 영역을 각각 구비한 복수의 화소 영역과,
    상기 액정에 혼입된 중합성 성분이 자외선에 의해 중합하여 상기 한 쌍의 기판과의 계면의 일부에 형성되고, 상기 화소 영역 내의 상기 액정을 부분적으로 배향 제어하는 자외선 경화물을 포함하는 액정 표시 장치.
  2. 삭제
  3. 삭제
  4. 대향 배치된 한 쌍의 기판의 한쪽 측으로부터의 빛을 반사하는 반사 영역과, 상기 한 쌍의 기판중 나머지한쪽 측으로부터의 빛을 상기 한 쌍의 기판의 한쪽 측에 투과시키는 투과 영역을 각각 구비한 복수의 화소 영역을 포함하는 액정 표시 장치의 제조 방법으로서,
    자외선에 의해 중합하는 중합성 성분을 포함하는 액정을 상기 한 쌍의 기판 사이에 밀봉하고,
    부분적으로 차광 패턴이 형성된 차광 마스크를 개재하여 상기 액정에 자외선을 조사하고,
    상기 중합성 성분을 중합시켜, 상기 한 쌍의 기판과 상기 액정의 계면의 일부에 자외선 경화물을 형성하는 액정 표시 장치의 제조 방법.
  5. 삭제
  6. 대향 배치된 한 쌍의 기판과,
    상기 한 쌍의 기판 사이에 밀봉된 액정과,
    상기 한 쌍의 기판의 한쪽 측으로부터의 빛을 반사하는 반사 영역과, 상기 한 쌍의 기판중 나머지 한쪽 측으로부터의 빛을 상기 한 쌍의 기판의 한쪽 측에 투과시키는 투과 영역을 각각 구비한 복수의 화소 영역과,
    상기 액정에 혼입된 중합성 성분이 자외선에 의해 중합하여 상기 반사 영역 및 상기 투과 영역에 형성되고, 빛을 산란시키는 광 산란능을 상기 반사 영역에 부여하는 자외선 경화물을 포함하고,
    상기 투과 영역의 상기 자외선 경화물은 제1 조사 강도의 자외선에 의해 형성되고,
    상기 반사 영역의 상기 자외선 경화물은 상기 제1 조사 강도보다도 높은 제2 조사 강도의 자외선에 의해 형성되어 있는 액정 표시 장치.
  7. 대향 배치된 한 쌍의 기판의 한쪽 측으로부터의 빛을 반사하는 반사 영역과, 상기 한 쌍의 기판중 나머지 한쪽 측으로부터의 빛을 상기 한 쌍의 기판의 한쪽 측에 투과시키는 투과 영역을 각각 구비한 복수의 화소 영역을 포함하는 액정 표시 장치의 제조 방법으로서,
    자외선에 의해 중합하는 중합성 성분을 포함하는 액정을 상기 한 쌍의 기판 사이에 밀봉하고,
    상기 반사 영역의 상기 액정과 상기 투과 영역의 상기 액정에 소정의 조사 조건으로 자외선을 각각 조사하여 상기 중합성 성분을 중합시키고,
    광 산란능을 상기 반사 영역에 부여하는 자외선 경화물을 형성하는 액정 표시 장치의 제조 방법.
  8. 삭제
  9. 삭제
  10. 삭제
  11. 제1항에 있어서,
    상기 자외선 경화물은 환 구조를 갖는 환식 화합물을 포함하는 액정 표시 장치.
KR1020040098784A 2004-05-27 2004-11-29 액정 표시 장치 및 그 제조 방법 KR100728858B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004157655A JP4580188B2 (ja) 2004-05-27 2004-05-27 液晶表示装置及びその製造方法
JPJP-P-2004-00157655 2004-05-27

Publications (2)

Publication Number Publication Date
KR20050113118A KR20050113118A (ko) 2005-12-01
KR100728858B1 true KR100728858B1 (ko) 2007-06-15

Family

ID=35424780

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040098784A KR100728858B1 (ko) 2004-05-27 2004-11-29 액정 표시 장치 및 그 제조 방법

Country Status (4)

