KR100585443B1 - 카르니틴 팔미토일-트랜스퍼라제의 활성을 가역적으로억제하는 화합물 - Google Patents

카르니틴 팔미토일-트랜스퍼라제의 활성을 가역적으로억제하는 화합물 Download PDF

Info

Publication number
KR100585443B1
KR100585443B1 KR1020007012826A KR20007012826A KR100585443B1 KR 100585443 B1 KR100585443 B1 KR 100585443B1 KR 1020007012826 A KR1020007012826 A KR 1020007012826A KR 20007012826 A KR20007012826 A KR 20007012826A KR 100585443 B1 KR100585443 B1 KR 100585443B1
Authority
KR
South Korea
Prior art keywords
trimethylammonium
aminobutyrate
group
alkyl
compound
Prior art date
Application number
KR1020007012826A
Other languages
English (en)
Other versions
KR20010034862A (ko
Inventor
기아네시파비오
마지마우로
미네티파트리지아
드엔젤리스프란체스코
틴티마리아오넬라
치오디피에로
아듀이니아듀이노
Original Assignee
시그마타우 인두스트리에 파르마슈티케 리우니테 에스.피.에이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 시그마타우 인두스트리에 파르마슈티케 리우니테 에스.피.에이. filed Critical 시그마타우 인두스트리에 파르마슈티케 리우니테 에스.피.에이.
Publication of KR20010034862A publication Critical patent/KR20010034862A/ko
Application granted granted Critical
Publication of KR100585443B1 publication Critical patent/KR100585443B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D257/04Five-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/22Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated the carbon skeleton being further substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/26Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having more than one amino group bound to the carbon skeleton, e.g. lysine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/12Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/22Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/04Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms
    • C07C275/06Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton
    • C07C275/16Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton being further substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/01Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
    • C07C311/02Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C311/03Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atoms of the sulfonamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C311/06Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atoms of the sulfonamide groups bound to hydrogen atoms or to acyclic carbon atoms to acyclic carbon atoms of hydrocarbon radicals substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C335/00Thioureas, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C335/04Derivatives of thiourea
    • C07C335/06Derivatives of thiourea having nitrogen atoms of thiourea groups bound to acyclic carbon atoms
    • C07C335/08Derivatives of thiourea having nitrogen atoms of thiourea groups bound to acyclic carbon atoms of a saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/14Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D295/145Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
    • C07D295/15Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D453/00Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids
    • C07D453/02Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids containing not further condensed quinuclidine ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • C07F9/5407Acyclic saturated phosphonium compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Diabetes (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Figure 112000024062570-pct00033
화학식(I)의 화합물의 그룹은 발명의 상세한 설명에 나타낸 바와 같다. 화학식(I)의 화합물은 카르니틴 팔미토일-트랜스퍼라제의 활성을 가역적으로 억제하고, 고혈당, 당뇨병, 당뇨병관련병리, 심장발작, 국소빈혈과 같은 카르니틴 팔미토일-트랜스퍼라제의 활동항진에 관련된 병리치료용 약제의 제조에 유용하다.
카르니틴 팔미토일-트랜스퍼라제

Description

카르니틴 팔미토일-트랜스퍼라제의 활성을 가역적으로 억제하는 화합물{Compounds having reversible inhibiting activity of carnitine palmitoyl-transferase}
본 발명은 카르니틴 팔미토일 트랜스퍼라제를 억제하는 기능을 가진 화합물에 관한 것이다. 본 발명은 또한 이런 화합물의 유효 성분 중 최소한 하나이상을 포함하는 약제 조성물 뿐만 아니라, 당뇨병과 당뇨병 관련 병리(pathology) 및 울혈성 심장발작과 같은 고혈당 상태에서의 카르니틴 팔미토일-트랜스퍼라제의 활동항진(hyperactivity)과 관련된 병리치료용 약제의 제조에 사용되는 화합물에 관한 것이다.
오늘날까지, 저혈당증치료는 서로 다른 작용기작을 가진 약제에 의존하고 있다(Arch. Intern. Med., 1997, 157, 1802-1817).
인슐린 및 유사 약제들은 직접적으로 혈당을 강하시키는데 가장 많이 사용되고있으며, 다른 화합물들은 인슐린 분비를 촉진함으로써 간접적으로 혈당강하에 관여하고 있다(설포닐우레아). 이들 저혈당 약제들은 장내 글루코시다제의 억제를 통하여 당의 장내 흡수를 감소시키거나 또는 인슐린에 대한 저항(resistance)을 감소시킴으로써 혈당을 강하시키게 된다.
고혈당의 치료에는 비구아나이드(biguanide)와 같은 당신생(gluconeogenesis
) 억제제를 사용한다.
또한 당신생과 지방산 산화 사이의 관계에 중점을 둔 연구들도 있다.
카르니틴 팔미토일트랜스퍼라제(CPT)로 알려져 있는 막에 결합된 긴-사슬 아실카르니틴 트랜스퍼라제는 기관(organ)과 아세포계 세포기관(subcellular organelle)에 넓게 분포되어있다(Bieber, L.L. 1988 Ann. Rev. Biochem. 57: 261-83). 이 범주에 속하는 효소의 주요 역할은 미토콘드리아 막을 통하여 활성화된 긴-사슬 지방산을 이동시키는 것이다. 여기서, 미토콘드리아의 외막 CPT I은, 특정 담체에 의해 미토콘드리아 막을 통과하여 이동하고, 미토콘드리아 내막에 있는 CPT II에 의해 긴-사슬 아실-조효소 A 에스테르로 재전환되는 긴-사슬 아실카르니틴의 생성에 있어서 촉매역할을 한다. 긴-사슬 아실-CoA는 그리고나서 당신생 효소를 활성화시키는 열쇠인 아세틸-조효소 A로 산화된다: 피루베이트 카르복실라제
또 다른 연구들에 의하면 당뇨병환자들은 혈중 지방산의 수치가 높으며, 이들 환자들의 간 산화 상태는 아세틸-조효소 A, ATP 및 NADH의 증가를 유발하게 된다.
이런 화합물이 다량으로 있을 경우, 당뇨병환자에게 있어 혈당 농도를 증가시키는 원인이 되는 당신생을 극대화시키게 된다. CPT 억제는 간접적으로 간의 당신생 정도를 감소시킴으로써 혈당농도가 감소하게 된다.
CPT 억제제는 문헌[J. Med. Chem., 1995, 38(18), 3448-50]에 개시되어 있고, 해당저널의 유럽특허 EP 0574355에도 저혈당 작용에 있어 잠재적인 유도체로서 유럽특허 EP 0574355에도 나타나있다.
R이 탄소원자수 1 ∼ 19인 지방족 잔기인 -COR 잔기로 N-아실레이티드된 아미노카르니틴은 WO85/04396에 트랜스퍼라제, 특히 카르니틴 아실트랜스퍼라제가 인체에서 담당하는 특성을 조사하는데 유용함이 기술되어 있다.
에메리아민(Emeriamine)과 그 유사물질은 EP 0127098과 문헌[J. Med. Chem. 1987, 30, 1458-1463]에 나타나있다.
그럼에도 불구하고, 이제까지 고혈당을 효과적으로 감소시킬 수 있는 CPT 억제 약제는 없다.
테트라데실 글리시딕 산 또느 에토목시(etomoxir) 같은 몇몇 물질들은, 미토콘드리아 비대증과 같은 부작용을 보였다(Life Sci., 1989,44, 1897-1906).
이제까지는 임상실험을 통한 만족할 만한 약제가 출현되지 못하였으며, 특히 심한 저혈당, 알레르기 현상, 부종, 설사, 장 질환, 신장 독성 등과 같은 부작용 등으로 인하여 만족할 만한 약제가 없었다.
고혈당을 효과적으로 치료할 대안책의 개발이 여전히 숙제로 남아있다.
요약
다음의 화학식(I)로 표시되는 화합물은 놀랍게도 알려져 있다:
Figure 112000024062570-pct00031
여기에서,
X+는 N+(R1,R2,R3)와 P+(R1,R 2,R3)로 이루어진 그룹으로부터 선택되며, 상기 (R1,R2,R3)는 서로 같거나 다른 것으로서 수소와 C1-C9 직쇄 또는 측쇄의 알킬기, -CH=NH(NH2), -NH2, -OH 중에서 선택되거나; 또는 질소원자와 결합된 둘 또는 그 이상의 R1, R2 및 R3는 포화된 또는 불포화된, 모노사이클릭 또는 바이사이클릭 헤테로 사이클릭 시스템을 형성하며; 다만, R1, R2 및 R3 중 적어도 하나는 수소가 아니며;
Z는 -OR4, -OCOOR4, -OCONHR4, -OCSNHR4, -OCSOR4, -NHR4, -NHCOR4, -NHCSR4, -NHCOOR4, -NHCSOR4, -NHCONHR4, -NHCSNHR4, -NHSOR4, -NHSONHR4, -NHSO2R4, -NHSO2NHR4, -SR4 중에서 선택되며,
여기에서 -R4는 포화된 또는 불포화된 C1-C20, 직쇄 또는 측쇄의 알킬기, 선택적으로 A1 그룹으로 치환된 알킬기이며, A1은 할로겐 원자, C6-C14 아릴, 헤테로아릴, 아릴록시 또는 헤테로아릴록시기 중에서 선택되는 것으로, 상기 아릴, 헤테로아릴, 아릴록시 또는 헤테로아릴록시기는 선택적으로 하나 또는 그 이상의 포화된 또는 불포화된 C1-C20, 직쇄 또는 측쇄의 알킬 또는 알콕시기 및/또는 할로겐 원자로 치환될수 있으며;
Y-는 -COO-, PO3H-, -OPO3H-, 테트라졸레이트-5-일로 이루어진 그룹으로부터 선택되며;
여기서, 다만 Z가 -NHCOR4이면, X+는 트리메틸암모늄, Y는 -COO-, R4 는 C20 알킬이고;
다만 Z가 -NHSO2R4이면, X+는 트리메틸암모늄, Y-는 -COO- , R4는 톨일(tolyl)이 아니며;
다만 Z가 -NHR4이면, X+는 트리메틸암모늄, Y-는 -COO-, R4 는 C1-C6 알킬이 아니라는 것을 전제로 한다.
본 발명은 또한 상기 화학식(I)의 화합물이 약제의 유효 성분으로서 사용되며, 특히 고혈당 상태, 당뇨병 및 이와 관련된 병리, 울혈적인 심장발작과 팽창성 심장병 같은 카르니틴 팔미토일 카르니틴의 활동항진에 유용한 약제용 유효성분임을 밝히고 있다.
본 발명은 약리학적으로 허용가능한 소포제(vehicle)와 부형제(excipient)에 대한 혼합물에서 유효 성분으로서 화학식(I)의 화합물을 함유하는 약제 조성물을 포함한다.
본 발명은 또는 화학식(I)로 표시되는 화합물의 제조 방법을 포함한다.
본 발명의 범위내에서 C1-C20 직쇄 또는 측쇄의 알킬기의 예로는 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 헵틸, 옥틸, 노닐, 데실, 운데실, 도데실, 트리데실, 테트라데실, 펜타데실, 헥사데실, 헵타데실, 옥타데실, 노나데실 및 에이코실, 그리고 예를 들어 이소프로필, 이소부틸, 터트-부틸같은 이들의 가능한 이성질체를 말한다.
C1-C20 직쇄 또는 측쇄의 알케닐기의 예로는 메틸렌, 에틸리덴, 비닐, 알릴(allyl), 프로파길, 부틸렌, 펜틸렌이며, 선택적으로 다른 탄소-탄소 불포화(unsaturation)의 존재하의 탄소-탄소 이중결합에 있어서 허용된 동수성(isomery)내에서 알킬 사슬의 다른 가능한 위치에 놓여질 수도 있다.
(C6-C14) 아릴기의 예로는 페닐, 1- 또는 2-나프틸, 안트릴이며, 선택적으로 위에 언급한 일반적인 정의에서 보여진 것처럼 치환된다.
헤테로사이클릭기의 예는 티에닐, 퀴놀일, 피리딜, N-메틸피페리디닐, 5-테트라졸일이며, 선택적으로 위에 언급한 일반적인 정의에서 보여진 것처럼 치환된다.
할로겐 원자는 플로린, 클로린, 브로민, 이오딘을 나타낸다.
화학식(I)의 화합물은 또한 내염의 형태로 존재할 것이다.
바람직한 화합물의 첫번째 그룹은 N+(R1,R2,R3)가 트리메틸암모늄인 화학식
(I)의 화합물을 포함한다.
바람직한 화합물의 두번째 그룹은 질소원자와 결합된 둘 또는 그 이상의 R1, R2 및 R3는 포화된 또는 불포화된, 모노사이클릭 또는 바이사이클릭 헤테로 사이클릭 시스템을 형성하는 화학식(I)의 화합물을 포함한다; 예를 들어 모르폴리늄, 피리디늄, 피롤리디늄, 퀴놀리늄, 퀴누클리디늄 이다.
바람직한 화합물의 세번째 그룹은 R1과 R2는 수소이고, R3는 -CH=NH(NH 2), -NH2 및 -OH로 이루어진 그룹으로부터 선택되는 화학식(I)의 화합물을 포함한다.
본 발명의 다른 구체적 범위내에서, R4그룹은 바람직하게 포화된 또는 불포화된 C7-C20, 직쇄 또는 측쇄의 알킬기이다. 사실상, 알킬 사슬 R4의 길이는 CPT에 역행하여 선택도를 크게 증가시킴이 알려져왔다.
바람직한 R4 그룹은 헵틸, 옥틸, 노닐, 데실, 운데실, 도데실, 트리데실, 테트라데실, 펜타데실, 헥사데실, 헵타데실, 옥타데실, 노나데실 및 에이코실로 이루어진 그룹으로부터 선택된다.
바람직한 Z 그룹의 예는 우레이도(-NHCONHR4)와 카바메이트(-NHCOOR4, -OCONHR4) 중 하나이다.
특히 화학식(I)의 화합물은 X+, R1, R2, R3는 위에 나타낸 의미이고, Z는 우레이도(NHCONHR4) 또는 카바메이트(-NHCOOR4, -OCONHR4), R4는 C7-C20, 바람직하게는포화된 또는 불포화된 C9-C18, 직쇄 또는 측쇄의 알킬기가 바람직하다.
화학식(I)의 화합물은 Z 그룹에 결합한 탄소원자에 비대칭 중심을 가지고 있다. 본 발명의 목적에 따르면 화학식(I)의 각 화합물은 R, S 라세믹 혼합물뿐만 아니라, 분리된 R/S 이소머릭(isomeric) 형태 모두 존재할 수 있다.
화학식(I)의 화합물은 항상 Y-음이온성 그룹을 함유하는 4차 암모늄 또는 포스포늄 유도체이다. 화학식(I)의 각 화합물은 pH에 따라 양쪽성이온(내염) 또는 Y-가 YH형태로 존재하는 화합물로 존재하게 된다. 그런 경우에, X+는 약리학적으로 허용 가능한 산으로 염화된다. 화학식(I)은 모든 다른 가능성을 다룬다. 염기특성을 가지는 질소 원자의 경우, 염은 약리학적으로 허용 가능한 산에 대한 염으로 무기 및 유기 모두이며, 예를 들면 하이드로클로릭 에시드, 설푸릭 에시드, 아세틱 에시드, 또는 카르복실같은 에시드기의 경우이며, 약리학적으로 허용 가능한 염기에 대한 염으로는 무기 및 유기 모두이며, 예를 들면 알카린, 알카린-어쓰(earth) 하이드록사이드, 암모늄 하이드록사이드, 아민, 또한 헤테로사이클릭한 것 등이다; 약리학적으로 허용 가능한 염의 예는 클로라이드; 브로마이드; 이오다이드; 아스파테이트; 에시드 아스파테이트; 시트레이트; 에시드 시트레이트; 타르트레이트; 에시드 타르트레이트; 포스페이트; 에시드 포스페이트; 푸마 레이트; 에시드 푸마레이트; 글리세로포스페이트; 글루코스포스페이트; 락테이트; 말리에이트; 에시드 말리에이트; 무케이트; 오로테이트; 옥살레이트; 에시드 옥살레이트; 설페이트; 에시드 설페이트; 트리클로로아세테이트; 트리플루오로아세테이트; 메탄설포네이트; 파모에이트 및 에시드 파모에이트 등이다.
더욱 바람직한 화합물의 첫번째 그룹은 다음과 같다:
R,S-4-트리메틸암모늄-3-(노닐카바모일)-아미노부티레이트;
R,S-4-퀴누클리디늄-3-(테트라데실옥시카보닐)-옥시부티레이트;
R,S-4-트리메틸암모늄-3-(노닐카바모일)-옥시부티레이트;
R,S-4-트리메틸암모늄-3-(노닐옥시카보닐)-옥시부티릭 에시드 클로라이드;
R,S-4-트리메틸포스포늄-3-(노닐카바모일)-옥시부티레이트;
R,S-4-트리메틸암모늄-3-(옥틸옥시카보닐)-아미노부티레이트;
R,S-4-트리메틸암모늄-3-(노닐옥시카보닐)-아미노부티레이트;
R,S-4-트리메틸암모늄-3-옥틸옥시부티레이트;
R,S-4-트리메틸암모늄-3-테트라데실옥시부티레이트;
R,S-1-구아니디늄-2-테트라데실옥시-3-(테트라졸레이트-5-일)-프로판;
R,S-1-트리메틸암모늄-2-테트라데실옥시-3-(테트라졸레이트-5-일)-프로판;
R,S-3-퀴누클리디늄-2-(테트라데실옥시카보닐)-옥시-1-프로판포스포네이트 모노베이직;
R,S-3-트리메틸암모늄-2-(노닐아미노카보닐)-옥시-1-프로판포스포네이트 모노베이직;
R,S-3-피리디늄-2-(노닐아미노카보닐)-옥시-1-프로판포스포닉 에시드 클로라이드;
R-4-트리메틸암모늄-3-(테트라데실카바모일)-아미노부티레이트;
R-4-트리메틸암모늄-3-(운데실카바모일)-아미노부티레이트;
R-4-트리메틸암모늄-3-(헵틸카바모일)-아미노부티레이트;
R,S-4-트리메틸암모늄-3-(노닐티오카바모일)-아미노부티레이트;
R-4-트리메틸암모늄-3-(노닐카바모일)-아미노부티레이트;
S-4-트리메틸암모늄-3-(노닐카바모일)-아미노부티레이트;
S-4-트리메틸암모늄-3-(테트라데실카바모일)-아미노부티레이트;
R,S-4-트리메틸암모늄-3-테트라데실아미노부티레이트;
R,S-4-트리메틸암모늄-3-옥틸아미노부티레이트;
R,S-4-트리메틸암모늄-3-(데칸설포닐)아미노부티레이트;
R,S-4-트리메틸암모늄-3-(노닐설파모일)아미노부티레이트;
S-4-트리메틸암모늄-3-(도데칸설포닐)아미노부티레이트;
R-4-트리메틸암모늄-3-(도데칸설포닐)아미노부티레이트;
S-4-트리메틸암모늄-3-(운데실설파모일)아미노부티레이트;
R-4-트리메틸암모늄-3-(운데실설파모일)아미노부티레이트;
R-4-트리메틸암모늄-3-(도데실카바모일)아미노부티레이트;
R-4-트리메틸암모늄-3-(10-펜옥시데실카바모일)아미노부티레이트;
R-4-트리메틸암모늄-3-(트랜스-β-스티렌설포닐)마미노부티레이트.
화학식(I)의 화합물은 문헌에 잘 알려진 반응으로 제조될수 있다.
청구항 1의 화합물의 제조 방법은, X+-CH2-CH(NH2)-CH2-Y- (이때 X+와 Y-는 청구항 1에 정의한 바와 같고, 에시드 Y- 그룹은 선택적으로 보호기에 의해 보호됨)와, 알칸 카르브알데히드(이때, 알킬 부분은 목적하는 R4의 한-항 낮은 동족(a one-term lower homologue of the desired R4))을 반응시키고, 계속해서 환원반응시켜 제조한다.
일반적으로 화학식(I)의 화합물은, X+-CH2-CH(OH)-CH2-Y-(이때, X+와 Y-는 위에 정의한 바와 같고, 에시드 Y- 그룹은 선택적으로 보호기에 의해 보호됨)와, 알킬 클로로포메이트, 알킬 이소시아네이트, 알킬 이소티오시아네이트 또는 알킬 티오클로로포메이트(이때, 알킬 부분은 R4 알킬기임)을 반응시켜 제조된 Z가 카보네이트(-OCOOR4), 카바메이트(-NHCOOR4, -OCONHR4), 티오카바메이트(-OCSNHR 4, -NHCSOR4) 또는 티오카보네이트(-OCSOR4)인 화합물이다.
화학식(I)의 화합물은, X+-CH2-CH(NH2)-CH2-Y-(이때, X+와 Y-는 위에 정의한 바와 같고, 에시드 Y- 그룹은 선택적으로 보호기에 의해 보호됨)와, 아실 클로라이드, 티오아실 클로라이드, 알킬 클로로포메이트, 알킬 티오클로로포메이트, 알킬 이소시아네이트, 알킬 티오이소시아네이트, 알킬 설피닐 클로라이드, 알킬 설포닐 클로라이드, SOCl2, 알킬 아민 또는 알킬 설파모일 클로라이드(또는 SO2Cl2 및 알킬 아민)(이때, 알킬 부분은 R4 알킬기임)을 반응시켜 제조된 Z가 아마이드(-NHCOR4), 티오아마이드(-NHCSR4), 카바메이트(-NHCOOR4, -OCONHR4), 티오카바메이트(-NHCSOR 4, -OCSNHR4), 우레이도(-NHCONHR4), 티오우레이도(-NHCSNHR4), 설핀아마이드(-NHSOR 4), 설폰아마이드(-NHSO2R4), 설핀아모일아미노(-NHSONHR4), 및 설파마이드(-NHSO 2NHR4)인 화합물이다.
화학식(I)의 화합물은, Z가 -OR4 또는 -SR4 화합물은 Hal-CH2-CO-CH2 -COOR'으로 표시되는 카보닐 화합물(이때, Hal은 할로겐 원자이고, 바람직하게는 클로린이며, R'는 적합한 에스테르의 잔기, 예를들어 더 낮은 알킬 에스테르(에틸 또는 터트-부틸 에스테르))과, 알콜(R4OH) 또는 티올(R4SH)(이때, R4는 위에 정의한 바와 같음)을 반응시켜 케탈 또는 티오케탈을 제조하는 과정, 뒤따라서 케탈 또는 티오케탈이 에테르 또는 티오에테르로 각각 전환되는 과정, 계속해서 Hal 원자가 아지도, 프탈이미도, 니트로, 아미노, 알킬 아미노 그룹같은 친핵성 그룹에 의해 치환되는 과정, 그리고 친핵성 그룹을 X+기로 전환(이때, X+는 N+(R1,R 2,R3)임)하거나, 또는 선택적으로 Hal 원자와 (R1,R2,R3)-치환된 포스핀을 치환반응시켜 X+ 가 P+(R1, R2, R3)인 화학식(I)의 화합물을 얻는다.
화학식(I)의 화합물은, X+-CH2-CH(NH2)-CH2-Y-(이때 X+와 Y-는 청구항 1에 정의한 바와 같고, 에시드 Y- 그룹은 선택적으로 보호기에 의해 보호됨)와, 알칸 카르브알데히드(이때, 알킬 부분은 목적하는 R4의 한-항 낮은 동족)을 반응시키고, 계속해서 환원반응시켜 제조된 Z가 -NHR4인 화학식(I)의 화합물이다.
R4는 다양한 다른 반응물질(reactive)로 존재하므로 다양한 의미를 갖게되며, 이런 반응물질은 시장에서 이용할 수 있거나 그 분야의 전문가가 그들 자신의 지식을 완전하게 하기 위해 자주 보는 문헌에 잘 알려진 방법에 따라 제조될 수 있다.
약리학적으로 허용 가능한 염은 더 나아간 발표를 필요로 하지않고, 문헌에 나타난 통상적인 방법에 의해 얻어진다.
본 발명에 따른 화합물은 카르니틴 팔미토일-트랜스퍼라제(CPT) 가역적인 억제 작용을 가진다.
이 작용은 고혈당, 당뇨병과 예를들어 당뇨병성망막증, 당뇨병성신경병증과 같은 당뇨병에 관련된 질환의 치료와 예방에 유용한 약제의 제조에서 유효성분으로서 그들의 사용을 허락한다. 본 발명에 따른 화합물은 또한 울혈적인 심부전증과 같은 심혈관의 질환의 치료와 예방에 유용한 약제의 제조에서 유효성분으로서 그들이 사용된다. 화학식(I)의 화합물은 또한 혈액에 키톤체의 높은 수치로 특징지워지는 병리학적 상태를 유도하는 데 있어서, 키톤 상태의 예방과 치료를 위한 약제로 응용한다.
억제 작용은 팔미토일 카르니틴 트랜스퍼라제의 유사형 I(CPT-I)에서 주로 발견된다.
본 발명의 또 다른 목적은 상당한 치료적 효과를 낳을 수 있는, 최소 하나이상의 화학식(I)의 화합물을 함유하는 약제 조성물과 관련되어 있다.
본 발명에 따른 조성물은 통상적이며, 약제 산업에서 일반적으로 사용된 방법에 의해 얻어진다. 바람직학 투약 루트에 따르면, 조성물은 고체 또는 액체형이어야하며, 경구적, 비경구적, 정맥내 또는 경피를 통한 루트이어야한다. 본 발명에 따른 조성물은 적어도 약리학적으로 허용 가능한 소포나 부형제인 유효성분을 함께 포함한다. 공동-보강제(co-adjuvant) 형성은 예를 들어 용해, 분산, 현탁, 유탁 물질이 특히 유용하다. 적합한 경구적 약제 조성물의 예는 캡슐제, 정제, 그래뉼레이트, 파우더, 시럽, 엘릭시르이다. 적합한 비경구적 약제 조성물의 예는 용액, 유탁액, 현탁액이다. 적합한 경피를 통한 약제 조성물의 예는 패취, 피하의 삽입물이다.
화학식(I)의 화합물은 또한 다른 잘 알려진 유효 성분과 조합하여 사용되어질 수 있다.
유효 성분의 복용량은 사용된 유효성분의 종류, 투약 루트, 치료받던 병리 등급과 환자의 일반 상태에 따라 달라질 수 있다. 용량과 약용량학은 임상 전문가 또는 의사에 의해 결정되어질 것이다. 일반적으로 치료 효과는 몸무게 1kg당 1 ∼ 100mg을 투여할 때 얻어진다.
본 발명에 따른 화합물은 저혈당 작용에 대한 약제로서 유용하다. 본 발명의 또다른 목적은 최소 하나이상의 화학식(I)의 화합물을 약리학적으로 허용 가능한 적합한 부형제 및/또는 소포와 함께 혼합하는 것을 포함하는 약제 조성물의 제조이다.
도 1은 ST 1253, ST 1285의 합성을 바람직한 구현예로 나타낸 것이다.
도 2는 ST 1207, ST 1228의 합성을 바람직한 구현예로 나타낸 것이다.
도 3은 ST 1263, ST 1287의 합성을 바람직한 구현예로 나타낸 것이다.
도 4는 ST 1260, ST 1286, ST 1268의 합성을 바람직한 구현예로 나타낸 것이다.
본 발명을 실시예에 의거하여 더욱 상세하게 설명하겠는 바, 본 발명에 실시예에 한정되는 것은 아니다.
실시예 1
R,S-4-트리메틸암모늄-3-(노닐카바모일)-아미노부티레이트(ST 1251)
노닐 이소시아네이트
데카노일 클로라이드(20 g, 104.8 mmol)을 아세톤 30 ml에 용해시킨 용액을 물 30 ml에 용해시킨 소듐 아자이드(9.53 g, 146.6 mmol)용액에 떨어뜨렸고, 얼음조에서 차갑게 하였다. 아자이드 용액의 온도는 10 ∼ 15 ℃사이를 유지시켰 다. 1시간후에 용액은 분리 깔대기로 옮겼고, 낮은층(수용액층)은 제거하였다. 높은층은 미리 65 ℃로 가열된 톨루엔 100 ml를 포함하는 플라스크로 옮겼다. 1.5시간후에 용액은 건조시키기위해 농축하여, 13.37 g의 생성물을 얻었으며, 생성물은 진공증류하여 8.3 g의 색깔없는 액체의 정제된 생성물을 얻었다.
수율 47 %.
1H-NMR (300 MHz; CDCl3):
δ: 3.3(t, 2H), 1.6(m, 2H), 1.45-1.2(m, 12H), 0.9(brt, 3H).
R,S-4-트리메틸암모늄-3-(노닐카바모일)-아미노부티레이트
노닐 이소시아네이트(15.42 g, 91.12 mmol)를 아미노카르니틴과 내염(7.3 g, 45.56 mmol)의 건조 DMSO(350 ml) 용액에 첨가하였고, 용액은 40 ℃, 60시간동안 두었다. 결과 혼합물을 에틸 에테르(2.5ℓ)를 포함하는 3ℓ 삼각플라스크로 옮겼고, 용매는 생성된 침전물을 기울여 따라서 분리하였으며, 침전물은 플라스크로 옮겨 에틸 에테르에 또 침전시켰다. 얻어진 생성물은 여러번 에틸 에테르로 세척하였고, 높은 Rf로 불순물의 용출이 될때까지 CHCl3:MeOH 9:1 ∼ CHCl3:MeOH 3:7 그래디언트로, 그리고나서 MeOH만 그래디언트로 사용한 실리카 겔 크로마토그래픽 컬럼으로 정제하여 생성물을 용출하였다.
9.7 g의 정제된 생성물을 얻었다.
수율 68%.
M. p.: 145 ∼ 147℃.
1H-NMR (300MHz; D2O):
δ: 4.4(m, 1H), 3.45(dd, 1H), 3.30(d, 1H), 3.05(s, 9H), 2.9(t, 2H), 2.3(d, 2H), 1.3(m, 2H), 1.15(brs, 12H), 0.8(brt, 3H).
FAB 질량=330, [(M+H)+].
원소분석: 예상했던 C17H35N3O3식과 일치함.
K.F.=2.5% 물.
TLC 실리카 겔 CHCl3:iPrOH:MeOH:H2O:CH3COOH 42:7:28:10.5:10.5;
Rf=0.55.
HPLC: SGE-SCX 컬럼(5㎛, 250×4mm), T=30℃, 유동상 0.2M KH2PO4:CH3CN 85:15, 자체 pH, 흐름 0.75ml/min, 검출기: RI, UV 205nm, RT=12.63분
실시예 2
R,S-4-퀴누클리디늄-3-(테트라데실옥시카보닐)-옥시부티레이트(ST 1265)
터-부틸 R,S-4-퀴누클리디늄-3-하이드록시부티레이트 이오다이드
퀴누클리딘(2.40 g, 21.60 mmol)을 R,S-4-이오도-3-하이드록부티레이트(6.18 g, 21.60 mmol)의 아세트로니트릴(60 ml) 용액에 첨가하였고, 용액은 60 ℃, 20시간 교반시켰다. 용매를 증발시킨후, 잔여물은 아세트로니트릴에 용해하였고, 에틸 에테르에 여러번 침전시켜 퀴누클리딘 이오다이드 중량(NMR로부터 확인)에 의해 약 13 % 오염된 생성물 7.2 g을 얻었다. CH3CN/Et2O로 결정화를 반복하여 4.3 g의 정제된 생성물을 얻었다.
수율 50%.
M.p.: 124 ∼ 127℃.
1H-NMR (300MHz; D2O):
δ: 4.50(m, 1H), 3.40(m, 2H), 2.42(m, 2H), 2.08(m, 1H), 1.88(m, 6H), 1.34(m, 9H).
FAB 질량=270, [M+].
원소분석: 예상했던 C15H28INO3식과 일치함.
K.F.=0.5% 물.
터-부틸 4-이오도-3-하이드록시부티레이트의 제조는 문헌[J. Pharm. Science 64/7, 1262-1264, 1975]에 나타난 바대로 하였다.
테트라데실 클로로포메이트
포스진(55.98 mmol)에 20 %톨루엔 29 ml을 넣은 용액을 테트라데실 알콜(4 g, 18.66 mmol)에 첨가하였고, 반응 혼합물은 상온에서 20시간동안 교반시켰다. 용매증발후, 잔여물은 헥산에 용해시켰고, 건조하기위해 증발시켰다(여러번). 무색의 액체 생성물 5.1 g을 얻었다.
수율 98%.
1H-NMR (300MHz; CDCl3):
δ: 4.30(t, 2H), 1.72(m, 2H), 1.30(m, 22H), 0.85(brt, 3H).
터-부틸 R,S-4-퀴누클리디늄-3-(테트라데실옥시카보닐)-옥시부티레이트 클로라이드
디메틸아미노피리딘(922 mg, 755 mmol)과 테트라데실클로로포메이트(2.09 g, 7.55 mmol)을 터-부틸 R,S-4-퀴누클리디늄-3-하이드록시부티레이트(2 g, 5.03 mmol)의 건조 CH2Cl2(20 ml)용액에 첨가하였다. 이 용액은 상온에서 20시간동안 교반되었다. 반응이 끝난 용액은 CHCl3로 희석시켰고, NaCl로 포화시켜, 건조 소듐 설페이트하에서 건조하였다. 증발 후 얻어진 잔여물은 에틸 에테르로 용해시켰고, 용해되지 않은 잔여물은 여과하여 제거하였다. 생성물을 용매증발하여 얻었다. 생성물은 플래쉬-크로마토그래피(CHCl3:MeOH 9:1)와 앰버리스트 A-21 수지(HCl에서 활성화됨)에 MeOH로 용출하여 클로라이드인 정제된 생성물 1.6 g을 얻었다.
수율 58%.
M.p.: 59 ∼ 60℃
1H-NMR (300MHZ; CDCl3):
δ: 5.50(m, 1H), 4.55(d, 2H), 3.80(m, 7H), 2.90(dd, 1H), 2.75(dd, 1H), 2.22(m, 1H), 2.05(d, 6H), 1.65(m, 2H), 1.41(s, 9H), 1.25(m, 22H), 0.85(brt, 3H).
FAB 질량=510, [M+].
원소분석: 예상했던 C30H56ClNO5식과 일치함.
K.F.=1.5% 물.
R,S-4-퀴누클리디늄-3-(테트라데실옥시카보닐)-옥시부티레이트
트리플루오로아세틱 에시드(6 ml)는 터-부틸 R,S-4-퀴누클리디늄-3-(테트라데실옥시카보닐)-옥시부티레이트 클로라이드(1.05 g, 1.92 mmol)에 첨가되었고, 용액은 상온에서 1시간동안 교반되었다. 트리플루오로아세틱 에시드의 진공증발후에 잔여물은 시클로헥산으로 용해시켰고, 건조하기 위해 여러번 증발하였으며, 앰버리스트 IRA 402 수지(Cl-형태)로 옮겨져 물로 용출되었다. 동결건조하여 얻은 생성물은 실리카 겔 플래쉬-크로마토그래피(CHCl3: MeOH 8:2)로 정제하여 내염인 정제된 생성물 480 mg을 얻었다.
수율 55%.
M.p.: 132 ∼ 134℃.
1H-NMR(300MHz; D2O):
δ: 5.35(m, 1H), 4.05(m, 2H), 3.40(m, 8H), 2.55(dd, 1H), 2.35(dd, 1H), 2.08(m, 1H), 1.90(m, 6H), 1.55(m, 2H), 1.20(m, 22H), 0.75(brt, 3H).
FAB 질량=454, [(M+H)+.
원소분석: 예상했던 C26H47NO5식과 일치함.
K.F.=1.5% 물.
TLC 실리카 겔 CHCl3:MeOH 7:3.
Rf=0.34.
HPLC: SGE-SCX 컬럼(5㎛, 250×4mm), T=30℃, 유동상 0.05M (NH4)H2PO4:CH 3CN 60:40, pH 4.0, 흐름 0.75ml/min, 검출기: RI, UV 205nm, RT=6.72 분.
실시예 3
R,S-4-트리메틸암모늄-3-(노닐카바모일)-옥시부티레이트(ST 1298)
R,S-4-트리메틸암모늄-3-(노닐카바모일)-옥시부티릭 에시드 퍼클로레이트의 벤질 에스테르
노닐 이소시아네이트(7.39 g, 43.36 mmol)를 R,S-카르니틴 퍼클로레이트, 벤질 에스테르(7.69 g, 21.86 mmol)의 톨루엔(100 ml) 용액에 첨가하였고, 용액은 5일동안 교반하면서 환류하였다. 노닐 이소시아네이트(1.84 g, 10.86 mmol)을 더 첨가하였고, 반응 혼합물은 5일동안 더 환류하였다. 용매는 진공-증발하였고, 잔여물은 에틸 에테르로 세척하였고, 계속해서 클로로포름으로 용해시켜 물로 세척하여 건조 소듐 설페이트하에서 건조하였다. 유기층의 증발으로부터 얻은 오일 결과물은 그래디언트로 CHCl3 ∼ CHCl3:MeOH 95:5를 사용한 플래쉬-크로마토그래피 컬럼으로 정제하였다. 진한 오일형의 정제된 생성물 4.4 g을 얻었다.
수율 38.6%.
1H-NMR(200MHz; CDCl3):
δ: 7.3(s, 5H), 5.4(m, 2H), 5.05(m, 2H), 3.8(dd, 1H), 3.55(d, 1H), 3.15(s, 9H), 3.05(m, 2H), 2.75(m, 2H), 1.4(m, 2H), 1.2(brs, 12H), 0.8(brt, 3H).
TLC 실리카 겔 CHCl3:MeOH 9:1;
Rf=0.29.
R,S-4-트리메틸암모늄-3-(노닐카바모일)-옥시부티레이트
10% Pd/C(0.44 g)을 메탄올(115 ml)에 R,S-4-트리메틸암모늄-3-(노닐카바모일)-옥시부티릭 에시드 퍼클로로레이트(4.4 g, 8.44 mmol)의 벤질 에스테르를 넣은 용액에 첨가하였고, 혼합물은 4시간동안 47 psi에서 수소와 반응하였다. 셀리트로 연과한 후에 용액은 진공-농축되었으며, MeOH로 용출한 앰버리스트 A-21수지를 통과하였다. 용매 증발후 생성물 2.47 g을 얻었다.
수율 88.7%.
M.P.: 151∼ 153℃.
1H-NMR(300MHz; D2O):
δ: 5.4(m, 1H), 3.75(dd, 1H), 3.5(d, 1H), 3.15(s, 9H), 3.05(t, 2H), 2.55(dd, 1H), 2.40(dd, 1H), 1.45(m, 2H), 1.20(brs, 12H), 0.8(brt, 3H).
FAB 질량=331, [(M+H)+].
원소분석: 예상했던 C17H34N2O4식과 일치함.
K.F.=1.5% 물.
TLC 실리카 겔 MeOH.
Rf=0.22.
HPLC; SPHERISORB-SCX 컬럼(5㎛, 250×4mm), T=35℃, 유동상 50mM KH2PO4:CH3CN 40:60, H3PO4와 함께 pH 4.0, 흐름 0.75ml/분, 검출기: RI, UV 205nm, RT=5.33분.
실시예 4
R,S-4-트리메틸암모늄-3-(노닐옥시카보닐)-옥시부티레이트 클로라이드
(ST 1297)
R,S-4-트리메틸암모늄-3-(노닐카바모일)-옥시부티릭 에시드 클로라이드의 벤질 에스테르
디메틸아미노피리딘(3.8 g, 31.2 mmol)과 노닐클로로포메이트(6.45 g, 31.2 mmol)을 R,S-카르니틴 퍼클로레이트, 벤질 에스테르(7.33 g, 20.8 mmol)의 건조 DMF(50 ml) 용액에 0℃에서 첨가하였다. 반응 혼합물의 온도를 상온까지 올려 3일동안 교반하였다. CHCl3을 첨가하였고, 용액은 1N 퍼클로릭 에시드로 세척하였다. 유기층은 건조 소듐 설페이트하에서 건조하였고, 증발 시켜 건조하여 생성물 6.02 g을 얻었다. 생성물을 플래쉬-크로마토그래피(CHCl3:MeOH 85:15)로 정제하여 진한 오일 3.52 g을 얻었고, 계속해서 MeOH에 용해시켜, MeOH로 용출한 앰버리스트 A-21 수지(HCl에서 활성화됨)를 통과시켰다. 용매의 진공-증발후 오일형 생성물 3.1 g을 얻었다.
수율 32.4%.
1H-NMR(200MHz; CDCl3):
δ: 7.3(s, 5H), 5.45(m, 1H), 5.05(s, 2H), 4.4(d, 1H), 4.1(t, 2H), 3.8(dd, 1H), 3.4(s, 9H), 2.9(m, 2H), 1.55(m, 2H), 1.2(brs, 12H), 0.8(brt, 3H).
노닐 클로로포메이트의 제조는 테트라데실 클로로포메이트의 실시예 2에 나타낸 바를 준용하였다.
R,S-4-트리메틸암모늄-3-(노닐옥시카보닐)-옥시부티릭 에시드 클로라이드
10% Pd/C (110 mg)을 벤질 R,S-4-트리메틸암모늄-3-(노닐옥시카보닐)-옥시부티릭 에시드 클로라이드(1.1 g, 2.4 mmol)의 메탄올(10 ml)용액에 첨가하였고, 혼합물은 2시간 동안 47 psi에서 수소와 반응하였다. 셀리트로 여과한 후, 용액은 생성물 883 mg(수율 100%)를 얻기위해 진공건조하였고, 얻어진 생성물은 CH3CN/Et2O로 침전시켜 더 정제하였다. 정제된 생성물 600 g을 얻었다.
수율: 68%.
M.p.:150℃
1H-NMR(300MHz; D2O):
δ: 5.4(m, 1H), 4.1(m, 2H), 3.75(dd, 1H), 3.55(d, 1H), 3.1(s, 9H), 2.7(m, 2H), 1.5(m, 2H), 1.20(brs, 12H), 0.7(brt, 3H).
FAB 질량=332, [M+].
원소분석: 예상했던 C17H34ClNO5식과 일치함.
K.F.=1.7% 물.
TLC 실리카 겔 CHCl3:MeOH 1:1;
Rf=0.10.
HPLC: SPHERISORB-C1 컬럼(5㎛, 250×4.6mm), T=30℃, 유동상 50mM (NH4)H2PO4:CH3CN 60:40, H3PO4와 함께 pH 4.0, 흐름 0.75ml/분, 검출기: RI, UV 205nm, RT=5.67분.
실시예 5
R,S-4-트리메틸포스포늄-3-(노닐카바모일)-옥시부티레이트(ST 1300)
R,S-4-트리메틸포스포늄-3-하이드록시부티릭 에시드 이오다이드의 에틸 에스테르
트리메틸포스핀 1M용액의 THF(93 ml)용액을 에틸 R,S-4-이오도-3-하이드록시부티레이트(20 g, 77.5 mmol)에 첨가하였고, 반응 혼합물은 5일동안, 상온에서 교반하였다. 에틸 에테르를 첨가하였고, 생성된 침전물은 용액을 기울여 따라부어 분리하였다. 침전물은 Et2O로 연마하였고, 진공하에서 건조하여 생성물 18.5 g을 얻었다.
수율 71.3%.
M.p.: 105 ∼ 107℃.
1H-NMR(200MHz; CDCl3):
δ: 4.6(m, 1H), 4.15(q, 2H), 3.1(m, 1H), 2.75(m, 3H), 2.2(d, 9H), 1.3(t, 3H).
R,S-4-트리메틸포스포늄-3-하이드록시부티릭 에시드의 에틸 에스테르는 문헌[테트라헤드론 1990, 4277-4282]에 나타난 바와 같이 R,S-3-하이드록시-4-부티로락톤으로 출발물질로하여 제조하였다.
R,S-4-트리메틸포스포늄-3-(노닐카바모일)-옥시부티릭 에시드 이오다이드의 에틸 에스테르
노닐 이소시아네이트(4.04 g, 23.86 mmol)을 건조 DMF(80 ml)에 R,S-4-트리메틸포스포늄-3-하이드록시부티릭 에시드 이오다이드(4 g, 11.97 mmol)의 에틸 에스테르를 넣은 용액에 첨가하였고, 용액은 110℃에서 7일동안 교반하였다. CHCl3(300ml)를 용액에 첨가하였고, 용액은 물로 세척하여 Na2SO4하에서 건조하였다. 용매를 증발한 후 얻은 잔여물은 아세트로니트릴에 용해시켰고, 생성된 고체는 여과하여 제거하였고, 여액은 CHCl3:MeOH 8:2를 사용한 실리카 겔 플래쉬-크로마토그래피로 정제하였다. 진한 오일형의 정제된 생성물 2.07 g을 얻었다.