Country Link
US (1) US7738062B2 (ko)
JP (1) JP4580188B2 (ko)
KR (1) KR100728858B1 (ko)
TW (1) TWI333091B (ko)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7359015B1 (en) * 2004-08-10 2008-04-15 Research Foundation Of The University Of Central Florida Transflective liquid crystal display using separate transmissive and reflective liquid crystal cells and materials with single cell gap
KR20060066356A (ko) * 2004-12-13 2006-06-16 삼성전자주식회사 표시 장치와 표시 장치용 박막 트랜지스터 표시판 및 그제조 방법
JP4753001B2 (ja) * 2005-02-02 2011-08-17 Jsr株式会社 液晶配向膜および液晶表示素子とその製造法
KR101122235B1 (ko) * 2005-04-22 2012-03-19 삼성전자주식회사 반투과형 액정 표시 장치 및 그 제조 방법
JP4460488B2 (ja) * 2005-05-16 2010-05-12 シャープ株式会社 液晶表示装置及びその製造方法
TWI270717B (en) * 2005-07-15 2007-01-11 Au Optronics Corp Electrode structure and transflective liquid crystal display device using the same
US20070052912A1 (en) * 2005-09-06 2007-03-08 Toshiba Matsushita Display Technology Co., Ltd. Liquid crystal display device
TWI329215B (en) * 2005-12-29 2010-08-21 Ind Tech Res Inst Transflective liquid crystal displays and fabrication methods thereof
KR101226512B1 (ko) 2005-12-30 2013-01-25 엘지디스플레이 주식회사 액정표시장치
TWI328789B (en) * 2006-03-23 2010-08-11 Au Optronics Corp Method of driving lyquid crystal display
KR101213102B1 (ko) 2006-04-28 2012-12-18 엘지디스플레이 주식회사 반사형 및 반투과형 액정 표시 장치
JP4916770B2 (ja) * 2006-05-22 2012-04-18 三菱電機株式会社 液晶表示装置、及びその製造方法
US20080043183A1 (en) * 2006-08-15 2008-02-21 Tpo Displays Corp. Transflective pixel structure in LCD panel and method for fabricating the same
KR101430610B1 (ko) * 2006-09-18 2014-09-23 삼성디스플레이 주식회사 액정표시패널 및 이의 제조 방법
TWI352231B (en) * 2007-02-02 2011-11-11 Chimei Innolux Corp Transflective liquid crystal display panel and fab
JP4638462B2 (ja) * 2007-03-26 2011-02-23 株式会社 日立ディスプレイズ 液晶表示装置
KR101350875B1 (ko) 2007-05-03 2014-01-16 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
EP2196846B1 (en) * 2007-10-11 2014-08-06 Sharp Kabushiki Kaisha Liquid crystal display panel and liquid crystal display device
JP4412388B2 (ja) * 2007-10-31 2010-02-10 セイコーエプソン株式会社 光学素子、液晶装置及び電子機器
TWI377392B (en) * 2008-01-08 2012-11-21 Au Optronics Corp A backlight module, a liquid crystal display panel and a liquid crystal display apparatus comprising a photo-sensing device
EP2083314A1 (en) * 2008-01-24 2009-07-29 TPO Displays Corp. Liquid crystal display device
CN101498866A (zh) * 2008-02-01 2009-08-05 深圳富泰宏精密工业有限公司 液晶光学配向装置及方法