수율 34.3%.
1H-NMR(200MHz; CDCl3):
δ: 5.4(m, 2H), 4.15(q, 2H), 3.15(m, 4H), 2.8(d, 2H), 2.2(d, 9H), 1.5(m, 2H), 1.2(brs, 12H), 0.8(brt, 3H).
R,S-4-트리메틸포스포늄-3-(노닐카바모일)-옥시부티레이트
R,S-4-트리메틸포스포늄-3-(노닐카바모일)-옥시부티릭 에시드 이오다이드
(2.07 g, 4.11 mmol)의 에틸 에스테르를 1N HCl(200 ml)에 용해시켰고, 용액은 3시간동안 70 ℃로 가열하였다. 용매를 진공증발시킨후 얻은 잔여물은 MeOH로 용해시켰고, MeOH로 용출한 앰버리스트 A-21 수지를 통과하였다. 생성물은 MeOH로 용출한 플래쉬-크로마토그래피로 정제하였으며, 정제된 생성물 700mg을 얻었다.
수율: 49%.
M.p.:123 ∼ 127℃
1H-NMR(300MHz; D2O):
δ: 5.3(m, 1H), 3.1(m, 2H), 2.80-2.45(m, 4H), 1.85(d, 9H), 1.4(m, 2H), 1.2(brs, 12H), 0.8(brt, 3H).
FAB 질량=348, [(M+H)+].
원소분석: 예상했던 C17H34NO4P식과 일치함.
K.F.=3.4% 물.
TLC 실리카 겔 MeOH;
Rf=0.18.
HPLC: SPHERISORB-SCX 컬럼(5㎛, 250×4mm), T=25℃, 유동상 50mM KH2PO4:CH3CN 40:60, H3PO4와 함께 pH 4.0, 흐름 0.75ml/분, 검출기: RI, UV 205nm, RT=5.18분.
다음 실시예 6과 7은 도 1에 더욱 상세히 설명하였다.
실시예 6
R,S-4-트리메틸암모늄-3-(옥틸옥시카보닐)-아미노부티레이트 클로라이드 (ST
1253)(도 1, 2a)
A단계
3 g (0.012 mmol) 아미노카르니틴 이소부틸 에스테르를 20 ml 건조 CH2Cl2에 용해시켰다. 2.48 ml(0.1078 mol) 트리에틸아민과 3.6 g(0.0178 mol) 옥틸 클로로포메이트(포스진의 톨루엔 용액과 알콜의 반응을 통해 미리 제조됨)를 용액에 첨가하였다. 반응 혼합물은 상온에서 4.5시간동안 되었다. 그리고 나서 용매는 증발시켜 제거하였고, 남은 고체는 에틸아세테이트에 용해시켜 여과하였다. 용매는 건조시키기위해 진공 증발하였고, 남은 고체는 100% CHCl3, 그리고나서 CHCl3:MeOH 95:5와 90:10로 용출한 실리카 겔로 정제하였다. 생성물의 수율은 50%이었다.
TLC 실리카 겔(CHCl3 42/MeOH 28/이소프로필 알콜 7/물 10.5/아세틱 에시드 10.5)/ 아세톤 7:3;
Rf=0.8.
HPLC: SPHERISORB-SCX 컬럼(5㎛, 250×4mm), 유동상 50mM (NH4)H2PO4:CH 3CN 60:40, pH 4.0, 검출기: RI, UV 205nm, RT=8.6분.
1H-NMR(300MHz; CD3OD):
δ: 4.56-4.46(m, 1H), 4.12-4.02(m, 2H), 3.94-3.88(m, 2H), 3.66-3.5(s, 9H), 3.4(s, 9H), 2.74-2.66(m, 2H), 2-1.86(m, 1H), 1.68-1.56(t, 2H), 1.4-1.2(m, 12H), 0.97-0.7(d, 6H), 0.6-0.3(t, 3H).
원소분석: 예상했던 C20H41N2O4Cl식과 일치함.
B 단계
A 단계에서 얻은 에스테르를 물로 용출한 앰버리스트 IRA 402 수지(OH-활성화된 형태)로 가수분해시켰다. 물을 건조시키기위해 증발하였다; 남은 고체는 아세톤로 연마시켰고, 계속해서 여과하였다. 흰 고체를 얻었다.
수율 94%.
M.p.=170℃
1H-NMR(300MHz; CD3OD):
δ: 4.4(m, 1H), 4.05(t, 2H), 3.5(d, 2H), 3.2(s, 9H), 2.4(d, 2H), 1.6(m, 2H), 1.4-1.2(m, 12H), 0.95-0.85(t, 3H).
FAB 질량=454, [(M+H)+.
원소분석: 예상했던 C16H32N2O4식과 일치함.
K.F.=1.74% 물.
TLC 실리카 겔 (CHCl3 42/MeOH 28/이소프로필 알콜 7/물 10.5/아세틱 에시드 10.5)
Rf=0.65.
HPLC: SGE-SCX 컬럼(5㎛, 250×4mm), 유동상 0.05M (NH4)H2PO4:CH3 CN 60:40, 검출기: RI, UV 205nm, RT=9.0분.
실시예 7
R,S-4-트리메틸암모늄-3-(노닐옥시카보닐)-아미노부티레이트(ST 1285)
(도 1, 2b)
A 단계
생성물은 노닐 클로로포메이트를 사용한 실시예 6, A 단계에 나타난바 대로 제조하였다.
수율: 50%.
TLC 실리카 겔 (CHCl3 42/MeOH 28/이소프로필 알콜 7/물 10.5/아세틱 에시드 10.5)/아세톤 7:3
Rf=0.71.
HPLC: SGE-SCX 컬럼(5㎛, 250×4mm), 유동상 50mM (NH4)H2PO4:CH3 CN 60:40, pH 4.0, 검출기: RI, UV 205nm, RT=10.417분.
1H-NMR(300 MHz; CD3OD):
δ: 4.54-4.44(m, 1H), 4.1-4.02(m, 2H), 3.96-3.86(m, 2H), 3.6-3.5(m, 2H), 3.2(s, 9H), 2.72-2.66(m, 2H), 2-1.86(m, 1H), 1.66-1.56(m, 2H), 1.38-1.26(m, 14H), 0.96-0.94(d, 6H), 0.92-0.86(t, 3H).
B 단계
생성물을 실시예 6, B 단계에 나타내바 대로 제조하였다.
수율 80%.
M.p.=160℃
1H-NMR(300MHz; CD3OD):
δ: 4.5-4.35(m, 1H), 4.1-4.0(t, 2H), 3.55-3.45(d, 2H), 3.2(s, 9H), 2.45-2.35(d, 2H), 1.7-1.5(m, 2H), 1.4-1.2(m, 14H), 0.9-0.8(t, 3H).
원소분석: 예상했던 C17H34N2O4식과 일치함.
K.F.=1.3% 물.
TLC 실리카 겔 (CHCl3 42/MeOH 28/이소프로필 알콜 7/물 10.5/아세틱 에시드 10.5);
Rf=0.62.
HPLC: SGE-SCX 컬럼(5㎛, 250×4mm), 유동상 0.05M (NH4)H2PO4:CH3 CN 60:40, 검출기: RI, UV 205nm, RT=7.56분.
다음 실시예 8 ∼ 9는 도 2에 더욱 상세히 설명하였다.
실시예 8
R,S-4-트리메틸암모늄-3-옥틸옥시부티레이트(ST 1207)(도 2, 6a)
A 단계
39g(0.3 mol) 옥틸 알콜을 25 ml 톨루엔에 용해시켰고, 거기에 14.5 ml(0.107 mol) 에틸 클로로아세테이트와 8 ml 티오닐 클로라이드를 -15 ℃에서 첨가하였다. 반응 혼합물은 상온에서 4시간 두었다. 그리고나서 에틸아세테이트를 첨가하였으며, 용액은 1N NaOH로 3번 세척되었고, 계속해서 물로 세척하였다. 유기층은 건조 소듐 설페이트하에서 건조하여 여과하였고, 건조하기위해 진공증발시켰다. 그래디언트로 헥산 단독 사용으로부터 헥산/에틸 에테르 95:5까지 사용하여 용출한 실리카 겔 크로마토그래픽 컬럼으로 생성물을 정제하였다. 얻어진 생성물의 수율은 80 %이었다.
TLC 실리카 겔 헥산/에틸 에테르 85:15;
Rf=0.75.
1H-NMR(300MHz; CDCl3):
δ: 4.2-4.09(q, 2H), 3.80(s, 2H), 3.4-3.5(dd, 2H), 2.85(s, 2H), 1.60-1.58(m, 2H), 1.4-1.2(m, 10H), 0.90-0.80(t, 3H).
원소 분석: 예상했던 C22H33ClO4식과 일치함.
B 단계
9ml BF3.Et2O를 A 단계에서 얻은 생성물 26.8 g(0.066 mol)과 13.5 ml 트리에틸실란의 혼합물에 0 ℃에서 떨어뜨렸다. 반응 혼합물은 4시간동안 환류시켰다. 차갑게 한 후, 에테르를 첨가하였고, 용액은 1N NaOH로 두번 세척하였고, 그리고나서 물로 세척하였다; 유기층은 건조 소듐 설페이트하에서 건조하여 여과하였고, 건조시키기 위해 진공 증발하였다. 오일을 얻었으며, 오일은 그래디언트로 헥산 단독 사용으로부터 헥산/에틸 에테르 95:5까지 사용하여 용출한 실리카 겔 크로마토그래픽 컬럼으로 정제하였다. 얻어진 생성물의 수율은 70 %이었다.
TLC 실리카 겔 헥산/에틸 에테르 90:10;
Rf=0.47.
1H-NMR(300MHz; CDCl3):
δ: 4.2-4.09(dd, 2H), 4.0-3.85(m, 1H), 3.62-3.40(m, 4H), 2.70-2.50(dd, 2H), 1.55-1.50(m, 2H), 1.4-1.2(m, 10H), 0.90-0.80(t, 3H).
원소 분석: 예상했던 C14H27ClO3식과 일치함.
C 단계
5.2 g(0.08 mol) NaN3와 테트라부틸 암모늄 브로마이드의 촉매량을 B 단계에 서 얻은 생성물 11.4 g(0.041 mol) 용액에 첨가하였다. 반응 혼합물은 60 ℃에서 3일동안 두었다. 용액을 건조시키기위해 진공증발하였다. 진한 어두운 용액이 얻어졌으며, 그래디언트로 헥산단독 사용으로부터 헥산/에틸 에테르 95:5까지 사용하여 용출한 실리카 겔 크로마토그래픽 컬럼으로 생성물을 정제하였다. 얻어진 생성물의 수율은 83 %이었다.
TLC 실리카 겔 헥산/에틸 에테르 95:5;
Rf=0.23.
1H-NMR(300MHz; CDCl3):
δ: 4.2-4.09(dd, 2H), 4.0-3.80(m, 1H), 3.60-3.40(dd, 2H), 3.40-3.20(dd, 2H), 2.70-2.40(dd, 2H), 1.60-1.40(m, 2H), 1.4-1.1(m, 10H), 0.90-0.80(t, 3H).
원소 분석: 예상했던 C14H27N3O3식과 일치함.
D 단계
C단계 얻은 생성물(15.39 g, 0.054 mol)을 31 ml 아세틱 에시드에 용해시켰고, 결과 용액은 7시간동안 60 psi에서 10% Pd/C로 촉매 수소화반응을 하였다. 반응 과정을 출발 물질이 사라질때까지 TLC로 확인하였다(헥산/에틸 에테르 95:5). 그 후 포름알데히드(4.6 ml, 0.167 mol)를 첨가하였고, 10% Pd/C를 연달아 넣었으며, 혼합물은 2일동안 30 psi에서 수소와 반응하였다. 촉매는 여과하여 제거하였으며, 혼합물은 진공건조하였다. 옅은 노란색 액체를 메틸렌 클로라이드로 용해시켜 얻었으며, 얻어진 노란액은 1N NaOH로 세척하였고, 그리고나서 물로 세척 하였으며, 계속해서 NaCl 포화 용액으로 세척하였다; 유기층은 건조 소듐 설페이트하에서 건조하여 여과하였고, 건조시키기 위해 진공 증발하였다. 진한 오일을 얻었으며, 얻어진 생성물의 수율은 98%이었다.
TLC 실리카 겔 AcOEt/MeOH/NH3 90:10:3;
Rf=0.42.
1H-NMR(300MHz; CDCl3):
δ: 4.2-4.09(dd, 2H), 3.85-3.80(m, 1H), 3.60-3.40(dd, 2H), 2.65-2.40(dd, 2H), 2.40-2.20(dd, 2H), 2.20(s, 6H), 1.60-1.40(m, 2H), 1.4-1.1(m, 10H), 0.90-0.80(t, 3H).
원소 분석: 예상했던 C16H36NO3식과 일치함.
E 단계
D단계에서 얻은 생성물(15.21 g, 0.053 mol)을 98 ml THF에 용해시켰고, 거기에 8 ml 메틸 이오다이드를 첨가하였다. 반응과정은 상온에서 하룻밤 두었다. 혼합물을 건조시키기 위해 진공증발하였다. 진한 오일이 얻어졌으며, 얻어진 생성물의 수율은 98 %이었다.
TLC 실리카 겔 AcOEt/MeOH/NH3 90:10:3;
Rf=0.10.
1H-NMR(300MHz; CDCl3):
δ: 4.45-4.3(m, 2H), 4.2-4.09(dd, 2H), 3.75-3.30(m, 2H), 3.5(s, 9H), 2.75-2.60(dd, 2H), 1.60-1.45(m, 2H), 1.30-1.15(m, 10H), 0.90-0.80(t, 3H).
원소 분석: 예상했던 C16H39INO3식과 일치함.
F 단계
E단계에서 얻은 생성물을 물로 용출한 앰버리스트 IRA 402 수지로 가수분해하였다; 결과 고체를 이소프로필 알콜로 3번 처리하였다. 흰색 고체를 얻었다.
수율=93%.
M.p.= 106℃
1H-NMR(300MHz; MeOD):
δ: 4.30-4.15(m, 1H), 3.70-3.60(dd, 1H), 3.50-3.40(m, 2H), 3.20(s, 9H), 2.75-2.65(dd, 1H), 2.20-2.10(dd, 1H), 1.60-1.50(m, 2H), 1.40-1.20(m, 10H), 0.9-0.8(t, 3H).
원소분석: 예상했던 C15H31NO3식과 일치함.
K.F.=5.7% 물.
TLC 실리카 겔 (CHCl3 42/MeOH 28/이소프로필 알콜 7/물 10.5/아세틱 에시드 10.5);
Rf=0.7.
HPLC: SGE-SCX 컬럼(5㎛, 250×4mm), 유동상 0.025M (NH4)H2PO4:CH3 CN 30:70, 검출기: RI, UV 205nm, 흐름=0.75ml/분, RT=5.85분.
MS-FAB+글리세롤 매트릭스=274.
실시예 9
R,S-4-트리메틸암모늄-3-테트라데실옥시부티레이트(ST 1228)(도 2, 6b)
A 단계
생성물을 테트라데실 알콜을 사용한 실시예 8, A 단계에 따라 제조하였다. 얻어진 생성물의 수율은 73 %이었다.
TLC 실리카 겔 헥산/에틸 에테르 95:5;
Rf=0.63.
1H-NMR(300MHz; CDCl3):
δ: 4.2-4.09(q, 2H), 3.80(s, 2H), 3.4-3.5(dd, 2H), 2.85(s, 2H), 1.60-1.58(m, 2H), 1.40-1.20(m, 22H), 0.9-0.8(t, 3H).
원소분석: 예상했던 C34H67ClO4식과 일치함.
B 단계
생성물을 실시예 8, B 단계에 따라 제조하였다. 도 2에 보여진, 생성물 2b의 수율은 72 %이었다.
TLC 실리카 겔 헥산/에틸 에테르 95:5;
Rf=0.4.
1H-NMR(300MHz; CDCl3):
δ: 4.2-4.09(dd, 2H), 4.0-3.85(m, 1H), 3.62-3.40(m, 4H), 2.70-2.50(dd, 2H), 1.55-1.50(m, 2H), 1.4-1.2(m, 22H), 0.9-0.8(t, 3H).
원소분석: 예상했던 C20H39O3식과 일치함.
C 단계
생성물을 실시예 8, C단계와 같이 제조하였다. 얻어진 생성물의 수율은 79%이었다.
TLC 실리카 겔 헥산/에틸 에테르 90:10;
Rf=0.36.
1H-NMR(300MHz; CDCl3):
δ: 4.2-4.09(dd, 2H), 4.0-3.85(m, 1H), 3.60-3.40(dd, 2H), 3.40-3.20(dd, 2H), 2.70-2.40(dd, 2H), 1.60-1.40(m, 2H), 1.4-1.1(m, 22H), 0.9-0.8(t, 3H).
원소분석: 예상했던 C20H39N3O3식과 일치함.
D 단계
생성물을 실시예 8, D 단계와 같이 제조하였다. 얻어진 생성물의 수율은 98 %이었다.
TLC 실리카 겔 AcOEt/MeOH/NH3 90:10:3;
Rf=0.72.
1H-NMR(300MHz; CDCl3):
δ: 4.2-4.09(dd, 2H), 3.85-3.80(m, 1H), 3.60-3.40(dd, 2H), 2.65-2.42(dd, 2H), 2.38-2.20(dd, 2H), 2.18(s, 6H), 1.60-1.40(m, 2H), 1.4-1.1(m, 22H), 0.90-0.80(t, 3H).
원소분석: 예상했던 C22H45NO3식과 일치함.
E 단계
생성물을 실시예 8, E 단계와 같이 제조하였다. 얻어진 생성물의 수율은 99 %이었다.
TLC 실리카 겔 AcOEt/MeOH/NH3 90:10:3;
Rf=0.15.
1H-NMR(300MHz; CDCl3):
δ: 4.45-4.3(m, 1H), 4.2-4.09(dd, 2H), 3.75-3.30(m, 2H), 3.5(s, 9H), 2.75-2.60(dd, 2H), 1.60-1.45(m, 2H), 1.30-1.15(m, 22H), 0.90-0.80(t, 3H).
원소분석: 예상했던 C23H48INO3식과 일치함.
F 단계
생성물을 실시예 8, F 단계와 같이 제조하였다. 얻어진 생성물의 수율은 99 %이었다.
M.p.=106℃
1H-NMR(300MHz; DMSO-D6):
δ: 4.10-4.0(m, 1H), 3.60-3.20(m, 4H), 3.05(s, 9H), 2.40-2.30(dd, 1H), 1.80-1.70(dd, 1H), 1.50-1.40(m, 22H), 1.30-1.15(m, 22H), 0.9-0.8(t, 3H).
원소분석: 예상했던 C21H43NO3식과 일치함.
K.F.=6.4% 물.
TLC 실리카 겔 (CHCl3 42/MeOH 28, 이소프로필 알콜 7/물 10.5/ 아세틱 에시드 10.5);
Rf=0.6.
HPLC: SGE-SCX 컬럼(5㎛, 250×4mm), 유동상 0.05M (NH4)H2PO4:CH3 CN 40:60, 검출기: RI, UV 205nm, 흐름=0.75ml/분, RT=4.38분.
MS-FAB+글리세롤 매트릭스=358.3
다음 실시예 10 ∼ 11은 도 3 a∼b에 더욱 상세히 나타내었다.
실시예 10
R,S-1-구아니디늄-2-테트라데실옥시-3-(테트라졸레이트-5-일)프로판(ST 1263)(도 3b, 10)
A 단계
실시예 9, C단계에서 제조된 중간체 6.65 g(0.0179 mol)을 메탄올 10 ml에 용해시켰고, 용액에 4N NaOH 10 ml를 첨가하였다. 반응은 16시간동안 상온에서 하였다. 20ml 6N HCl을 용액에 첨가하였고, 용액은 에틸 아세테이트로 추출하 였다. 유기층은 건조 소듐 설페이트하에서 건조되어 여과하였고, 진공 농축하였다. 흰 고체로 얻어진 생성물의 수율은 95.6 %이었다.
TLC 실리카 겔 헥산/에틸 에테르 1:1;
Rf=0.5.
M.p.=42∼45℃.
1H-NMR(300MHz; CD3OD):
δ: 3.9-3.8(m, 1H), 3.56-3.48(m, 2H), 3.42-3.26(dd, 2H), 2.68-2.5(m, 2H), 1.6-1.5(m, 2H), 1.4-1.2(s, 22H), 0.90-0.80(t, 3H).
원소분석: 예상했던 C18H35N3O3식과 일치함.
B 단계
0 ℃에서, 4.96 ml TEA를 A 단계에서 얻은 화합물 2.79 g(8.19 mmol)과 아미노프로피오니트릴(0.58 g, 8.2 mmol) 및 DEPC(디에틸포스포시아니데이트)(1.17 ml)의 4.2 ml 건조 DMF 용액에 떨어뜨렸다. 반응은 1시간동안 상온에서 하였다. 용매를 증발하였고, 잔여물은 에틸 아세테이트에 용해시켰으며, 물로 두번 세척하고 난 후, NaCl 포화용액으로 세척하였다. 유기층은 건조 소듐 설페이트하에서 건조하여 여과하여, 진공 농축시켰다. 얻어진 생성물을 헥산: 에틸 에테르(7:3/1:1/3:7)인 실리카 겔 컬럼으로 정제하였다.
수율: 71%.
TLC 실리카 겔 에틸 에테르 100%;
Rf=0.42.
1H-NMR(300MHz; CDCl3):
δ: 6.6-6.4(m, 1H), 3.9-3.8(m, 1H), 3.60-3.4(m, 5H), 3.3-3.2(dt, 1H), 2.7-2.6(t, 2H), 2.6-2.4(dd, 2H), 1.6-1.5(m, 2H), 1.4-1.2(m, 22H), 0.90-0.80(t, 3H).
원소분석: 예상했던 C21H39N5O2식과 일치함.
C 단계
2.99 g(0.0114 mol) 트리페닐포스핀과 0.2 ml 물을 B단계에서 얻은 화합물 2.99 g(7.62 mmol)을 포함하는 용액에 첨가하였다. 반응은 상온에서 하루밤 동안 하였다. 용매는 증발시켜 제거하였고, 생성물은 에틸 아세테이트 100 %, 그리고나서 에틸 아세테이트:메탄올:암모니아 7:3:0.3인 실리카 겔 컬럼으로 정제하였다.
수율: 65%.
TLC 실리카 겔 에틸 아세테이트:메탄올:암모니아 7:3:0.3;
Rf=0.26.
1H-NMR(300MHz; CD3OD):
δ: 3.78-3.7(m, 1H), 3.58-3.48(m, 4H), 2.8-2.7(dd, 2H), 2.7-2.6(m, 2H), 2.5-2.3(dd, 2H), 1.6-1.5(m, 2H), 1.4-1.3(m, 22H), 0.90-0.80(t, 3H).
원소분석: 예상했던 C21H41N3O2식과 일치함.
D 단계
C 단계에서 얻은 화합물 1.69 g(4.6 mmol)을 1.2 g(5.2 mmol)(BOC)2O와 9.2 ml 1N NaOH와 함께 상온에서 30분동안 처리하였다. 반응 혼합물을 에틸 아세테이트에 부었으며, 1N HCl로 4번 세척하고 난후, 물과 포화된 NaCl 용액으로 세척하였다. 유기층은 건조 소듐 설페이트하에서 건조하여 여과하였고, 건조시키기 위해 진공 농축하였다. 흰 고체의 생성물을 얻었다.
수율: 100%.
TLC 실리카 겔 에틸 에테르 100%;
Rf=0.26.
M.p.=83 ∼ 84℃.
1H-NMR(300MHz; CDCl3):
δ: 7.2-7.0(m, 1H), 4.9-4.8(m, 1H), 3.8-3.6(m, 1H), 3.5-3.4(dt, 4H), 3.2-3.0(m, 2H), 2.6(t, 2H), 2.4(d, 2H), 1.5(m, 2H), 1.4(s, 9H), 1.4-1.2(m, 22H), 0.90-0.80(t, 3H).
원소분석: 예상했던 C26H49N3O4식과 일치함.
E 단계
D 단계에서 얻은 생성물(1.19 g, 2.56 mmol)을 아르곤하에서 12 ml 건조 THF 에 용해시키고 난 후, 거기에 3.062 g 트리페닐포스핀, 1.54 ml 트리에틸시리아지도와 4.9 ml DEAD(디에틸아조디카복실레이트)를 출발물질이 사라질때까지 0 ℃에서 3일내에 떨어뜨렸다. 혼합물을 세륨 암모늄 니트레이트 수용액으로 처리하였고, CH2Cl로 희석시켰다. 반응은 2시간동안 하였으며, 유기층은 포화된 NaCl 용액으로 세척하였고, 건조 소듐 설페이트하에서 건조하여 진공건조하였다.
잔여물을 헥산/에틸 아세테이트(9:1/8:2/7:3)인 실리카 겔 컬럼으로 정제하였다. 얻어진 생성물의 수율은 66 %이었다.
TLC 실리카 겔 헥산/AcOEt 1:1;
Rf=0.34.
1H-NMR(300MHz; CDCl3):
δ: 4.95-4.8(m, 1H), 4.7-4.5(m, 2H), 3.9-3.8(m, 1H), 3.50-3.40(m, 1H), 3.40-3.31(m, 1H), 3.3-3.2(m, 1H), 3.22-3.0(dd, 2H), 3.10-3.0(m, 3H), 1.45-1.35(m, 1H), 1.2(m, 22H), 0.90-0.80(t, 3H).
원소분석: 예상했던 C25H48N6O3식과 일치함.
F 단계
E 단계에서 얻은 생성물(0.969 g, 1.97 mmol)을 13.09 ml 건조 THF에 용해시키고 난 후, 거기에 13.1 ml 3N HCl을 첨가하였다. 반응 혼합물은 2시간동안 50 ℃에서 교반하였다. 반응혼합물은 진공건조하였으며, 잔여물은 CH2Cl2로 용 해시켜 1N NaOH용액으로 처리하였다. 유기층을 분리하였으며, 건조 소듐 설페이트하에서 진공건조하였다. 얻어진 생성물의 수율은 92 %이었다.
TLC 실리카 겔 AcOEt/MeOH/NH3 9:1:0.3
Rf=0.31.
1H-NMR(300MHz; CDCl3):
δ: 4.78-4.58(m, 2H), 3.8-3.7(m, 1H), 3.5-3.4(m, 1H), 3.30-3.24(m, 1H), 3.24-3.18(m, 4H), 3.05-3.0(dd, 2H), 3.0-2.6(dd, 2H), 1.4(m, 2H), 1.2(m, 22H), 0.90-0.80(t, 3H).
원소분석: 예상했던 C21H40N6O식과 일치함.
G 단계
F 단계에서 얻은 생성물(2.78 g, 7.1 mmol)을 20 ml 건조 MeOH에 용해시키고 난 후, 2.34 g 이미노메탄설포닉 에시드(잘 알려진 방법에 따라 제조됨)를 3일 내에 첨가하였다. 얻어진 현탁액을 진공농축하고 난 후, 1N NaOH로 처리하여 30분동안 교반하였다. 고체는 여과되어, 물로 세척하였고, 다음으로 아세톤으로 세척하였다.
얻어진 생성물의 수율은 45 %이었다.
TLC 실리카 겔 AcOEt/MeOH/NH3 7:3:0.3;
Rf=0.22.
M.p.=240℃
1H-NMR(300MHz; CD3OD):
δ: 3.90-3.75(m, 1H), 3.6-3.4(m, 2H), 3.40-3.20(m, 2H), 3.20-3.10(dd, 1H), 2.95-2.85(dd, 1H), 1.4(m, 2H), 1.2(s, 22H), 0.90-0.80(t, 3H).
원소분석: 예상했던 C19H39N7O식과 일치함.
HPLC: Spherisorb-C1 컬럼(5㎛, 250×4.6mm), 유동상 0.05M KH2PO4:CH3CN 35:65, pH=3, 흐름=0.75ml/분, 검출기:UV 205nm, RT=5.51분.
MS-FAB+글리세롤 매트릭스=382.
실시예 11
R,S-1-트리메틸암모늄-2-테트라데실옥시-3-(테트라졸레이토-5-일)프로판(ST 1287)(도 3b, 9)
A-F 단계
화합물을 실시예 10, A ∼ F단계와 같이 제조하였다.
H 단계
실시예 10, F단계에서 제조한 화합물 2.79g(7.14mmol)을 18ml 물에 현탁시켰고, 여기에 1.47ml HCOOH와 1.57ml H2CO를 첨가하였다. 반응 혼합물은 하룻밤 환류시킨 후, 차갑게 하여 메틸렌 클로라이드를 첨가하였다; pH는 0.5N NaOH로 9로 맞추었다. 혼합물은 메틸렌 클로라이드로 3번 추출하였다. 유기층은 0.5N NaOH, 물로 세척하였으며, 건조 소듐 설페이트하에서 건조하여 여과하여 진공 농축하였다. 얻어진 생성물은 고체로서 수율은 100%이었다.
TLC 실리카 겔 AcOEt/MeOH/NH3 9:1:0.3;
Rf=0.58.
1H-NMR(300MHz; CDCl3):
δ: 4.7-4.5(m, 1H), 3.8-3.7(m, 1H), 3.5-3.4(m, 1H), 3.30-3.20(m, 2H), 3.10(m, 3H), 2.45-2.35(m, 2H), 2.30(s, 6H), 1.4-1.3(m, 2H), 1.2-1.0(m, 22H), 0.90-0.80(t, 3H).
원소분석: 예상했던 C23H44N6O식과 일치함.
I 단계
H 단계에서 얻은 화합물 2.99g(7.14 mmol)을 THF에 용해시켰고, 거기에 2.5ml CH3I를 첨가하였다. 반응은 상온에서 3시간동안 하였다. 용매는 증발시켜 제거하였고, 고체 잔여물은 뜨거운 에테르로 세척하였으며, 하룻밤동안 교반한 후 여과하여 생성물을 얻었다.
수율:100%.
TLC 실리카 겔 CHCl3:iPrOH:MeOH:H2O:CH3COOH 42:7:28:10.5:10.5;
Rf=0.73.
1H-NMR(300MHz; CDCl3):
δ: 4.90-4.80(m, 2H), 4.70-4.55(m, 1H), 4.40-4.25(m, 1H), 3.80-3.60(m, 2H), 3.60-3.40(m, 3H), 3.30(s, 9H), 3.30-3.10(m, 2H), 1.60-1.40(m, 2H), 1.3-1.1(m, 22H), 0.9-0.8(t, 3H).
원소분석: 예상했던 C24H47IN6O식과 일치함.
MS-FAB+글리세롤 메트릭스=436.
L 단계
I 단계에서 얻은 생성물(2.99g, 5.33mmol)을 MeOH에 용해시켰고, MEOH 조건인 OH-형 IRA 402 수지를 통과하였다. 얻어진 생성물은 고체이며, 계속해서 AcOEt로 연마하였다.
수율=88%.
TLC 실리카 겔 CHCl3:iPrOH:MeOH:H2O:CH3COOH (42:7:28:10.5:10.5)/ 아세톤 8:2;
Rf=0.73.
TLC 실리카 겔 CHCl3:iPrOH:MeOH:H2O:CH3COOH 42:7:28:10.5:10.5
Rf=0.73.
M.p.=180℃
1H-NMR(300MHz; CDCl3):
δ: 4.30-4.20(m, 1H), 3.90-3.70(m, 2H), 3.60-3.55(m, 1H), 3.50-3.30(m, 4H), 3.25(m, 1H), 3.0-2.9(m, 1H), 1.60-1.40(m, 2H), 1.3-1.1(m, 22H), 0.9-0.8(t, 3H).
원소분석: 예상했던 C21H43N5O식과 일치함.
MS-FAB+글리세롤 메트릭스=382.
K.F.=1% 물
HPLC: Spherisorb-C1(5 ㎛, 250×4.6 mm), 유동상 0.05M KH2PO4:CH3CN 35:65, pH=3, 흐름=0.75ml/분, 검출기:UV 205nm, RT=5.18분.
다음 실시예 12 ∼ 14는 도 4에 더욱 상세히 설명하였다.
실시예 12
R,S-3-퀴누클리디늄-2-(테트라데실옥시카보닐)-옥시-1-프로판포스포네이트 모노베이직(ST 1260)
A 단계
1.6M 불리(14ml, 0.022mol)의 헥산 용액을 디벤질 포스피트(5.8g, 0.022mmol)의 THF용액에 -70℃, 건조 환경에서 떨어뜨렸다. 15분 후, 1.8ml 에피브롬히드린(0.022mol)의 5ml THF용액을 첨가하였다. 첨가후, 에테르로 처리된(etherated) BF3(3.6ml, 0.022mol)을 천천히 용액에 떨어뜨렸다. 반응은 -70 ℃에서 3시간 더 하였다. 포화된 암모늄 클로라이드 용액을 첨가하고 난 후, 온도를 상온으로 올렸다다. 이 용액은 AcOEt로 여러번 추출하였고, 모아진 유기층을 포화된 NaHCO3로 처리하였으며, 건조 소듐 설페이트하에서 건조하여 여과하여, 진공 농축하였다. 반응되지않은 디벤질포스피트 1.1g과 생성물 5.3g을 실리카 겔 크로마토그래피(AcOEt/Hexane 1:)로 정제하여 오일을 얻었다.
수율=60%.
TLC 실리카 겔 AcOEt/헥산 7:3;
Rf=0.54.
1H-NMR(300MHz; CD3OD):
δ: 7.4-7.2(m, 10H), 5.1-4.9(m, 4H), 4.2-4.0(m, 1H), 3.5-3.3(dd, 2H), 2.2-2.0(m, 2H).
원소분석: 예상했던 C17H20BrO4P식과 일치함.
MS-FAB+글리세롤 매트릭스=399, 400, 401, 402.
B 단계
A 단계에서 얻은 화합물 2g(5mmol)을 10% 농도로 용해시켰으며, 온도를 0℃로 떨어뜨렸다. 용액에 1.4ml TEA(10mmol)과 0.62g(5mmol) DMAP(디메틸아미노피리딘)을 떨어뜨렸다. 그 후 즉시, 5.2mmol 테트라데실 클로로포메이트를 첨가하였고, 온도를 상온으로 올렸다. 반응과정을 출발 화합물이 사라질때까지 TLC로 확인하였다. 클로로포름을 더 첨가하고, 반응혼합물을 1N HCl와 물로 세 척하였다. 건조 소듐 설페이트하에서 건조한 후, 용매를 증발시켜 제거하였고, 용출액으로 헥산/AcOEt 7:3을 사용한 플래쉬-크로마토그래피로 정제하여 오일 생성물을 얻었다.
수율: 75%.
TLC 실리카 겔 헥산/AcOEt 7:3;
Rf=0.31.
1H-NMR(300MHz; CDCl3):
δ: 7.4-7.2(m, 10H), 5.1-4.9(m, 5H), 4.1-3.9(m, 2H), 3.6-3.4(dd, 2H), 2.4-2.2(m, 2H). 1.6-1.4(m, 2H), 1.3-1.1(m, 22H), 0.9-0.7(t, 3H).
원소분석: 예상했던 C32H48BrO6P식과 일치함.
D 단계
B 단계에서 얻은 생성물(6.39g, 10mmol)을 12ml DMF에 용해시켰고, 그리고나서 퀴누클리딘(2.2g, 20mmol)과 TBAI(테트라부틸 암모늄 이오다이드) 촉매량(기질 무게의 1%)을 첨가하였다. 반응은 출발물질이 사라질때까지 50℃에서 수행되었다. 반응의 끝에, 생성물을 포함하는 반고체의 혼합물을 높은 진공하에서 농축하였다. 생성물은 CHCl3/MeOH 8:3을 사용한 실리카 겔 플래쉬-크로마토그래피로 정제하였다.
수율: 15%.
TLC 실리카 겔 CHCl3:iPrOH:MeOH:H2O:CH3COOH(42:7:28:10.5:10.5)/아세톤 8:2;
Rf=0.8.
1H-NMR(300MHz; MeOD):
δ: 7.4-7.1(m, 50H), 5.3-5.1(m, 1H), 4.9-4.8(d, 2H), 4.1-4.0(m, 2H), 3.8-3.4(m, 2H), 3.4-3.2(m, 6H), 2.2-1.7(m, 9H). 1.6-1.4(m, 2H), 1.3-1.1(m, 22H), 0.9-0.7(t, 3H).
원소분석: 예상했던 C32H54NO6P식과 일치함.
MS-FAB+글리세롤 매트릭스=580.
E 단계
D 단계에서 얻은 생성물을 MeOH에 용해시키고 난 후, 10%Pd/C(기질 무게의 5%)를 첨가하였다. 분산액을 상온에서 18시간동안 수소와 반응시켰다(60psi). 분산액은 셀라이트로 여과하였으며, 건조시키기 위해 농축하였다. 생성물은 더이상 정제하지 않았다.
수율: 99%.
TLC 실리카 겔 CHCl3:iPrOH:MeOH:H2O:CH3COOH(42:7:28:10.5:10.5)/아세톤 8:2;
Rf=0.57.
1H-NMR(300MHz; D2O):
δ: 5.5-5.3(m, 1H), 4.2-4.1(m, 2H), 4.0-3.4(m, 8H), 2.2-1.7(m, 9H). 1.60-1.40(m, 2H), 1.3-1.1(m, 22H), 0.9-0.7(t, 3H).
원소분석: 예상했던 C25H48NO6P식과 일치함.
MS-FAB+글리세롤 매트릭스=490.
K.F.=7% 물.
HPLC: Spherisorb-C1(5 ㎛, 250×4.6 mm), 유동상 0.075M KH2PO4:CH3CN 60:40, 흐름=0.75ml/분, 검출기:RI, UV 205nm, RT=16.53분.
실시예 13
R,S-3-트리메틸암모늄-2-(노닐아미노카보닐)-옥시-1-프로판포스포네이트 모노베이직(ST 1286)
A 단계
생성물을 실시예 12, A 단계에 나타낸바와 같이 제조하였다.
C 단계
전 단계에서 얻어진 생성물(4g, 10mmol)을 CH2Cl2에 용해(10% 용액)시켰고, 에테르로 처리된(etherated) BF3(1.6ml)와 노닐 이소시아네이트(3.38g, 20mmol)를 상온에서 용액에 첨가하였다. 반응은 30분동안 이뤄졌으며, CH2Cl2를 더 첨가하고 난 후, 1N NaOH로 여러번 유기층을 세척하였다. 생성물은 실리카 겔 크로마 토그래피(헥산/AeOEt 7:3)로 정제하였다.
수율: 85%.
TLC 실리카 겔 AcOEt/헥산 6:4;
Rf=0.28.
1H-NMR(300MHz; CDCl3):
δ: 7.4-7.2(m, 10H), 5.1-4.9(m, 5H), 4.6-4.2(m, 1H), 3.7-3.5(dd, 2H), 3.2-3.0(m, 2H), 2.4-2.2(m, 2H). 1.5-1.3(m, 2H), 1.3-1.1(m, 12H), 0.9-0.7(t, 3H).
원소분석: 예상했던 C27H40BrNO5P식과 일치함.
F 단계
전 단계에서 얻은 화합물(5.68g, 10mmol)을 DMF(11ml)에 용해시켰으며, TBAI(테트라부틸 암모늄 이오다이드)의 촉매량(기질에 대해 1% w/w)을 첨가하였다.
이 용액을 기체의 트리메틸아민으로 포화시켰다. 반응은 50℃에서, 출발물질이 사라질때까지 행해졌다. 반응의 끝에, 생성물을 포함하는 반고체의 혼합물을 높은 진공하에서 농축하였다. 생성물을 그래디언트로 CH2Cl2로부터 CH2Cl2:MeOH 1:1까지를 사용한 실리카 겔 플래쉬-크로마토그래피로 정제하여 분리하였다.
수율: 25%.
TLC 실리카 겔 CHCl3:iPrOH:MeOH:H2O:CH3COOH(42:7:28:10.5:10.5)/아세톤 8:2;
Rf=0.73.
1H-NMR(300MHz; CDCl3):
δ: 7.5-7.2(m, 5H), 5.5-5.4(m, 1H), 4.9-4.8(m, 4H), 4.0-3.6(m, 2H), 3.2-3.1(s, 9H), 2.2-2.1(s, 9H), 2.0-1.8(m, 2H), 1.5-1.4(m, 2H), 1.4-1.2(m, 12H), 0.9-0.7(t, 3H).
원소분석: 예상했던 C27H42N2O5P식과 일치함.
MS-FAB+글리세롤 매트릭스=457.
G 단계
F 단계에서 얻은 생성물을 MeOH에 용해시키고 난 후, 10% Pd/C(기질 무게대비 5%)를 첨가하였다.
분산액은 상온에서 18시간동안 수소와 반응하였다(60psi). 분산액은 셀라이트로 여과하였고, 건조시키기 위해 농축하였다. 생성물은 더 이상의 정제를 하지 않았다.
수율: 99%.
TLC 실리카 겔 CHCl3:iPrOH:MeOH:H2O:CH3COOH(42:7:28:10.5:10.5)/아세톤 8:2;
Rf=0.31.
1H-NMR(300MHz; D2O):
δ: 5.6-5.5(m, 1H), 4.1-3.5(m, 2H), 3.2-3.1(s, 9H), 3.1-3.0(m, 2H), 2.2-1.7(m, 2H), 1.5-1.4(m, 2H), 1.4-1.2(m, 12H), 0.9-0.7(t, 3H).
원소분석: 예상했던 C15H35N2O5P식과 일치함.
MS-FAB+글리세롤 매트릭스=367.
K.F.=3% 물.
HPLC: Spherisorb-C1(5 ㎛, 250×4.6 mm), 유동상 0.05M (NH4)H2PO4:CH 3CN 35:65, 흐름 0.75ml/분, 검출기:RI, UV 205nm, RT=7.31분.
실시예 14
R,S-3-피리디늄-2-(노닐아미노카보닐)-옥시-1-프로판포스포닉 에시드 클로라이드
(ST 1268)
A 단계
생성물을 실시예 12, A 단계에 나타낸바와 같이 제조하였다.
C 단계
생성물을 실시예 13, C 단계에 나타낸바와 같이 제조하였다.
H 단계
전 단계에서 얻은 생성물(5.68g, 10mmol)을 건조 피리딘(50% 용액)에 TBAI(테트라부틸 암모늄 이오다이드)의 촉매량(기질 대비 1% w/w)과 함께 용해시켰다. 반응은 출발화합물이 사라질때까지 50℃에서 행해졌다.
반응의 끝에, 생성물을 포함하는 반고체의 혼합물은 높은 진공하에서 농축하였다. 생성물은 그래디언트로 CH2Cl2로부터 CH2Cl2:MeOH 9:1 ∼ 1:1까지를 사용한 실리카 겔 플래쉬-크로마토그래피로 정제하여 분리하였다.
수율: 20%.
TLC 실리카 겔 CHCl3:iPrOH:MeOH:H2O:CH3COOH(42:7:28:10.5:10.5)/아세톤 8:2;
Rf=0.73.
1H-NMR(300MHz; CDCl3):
δ: 9.4-9.3(d, 2H), 8.2-8.1(t, 1H), 7.9-7.8(t, 2H), 7.3-7.1(m, 5H), 5.3-5.1(m, 3H), 4.9-4.8(m, 2H), 3.0-2.9(m, 2H), 2.2-1.6(m, 2H), 1.4-1.2(m, 2H), 1.3-1.1(m, 12H), 0.9-0.7(t, 3H).
원소분석: 예상했던 C24H38N2O5P식과 일치함.
MS-FAB+글리세롤 매트릭스=477.
I 단계
H 단계에서 얻은 생성물(4.76g, 10mmol)을 100ml CH2Cl2에 용해시켰고, 20mmol TMSI(트리메틸시리이오다이드)를 이 용액에 첨가하였다. 30분후 반응을 완료시켰다; 0.5ml 물을 혼합물에 첨가하였으며, 혼합물을 건조시키기 위해 농 축하였다. 최종 생성물은 그래디언트로 물/메탄올 9:1 ∼ 메탄올 100%까지 사용한 RP-18실리카 겔 크로마토그래피로 정제하여 분리하였다. 고체를 물에 용해시켜 IRA 402 수지(Cl- 활성화됨)를 통과시켜 ST 1268을 얻었다.
수율: 80%.
M.p.=202 ∼ 204℃.
TLC 실리카 겔 CHCl3:iPrOH:MeOH:H2O:CH3COOH(42:7:28:10.5:10.5)/아세톤 8:2;
Rf=0.48.
1H-NMR(300MHz; D2O):
δ: 9.4-9.3(d, 2H), 8.2-8.1(t, 1H), 7.9-7.8(t, 2H), 5.5-5.4(m, 1H), 5.2-4.8(m, 2H), 3.0-2.9(m, 2H), 2.2-2.0(m, 2H), 1.4-1.1(m, 14H), 0.9-0.7(t, 3H).
원소분석: 예상했던 C18H32N2ClO5P식과 일치함.
MS-FAB+글리세롤 매트릭스=387.
K.F.=6% 물.
HPLC: Spherisorb-C1(5 ㎛, 250×4.6 mm), 유동상 0.050M KH2PO4:CH3CN 35:65, 흐름 0.75ml/분, 검출기:RI, UV 205nm, RT=5.61분.
실시예 15
R-4-트리메틸암모늄-3-(테트라데실카바모일)-아미노부티레이트(ST 1326)
테트라데실 이소시아네이트와 R-아미노카르니틴, 내염으로부터 실시예 1에 나타낸바와 같이 생성물을 제조하였고, 제조된 생성물은 에틸 에테르로 침전시키는 과정없이 바로 에틸 에테르로 세척하여 실리카 겔 크로마토그래픽 컬럼으로 정제하였다.
수율: 57%.
M.p.=160 ∼ 162℃.
Figure 112000024062570-pct00002
= -21.1°(c=0.5, MeOH).
1H-NMR(300MHz; CD3OD):
δ: 4.52(m, 1H), 3.60(dd, 1H), 3.48(d, 1H), 3.20(s, 9H), 3.10(t, 2H), 2.40(m, 2H), 1.45(m, 2H), 1.28(brs, 22H), 0.8(brt, 3H).
ESI 질량 = 400, [(M+H)+.
원소분석: 예상했던 C22H45N3O3식과 일치함.
K.F.=2.5% 물.
TLC 실리카 겔 CHCl3:iPrOH:MeOH:H2O:CH3COOH 42:7:28:10.5:10.5
Rf=0.50.
HPLC: SGE-SCX 컬럼(5 ㎛, 250×4 mm), T=30℃, 유동상 0.05M (NH4)H2PO4:CH3CN 75:25, pH=4.9(자체), 흐름=0.75ml/분, 검출기:RI, UV 205nm, RT=13.63분.
실시예 16
R-4-트리메틸암모늄-3-(운데실카바모일)-아미노부티레이트(ST 1327)
생성물을 운데실 이소시아네이트, R-아미노카르니틴, 내염으로부터 출발하여 실시예 1에 나타낸바와 같이 제조하였으며, 생성물은 실리카 겔 크로마토그래픽 컬럼으로 정제하였으며, 아세토니트릴에 침전시켜서 더 정제하였다.
수율: 50%.
M.p.=149 ∼ 150.2℃.
Figure 112000024062570-pct00003
= -21.16°(c=1, MeOH).
1H-NMR(300MHz; CD3OD):
δ: 4.52(m, 1H), 3.60(dd, 1H), 3.48(d, 1H), 3.20(s, 9H), 3.10(t, 2H), 2.40(m, 2H), 1.45(m, 2H), 1.28(brs, 16H), 0.8(brt, 3H).
ESI 질량 = 358, [(M+H)+;
원소분석: 예상했던 C19H39N3O3식과 일치함.
K.F.=2.3% 물.
TLC 실리카 겔 CHCl3:iPrOH:MeOH:H2O:CH3COOH 42:7:28:10.5:10.5
Rf=0.50.
HPLC: SGE-SCX 컬럼(5 ㎛, 250×4 mm), T=30℃, 유동상 0.05M (NH4)H2PO4:CH3CN 80:20, pH=4.9(자체), 흐름 0.75ml/분, 검출기:RI, UV 205nm, RT=13.37분.
실시예 17
R-4-트리메틸암모늄-3-(헵틸카바모일)-아미노부티레이트(ST 1328)
생성물을 헵틸 이소시아네이트, R-아미노카르니틴, 내염으로부터 출발하여 실시예 1에 나타낸바와 같이 제조하였으며, 실리카 겔 크로마토그래픽 컬럼으로 정제하였으며, 아세토니트릴에 침전하여 더 정제하였다.
수율: 47%.
M.p.=149 ∼ 150℃.
Figure 112000024062570-pct00004
=-34.0°(c=0.97, MeOH).
1H-NMR(300MHz; CD3OD):
δ: 4.52(m, 1H), 3.60(dd, 1H), 3.48(d, 1H), 3.20(s, 9H), 3.10(t, 2H), 2.40(m, 2H), 1.45(m, 2H), 1.30(brs, 8H), 0.8(brt, 3H).
ESI 질량 = 302, [(M+H)+;
원소분석: 예상했던 C15H31N3O3식과 일치함.
K.F.=6.17% 물.
TLC 실리카 겔 CHCl3:iPrOH:MeOH:H2O:CH3COOH 42:7:28:10.5:10.5
Rf=0.50.
HPLC: SGE-SCX 컬럼(5 ㎛, 250×4 mm), T=30℃, 유동상 0.05M (NH4)H2PO4:CH3CN 85:15, pH=6 (H3PO4), 흐름 0.75ml/분, 검출기:RI, UV 205nm, RT=7.16분.
실시예 18
R,S-4-트리메틸암모늄-3-(노닐티오카바모일)-아미노부티레이트(ST 1329)
생성물을 노닐 이소티오시아네이트와 R,S-아미노카르니틴, 내염으로부터 출발하여 실시예 1에 나타낸바와 같이 제조하였다. 크로마토그래피는 그래디언트로 CHCl3/MeOH 8:2 ∼ 2:8를 사용하여 하였다.
수율: 53%.
M.p.=104 ∼ 107℃.
1H-NMR(200MHz; CD3OD):
δ: 5.45(brm, 1H), 3.75(dd, 1H), 3.55(d, 1H), 3.45(brm, 2H), 3.22(s, 9H), 2.48(m, 2H), 1.55(m, 2H), 1.30(brs, 12H), 0.90(brt, 3H).
ESI 질량 = 346, [(M+H)+;
원소분석: 예상했던 C17H35N3O2S식과 일치함.
K.F.=2.6% 물.
TLC 실리카 겔 CHCl3:iPrOH:MeOH:H2O:CH3COOH 42:7:28:10.5:10.5
Rf=0.74.
HPLC: SGE-SCX 컬럼(5 ㎛, 250×4 mm), T=30℃, 유동상 0.05M (NH4)H2PO4:CH3CN 85:15, pH=6.0 (H3PO4), 흐름 0.75ml/분, 검출기:RI, UV 205nm, RT=8.87분.
실시예 19
R-4-트리메틸암모늄-3-(노닐카바모일)-아미노부티레이트(ST 1283)
생성물을 노닐 이소시아네이트, R-아미노카르니틴, 내염으로부터 출발하여 실시예 1에 나타낸바와 같이 제조하였다.
M.p.=146 ∼ 147℃.
Figure 112000024062570-pct00005
=-13.4°(c=0.5, H2O).
원소분석: 예상했던 C17H35N3O3식과 일치함.
K.F.=2.8% 물.
물리-화학적 데이타는 라세믹 ST1251(실시예 1)의 경우와 일치하였다.
실시예 20
S-4-트리메틸암모늄-3-(노닐카바모일)-아미노부티레이트(ST 1338)
생성물을 노닐 이소시아네이트와 S-아미노카르니틴, 내염으로부터 출발하여 실시예 1에 나타낸바와 같이 제조하였다.
M.p.=146 ∼ 147℃.
Figure 112000024062570-pct00006
= +16.7°(c=0.43, H2O).
1H-NMR(300MHz; CD3OD):
δ: 4.52(m, 1H), 3.60(dd, 1H), 3.45(d, 1H), 3.18(s, 9H), 3.10(t, 2H), 2.40(m, 2H), 1.45(m, 2H), 1.28(brs, 12H), 0.90(brt, 3H).
ESI 질량 = 330, [(M+H)+;
원소분석: 예상했던 C17H35N3O3식과 일치함.
K.F.=1.8% 물.
물리-화학적 데이타는 라세믹 ST1251(실시예 1)의 경우와 일치하였다.
실시예 21
S-4-트리메틸암모늄-3-(테트라데실카바모일)-아미노부티레이트(ST 1340)
생성물을 테트라데실 이소시아네이트, S-아미노카르니틴, 내염으로부터 출발하여 실시예 1에 나타낸바와 같이 제조하였고, 생성물은 에틸 에테르로 침전하는 과정을 하지 않았으며, 직접적으로 에틸 에테르로 세척하여 실리카 겔 크로마토그래픽 컬럼으로 정제하였다.
수율: 57%.
M.p.=166 ∼ 167℃.
Figure 112000024062570-pct00007
= +20.7°(c=0.5, MeOH).
원소분석: 예상했던 C22H45N3O3식과 일치함.
K.F.=1.7% 물.
물리-화학적 데이타는 라세믹 ST1326(실시예 15)의 경우와 일치하였다.
실시예 22
이소부틸 R,S-4-트리메틸암모늄-3-테트라데실아미노-아미노부티레이트(ST 1252)
R,S-4-트리메틸암모늄-3-테트라데실아미노-아미노부티레이트 이소부틸 에스테르 아세테이트
라세믹 아미노카르니틴의 이소부틸 에스테르(5g, 0.0198mol)와 테트라데칸알
(4.6g, 0.0217mol)을 250ml 메탄올에 용해시켰다. 용액에 글라시알 아세틱 에시드(1.13ml, 0.198mol)와 10% Pd/C 1g을 첨가하였다. 혼합물은 30psi에서 밤새도록 수소와 반응하였다. 셀라이트로 여과한 후, 용액을 진공농축 하였다. 옅은 노란색 오일이 얻었으며, 오일 생성물을 처음엔 AcOEt로, 그리고나서 AcOEt/MeOH 9:1로 용출한 실리카 겔 컬럼으로 정제하여 생성물 4g을 얻었다.
수율: 47%.
TLC 실리카 겔 (CHCl3 42/MeOH 28/이소프로필 알콜 7/물 10.5/아세틱 에시드10.5)/메틸 아세테이트 7:3
Rf=0.74.
1H-NMR(300MHz; CD3OD):
δ: 3.92-3.90(d, 2H), 3.64-3.58(m, 1H), 3.50-3.30(m, 2H), 2.80-2.50(m, 4H), 2.0-1.9(m, 1H), 2.6-2.4(m, 2H), 1.8(s, 22H), 0.98-0.82(m, 9H).
R,S-4-트리메틸암모늄-3-테트라데실아미노-아미노부티레이트
R,S-4-트리메틸암모늄-3-테트라데실아미노-아미노부티릭 에시드의 이소부틸 에스테르, 즉 아세테이트염(3.3g)을 앰버리스트 IRA 402 수지(OH- 활성화된 형태)에서 가수분해하였고, 물로 용출하였다. 건조시키기 위해 물을 가압하여 증발시켰다. 흰 고체의 결과물은 메탄올로 세척하여 여과하여, 진공 건조하였다. 1.95g의 생성물을 얻었다.
수율: 70%.
M.p.= 160℃
1H-NMR(300MHz; CD3OD):
δ: 4.4(m, 1H), 3.40-3.35(m, 3H), 3.2(s, 9H), 2.80-2.72(m, 1H), 2.56-2.42(m, 2H), 2.27-2.16(m, 1H), 1.55-1.40(m, 2H), 1.3(s, 22H), 0.92-0.85(t, 3H).
원소분석: 예상했던 C21H44N2O2식과 일치함.
K.F.=1.93% 물.
TLC 실리카 겔 (CHCl3 42/MeOH 28/이소프로필 알콜 7/물 10.5/아세틱 에시드10.5)
Rf=0.5.
HPLC: SGE-SCX 컬럼(5 ㎛, 250×4 mm), T=30℃, 유동상 0.05M (NH4)H2PO4:CH3CN 60:40, pH=4, 흐름=0.75ml/분, 검출기:RI, UV 205nm, RT=30.017분.
실시예 23
R,S-4-트리메틸암모늄-3-옥틸아미노부티레이트(ST 1254)
R,S-4-트리메틸암모늄-3-옥틸아미노-아미노부티레이트 이소부틸 에스테르 아세테이트
라세믹 아미노카르니틴 클로라이드의 이소부틸 에스테르(5g, 0.0198mol)와 옥탄알데히드(2.79g, 0.0217mol)를 250ml 메탄올에 용해시켰다. 용액에 글라시알 아세틱 에시드(1.13ml, 0.198mol)와 10% Pd/C 1g을 첨가하였다. 혼합물은 30psi에서 밤새도록 수소와 반응하였다. 셀라이트로 여과한 후, 용액은 진공 농축하였다. 생성물 8.5g이 생성되었으며, 생성물은 처음엔 AcOEt, 그리고나서 AcOEt/MeOH (9:1; 8.5:1.5)로 용출한 실리카 겔 컬럼으로 정제하여 3g의 정제된 생성물을 얻었다.
수율: 40%.
TLC 실리카 겔 (CHCl3 42/MeOH 28/이소프로필 알콜 7/물 10.5/아세틱 에시드10.5)
Rf=0.54.
1H-NMR(300MHz; CD3OD):
δ: 3.92-3.90(d, 2H), 3.64-3.58(m, 1H), 3.50-3.30(m, 2H), 2.80-2.50(m, 4H), 2.0-1.9(m, 1H), 2.6-2.4(m, 2H), 1.3(s, 10H), 0.98-0.82(m, 9H).
R,S-4-트리메틸암모늄-3-옥틸아미노부티레이트
R,S-4-트리메틸암모늄-3-테트라데실아미노-아미노부티릭 에시드의 이소부틸 에스테르, 즉 아세테이트염(2.8g, 0.00719)을 앰버리스트 IRA 402 수지(OH- 활성화된 형태)로 가수분해하였으며, 물로 용출하였다. 건조시키기 위해 물은 가압하여 증발시켰다. 흰 고체 결과물은 메탄올로 세척하여 여과한 후, 진공건조하여 1.8g의 생성물을 얻었다.
수율: 70%.
M.p.=140℃.
1H-NMR(300MHz; CD3OD):
δ: 3.42-3.30(m, 3H), 3.2(s, 9H), 2.85-2.70(m, 1H), 2.60-2.40(m, 2H), 2.30-2.20(m, 1H), 1.55-1.40(m, 2H), 1.3(s, 10H), 0.92-0.85(t, 3H).
원소분석: 예상했던 C15H32N2O2식과 일치함.
K.F.=2.8% 물.
TLC 실리카 겔 (CHCl3 42/MeOH 28/이소프로필 알콜 7/물 10.5/아세틱 에시드10.5)
Rf=0.32.
HPLC: SGE-SCX 컬럼(5 ㎛, 250×4 mm), 유동상 0.05M (NH4)H2PO4:CH3 CN 40:60, pH=4, 흐름=0.75ml/분, 검출기:RI, UV 205nm, RT=43.20분.
실시예 24
R,S-4-트리메틸암모늄-3-(데칸설포닐)아미노부티레이트(ST 1364)
아미노카르니틴 이소부틸 에스테르 클로라이드 하이드로클로라이드
아미노카르니틴의 이소부틸 에스테르, 즉 내염(3g, 18.72mmol)을 이소부탄올(120ml)에 용해시켜, 얼음조에서 차갑게 하였다.
기체 HCl을 혼합물이 완전히 포화되고 투명해질때까지 용액에 주입하여 기포를 발생시켰다. 용액은 밤새 환류시켰다(배쓰온도 130℃). 용매는 진공 증발하였으며, 잔여물은 Et2O로 연마하여 5.1g의 흰고체를 얻었다.
수율: 95%.
1H-NMR(200MHz; D2O):
δ: 4.3(m, 1H), 4.0(d, 2H), 3.8(d, 2H), 3.2(s, 9H), 3.1(m, 2H), 2.0(m, 1H), 0.9(d, 6H).
원소분석: 예상했던 C11H26Cl2N2O2식과 일치함.
K.F.=1% 물.
R,S-4-트리메틸암모늄-3-(데칸설포닐)-아미노부티레이트
R,S-아미노카르니틴 클로라이드의 이소부틸 에스테르, 즉 하이드로클로라이드(1g, 3.46mmol)의 건조 디클로로메탄(5ml)용액에 3ml 건조 디클로메탄에 현탁된 트리에틸아민(2.65ml, 19mmol)과 데칸설포닐 클로라이드(2.1g, 8.65mmol)을 0℃에서 첨가하였다. 혼합물은 상온에서 3일동안 교반하였다. 용매는 건조시키기 위해 증발시켰고, 잔여물은 에틸 아세테이트로 용해시켜 진공 여과하여 트리에 틸아민 하이드로클로라이드의 흰 침전물을 용액으로부터 분리시켰다. 에틸 아세테이트 용액을 진공 건조하여 2.8g의 노란오일을 얻었다. 71ml 1N NaOH는 이소부틸 에스테르를 가수분해시키기 위해 첨가하였고, 상온에서 밤새 교반하여 부유물질을 남기며 가수분해하였다. 현탁액은 증발시켜 진공건조하였으며, 고체 잔여물은 완전히 건조하여 메탄올로 용해시켜, 용출액으로 메탄올을 사용한 실리카 겔 크로마토그래픽 컬럼으로 정제하였다. 555mg 생성물을 얻었다.
수율: 44%.
M.p.=158℃.
1H-NMR(300MHz; CD3OD):
δ: 4.3(m, 1H), 3.45(m, 2H), 3.25(s, 9H), 3.15(m, 2H), 2.45(d, 2H), 1.8(m, 2H), 1.45(m, 2H), 1.4(brs, 12H), 0.9(brt, 3H).
원소분석: 예상했던 C17H36N2O4S식과 일치함.
질량 ESI=365[(M+H)+], 387[(M+Na)+]
K.F.=3% 물.
TLC 실리카 겔 (CHCl3 42/MeOH 28/이소프로필 알콜 7/물 10.5/아세틱 에시드10.5)
Rf=0.62.
HPLC: Spherisorb-C1 컬럼(5 ㎛, 250×4.6 mm), 유동상 0.05M K2H2PO4:CH 3CN 35:65, 자체 pH, 흐름=0.3ml/분; 온도=30℃, 검출기:RI, UV 205nm, RT=7.0분.
실시예 25
R,S-4-트리메틸암모늄-3-(노닐설파모일)아미노부티레이트(ST 1362)
R,S-아미노카르니틴 클로라이드의 이소부틸 에스테르, 즉 하이드로클로라이드(2g, 6.9 mmol)의 무수 디클로로메탄(40ml)용액을 트리에틸아민(3.8ml, 27.6mmol)에 첨가하였고, 0℃에서 SO2Cl2의 디클로메탄(최종 용액 10ml당 1.7ml) 용액에 떨어뜨렸다. 혼합물은 3일동안 상온에서 교반하였다. 트리에틸아민(1.9ml, 13.8mmol)과 노닐아민(2.5ml, 13.8mmol)을 반응혼합물에 첨가하였고, 상온에서 하루동안 교반하였다. 용매는 진공 증발하였고, 잔여물은 에틸 아세테이트(100ml)로 용해시켰으며, 트리에틸아민 하이드로클로라이드의 침전물은 진공여과에 의해 용액으로부터 분리하였다. 에틸 아세테이트 용액을 진공건조하여 4.8g의 노란색 오일을 얻었으며, 이소부틸 에스테르를 가수분해시키기 위해 1N NaOH 105ml를 첨가하였다. 혼합물은 상온에서 하루동안 교반한 후 진공건조하였다. 잔여물은 가압하여 완전히 건조하였다. 노란 반고체는 클로로포름으로 결정화하였다. 생성물 1.26g을 얻었다.
수율: 50%.
M.p.=152℃.
1H-NMR(300MHz; CD3OD):
δ: 4.1(m, 1H), 3.48(d, 2H), 3.25(s, 9H), 2.95(m, 2H), 2.5(t, 2H), 1.55(t, 2H), 1.45(brs, 12H), 0.9(brt, 3H).
원소분석: 예상했던 C16H35N3O4S식과 일치함.
질량 ESI=366[(M+H)+], 388[(M+Na)+]
K.F.=5.8% 물.
TLC 실리카 겔 (CHCl3 42/MeOH 28/이소프로필 알콜 7/물 10.5/아세틱 에시드10.5)
Rf=0.34.
HPLC: Spherisorb-C1 컬럼(5 ㎛, 250×4.6 mm), 유동상 0.05M KH2PO4:CH3CN 35:65, pH as such, 흐름=0.75ml/분; 온도=30℃, 검출기:RI, UV 205nm, RT=6.68분.
실시예 26
S-4-트리메틸암모늄-3-(도데칸설포닐)아미노부티레이트(ST 1391)
생성물을 S-아미노카르니틴 클로라이드의 이소부틸 에스테르, 하이드로클로라이드, 도데칸설포닐 클로라이드로부터 출발하여 실시예 24에 나타낸바와 같이 제조하여 생성물 600mg을 얻었다.
수율: 44%.
M.p.=156℃.
Figure 112000024062570-pct00008
=+6°(c=0.245%, 물)
1H-NMR(300MHz; CD3OD):
δ: 4.3(m, 1H), 3.45(m, 2H), 3.25(s, 9H), 3.15(m, 2H), 2.45(d, 2H), 1.8(m, 2H), 1.45(m, 2H), 1.4(brs, 16H), 0.9(brt, 3H).
원소분석: 예상했던 C19H40N2O4S식과 일치함.
K.F.=8.6% 물.
TLC 실리카 겔 (CHCl3 42/MeOH 28/이소프로필 알콜 7/물 10.5/아세틱 에시드10.5)
Rf=0.65.
HPLC: Spherisorb-C1 컬럼(5 ㎛, 250×4.6 mm), 유동상 0.05M KH2PO4:CH3CN 40:60, 자체 pH, 흐름=0.75ml/분; 온도=30℃, 검출기:RI, UV 205nm, RT=8.5분.
실시예 27
R-4-트리메틸암모늄-3-(도데칸설포닐)아미노부티레이트(ST 1420)
생성물을 R-아미노카르니틴 클로라이드의 이소부틸 에스테르, 하이드로클로라이드, 도데칸설포닐 클로라이드로부터 출발하여 실시예 24에 나타낸바와 같이 제조하여 생성물 450mg을 얻었다.
수율: 34%.
M.p.=158℃.
Figure 112000024062570-pct00009
=-7°(c=0.265%, 물)
1H-NMR(300MHz; CD3OD):
δ: 4.3(m, 1H), 3.45(m, 2H), 3.28(s, 9H), 3.15(m, 2H), 2.45(d, 2H), 1.8(m, 2H), 1.45(m, 2H), 1.3(brs, 16H), 0.9(brt, 3H).
원소분석: 예상했던 C19H40N2O4S식과 일치함.
K.F.=6.9% 물.
TLC 실리카 겔 (CHCl3 42/MeOH 28/이소프로필 알콜 7/물 10.5/아세틱 에시드10.5)
Rf=0.66.
HPLC: Spherisorb-C1 컬럼(5 ㎛, 250×4.6 mm), 유동상 0.05M KH2PO4:CH3CN 40:60, pH as such, 흐름=0.75ml/분; 온도=30℃, 검출기:RI, UV 205nm, RT=8.11분.
실시예 28
S-4-트리메틸암모늄-3-(운데실설파모일)아미노부티레이트(ST 1427)
생성물을 S-아미노카르니틴 클로라이드의 이소부틸 에스테르, 하이드로클로라이드, 운데실 아민로부터 출발하여 실시예 25에 나타낸바와 같이 제조하여, 그래디언트로 CHCl3: MeOH 9: 1 ∼ 1: 9를 이용한 실리카 겔 크로마토그래픽 컬럼으로 정제하지 않았다. 생성물은 MeOH를 사용한 실리카 겔 크로마토그래픽 컬럼으로 더 정제를 하여 0.7g의 정제된 생성물을 얻었다.
수율: 38%.
M.p.=153℃.
Figure 112000024062570-pct00010
=+4°(c=0.25%, 물, pH=2)
1H-NMR(300MHz; CD3OD):
δ: 4.1(m, 1H), 3.48(d, 2H), 3.25(s, 9H), 2.95(m, 2H), 2.5(m, 2H), 1.55(brt, 2H), 1.45(brs, 16H), 0.9(brt, 3H).
원소분석: 예상했던 C18H39N3O4S식과 일치함.
K.F.=2.9% 물.
TLC 실리카 겔 (CHCl3 42/MeOH 28/이소프로필 알콜 7/물 10.5/아세틱 에시드10.5)
Rf=0.68.
HPLC: Spherisorb-C1 컬럼(5 ㎛, 250×4.6 mm), 유동상 0.05M KH2PO4:CH3CN 60:40, 자체 pH, 흐름=0.7ml/분; 온도=30℃, 검출기:RI, UV 205nm, RT=8.384분.
실시예 29
R,4-트리메틸암모늄-3-(운데실설파모일)아미노부티레이트(ST 1428)
생성물을 S-아미노카르니틴 클로라이드의 이소부틸 에스테르, 하이드로클로라이드, 운데실 아민로부터 출발하여 실시예 25에 나타낸바와 같이 제조하여, 그래디언트로 CHCl3: MeOH 9: 1 ∼ 1: 9를 사용한 실리카 겔 크로마토그래픽 컬럼으로 정제하지 않았다. 생성물은 MeOH를 사용한 실리카 겔 크로마토그래픽 컬럼으로 더 정제를 하여 0.5g의 정제된 생성물을 얻었다.
수율: 32%.
M.p.=158℃.
Figure 112000024062570-pct00011
=-4°(c=0.25%, 물, pH=2)
1H-NMR(300MHz; CD3OD):
δ: 4.1(m, 1H), 3.48(d, 2H), 3.25(s, 9H), 2.95(m, 2H), 2.5(m, 2H), 1.55(brm, 2H), 1.45(brs, 16H), 0.9(brt, 3H).
원소분석: 예상했던 C18H39N3O4S식과 일치함.
K.F.=4.77% 물.
TLC 실리카 겔 (CHCl3 42/MeOH 28/이소프로필 알콜 7/물 10.5/아세틱 에시드10.5)
Rf=0.68.
HPLC: Spherisorb-C1 컬럼(5 ㎛, 250×4.6 mm), 유동상 0.05M KH2PO4:CH3CN 60:40, 자체 pH, 흐름=0.7ml/분; 온도=30℃, 검출기:RI, UV 205nm, RT=8.379분.
실시예 30
R-4-트리메틸암모늄-3-(도데실카바모일)아미노부티레이트(ST 1375)
생성물을 R-아미노카르니틴 내염과 도데실이소시아네이트로부터 출발하여 실시예 1에 나타낸바와 같이 제조하였다. 생성물을 디에틸 에테르로 세척하고, 실리카 겔 크로마토그래픽 컬럼으로 정제를 하여 4.8g의 정제된 생성물을 얻었다.
수율: 55%.
M.p.=147℃.
Figure 112000024062570-pct00012
=-24.6°(c=0.48%, MeOH)
1H-NMR(300MHz; CD3OD):
δ: 4.51(m, 1H), 3.60(dd, 1H), 3.45(dd, 1H), 3.2(s, 9H), 3.1(t, 2H), 2.4(m, 2H), 1.45(m, 2H), 1.3(brs, 18H), 0.9(t, 3H).
원소분석: 예상했던 C20H41N3O3식과 일치함.
K.F.=5.4% 물.
TLC 실리카 겔 (CHCl3 42/MeOH 28/이소프로필 알콜 7/물 10.5/아세틱 에시드10.5)
Rf=0.6.
HPLC: Spherisorb-C1 컬럼(5 ㎛, 250×4.6 mm), 유동상 0.05M KH2PO4:CH3CN 65:35, pH=5.6, 흐름=0.75ml/분; 온도=30℃, 검출기:RI, UV 205nm, RT=8.5분.
실시예 31
R-4-트리메틸암모늄-3-(10-펜옥시데실카바모일)아미노부티레이트(ST 1449)
10-펜옥시데실 이소시아네이트
11-펜옥시운데카노일 클로라이드(31.1g, 104.8 mmol)의 아세톤(30ml) 용액을 소듐 아자이드(9.53g, 146.6mmole)의 물(30ml) 용액에 떨어뜨리고 난후, 10 ∼ 15 ℃사이의 온도를 유지시키기 위해 얼음조에서 차갑게 하였다. 1시간후, 용액을 분리 깔대기로 옮겨, 낮은층(수용액층)을 제거하였다. 높은층은 미리 65℃로 따뜻해진 톨루엔 100ml를 넣은 플라스크로 옮겼다. 1.5시간후에, 용액을 건조시키기 위해 증발하여 조잡한 생성물 13.37g을 얻었다.
1H-NMR(300MHz; CDCl3):
δ: 7.2(m, 2H), 6.9(m, 3H), 3.9(t, 2H), 3.6(t, 2H), 1.4(m, 2H), 1.3(m, 10H).
R-4-트리메틸암모늄-3-(10-펜옥시데실카바모일)-아미노 부티레이트
10-펜옥시데실이소시아네이트(25.0g, 91.12mmol)을 아미노카르니틴, 즉 내염의 건조 DMSO(350ml)용액에 첨가하였고, 용액은 40 ℃에서 60시간동안 두었다. 결과 혼합물은 에틸 에테르(2.5 ℓ)를 담고있는 3 ℓ용 삼각플라스크로 옮겨졌고, 용매는 형성된 침전물을 기울여따라서 분리하였고, 그리고나서 침전물은 약간의 클로로포름에 용해시켜 플라스크로 옮긴 후, 에틸 에테르에 침전시켰다. 그렇게 얻은 조잡한 생성물은 에틸 에테르로 여러번 세척하였고, 높은 Rf로 불순물을 용출할때까지 그래디언트로 CHCl3: MeOH 9:1 ∼ CHCl3: MeOH 3:7를 사용한 실리카 겔 크로마토그래픽 컬럼으로 정제하였고, 그리고나서 MeOH만 사용한 컬럼으로 생성물을 정제하여 얻었다. 정제된 생성물 13.5g을 얻었다.
수율: 68%.
1H-NMR(300MHz; CD3OD):
δ: 7.2(m, 2H), 6.9(m, 3H), 4.5(m, 1H), 3.9(t, 2H), 3.6(dd, 1H), 3.4(dd, 1H), 3.2(s, 9H), 3.1(t, 2H), 2.4(m, 2H), 1.8(m, 2H), 1.6(m, 2H), 1.4(m, 2H), 1.3(m, 10H).
FAB 질량=436,[(M+H)+;
원소분석: 예상했던 C24H41N3O4식과 일치함.
K.F.=2.3% 물.
실시예 32
R-4-트리메틸암모늄-3-(트랜스-β-스티렌설포닐)아미노부티레이트(ST 1448)
R-아미노카르니틴 이소부틸 에스테르 클로라이드 하이드로클로라이드
R-아미노카르니틴 내염 (3g, 18.72mmol)을 이소부탄올(120ml)에 용해시켜 얼음조에서 차갑게 하였다. 기체 HCl을 혼합물이 완전히 포화되고 투명해질때까지 용액에 주입하여 기포를 발생시켰다. 용액은 밤새 환류하였다(배쓰온도 130℃). 용매는 진공 증발하였고, 잔여물은 Et2O로 연마하였다. 흰고체 생성물 5.1g을 얻었다.
수율: 95%.
1H-NMR(200MHz; D2O):
δ: 4.3(m, 1H), 4.0(d, 2H), 3.8(d, 2H), 3.2(s, 9H), 3.1(m, 2H), 2.0(m, 1H), 0.9(d, 6H).
원소분석: 예상했던 C11H26Cl2N2O2식과 일치함.
K.F.=1% 물.
R-4-트리메틸암모늄-3-(트랜스-β-스티렌설포닐)-아미노부티레이트
R-아미노카르니틴 클로라이드의 이소부틸 에스테르, 즉 하이드로클로라이드(1g, 3.46mmol)의 건조 디클로로메탄(5ml) 용액을 트리에틸아민(2.65ml, 19mmol)과 트랜스-β-스티렌설포닐 클로라이드(1.753g, 8.65mmol)가 현탁된 건조 디클로로메탄 3ml 용액에 0℃에서 첨가하였다. 혼합물은 상온에서 3일동안 교반하였다. 용매는 건조시키기 위해 증발하였고, 잔여물은 에틸 아세테이트(100ml)로 용해시켰고, 트리에틸아민 하이드로클로라이드의 흰 침전물은 진공여과에 의해 용액으로부터 분리하였다. 에틸 아세테이트 용액은 진공 건조하였고, 71 ml 1N NaOH를 이소부틸 에스테르를 가수분해시키기 위해 첨가하여 상온에서 하룻밤 교반하여 현탁액이 남았다. 현탁액을 증발시켜 진공건조시켰으며, 고체 잔여물은 가압하여 완전히 건조하였다. 건조된 생성물은 메탄올로 용해시켜, 메탄올을 용출액으로 사용한 실리카 겔 크로마토그래픽 컬럼으로 정제하였다. 생성물 565mg을 얻었다.
수율: 50%.
1H-NMR(300MHz; CD3OD):
δ: 7.8(d, 1H), 7.5(m, 5H), 7.3(d, 1H), 4.3(m, 1H), 3.4(m, 2H), 3.2(s, 9H), 2.4(d, 2H).
원소분석: 예상했던 C15H22N2O4S식과 일치함.
ESI 질량=327[(M+H)+]
약리학적 활성
CPT 억제 작용의 측정
CPT 억제는 정상적으로 사육한 피셔(Fisher) 쥐의 간 또는 심장으로 부터 얻은 신선한 미토콘드리아의 표본을 문헌[Kerner, J. & Bieber, L.L. (1990) Biochemistry 29: 4326-34]에 기술된 방법에 의거하여 평가하였다. 미토콘드리아를 간 또는 심장으로부터 분리하여, 75mM 사카로스 버퍼, 1mM EGTA, pH 7.5에 현탁시켰다. 50 μM [14C] 팔미토일-CoA(특이 작용 10,000 DPM/mol)과 10mM L-카르니틴을 포함하는 100㎕ 미토콘드리아의 현탁액은 37℃, 시험 물질(0-3mM)의 스칼라 농도하에서 배양되었다: 반응 시간: 1분.
표 1은 측정되어진 IC50을 나타낸다.
본 발명에 따른 화합물은 EP 0574355에 나타낸 실시예 1의 참조화합물 중 하나인 SDZ-CPI-975보다 더 큰 억제 작용을 가진다.
Figure 112000024062570-pct00025