JP2011149968A (ja) 2008-05-12 2011-08-04 Sharp Corp 液晶表示装置
US8614777B2 (en) 2008-08-20 2013-12-24 Sharp Kabushiki Kaisha Liquid crystal display device
JP2011257437A (ja) * 2008-10-02 2011-12-22 Sharp Corp 液晶表示装置
US8905610B2 (en) 2009-01-26 2014-12-09 Flex Lighting Ii, Llc Light emitting device comprising a lightguide film
JP4832547B2 (ja) * 2009-04-23 2011-12-07 三菱電機株式会社 半透過型液晶表示装置
US8518498B2 (en) 2009-09-02 2013-08-27 Samsung Display Co., Ltd. Liquid crystal display and manufacturing method thereof
US20120207942A1 (en) * 2009-11-09 2012-08-16 Minoru Takagi Process for production of liquid crystal display device
JP5467388B2 (ja) * 2010-04-06 2014-04-09 ソニー株式会社 照明装置および表示装置
US9651729B2 (en) 2010-04-16 2017-05-16 Flex Lighting Ii, Llc Reflective display comprising a frontlight with extraction features and a light redirecting optical element
TW201215970A (en) * 2010-10-04 2012-04-16 Chunghwa Picture Tubes Ltd Liquid crystal alignment process
WO2012074011A1 (ja) * 2010-12-01 2012-06-07 シャープ株式会社 液晶パネル、液晶表示装置
CN202033561U (zh) * 2011-04-08 2011-11-09 京东方科技集团股份有限公司 一种半透半反式的像素结构及半透半反式液晶显示器
JP6003192B2 (ja) * 2012-04-27 2016-10-05 ソニー株式会社 液晶表示装置
US9625764B2 (en) 2012-08-28 2017-04-18 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11009646B2 (en) 2013-03-12 2021-05-18 Azumo, Inc. Film-based lightguide with interior light directing edges in a light mixing region
CN103293770B (zh) * 2013-05-31 2015-12-23 京东方科技集团股份有限公司 显示基板及制造方法和液晶显示面板
CN103454804B (zh) * 2013-08-29 2015-07-01 京东方科技集团股份有限公司 液晶显示面板、液晶显示器及其制备方法
CN105223725A (zh) * 2015-10-13 2016-01-06 京东方科技集团股份有限公司 显示面板及其制备方法
CN107741672B (zh) * 2017-10-25 2020-06-05 深圳市华星光电技术有限公司 一种应用于mmg面板的平台及对mmg面板配向的方法
WO2020047340A1 (en) * 2018-08-30 2020-03-05 Flex Lighting Ii, Llc Film-based frontlight with angularly varying diffusion film
CN113678035A (zh) 2019-01-03 2021-11-19 阿祖莫公司 包括产生多个照明峰值的光导和光转向膜的反射型显示器
WO2021022307A1 (en) 2019-08-01 2021-02-04 Flex Lighting Ii, Llc Lightguide with a light input edge between lateral edges of a folded strip
JP7393927B2 (ja) 2019-11-29 2023-12-07 シャープ株式会社 液晶表示パネル
US11640084B2 (en) * 2020-07-28 2023-05-02 Sharp Kabushiki Kaisha Liquid crystal display device
US20230065240A1 (en) * 2021-08-25 2023-03-02 The United States of America As Represented By The Director Of The National Geospatial-Intelligence Method and apparatus for the display of volumetric solids using distributed photochromic compounds