올리에이트-촉진하는 β-하이드록시부티레이트 생성의 측정
β-하이드록시부티레이트 생성은 CPT 작용의 지수이다. 사실상, 케톤체의 생성, 즉 미토콘드리아의 β-산화의 최종 생성물은 CPT 작용과 관련되어 있다.
문헌[Venerando et al.(Am. J. Physiol. 266:C455-C461, 1994)]에 의한 방법에 따라 얻은 미토콘드리아의 표본이 사용되었다. 간세포는 KRB 바이카보네이트 버퍼의 37 ℃, O2/CO2 95/5 대기의 pH 7.4, 6mM 글루코스, 1% BSA, 2.5×106세포/ml에서 배양되었다. 다른 농도에서 시험화합물로 40분 배양후 샘플의 첫 세트를 취한 후(T0min), 올리에이트를 첨가하였다(KRB+BSA 1.4%에 최종 농도 1mM). 20분 후, 두번째 샘플을 만들었다(T20min).
표 2는 결과를 보여준다. 데이타는 3가지 서로 다른 시험의 평균치를 나타내며 각 시험은 두번씩 행해졌다. 본 발명에 따른 화합물은 EP 0574355에 나타난 실시예 1의 참조화합물 중 하나인 SDZ-CPI-975보다 더 높은 β-하이드록시부 티레이트 억제 작용을 가진다.
Figure 112000024062570-pct00026

CPT 억제제로 치료된 내성을 지닌 쥐의 혈청에서 글루코스와 β-하이드록시부티레이트
정상적으로 사육한 피셔 쥐는 24시간 동안 절식시킨 후 시험화합물을 투여했다. 투여 1시간 후, 시험동물을 죽이고, 글루코스와 β-하이드록시부티레이트의 혈청 농도를 측정하였다.
표 3은 결과를 나타낸다. 화합물 ST 1326은 14.5mg/2ml/kg 복용량이 사용되어고, 다른 시험화합물의 복용량도 ST 1326과 동량이다.
Figure 112000024062570-pct00027

CPT 억제제로 치료한 당뇨병 동물에서 글루코스와 인슐린 수치
5주된 C57BL/6J 수컷 쥐는 Ch. River에 의해 제공되었다. 표준상태(22±2℃; 55±15% 습도; 15∼20/h 공기 교체; 700∼900럭스로 12시간 명-암 주기)와 4RF21 피드스톡(무세돌라)으로 표준식사를 병행하여 10일간 순응시킨후, 혈당증은 흡수후 상태(오전 8:30∼ 오후 4:30까지 절식)에서 조절하였다. 혈액은 꼬리 끝을 잘라서 얻었다. 글루코스는 글루코스 GDH 키트(Roche)를 사 용해 코바스 미라 에스(Cobas Mira S) 자동분석기로 혈액 산 상층액(HCLO4 0,375N)을 분석하였다.
동물은 두개의 그룹으로 나뉘어졌으며, 각 그룹은 26마리의 쥐로 구성되어 가각 고지방 및 저지방 음식물을 섭취시켰다.
식이요법을 시작한지 2달 후, 혈당증은 시작방법에 따라 테스트하였다. 식이요법 시작 3달 후, 시작방법에 따라 혈당증을 테스트하였고, 혈장 인슐린 수치도 쥐 인슐린 키트(Amersham)을 사용[125I]하여 측정되었다(꼬리를 잘라서 혈액 채취).
저지방 음식물로 사육된 10마리 그룹 하나와 고지방 음식물로 사육된 10마리 2개 그룹이 선택이 선택되었다. 고지방 음식물로 사육된 그룹 중 한 그룹을 선택하여 그 쥐들에게 증류수에 45mg/kg의 복용량으로 ST 1327가 투여되었다(p.o., 오전 8:30, 오후 5:30씩 하루에 두번). 투약량은 10ml/kg이다. 나머지 두 그룹은 단지 소포로만 치료하였다. 고지방 또는 저지방음식물은 치료동안 계속되었다.
치료 20일 후, 혈당증과 혈장 인슐린을 측정하였다. 치료 43일 후, 동물은 마지막 치료 8시간 후, 흡수후 상태(오전 8:30 ∼ 오후 4:30 단식)에 단두술(decapitation)에 의해 죽었다. 혈액을 채취하였다. 혈청은 원심분리에 의해 분리한 후, -80℃에서 저장하였다. 간, 심장, 근육근(사지 위)을 또한 추출하여, 드라이아이스-아세톤으로 얼려 -80℃를 유지시켰다.
고지방 음식물로 사육된 그룹의 쥐는 저지방 음식물로 사육된 그룹의 쥐에 비하여 몸무게, 혈당증 및 인슐린이 크게 증가된 것으로 측정되었다.
ST 1327로 치료 20일 후, 글루코스와 인슐린수치는 크게 감소하였다.
표4는 결과를 나타낸다.
Figure 112000024062570-pct00030
스튜던트'스 "티"(Student's "t") 테스트, *와 **은 p<0.001과 p<0.01, 각각 고지방 음식물에 대하여 나타내며; ( )는 경우의 수를 나타낸다.
이 결과는 본 발명에 따른 화합물이 절식 상태에서 혈당증을 조절하는 효과가 있다는 것을 보여준다. 이것은 절식 기간동안(즉, 야간 정지) 간의 당신생이 발생한다는 점에서 당뇨병치료에 중요한 면이 있다.
심근 국소빈혈에 대한 CPT 억제제의 효과
또한, 본 발명에 따른 화합물은 국소빈혈 특히, 심근 국소빈혈 치료에 효과적이다.
이러한 목적을 위해 찰스-리버에 의해 제공된 무게 200∼225g의 수컷 위스타 쥐를 23。+/-1℃의 일정온도, 상대습도 50+/-10%, 12시간 명-암 주기를 유지하면서, 펠렛 4RF21(무세돌라) 수도물로 사육하였다.
동물은 소듐 펜토바비탈 70mg/kg으로 복강 마취시켰다. 100cm 수압과 37℃에서 랑겐도르프 방법에 따라 대동맥의 계속되는 관류의 인캐뉼레이션(incannula
tion) 전에 심장을 신속히 제거하여 차가운 크렙스-헨셀레이트 용액에 넣었다.
관류 배지(크렙스-헨셀레이트)는 pH 7.4에서 다음과 같은 것으로 구성되어 있다: 128mM NaCl, 4.7 mM KCl, 1mM MgCl2, 0.4mM Na2HPO4, 20.2 mM NaHCO3, 1.3 mM CaCl2, 5mM 글루코스. 배지는 카르보겐으로 계속 산화되었다(95% O2, 5% CO2).
"조건화"기간 10분 후, 본 발명에 따른 CPT 억제제가 있거나 없는 알부민(V 부분, 지방산 없음)과 함께 복합체화된 0.6mM 팔미테이트를 함유하는 같은 배지로 심장은 20분 동안 재순환 장치로 관류되었다.
ST 1364의 경우 1과 5μM의 농도에서 사용되었다. 그런 기간 후, 국소빈혈은 30분 동안 100cm∼20cm 정수학적인 압력으로 관류액을 감소시킴을 유도하였다. 재관류는 시작압력 조건(100cm)을 다시 함으로써 시작되었다. 심장은 20분 동안 조절되었다. 억제제는 또한 재관류 상태동안 존재하였다.
락테이트 디하이드로게나제(LDH) 분비는 정상 산소화 상태에서 유출액, 국소빈혈 동안 30분 경과시의 배지 유출액, 재관류동안 1, 5, 10, 15, 20분 경과시의 유출액에서 관찰되었다.
재관류 결과가 ST 1364 5μM의 복용량의 존재에서 크게 감소되는 동안, 유출액에서 LDH 방출은 놀랄만하게 감소된다(도 1). 이 결과는 대조군과 비교해 치료된것의 재관류로부터 세포의 손상이 더 작음을 보여준다.
통계적 분석은 쌍으로 되어있지 않은(non-paired) 데이타용 스튜던트'스 "티" 테스트로 수행되었다.
각 그룹의 경우의 수는 6이다(n=6).
다음 표 5는 결과를 나타낸다.
Figure 112000024062570-pct00029
통계적 분석은 쌍으로 되어있지 않은 데이타용 스튜던트'스 "티" 테스트로 수행되었다. p<0.05 대 대조군; **p<0.01 대 대조군.
각 그룹의 경우의 수는 6이다(n=6).
재관류 결과가 ST 1364 5μM의 복용량의 존재에서 크게 감소되는 동안, 유출액에서 LDH 방출은 상당히 감소된다(도 1). 이 결과는 대조군과 비교해 치료된것의 재관류로부터 세포의 손상이 더 작음을 보여준다.
다른 면에서, 본 발명은 병의 치료를 위해 적어도 다른 적합한 유효성분과 화학식(I)의 화합물의 조합을 제공한다.
당뇨병의 치료 또는 예방에, 본 발명은 화학식(I)의 화합물을 제공하며, 선택적으로 잘 알려진 적합한 유효 성분, 예를 들어 설포닐우레아, L-카르니틴, 피브레이트 및 퍼옥시소말 활성화된 수용체(PPAR-α)의 프로리퍼레이터 다른 작용물질, RXR같은 9-시스 레티노익 에시드 활성화된 수용체, 특히 α-, β- 및 γ-이소형, HMG-CoA 환원효소 억제제, β-시토스테롤 억제제, 콜레스테롤 아실트랜스퍼라제 억제제, 비구아니드, 콜레스티라민, 안지오텐신 II 작용물질, 멜린아마이드, 니코티닉 에시드, 피브리노겐 수용체 작용물질, 아스피린, α-글루코시다제 억제제, 인슐린 시크레토고그, 인슐린 및 글루카곤-같은 단백질(인크레틴) 및 PPAR-γ의 작용물질(티아졸리딘디온 또는 다른것)과 같은 유효 성분과의 조합을 제공한다.
비만증의 치료와 예방에, 본 발명은 화학식(I)의 화합물을 제공하며, 선택적으로 잘 알려진 적합한 유효 성분, 예를 들어 펜플루라민, 덱스펜플루라민, 펜티라민, β-3-아드레너직 수용체 작용물질과 같은 유효 성분과의 조합을 제공한다.
트리글리세리드헤미아(triglyceridhemia) 과다의 치료 또는 예방에, 본 발명 은 화학식(I)의 화합물을 제공하며, 선택적으로 잘 알려진 적합한 유효 성분과의 조합도 제공한다.
본 발명에 따른 화합물은 높은 콜레스테롤 수치의 치료 또는 조절과 HDL 혈장 수치의 조절에 유용하며, 그 결과 이런 변질된 혈장 수치와 관련된 병의 치료 또는 예방에 유용하다. 관련된 병의 예는 고혈압, 비만증, 죽상동맥경화증, 당뇨병 및 이와 관련된 상태이다. 적어도 본 발명의 화합물을 포함하는 약제는 적어도 위에 언급한 병의 치료 또는 예방에 효과적인 다른 유효 성분과의 조합을 포함할 수 있다. 다른 유효 성분의 예는 클로피브레이트, 베자피브레이트 및 겜피브로질 및 다른 PPAR-α 작용물질과 같은 피브레이트; HMG-CoA 환원효소 억제제와 로바스타틴, 심바스타틴 및 프라바스타틴과 같은 스타틴류 같은 콜레스테롤 생합성 억제제; 콜레스테롤 흡수 억제제, 예를 들어 베타-시토스테롤 및 (아실 CoA: 콜레스테롤 아실트레스퍼라제) 억제제, 예를 들어 멜린아마이드; 음이온 교환 수지 예를 들어 콜레스티라민, 콜레스티폴 또는 가교 결합된 덱스트린의 디알킬아미노알킬 유도체; 니코티닐 알콜, 니코티닉 에시드 또는 그들의 염; 비타민 E; 티로미메틱 및 L-카르니틴 등이다.
본 발명에 따른 화합물은 약리학적으로 허용 가능한 소포 및/또는 부형제와 혼합물에서 화학식(I)의 화합물의 치료학적 유효량을 포함하는 약제 조성물의 형태로 경구적으로 투여할 수 있다. 경구적 약제 조성물의 예는 경질 또는 연질 캡슐, 정제, 앰플, 사체트, 엘릭시르, 현탁액, 시럽과 같은 설하의 투여를 포함한다. 선택적으로, 본 발명에 따른 유효성분은 식이요법 음식물과 직접적으로 관련되어 있을 것이다. 그런 치료적으로 유용한 조성물에서 유효 화합물의 양은 효과적인 투약량이 얻어지는 것과 같을 것이다. 유효 화합물을 또한 예를 들어 액체 방울 또는 스프레이와 같은 비강내 투여도 가능할 것이다.
정제, 환제, 캡슐제와 그 밖의 다른 것 또한 검 트라가칸쓰(tragacanth), 아카시아, 옥수수 전분 또는 젤라틴과 같은 결합제; 디칼슘 포스페이트와 같은 부형제; 옥수수 전분, 감자 전분, 알지닉 에시드와 같은 분해 물질; 마그네슘 스테아레이트아 같은 윤활제; 수크로제, 락토제 또는 사카린과 같은 감미료를 함유한다. 복용단위 형태가 캡슐일때, 위에 언급한 타입의 물질을 첨가하고, 지방유 같은 액체 운반체도 함유할 것이다.
복용 단위를 코팅하거나 물리적 형태를 보완하기 위해 여러 다른 물질을 사용할 수 있다. 예를 들어, 정제는 쉘락, 설탕 또는 둘다로 코팅될 것이다. 시럽 또는 엘릭시르는 유효성분 이외에, 감미료로서 수크로제, 방부제인 프로필파라벤, 염료, 체리 또는 오렌지 향과 같은 향료을 함유할 것이다.
이런 유효 화합물은 비경구적으로 투여할 수 있다. 이런 유효 화합물의 용액 또는 현탁액은 피로겐-없는 물에서 제조되어질 것이다.
주사제에 적합한 약리학적 형태는 멸균 수성 용액 또는 분산약 과 멸균 주사 용액 또는 분산액의 즉시 제조용 멸균 파우더를 포함한다.
바람직하게는 약제 조성물은 방출을 조절할 수 있는 형태일 것이며, 이런 형태로 제조하는 다양한 기술이 알려져있다.
약제 조성물에 대한 일반적인 참조는 "Remington's Pharmaceutical Sciences Handbook", Mack Pub. N.Y. USA.를 이용할 수 있다.
유효 성분으로 사용된 것의 효과적인 복용량은 특별히 사용된 화합물, 투약 모드, 치료받는 상태, 치료 조건의 가혹함에 의존하여 변화될 것이다.
조성물은 아래기술한 일반적인 방법으로 처방되고 투약된다. 본 발명의 화합물은 치료 요법에 따라 독자적으로 또는 하나 이상의 추가적 유효 물질과 조합하여 효과적으로 사용할 수 있다. 조합 치료는 화학식(I)의 화합물과 하나 또는 그 이상의 추가적 유효 물질을 함유하는 단일 약리학적 복용 형태의 투약을 포함한다. 예를 들면, 화학식 (I)의 화합물과 HMG-CoA 환원효소 억제제는 정제 또는 캡슐 또는 분리된 경구 복용형태에서 각 물질 투여와 같은 단일 경구 복용 조성물로 환자에게 투약할 수 있다. 분리된 복용형태로 사용되어질 때, 화학식 (I) 또는 하나 또는 그이상의 추가적 유효 물질은 필수적으로 같은 시각, 즉 동시에 또는 계속해서 투약되어 질 수있다; 조합 치료는 모든 이런 섭생(식이요법)을 포함한다.
죽상동맥경화증의 치료 또는 예방 조성물의 예로는 화학식 (I)의 화합물이 다음 유효 물질 하나 또는 그 이상과 조합해서 투약되어지는 것을 들 수 있다: 항과지질혈증 물질; 플라즈마 HDL-오름 물질; 예를 들면, HMG-CoA 환원효소 억제제, HMG-CoA 합성효소 억제제, 스쿠알렌 에폭시다제 억제제 또는 스퀄렌 합성효소 억제제(스쿠알렌 합성요소 억제제로서 또한 알려짐)와 같은 콜레스테롤 생합성 억제제 같은 항고콜레스테롤혈증 물질; 아실-코엔자임 A; 멜린아마이드 같은 콜레스테롤 아실트랜스퍼라제(ACAT) 억제제; 프로부콜; 니코티닉 에시드 및 그들의 염과 니아신아마이드; 베타-시토스테롤같은 콜레스테롤 흡수 억제제; 콜레스티라민, 콜레스티폴 또는 가교결합된 덱스트린의 디알킬아미노알킬 유도체와 같은 바일 에시드 시붸스트런트 음이온 교환수지; LDL(저비중 리포프로테인) 수용체 유도체; 클로피브레이트, 베자피브레이트, 페노피브레이트 및 겜피브로질 및 다른 PPAR-α 작용물질, L-카르니틴과 같은 피브레이트; 비타민 B6와 그들의 약리학적으로 허용 가능한 염; 비타민 B12; 비타민 C 와 E, 베타 카로틴과 같은 항산화 비타민; 베타 블록커; 안지오텐신 II 길항물질; 안지오텐신 전환효소 억제제; 피브리노겐 수용체 길항물질(즉, 글리코프로테인 IIb/IIIa 피브리노겐 수용체 길항물질)과 같은 혈소판 응집 억제제 및 아스피린. 화학식 (I)의 화합물은 하나의 첨가적인 유효 물질 보다 더 조합하여 투약할 수 있다.
조합 치료의 다른 예는 비만증 또는 비만과 관련된 질환의 치료에서 볼 수 있고, 화학식 (I)의 화합물은 예를 들어 펜플루라민, 덱스펜플루라민, 펜티라민, β-3 아드레네직 수용체 작용물질 및 L-카르니틴과의 조합에 효과적으로 사용될 수 있다는 점에서 조합치료의 예로 보여질 수 있다.
조합 치료의 또 다른 예는 당뇨병과 이와 관련된 질환의 치료에서 볼 수 있고, 화학식 (I)의 화합물이 예를 들어 죽상동맥경화증 치료를 위해 위에 언급한 유효 물질 뿐만 아니라 설포닐우레아, 비구아니드, α-글루코시다제 억제제, 다른 인슐린 시크레토고그, 인슐린 및 글루카곤-같은 펩타이드(인크레틴) 및 PPAR-γ의 작용물질(티아졸리딘디온 또는 다른것)과의 조합에 효과적으로 사용될수 있다는 점 에서 조합치료의 예로서 보여질 수 있다.
상기 화학식(I)의 화합물은 카르니틴 팔미토일-트랜스퍼라제의 활성을 가역적으로 억제하고, 고혈당, 당뇨병, 당뇨병관련병리, 심장발작, 국소빈혈과 같은 카르니틴 팔미토일-트랜스퍼라제의 활동항진에 관련된 병리치료용 약제의 제조에 유용하다.