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980015423A (ko) * 1996-08-21 1998-05-25 김광호 액정표시장치의 제조방법
KR20030058092A (ko) * 2001-12-29 2003-07-07 엘지.필립스 엘시디 주식회사 반투과형 액정표시소자

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756206B2 (ja) 1992-02-19 1998-05-25 シャープ株式会社 反射型液晶表示装置及びその製造方法
US5579140A (en) 1993-04-22 1996-11-26 Sharp Kabushiki Kaisha Multiple domain liquid crystal display element and a manufacturing method of the same
JP3059030B2 (ja) * 1993-09-16 2000-07-04 シャープ株式会社 液晶表示素子及びその製造方法
US5594569A (en) * 1993-07-22 1997-01-14 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
JP3301219B2 (ja) 1994-06-09 2002-07-15 カシオ計算機株式会社 液晶表示装置
JP2768313B2 (ja) 1995-06-13 1998-06-25 日本電気株式会社 反射型液晶表示装置
JP3284187B2 (ja) 1998-01-29 2002-05-20 シャープ株式会社 液晶表示装置およびその製造方法
JP3380482B2 (ja) 1997-12-26 2003-02-24 シャープ株式会社 液晶表示装置
JP3410664B2 (ja) 1998-07-14 2003-05-26 シャープ株式会社 液晶表示装置
US6909481B2 (en) 2000-11-07 2005-06-21 Seiko Epson Corporation Liquid crystal display and electronic appliance
JP3744342B2 (ja) * 1999-12-03 2006-02-08 セイコーエプソン株式会社 液晶装置および電子機器
US6885423B2 (en) * 2000-12-06 2005-04-26 Nitto Denko Corporation Method for manufacturing homeotropic alignment liquid crystal film
TW571165B (en) 2000-12-15 2004-01-11 Nec Lcd Technologies Ltd Liquid crystal display device
JP2002287158A (ja) * 2000-12-15 2002-10-03 Nec Corp 液晶表示装置およびその製造方法ならびに駆動方法
JP4425490B2 (ja) 2001-03-30 2010-03-03 シャープ株式会社 反射型液晶表示装置の製造方法
US6977704B2 (en) 2001-03-30 2005-12-20 Fujitsu Display Technologies Corporation Liquid crystal display
US6952252B2 (en) 2001-10-02 2005-10-04 Fujitsu Display Technologies Corporation Substrate for liquid crystal display and liquid crystal display utilizing the same
JP4237977B2 (ja) * 2001-10-02 2009-03-11 シャープ株式会社 液晶表示装置
JP2003207641A (ja) * 2001-11-08 2003-07-25 Dainippon Printing Co Ltd 位相差層積層体およびその製造方法
JP3917417B2 (ja) * 2001-12-11 2007-05-23 シャープ株式会社 反射型液晶表示装置
JP3675420B2 (ja) * 2002-03-26 2005-07-27 セイコーエプソン株式会社 液晶表示装置及び電子機器
JP4214748B2 (ja) * 2002-09-20 2009-01-28 セイコーエプソン株式会社 液晶表示装置及び電子機器
TWI304496B (en) * 2003-03-20 2008-12-21 Sharp Kk Liquid crystal display apparatus and manufacturing method therefor
US7038743B2 (en) * 2004-01-28 2006-05-02 Kent State University Electro-optical devices from polymer-stabilized liquid crystal molecules

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980015423A (ko) * 1996-08-21 1998-05-25 김광호 액정표시장치의 제조방법
KR20030058092A (ko) * 2001-12-29 2003-07-07 엘지.필립스 엘시디 주식회사 반투과형 액정표시소자

Also Published As

Publication number Publication date
US7738062B2 (en) 2010-06-15
JP4580188B2 (ja) 2010-11-10
TW200538788A (en) 2005-12-01
TWI333091B (en) 2010-11-11
JP2005338472A (ja) 2005-12-08
US20050264730A1 (en) 2005-12-01
KR20050113118A (ko) 2005-12-01

Similar Documents

Publication Publication Date Title
KR100728858B1 (ko) 액정 표시 장치 및 그 제조 방법
KR100861060B1 (ko) 액정 표시 장치 및 전자 기기
US7589809B2 (en) Reflective plate, production method therefor, liquid crystal device, and electronic device
JP4080245B2 (ja) 液晶表示装置
US5434690A (en) Liquid crystal device with pixel electrodes in an opposed striped form
EP1921495B1 (en) Liquid crystal display device using nematic liquid crystal
JPH06324337A (ja) 液晶表示装置
JP2010244081A (ja) 液晶表示装置
JP3072513B2 (ja) 高分子分散型液晶表示パネル
JP2007249243A (ja) 液晶表示装置
JP2009093115A (ja) 液晶表示装置
KR101283367B1 (ko) 액정표시장치와 그 제조방법
JP4031658B2 (ja) 液晶表示装置
KR100431052B1 (ko) 표면 굴곡에 의하여 형성된 다중 영역 효과를 가지는 액정표시 장치
JP3203331B2 (ja) 反射型液晶表示装置
JP4749391B2 (ja) 液晶表示装置
JPH07234400A (ja) 液晶表示装置
JP3226521B2 (ja) 反射型液晶表示装置
JP4510797B2 (ja) 反射型液晶表示装置
JP7389865B2 (ja) 液晶パネル及び液晶表示装置
JP2000298266A (ja) 高分子分散型液晶表示パネル及びその製造方法
JP4519256B2 (ja) 液晶表示装置
WO2012108313A1 (ja) 液晶ディスプレイ
JP3314780B2 (ja) 液晶表示装置
Kim et al. P‐128: Viewing Angle Switching of Liquid Crystal Displays Driven by Fringe Field Switching

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20130520

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140522

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150518

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160517

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170522

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180518

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190516

Year of fee payment: 13