Claims (27)

  1. 다음 화학식(I)로 표시되는 화합물, 이의 (R, S) 라세믹 혼합물, 이의 R 또는 S 거울상 이성질체(enantiomer), 또는 이의 약리학적 허용가능한 염 :
    Figure 112006015221821-pct00034
    상기에서:
    X+는 N+(R1,R2,R3)와 P+(R1,R2,R3)로 이루어진 그룹으로부터 선택되며, 상기 (R1,R2,R3)는 서로 같거나 다른 것으로서 수소 및 C1-C9 직쇄 또는 측쇄의 알킬그룹, -CH=NH(NH2), -NH2, -OH 중에서 선택되거나; 또는 질소원자와 결합된 둘 또는 그 이상의 R1, R2 및 R3 포화된 또는 불포화된, 모노사이클릭 또는 바이사이클릭 헤테로 사이클릭기를 형성하며; 다만, R1, R2 및 R3 중 적어도 하나는 수소가 아니며;
    Z는 -OR4, -OCOOR4, -OCONHR4, -OCSNHR4, -OCSOR4, -NHR4, -NHCSR4, -NHCOOR4, -NHCSOR4, -NHCONHR4, -NHCSNHR4, -NHSOR4, -NHSONHR4, -NHSO2R4, -NHSO2NHR4, -SR4 중에서 선택되며,
    여기에서 -R4는 포화된 또는 불포화된 C1-C20, 직쇄 또는 측쇄의 알킬기, 선택적으로 A1 그룹으로 치환된 알킬기이며, 이때 A1은 할로겐 원자, 아릴, 헤테로아릴, 아릴록시 또는 헤테로아릴록시기 중에서 선택되는 것으로, 상기 아릴, 헤테로아릴, 아릴록시 또는 헤테로아릴록시기는 선택적으로 하나 또는 그 이상의 포화된 또는 불포화된 C1-C20, 직쇄 또는 측쇄의 알킬기, 알콕시기 및 할로겐 원자 중에서 선택된 치환체로 치환될 수 있으며;
    Y-는 -COO-, PO3H-, -OPO3H-, 테트라졸레이트-5-일로 이루어진 그룹으로부터 선택되며;
    여기서 다만 Z가 -NHCOR4, X+는 트리메틸암모늄, Y는 -COO- 일 때, R4는 C20 알킬이고;
    다만 Z가 -NHSO2R4, X+는 트리메틸암모늄, Y-는 -COO- 일 때, R4는 톨일(tolyl)이 아니며;
    다만 Z가 -NHR4, X+는 트리메틸암모늄, Y-는 -COO- 일 때, R4는 C1-C6 알킬이 아니며,
    다만, X+는 N+(R1,R2,R3) 일 때, Y는 -COO- 가 아닌 것을 전제로 한다.
  2. 제 1 항에 있어서, 상기 R1, R2 및 R3는 메틸인 것임을 특징으로 하는 화합 물.
  3. 제 1 항에 있어서, 상기 질소와 함께 R1, R2 및 R3에 의해 형성된 헤테로사이클릭기는 모르폴리늄, 퀴누클리디늄, 피리디늄, 퀴놀리늄 및 피롤리디늄 중에서 선택되는 것임을 특징으로 하는 화합물.
  4. 제 1 항에 있어서, 상기 R1과 R2는 H이고, R3는 -CH=NH(NH2), -NH2 및 OH로 이루어진 그룹으로부터 선택되는 것임을 특징으로 하는 화합물.
  5. 제 1 항에 있어서, 상기 Z는 우레이도(-NHCONHR4) 또는 카바메이트(-OCONHR4, -NHCOOR4)으로 이루어진 그룹으로부터 선택되어지며, R4는 포화된 또는 불포화된 C7-C20, 직쇄 또는 측쇄의 알킬기인 것임을 특징으로 하는 화합물.
  6. 제 5 항에 있어서, 상기 R4는 포화된 또는 불포화된 C9-C18, 직쇄 또는 측쇄의 알킬기인 것임을 특징으로 하는 화합물.
  7. 제 1 항에 있어서, 상기 화합물은
    R,S-4-트리메틸암모늄-3-(노닐카바모일)-아미노부티레이트;
    R,S-4-퀴누클리디늄-3-(테트라데실옥시카보닐)-옥시부티레이트;
    R,S-4-트리메틸암모늄-3-(노닐카바모일)-옥시부티레이트;
    R,S-4-트리메틸암모늄-3-(노닐옥시카보닐)-옥시부티릭 에시드 클로라이드;
    R,S-4-트리메틸포스포늄-3-(노닐카바모일)-옥시부티레이트;
    R,S-4-트리메틸암모늄-3-(옥틸옥시카보닐)-아미노부티레이트;
    R,S-4-트리메틸암모늄-3-(노닐옥시카보닐)-아미노부티레이트;
    R,S-4-트리메틸암모늄-3-옥틸옥시부티레이트;
    R,S-4-트리메틸암모늄-3-테트라데실옥시부티레이트;
    R,S-1-구아니디늄-2-테트라데실옥시-3-(테트라졸레이트-5-일)-프로판;
    R,S-1-트리메틸암모늄-2-테트라데실옥시-3-(테트라졸레이트-5-일)-프로판;
    R,S-3-퀴누클리디늄-2-(테트라데실옥시카보닐)-옥시-1-프로판포스포네이트 모노베이직;
    R,S-3-트리메틸암모늄-2-(노닐아미노카보닐)-옥시-1-프로판포스포네이트 모 노베이직;
    R,S-3-피리디늄-2-(노닐아미노카보닐)-옥시-1-프로판포스포닉 에시드 클로라이드;
    R-4-트리메틸암모늄-3-(테트라데실카바모일)-아미노부티레이트;
    R-4-트리메틸암모늄-3-(운데실카바모일)-아미노부티레이트;
    R-4-트리메틸암모늄-3-(헵틸카바모일)-아미노부티레이트;
    R,S-4-트리메틸암모늄-3-(노닐티오카바모일)-아미노부티레이트;
    R-4-트리메틸암모늄-3-(노닐카바모일)-아미노부티레이트;
    S-4-트리메틸암모늄-3-(노닐카바모일)-아미노부티레이트;
    S-4-트리메틸암모늄-3-(테트라데실카바모일)-아미노부티레이트;
    R,S-4-트리메틸암모늄-3-테트라데실아미노부티레이트;
    R,S-4-트리메틸암모늄-3-옥틸아미노부티레이트;
    R,S-4-트리메틸암모늄-3-(데칸설포닐)아미노부티레이트;
    R,S-4-트리메틸암모늄-3-(노닐설파모일)아미노부티레이트;
    S-4-트리메틸암모늄-3-(도데칸설포닐)아미노부티레이트;
    R-4-트리메틸암모늄-3-(도데칸설포닐)아미노부티레이트;
    S-4-트리메틸암모늄-3-(운데실설파모일)아미노부티레이트;
    R-4-트리메틸암모늄-3-(운데실설파모일)아미노부티레이트;
    R-4-트리메틸암모늄-3-(도데실설파모일)아미노부티레이트;
    R-4-트리메틸암모늄-3-(10-펜옥시데실카바모일)아미노부티레이트;
    R-4-트리메틸암모늄-3-(트랜스-β-스티렌설포닐)아미노부티레이트
    중에서 선택되는 것임을 특징으로 하는 화합물.
  8. X+-CH2-CH(OH)-CH2-Y-(이때, X+와 Y-는 청구항 1에 정의한 바와 같고, 에시드 Y- 그룹은 선택적으로 보호기에 의해 보호됨)와, 알킬 클로로포메이트, 알킬 이소시아네이트, 알킬 이소티오시아네이트 또는 알킬 티오클로로포메이트(이때, 알킬 부분은 R4 알킬기임)을 반응시켜 제조하는 것을 특징으로 하는 Z가 카보네이트(-OCOOR4), 카바메이트(-NHCOOR4, -OCONHR4), 티오카바메이트(-OCSNHR 4, -NHCSOR4) 또는 티오카보네이트(-OCSOR4)인 청구항 1의 화합물 제조방법.
  9. X+-CH2-CH(NH2)-CH2-Y-(이때, X+와 Y -는 청구항 1에 정의한 바와 같고, 에시드 Y- 그룹은 선택적으로 보호기에 의해 보호됨)와, 아실 클로라이드, 티오아실 클로라이드, 알킬 클로로포메이트, 알킬 티오클로로포메이트, 알킬 이소시아네이트, 알킬 티오이소시아네이트, 알킬 설피닐 클로라이드, 알킬 설포닐 클로라이드, SOCl2, 알 킬 아민 또는 알킬 설파모일 클로라이드(또는 SO2Cl2 및 알킬 아민)(이때, 알킬 부분은 R4 알킬기임)을 반응시켜 제조하는 것을 특징으로 하는 Z가 아마이드(-NHCOR4), 티오아마이드(-NHCSR4), 카바메이트(-NHCOOR4, -OCONHR4 ), 티오카바메이트(-NHCSOR4, -OCSNHR4), 우레이도(-NHCONHR4), 티오우레이도(-NHCSNHR4), 설핀아마이드(-NHSOR4), 설폰아마이드(-NHSO2R4), 설핀아모일아미노(-NHSONHR4), 및 설파마이드(-NHSO2NHR4)인 청구항 1 화합물의 제조방법.
  10. a) Hal-CH2-CO-CH2-COOR'으로 표시되는 카보닐 화합물(이때, Hal은 할로겐 원자이고, R'는 에스테르의 잔기)과, 알콜(R4OH) 또는 티올(R4SH)(이때, R4는 청구항 1 에 정의한 바와 같음)을 반응시켜 케탈 또는 티오케탈을 제조하는 과정;
    b) 상기한 케탈 또는 티오케탈이 에테르 또는 티오에테르로 각각 전환되는 과정;
    c) Hal 원자가 친핵성 그룹에 의해 치환되는 과정; 그리고
    d) 친핵성 그룹을 X+기로 전환(이때, X+는 N+(R1,R2,R3)임); 또는 선택적으로
    e) 상기 b)과정에서 Hal 원자와 (R1,R2,R3)-치환된 포스핀을 치환반응시켜 X+가 P+(R1, R2, R3)인 화학식(I)의 화합물을 얻는 과정;
    으로 구성되는 것을 특징으로 하는 Z가 -OR4 또는 -SR4인 청구항 1 화합물의 제조방법.
  11. X+-CH2-CH(NH2)-CH2-Y-(이때 X+와 Y -는 청구항 1에 정의한 바와 같고, 에시드 Y- 그룹은 선택적으로 보호기에 의해 보호됨)와, 알칸 카르브알데히드(이때, 알킬 부분은 목적하는 R4의 한-항 낮은 동족(a one-term lower homologue of the desired R4))을 반응시키고, 계속해서 환원반응시켜 제조하는 것을 특징으로 하는 Z가 -NHR4인 청구항 1 화합물의 제조방법.
  12. 삭제
  13. 상기 청구항 1 내지 7에서 정의된 화합물으로부터 선택된 최소 1종 화합물의 치료학적 유효량과, 약리학적으로 허용 가능한 소포제(vehicle) 및 부형제(excipient)가 포함된 것임을 특징으로 하는 고혈당증, 당뇨병, 비만증, 고혈압, 죽상동맥경화증, 심장 발작증, 또는 국소빈혈증 치료 및 예방용 약제 조성물.
  14. 상기 청구항 1 내지 7에서 정의된 화합물으로부터 선택된 최소 1종 화합물의 치료학적 유효량과, 약리학적으로 허용 가능한 소포제와 부형제, 그리고 선택적으로 다른 유효 성분과의 조합이 포함된 것임을 특징으로 하는 고혈당증, 당뇨병, 비만증, 고혈압, 죽상동맥경화증, 심장 발작증, 또는 국소빈혈증 치료 및 예방용 약제 조성물.
  15. 삭제
  16. 삭제
  17. 제 14 항에 있어서, 상기 다른 유효 성분은 당뇨병치료용으로 잘 알려진 적합한 유효 성분인 것임을 특징으로 하는 약제 조성물.
  18. 제 17 항에 있어서, 상기 당뇨병의 치료에 적합한 유효 성분은 설포닐우레아, L-카르니틴, 피브레이트 및 활성화된 수용체(PPAR-α)의 퍼옥시소말 프롤리퍼레이터 다른 작용물질, 9-시스 레티노익 에시드 활성화된 수용체의 작용물질, HMG-CoA 환원효소 억제제, β-시토스테롤 억제제, 콜레스테롤 아실트랜스퍼라제 억제제, 비구아니드, 콜레스티라민, 안지오텐신 II 작용물질, 멜린아마이드, 니코티닉 에시드, 피브리노겐 수용체 작용물질, 아스피린, α-글루코시다제 억제제, 인슐린 시크레토고그, 인슐린 및 글루카곤-같은 단백질(인크레틴) 및 PPAR-γ의 작용물질로 이루어진 그룹으로부터 선택되는 것임을 특징으로 하는 약제 조성물.
  19. 삭제
  20. 제 14 항에 있어서, 상기 다른 유효 성분은 비만증 치료에 적합한 유효 성분인 것임을 특징으로 하는 약제 조성물.
  21. 제 20 항에 있어서, 상기 비만증 치료에 적합한 유효 성분은 펜플루라민, 덱스펜플루라민, 펜티라민, β-3-아드레너직 수용체 작용물질로 이루어진 그룹으로부터 선택되는 것임을 특징으로 하는 약제 조성물.
  22. 삭제
  23. 제 14 항에 있어서, 상기 다른 유효 성분은 트리글리세리드헤미아(triglyce
    ridhemia) 과다 치료용으로 잘 알려진 적합한 유효 성분인 것임을 특징으로 하는 약제 조성물.
  24. 제 14 항에 있어서, 상기 다른 유효 성분은 높은 콜레스테롤 수치의 치료와 HDL 혈장 수치를 조절하는데 잘 알려진 적합한 유효 성분인 것임을 특징으로 하는 약제 조성물.
  25. 제 24 항에 있어서, 상기 높은 콜레스테롤 수치의 치료와 HDL 혈장 수치를 조절하는데 잘 알려진 적합한 약제 성분은 피브레이트, 다른 PPAR-α 작용물질; 콜레스테롤 생합성 억제제; HMG-CoA 환원효소 억제제, 스타틴류, 콜레스테롤 흡수 억제제, 아실 CoA: 콜레스테롤 아실트레스퍼라제 억제제, 음이온 교환 수지, 니코티닐 알콜, 니코티닉 에시드 또는 그들의 염; 비타민 E; 티로미메틱 및 L-카르니틴로 이루어진 그룹으로부터 선택되는 것임을 특징으로 하는 약제 조성물.
  26. 삭제
  27. 삭제
KR1020007012826A 1998-05-15 1999-05-11 카르니틴 팔미토일-트랜스퍼라제의 활성을 가역적으로억제하는 화합물 KR100585443B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT98MI001075A IT1299266B1 (it) 1998-05-15 1998-05-15 Inibitori reversibili della carnitina palmitoil trasferasi
ITMI98A001075 1998-05-15

Publications (2)

Publication Number Publication Date
KR20010034862A KR20010034862A (ko) 2001-04-25
KR100585443B1 true KR100585443B1 (ko) 2006-06-02

Family

ID=11380036

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020007012826A KR100585443B1 (ko) 1998-05-15 1999-05-11 카르니틴 팔미토일-트랜스퍼라제의 활성을 가역적으로억제하는 화합물

Country Status (15)

Country Link
US (4) US6369073B1 (ko)
EP (2) EP1484313B1 (ko)
JP (1) JP5127093B2 (ko)
KR (1) KR100585443B1 (ko)
AT (2) ATE276230T1 (ko)
AU (1) AU3847399A (ko)
CA (1) CA2329930C (ko)
CY (1) CY1110200T1 (ko)
DE (2) DE69920208T2 (ko)
DK (2) DK1077925T3 (ko)
ES (2) ES2345100T3 (ko)
HK (1) HK1033573A1 (ko)
IT (1) IT1299266B1 (ko)
PT (2) PT1077925E (ko)
WO (1) WO1999059957A1 (ko)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1299266B1 (it) 1998-05-15 2000-02-29 Sigma Tau Ind Farmaceuti Inibitori reversibili della carnitina palmitoil trasferasi
US6822115B2 (en) * 1999-06-30 2004-11-23 Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. Synthesis of (R) and (S)-aminocarnitine, (R) and (S)-4-phosphonium-3-amino-butanoate, (R) and (S) 3,4-diaminobutanoic acid, and their derivatives starting from D- and L-aspartic acid
IT1317885B1 (it) * 2000-08-01 2003-07-15 Sigma Tau Ind Farmaceuti Uso di fibrati per la preparazione di un medicamento utile neltrattamento dell'insufficienza cardiaca congestizia.
ITRM20010456A1 (it) * 2001-07-26 2003-01-27 Sigma Tau Ind Farmaceuti Procedimento per la preparazione di (r)- o (s)- amminocarnitina sale interno, dei suoi sali e dei suoi derivati.
US7045547B2 (en) * 2002-08-20 2006-05-16 University Of Delaware Acyl-CoA dehydrogenase allenic inhibitors
ITRM20030053A1 (it) * 2003-02-10 2004-08-11 Sigma Tau Ind Farmaceuti Associazione di farmaci antidiabetici.
EP1594439A2 (en) * 2003-02-13 2005-11-16 Albert Einstein College Of Medicine Of Yeshiva University REGULATION OF FOOD INTAKE AND GLUCOSE PRODUCTION BY MODULATION OF LONG-CHAIN FATTY ACYL-CoA LEVELS IN THE HYPOTHALAMUS
US7041286B2 (en) * 2003-07-23 2006-05-09 Nerenberg Arnold P Composition for mitigating a pernicious thrombotic event
US8314144B2 (en) 2004-02-12 2012-11-20 Defiante Farmaceutica, S.A. Compounds having antitumor activity
ITMI20040230A1 (it) 2004-02-12 2004-05-12 Defiante Farmaceutica Lda Composti ad attivita' antitumorale
WO2006041922A2 (en) * 2004-10-08 2006-04-20 Dara Biosciences, Inc. Agents and methods for administration to the central nervous system
US20070026079A1 (en) * 2005-02-14 2007-02-01 Louis Herlands Intranasal administration of modulators of hypothalamic ATP-sensitive potassium channels
ITRM20050090A1 (it) * 2005-03-02 2006-09-03 Sigma Tau Ind Farmaceutiche Riunite Spa Derivati dell'acido ammino-butanoico inibitore della cpt.
WO2006131452A1 (en) * 2005-06-06 2006-12-14 F. Hoffmann-La Roche Ag SULFONAMIDE DERIVATIVES USEFUL AS LIVER CARNITINE PALMITOYL TRANSFERASE (L-CPTl) INHIBITORS
US20090312286A1 (en) 2006-08-02 2009-12-17 Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. Derivatives of 4-trimethylammonium-3-aminobutyrate and 4-trimethylphosphonium-3-aminobutyrate as cpt-inhibitors
WO2008109991A1 (en) * 2007-03-09 2008-09-18 University Health Network Inhibitors of carnitine palmitoyltransferase and treating cancer
WO2009002433A1 (en) * 2007-06-22 2008-12-31 Dara Biosciences, Inc. Compositions and methods for treating skin disorders
US8680282B2 (en) 2007-08-01 2014-03-25 University Health Network Cyclic inhibitors of carnitine palmitoyltransferase and treating cancer
EP2183214A1 (en) * 2007-08-07 2010-05-12 SIGMA-TAU Industrie Farmaceutiche Riunite S.p.A. Crystalline teglicar
US20100064413A1 (en) * 2008-03-14 2010-03-18 Simply Weights, LLC Exercise clothing and accessories
CN101952243B (zh) * 2008-04-29 2014-07-16 霍夫曼-拉罗奇有限公司 4-二甲氨基丁酸衍生物
WO2009132979A1 (en) 2008-04-29 2009-11-05 F. Hoffmann-La Roche Ag 4-trimethylammonio-butyrates as cpt2 inhibitors
KR20110044209A (ko) * 2008-06-24 2011-04-28 다라 바이오싸이언시즈, 아이엔씨. 효소 억제제 및 그의 용도
US8580859B2 (en) 2008-08-01 2013-11-12 Bioxiness Pharmaceuticals, Inc. Methionine analogs and methods of using same
US8178515B2 (en) * 2008-10-08 2012-05-15 Nucitec S.A. De C.V. β-hydroxy-γ-aminophosphonates and methods for the preparation and use thereof
JP5854513B2 (ja) 2009-08-03 2016-02-09 インキューブ ラブズ, エルエルシー 腸管内でインクレチン生産を刺激するための嚥下可能カプセルおよび方法
US8759284B2 (en) 2009-12-24 2014-06-24 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9415004B2 (en) 2010-12-23 2016-08-16 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US8809269B2 (en) 2010-12-23 2014-08-19 Rani Therapeutics, Llc Therapeutic agent preparations comprising insulin for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US8734429B2 (en) 2010-12-23 2014-05-27 Rani Therapeutics, Llc Device, system and methods for the oral delivery of therapeutic compounds
US8809271B2 (en) 2010-12-23 2014-08-19 Rani Therapeutics, Llc Therapeutic agent preparations comprising liraglutide for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9283179B2 (en) 2010-12-23 2016-03-15 Rani Therapeutics, Llc GnRH preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US8969293B2 (en) 2010-12-23 2015-03-03 Rani Therapeutics, Llc Therapeutic agent preparations comprising exenatide for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9629799B2 (en) 2010-12-23 2017-04-25 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US10639272B2 (en) 2010-12-23 2020-05-05 Rani Therapeutics, Llc Methods for delivering etanercept preparations into a lumen of the intestinal tract using a swallowable drug delivery device
US8846040B2 (en) 2010-12-23 2014-09-30 Rani Therapeutics, Llc Therapeutic agent preparations comprising etanercept for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9284367B2 (en) 2010-12-23 2016-03-15 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9402807B2 (en) 2010-12-23 2016-08-02 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9402806B2 (en) 2010-12-23 2016-08-02 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US8980822B2 (en) 2010-12-23 2015-03-17 Rani Therapeutics, Llc Therapeutic agent preparations comprising pramlintide for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9259386B2 (en) 2010-12-23 2016-02-16 Rani Therapeutics, Llc Therapeutic preparation comprising somatostatin or somatostatin analogoue for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9861683B2 (en) 2010-12-23 2018-01-09 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9492466B2 (en) 2012-06-14 2016-11-15 Nucitec S.A. De C.V. Beta-hydroxy-gamma-aminophosphonates for treating immune disorders
JP6473352B2 (ja) * 2015-03-10 2019-02-20 利幸 糸井 虚血性疾患治療薬
CN114364385A (zh) 2019-08-30 2022-04-15 中国科学院动物研究所 用于对抗代谢疾病的组合物及其用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985004396A1 (en) * 1984-04-02 1985-10-10 Cornell Research Foundation, Inc. Aminocarnitines
WO1993025197A1 (en) * 1992-06-12 1993-12-23 Affymax Technologies N.V. Compositions and methods for enhanced drug delivery

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3810994A (en) * 1972-06-01 1974-05-14 Ethyl Corp Method and composition for treating obesity
JPS59216857A (ja) 1983-05-25 1984-12-06 Takeda Chem Ind Ltd Fa―5859関連化合物
CH655005A5 (it) * 1983-02-16 1986-03-27 Sigma Tau Ind Farmaceuti Composizione farmaceutica ad azione metabolica ed energetica utilizzabile in terapia cardiaca e vascolare.
EP0127098B1 (en) 1983-05-25 1989-02-08 Takeda Chemical Industries, Ltd. Derivatives of beta-amino-gamma-trimethylammonio-butyrate, their production and use
IT1190163B (it) * 1986-01-13 1988-02-16 Sigma Tau Ind Farmaceuti Derivati fosforilalcanolammidici della l-carnitina e composizioni farmaceutiche che li contengono
US5196418A (en) * 1992-02-14 1993-03-23 Board Of Supervisors, Louisiana State University Agricultural & Mechanical College Hemicholinium lipids and use thereof
HUT65327A (en) * 1992-06-11 1994-05-02 Sandoz Ag Process for producing phosphinyloxy-propyl-ammonium inner sact derwatives ang pharmateutical preparations containing them
IT1263004B (it) * 1992-10-08 1996-07-23 Sigma Tau Ind Farmaceuti Impiego della l-carnitina e acil l-carnitine nel trattamento a lungo termine di pazienti diabetici non insulino-dipendenti.
KR980009257A (ko) * 1996-07-02 1998-04-30 주상섭 2-히드록시프로피온산 유도체 및 그의 제조방법
IT1299266B1 (it) 1998-05-15 2000-02-29 Sigma Tau Ind Farmaceuti Inibitori reversibili della carnitina palmitoil trasferasi
US6822115B2 (en) * 1999-06-30 2004-11-23 Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. Synthesis of (R) and (S)-aminocarnitine, (R) and (S)-4-phosphonium-3-amino-butanoate, (R) and (S) 3,4-diaminobutanoic acid, and their derivatives starting from D- and L-aspartic acid
IT1306162B1 (it) * 1999-06-30 2001-05-30 Sigma Tau Ind Farmaceuti Sintesi di (r) e (s)-amminocarnitina e di suoi derivati a partire daacido d e l-aspartico.
ITRM20010456A1 (it) * 2001-07-26 2003-01-27 Sigma Tau Ind Farmaceuti Procedimento per la preparazione di (r)- o (s)- amminocarnitina sale interno, dei suoi sali e dei suoi derivati.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985004396A1 (en) * 1984-04-02 1985-10-10 Cornell Research Foundation, Inc. Aminocarnitines
WO1993025197A1 (en) * 1992-06-12 1993-12-23 Affymax Technologies N.V. Compositions and methods for enhanced drug delivery

Also Published As

Publication number Publication date
USRE41226E1 (en) 2010-04-13
EP1077925A1 (en) 2001-02-28
US20020052348A1 (en) 2002-05-02
IT1299266B1 (it) 2000-02-29
ATE276230T1 (de) 2004-10-15
WO1999059957A1 (en) 1999-11-25
JP5127093B2 (ja) 2013-01-23
US6369073B1 (en) 2002-04-09
ITMI981075A1 (it) 1999-11-15
WO1999059957A9 (en) 2002-06-13
KR20010034862A (ko) 2001-04-25
CA2329930A1 (en) 1999-11-25
DK1077925T3 (da) 2005-01-24
PT1077925E (pt) 2004-12-31
ATE465988T1 (de) 2010-05-15
CA2329930C (en) 2010-02-23
US6444701B1 (en) 2002-09-03
JP2003513002A (ja) 2003-04-08
DK1484313T3 (da) 2010-07-19
DE69920208T2 (de) 2005-10-20
CY1110200T1 (el) 2015-01-14
USRE40861E1 (en) 2009-07-21
HK1033573A1 (en) 2001-09-07
EP1484313B1 (en) 2010-04-28
ES2230854T3 (es) 2005-05-01
AU3847399A (en) 1999-12-06
ES2345100T3 (es) 2010-09-15
PT1484313E (pt) 2010-07-21
EP1077925B1 (en) 2004-09-15
EP1484313A1 (en) 2004-12-08
DE69942315D1 (de) 2010-06-10
DE69920208D1 (de) 2004-10-21

Similar Documents

Publication Publication Date Title
KR100585443B1 (ko) 카르니틴 팔미토일-트랜스퍼라제의 활성을 가역적으로억제하는 화합물
EP0072286B2 (en) Organic amide compounds derived from nitrogenous lipids
EP0236872B1 (de) Hydroxylaminderivate, deren Herstellung und Verwendung für Heilmittel
JP3704149B2 (ja) 高コレステロール血症剤としてのn−アシルスルファミン酸エステル(またはチオエステル)、n−アシルスルホンアミドおよびn−スルホニルカルバミン酸エステル(またはチオエステル)
DE3881489T2 (de) Peptide mit collagenase hemmender wirkung.
SK64993A3 (en) Hydroxamic acid derivatives, method of their preparation and medicaments with their content
EP1009750B1 (fr) Nouveaux derives d&#39;(alpha-aminophosphino)peptides, leur procede de preparation et leurs applications therapeutiques
EP0546108B1 (en) Pro-drugs for cck antagonists
US5145872A (en) Peptides with pharmaceutical activity
WO2006092204A1 (en) Derivatives of aminobutanoic acid inhibiting cpt
EP0255164A2 (en) A thioester and its use for preparing pharmaceutical compositions for the treatment of ischemia and reperfusion syndromes
JPS6230762A (ja) 新規5−オキソ−1−イミダゾリジンアセトアミド誘導体
CA2329637A1 (fr) Derives d&#39;(alpha-aminophosphino) peptides et compositions les contenant
US4528296A (en) Derivatives of aminopyridinecarboxylic acids and pharmaceutical compositions containing them
EP0332999B1 (en) Peptides with inhibitory activity of enzymatic systems, process for their preparation and pharmaceutical compositions containing them
EP0218440A2 (en) N-Methylphenylserine alkyl ester derivatives and uses thereof
DD297400A5 (de) Acat-inhibitoren

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120507

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130508

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee