KR100333246B1 - 탄소섬유및그제조방법 - Google Patents

탄소섬유및그제조방법 Download PDF

Info

Publication number
KR100333246B1
KR100333246B1 KR1019940021290A KR19940021290A KR100333246B1 KR 100333246 B1 KR100333246 B1 KR 100333246B1 KR 1019940021290 A KR1019940021290 A KR 1019940021290A KR 19940021290 A KR19940021290 A KR 19940021290A KR 100333246 B1 KR100333246 B1 KR 100333246B1
Authority
KR
South Korea
Prior art keywords
carbon fiber
compound
group
ratio
carbon
Prior art date
Application number
KR1019940021290A
Other languages
English (en)
Other versions
KR950006045A (ko
Inventor
코바야시마사노부
이토오모토이
마쯔히사요오지
시미주카주하루
Original Assignee
도레이 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도레이 가부시끼가이샤 filed Critical 도레이 가부시끼가이샤
Publication of KR950006045A publication Critical patent/KR950006045A/ko
Application granted granted Critical
Publication of KR100333246B1 publication Critical patent/KR100333246B1/ko

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/16Chemical after-treatment of artificial filaments or the like during manufacture of carbon by physicochemical methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/14Chemical after-treatment of artificial filaments or the like during manufacture of carbon with organic compounds, e.g. macromolecular compounds
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2971Impregnation

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

X선광전자현미경에 의한 표면산소농도(O/C비)가 0.20이하, 화학변성 X선광전자현미경에 의한 표면수산기농도(C-OH/C비)가 0.5%이상이며 화학변성 X선광전자현미경에 의한 표면카르복시기농도(COOH/C비)가 2.0%이고, 가호제로서 에폭시기와 방향족환간의 원소수가 6이상인 다중에폭시기를 지니는 방향족화합물 또는 다중에폭시기를 지니는 지방족화합물로 이루어지는 탄소섬유, 이것은 탄소섬유를 알카리수용액중에서 전화시키거나, 또는 산수용액중에서 전화하고 알카리수용액으로 세정한 후, 가호제로서 탄소섬유에 에폭시기와 방향족환간의 원소수가 6이상인 다중에폭시기를 지니는 방향족화합물 또는 다중에폭시기를 지니는 지방족화합물을 가호제로서 적용하므로써 제조된다. 탄소섬유를 암모늄염수용액중에서 전화시킨 후, 섬유에 에폭시기와 방향족환간의 원소수가 6이상인 다중에폭시기를 지니는 방향족화합물 또는 다중에폭시기를 지니는 지방족화합물의 가호제를 적용하는 탄소섬유의 제조방법이다.

Description

탄소섬유 및 그 제조방법
본 발명은 탄소섬유 및 그 제조방법에 관한 것이다. 더욱 상세하게는 메트릭스에 대한 접착성과 복합특성이 우수한 탄소섬유 및 그 제조방법에 관한 것이다.
탄소섬유는 여러 매트릭스와의 복합강화재료로 사용되고 있으며, 강화재료에 있어서 접착성은 그 특성을 나타내는데 중요하다.
일반적으로 표면비처리 탄소섬유는 매트릭스와의 접착성이 불충분하므로 이충강도(delamination strength) 및 전단강도 등의 교차특성(transverse properties)이 불량하다. 그러므로 탄화나 흑연화후에 매트릭스와 습윤성을 개선하기 위해서, 탄소섬유는 통상 전해산화, 기상 또는 액상의 화학적 산화로 산소함유 관능성기를 도입시킨다. 이와같이 신화처리에 의한 탄소섬유의 특성에 대해서는, 일본특허공개 4-361619호에 탄소섬유의 최상층표면에 관능성기를 특정화하므로써 접착강도를 개선하는 방법이 개시되어 있다. 또 일본특허공보4-44016 및 일본특허공개2-210059. 2-169763, 63-85167, 62-276075호에는 탄소섬유의 표면산소농도 및 표면질소농도를 X선광전자현미경으로 측정하여 특정화한 것이 개시되어 있다. 이것들은 가호제(sizing agent)와의 조합에 관한 연구는 이루어지지 않았다. 게다가 표면관능성기의 단순한 특정화로 매트릭스와의 접착성이 불량하며, 특히 매트릭스와의 반응성이 낮은 것 등의 결점이 있었다.
한편 탄소섬유나 흑연섬유는 본질적으로 강직하고 무르며, 접합능, 굽힘능 및 내마모성이 결여되어서, 접합능을 부여하고 굽힘능 및 내마모성을 개선하기 위해서 통상 가공시에 보푸라기의 형성이나 실의 손상을 방지하는 여러 형태의 가호제를 나중에 가한다. 가호제는 단순히 풀이나 접착제로서 개발, 사용되었으며, 가공성을 개선하기 위해서 매트릭스에 대한 접착성을 개선하기 위한 사용의 연구는 사실상 이루어지지 않았다. 또한 접합성이나 인장강도를 포함하는 복합체의 종합적인 특성을 개선하기 위해서 상기한 탄소섬유의 표면에 관능성기를 특정하는 등의 표면특성에 대한 가호제의 적용에 대해서는 연구가 이루어지지 않았다.
현재 가장 일반적인 탄소섬유강화 복합재료용 매트릭스는 에폭시수지류이므로, 가호제는 통상 에폭시수지 또는 변성에폭시수지가 이용되며, 대표적으로는 매트릭스에 구조적으로 관련된 방향족화합물로서 비스페놀A 디글리시딜에테르형 에폭시수지가 일본특허공보4-8542, 일본특허공개1-272867, 일본특허공보62-56266 및 57-15229에 개시되어 있다.
가호제로서 방향족환을 보유하지 않는 선형에폭시화합물의 적용이 일본특허공보 60-47953 및 3-67143호에 개시되어 있다. 또 일본특허공보63-14114호에는 접한능 및 전단강도를 개선하기 위해서 가호제로서 특정한 폴리올폴리글리시딜에테르화합물의 사용이 개시되어 있다. 그러나 단지 가호제로서 특정화하여서 매트릭스와의 접착력이 특히 반응성이 낮은 매트릭스인 경우에 충분하지 않았다.
가호제의 조성에 관해서는 접합능을 포함하는 가공성을 개선할 목적으로 상기한 에폭시수지(예를들어 일본특허공보1-20270 및 59-14591 및 일본특허공개57-47920호)에 폴리우레탄 등의 다른 성분을 조합한 수지계에 대한 연구가 이루어지고 있다.
한편 상기한 특정의 표면특성을 얻기 위한 산화방법으로서 전해산화가 가장 일반적으로 이용된다. 전해질로서는 산, 알카리 또는 이것들의 염의 수용액이 제안되어있다.
알카리수용액중의 전해처리는 효율성 및 장비의 부식을 방지하는 점에서 수산화나트륨과 같은 무기성 강알카리물질을 사용하는 것이 가장 적합하다(일본특허공개 56-53275 및 61-275469호). 또한 금속원소를 함유하지 않는 유기성 강알카리전해질을 사용한 전해처리가 일본특허공보3-50029호에 개시되어 있다.
탄소섬유를 산전해처리한 후 알카리세정하는 방법이 일본특허공개61-124674호에 개시되어 있다.
탄소섬유에 아미노기 및 아미드기 등의 질소함유 관능성기를 도입하는 방법으로서 전해질에 암모늄면을 사용하는 방법이, 미국특허공보3822297호 및 4844781호 및 일본특허공보2-42940호에 개시되어 있다. 그러나 다른 매트릭스는 탄소섬유와 반응성이 다르므로, 표면처리의 단순한 특정화가 항상 우수한 접착특성을 부여하지는 않는다.
또한 일본특허공개63-12074호에는 탄소섬유의 관능성기가 금속염인 것이 개시되어 있다. 그러나 금속염이 에폭시화합물의 반응성을 자극시키는 반면에 특정한경화제를 비활성화시키고 복합체의 고온특성을 저하시키는 문제가 있으므로 바람직하지 않다.
탄소섬유에 에폭시수지의 전해중합법이 연구되고 있으며(일본특허공보1-45490 및 1-45489), 접합능 및 접착성의 개선이 개시되어 있다. 그러나 전해중합시 탄소섬유에 에폭시화합물을 첨가하는 반응에 있어서, 에폭시화합물간의 중합이 발생한다. 그 결과 이들 중합체로 오염된 처리용액으로 이 반응은 컨트롤이 곤란하게 되어 균등한 처리가 불가능해진다. 게다가 탄소섬유의 표면에 불순물로서 이 중합체가 부착하여 접착을 방해할 위험이 있으며, 이것은 접착력의 개선을 제한한다. 다른 문제는 에폭시화합물의 개환반응이 일어날 때 처리액이 산도 또는 알카리도를 나타낼경우, 처리액의 안정성에 관한 것이다.
본 발병의 목적은 종래기술의 문제점을 개선한 매트릭스에 접착성과 복합특성이 우수한 탄소섬유 및 그 제조방법을 제공하는 것이다.
본 발명에 의한 탄소섬유는 탄소섬유의 표면에 생성시키고, 2가호제의 타단을 매트릭스와 접합가능하도록 만들어서, 탄소섬유와 매트릭스가 가호제에 의해 결합되는 복합체를 제조하는 것을 특징으로 한다. 이 방법으로 탄소섬유와 매트릭스간의 접착력을 높이는 것이 가능하다.
또한 종래기술로서 단순히 탄소섬유의 표면에 관능성기를 보유하며 충분하지는 않지만 가호제로서 결합효과를 높이기 위해서, 0/C 또는 COOH/C비가 종래값보다 낮아야 하며, COH/C또는 N/C비가 종래값보다 커야 한다.
즉 관능성기로서 페녹성수산기 또는 아미노기는 결합효과를 나타내는데 중요한 기능을 하며, 페놀성수산기 이외의 관능성기, 즉 카르복시기, 케톤기 등은 적은 양으로 바람직하게 성질을 나타내므로 카르복시기가 극소량 있어야 하는 것이 특히 중요하다.
카르복시기는 수산기에 비해 에폭시기와의 반응성이 높지만, 카르복시기가 생성되는 동안 산소원자 2개와 탄소원자 1개가 결합하기 때문에 탄소섬유표면에 흑연결정인 6개고리의 화합결합은 파괴되며, 파괴된 가장자리로부터 산화가 일어나서 카르복시기가 무르게 붙어 있는 탄소층이 형성되어, 카르복시기와 가호제가 강한 결합을 하고 있음에도 불구하고 무른 탄소층에 갈라짐이 생기고, 그결과 탄소섬유와 매트릭스간의 접착력은 낮아지기 때문이다.
반대로 수산기 또는 아미노는 탄소섬유표면에 흑연결정인 6개 고리의 결합을 파괴하지 않으므로, 가호제와 결합하면 탄소섬유와 매트릭스간에 높은 접착력을 나타낸다.
게다가 탄소섬유의 표면에 결합된 가호제는 카르복시기보다 반응성이 낮은 수산기 또는 아미노기와 반응해야 하므로 반응성이 높은 것이 분명해진다. 그러므로 방향족환에 기인하는 입체적 방해 등의 효과를 최소화하기 위해서, 에폭시기와 방향족환간의 거리가 먼 지방족화합물 또는 방향족화합물이 효과적이므로, 복수개의 반응성 에폭시기를 포함하는 가호제가 필요하다.
한편 탄소섬유와 매트릭스간의 접착력을 높이는 것은 복합체의 인장파쇄가 더 무르게되므로, 복합체의 인장강도가 낮은 것에 관계된다. 고인성의 가호제는 접착력과 인장강도간의 교환조건관계를 최소화하기 위해서 효과적이며, 따라서 고리가 긴 지방족 또는 방향족화합물이 보다 효과적이다. 그러므로 방향족환에 의한 입체적 방해효과를 줄이기 위해서, 긴 고리구조를 보유하는 에폭시기와 방향족환간의 거리가 먼 지방족 또는 방향족화합물을 사용하는 것이 바람직하다.
본 발명에 의한 탄소섬유는 표면탄소농도(O/C비)가 X선광전자현미경의 측정으로 0.20이하, 바람직하게는 0.15이하, 보다 바람직하게는 0.10이하이다. O/C의 비가 0.20이상되면 탄소섬유 그 자체보다 훨씬 강도가 낮은 산소층이 탄소섬유의 표면을 덮어버려서, 수지의 관능성기와 탄소섬유상부표면간의 강한 화학결합에도 불구하고 복합체는 교차특성이 불량해진다.
O/C비의 하한은 0.02이상, 바람직하게는 0.04이상, 보다 바람직하게는 0.06이상이다. O/C의 비가 0.02이하에서는 가호제와의 반응성 및 반응량이 너무 작아서 교차 특성의 개선이 불량할 수 있다.
본 발명에 의한 탄소섬유 표면수산기의 농도 (C-OH/C비)가 화학변성 X선광전자현미경으로 0.5%이상, 표면카르복시기(COOH/C비)의 농도가 동기구로 측정하여 2.0%이하인, X선광전자현미경에 의한 O/C의 비가 특정범위에 있는 탄소섬유의 일예가 있다. C-OH/C의 비가 0.5%이하에서는 가호제와의 반응성 및 반응량이 낮아져서 복합체의 교차특성개선이 곤란하게 된다.
C-OH/C비의 상한은 3.0%이하, 바람직하게는 2.5%이하, 보다바람직하게는 2.0%이하이다. C-OH/C의 비가 3%이상이면 가호제와의 반응성 및 반응량이 과잉되어서 접착 특성의 개선이 불가능해지며, 복합체의 인장강도가 낮아질 우려가 있다.
O/C의 비가 0.2를 넘는 경우와 유사한 COOH/C의 비가 2.0%를 넘는 경우, 탄소섬유 그 자체보다 훨씬 강도가 낮은 산소층이 탄소섬유표면을 덮어버려서 복합체의 교차 특성이 불량하게 된다. 또 다른 문제는 매트릭스수지의 경화속도가 저하되는 것이다. COOH/C비의 하한은 0.2%이상, 바람직하게는 0.5%이상이다. COOH/C비가 0.2%이하에서는 가호제와의 반응성 및 반응량이 너무 낮아서 복합체교차특성의 개선이 불량해 질 수 있다.
본 발명에 의한 탄소섬유 표면질소농도(N/C비)가 X선 광전자현미경으로 0.02%이상, 바람직하게는 0.03%이상, 보다 바람직하게는 0.04%이상인 X선광전자현미경에 의한 O/C의 비가 특정범위에 있는 탄소섬유의 또 다른 예가 있다. 탄소섬유의 N/C비가 0.02%이하에서는 특정 가호제와의 반응성이 불가능해져서 복합체의 교차특성의 개선효과가 나타나지 않는다.
N/C비의 상한은 0.30이하, 바람직하게는 0.25%이하, 보다 바람직하게는 0.20이하이다. N/C의 비가 0.3%을 넘으면 가호제와의 반응성 및 반응량이 과잉되어서 접착 특성의 개선이 불가능해지며, 복합체의 인장강도가 낮아질 우려가 있다.
탄소섬유내부에 질소농도는 접착력의 개선에 실질적으로 영향을 미치지 않는 반면에, 탄소섬유표면의 질소농도는 접착력의 개선에 특히 중요하다. 엄밀히 말해서 여기에 관련된 질소농도는 표면질소농도로부터, 원소분석으로 탄소섬유의 벌크(bulk)중에서 평균질소농도를 빼서 산출한 것이며, 이값은 0이상, 바람직하게는 0.01이상, 보다 바람직하게는 0.02이상이다.
본 발명의 탄소섬유는 탄소섬유는 상기한 표면특성을 지니며, 가호제로서 다음에서 설명한 특정구조의 화합물을 보유한다. 본 발명에 의하면 다중에폭시기를지닌 지방족화합물이 가호제로서 사용될 수 있다. 본 발명에서 사용되는 "지방족화합물"은 선형구조의 화합물 즉 고리형이 아닌 선형포화탄화수소, 가지형포화탄화수소, 고리형이 아닌 선형불포화탄화수소 또는 가지형불포화탄화수소, 또는 상기 탄화수소류중 하나, CH3,CH2,CH 또는 C중 1개 이상의 탄소가 산소원자(0)로 치환된 것, 질소원자(NH,N), 유황원자(SO3H,SH)또는 카르보닐기(CO)을 뜻한다.
또한 다중에폭시기를 지닌 지방족화합물에서 최장(最長)원자쇄는 탄소원자의 총수의 최장원자쇄이며, 다른원자들(산소원자, 질소원자 등)은 두개의 에폭시기와 결합하는 선형구조를 만들어서, 총수는 최장원자쇄중의 윈자수이다. 최장원자쇄에 관계되는 수소원자 등의 원자수는 총수로서 세지 않았다.
곁사슬(side-chain)구조는 특히 한정하지는 않지만 가호제의 분자내 가교결합부위가 거의 없는 것이 바람직하다.
가호제가 2개 미만의 에폭시기를 보유하면 탄소섬유와 메트릭스수지를 효과적으로 연결할 수 없다. 그러므로 에폭시기의 수는 탄소섬유와 메트릭스수지간을 효과적으로 연결하기 위해서 2이상이 되어야 한다.
반면에 에폭시기가 너무 많으면 가호제화합물의 분자내 가교결합밀도가 너무커 져서, 무른 가호제충이 생성되어 복합체의 인장강도는 낮아진다. 그러므로 에폭시기의 수는 바람직하게는 6이하, 보다 바람직하게는 4이하, 보다 더 바람직하게는 2이다. 최장원자쇄의 양 끝에 에폭시기를 보유하는 것이 바람직하다. 즉 최장원자쇄의 양 끝에 에폭시기를 보유하는 것은 부분가교결합밀도가 너무 많이 증가하는것을 방지하므로 복합체의 인장강도에 바람직하다.
에폭시기의 구조는 반응성이 높은 글리시딜기의 구조가 바람직하다.
사용된 지방족화합물의 분자량은 수지점도가 너무 높거나 또는 낮기 때문에 탄소섬유의 취급성 악화를 방지하는 관점에서 바람직하게는 80∼3200, 보다 바람직하게는 100∼1500, 보다 더 바람직하게는 200∼1000이다.
본 발명에 있어서 다중에폭시기를 지니는 지방족화합물의 3체예로서는, 글리시딜 에테르화합물로서 에틸렌글리콜디글리시딜에테르 및 폴리에틸렌글리콜디글리시딜에테르, 프로필렌글리콜디글리시딜에테르 및 폴리프로필렌글리콜디글시딜에테르, 1,4-부탄디올디글리시딜에테르, 네오펜틸글리콜디글리시딜에테르, 폴리테트라메틸렌글리콜 디글리시딜에테르, 폴리알킬렌글리콜디글리시딜에테르 등을 들 수 있다. 게다가 폴리글리콜에테르화합물로서 글리세롤폴리글리시딜에테르, 디글리세롤폴리글리시딜에테르, 폴리글리세롤폴리글리시딜에테르, 소르비톨폴리글리시딜에테르, 아라비톨폴리글리시딜에테르, 트리메틸올프로판폴리글리시딜에테르, 펜타에리트리톨폴리글리시딜에테르, 지방족 다가 알코올의 폴리글리시딜에테르 등을 들 수 있다.
글리시딜기를 보유하는 고반응성의 지방족폴리글리콜에테르화합물이 바람직하다. 보다 바람직하게는 폴리에틸렌글리콜, 디글리시딜에테르, 폴리프로필렌글리콜디글리시딜에테르, 알칸디올디글리시딜에테르 및 다음식[Ⅱ], [Ⅲ] 및 [Ⅳ]의 구조를 지니는 화합물,
(식중 G는 글리시딜기: R1은 -CH2CH2-, -CH2CH2CH2- 또는 -CH(CH3)CH2-; R2는 -CH2-; R3,R4및 R5중 2이상은 -G이고 나머지는 -H, 또는 -G: m은 1∼25의 정수: n은 2∼75의 정수이며: x,y 및 z는 0또는 양수이며, x+y+z=0∼25를 나타낸다)이다. 또한 상기한 것의 혼합물도 사용될 수 있다.
다중에폭시기를 지니는 지방족화합물에 있어서 최장원자쇄의 원자수는 20이상의 바람직하다. 20이하에서는 가호층에 분자내 가교결합밀도가 너무 켜져서, 인성이 낮은 구조가 생성되므로 복합체의 인장강도가 불량해진다. 대조해서 최장원자쇄에 있어서 원자수가 큰 것은 가호충에 유연하며 매우 강인한 구조를 부여하기 때문에 인장강도가 개선되며, 특히 무른수지에도 인장강도가 높아진다. 최장원자쇄의 원자수는 25이상이 보다 바람직하며, 30이상이 보다 더 바람직하다.
최장원자쇄에 원자수가 중가하는 것은 구조가 더 유연해지는 것이지만, 긴 원자쇄의 구부러짐이 너무 길면 탄소섬유표면에 관능성기의 장애가 유발되어서 탄소섬유와 수지간의 접착력을 감소시킬 수 있다. 그러므로 원자수는 200이하가 바람직하고, 100이하가 보다 바람직하다.
고리형구조를 포함하는 지방족화합물이 있는 경우 원소수는 실제상에폭시기가 고리형구조로부터 충부한 거리에 있으면 6이상이 될 수 있다.
본 발명에 의하면 에폭시기와 방향족환간에 6이상의 원자를 보유하며 다중에폭시기를 지닌 방향족환간의 원자수는 탄소원자의 총수 및 에폭시수지와 방향족환 결합한 선형구조를 만드는 다른 원자들(산소원자, 질소원자)에 관게된다. 이 경우 선형구조는 상기한 선형구조와 같은 것이다.
가호제의 에폭시기와 방향족환사이에 적어도 6개의 원자가 존재하지 않으면, 탄소 섬유와 매트릭스수지간의 계면에 뻣뻣하고 입체적으로 큰 화합물이 생성되어, 탄소 섬유의 상충에 관느성기와의 반응성을 개선하는데 곤란하게 되어서 복합체의 교차특성개선을 기대할 수 없다.
이와같은 방향족화합물은 다음의 일반식[Ⅰ]로 나타낼 수 있다.
식중 R1은 다음 기로 표시된다.
R2는 탄소수2∼30의 알킬렌기, R3는 -H 또는 -CH3를, m 및 n은 각각2∼48의정수, m+n은4∼50을 나타낸다. 이 경우 탄소섬유와 매트릭스수지간의 계면에 뻣뻣하고 입체적으로 큰 화합물이 생성되는 것을 피하기 위해서, 분자쇄는 선형이며 유연성이 있는 것이 바람직하며, 일반식[Ⅰ]에서 m 및 n이 2이상, 바람직하게는 3, 보다 바람직하게는 5이고, m+n이 4이상, 바람직하게는 6이상, 보다 바람직하게는 10이상이다. m 및 n이 각각 2이하 또는 m+n이 4이하인 화합물에서 매트릭스수지와 탄소섬유간의 접착은 때때로 매우 낮아질 수 있다. 한편 m+n이 50이상이면 매트릭스수지의 상화성(相和性)이 감소되어서, 때때로 매트릭스수지와 탄소섬유간의 접착을 저하시킬 수 있다.
어기서 일반식[Ⅰ]의 비스페놀 A부 또는 비스페놀 F부는 매트릭스수지의 상화성개성을 개선시키는 효과와 보푸라기방지특성의 개선효과를 모두 가지고 있다.
본발명에 의하면 에폭시기 및 방향족환간의 원소수가 6이상인 다중에폭시기를 지니는 방향족화합물의 주구조는 축합된 다고리형 방향족화합물이 될 수 있다. 축합된 다고리형 방향족화합물은 예를들어, 나프탈렌, 안트라센, 페난트란, 크리센, 피렌, 나프타센, 트리페닐렌, 1, 2-벤잔트라센, 벤조피렌 등이다. 이중 구조가 적은 나프탈렌, 안트라센, 페난트란 및 피렌이 바람직하다.
다중에폭시기를 지닌 축합된 다고리형 방향족화합물에서 에폭시당량의 수는, 충분히 개선된 접착성을 지닌 생성물을 제조하는 관점에서 바람직하게는 150∼350, 보다 바람직하게는 200∼300이다.
다중에폭시기를 지닌 축합된 다고리형 방향족화합물의 분자량은 수지점도가 너무 높아서 탄소섬유의 취급성이 악화되는 것을 방지하는 관점에서, 바람직하게는400∼800, 보다 바람직하게는 400∼600이다.
본발명에 의하면, 탄소섬유의 점도조정, 내마모성의 개서, 보푸라기방지효과의 개선, 접합능의 개선 및 가공능을 개선하기 위해서 에피코테 828 또는 에피코테 834를 포함하는 저분자량 비스페놀성 에폭시화합물, 선형 저분자량 에폭시화합물, 폴리우레탄, 폴리에스테르유화제 또는 계면활성제 등의 다른 성분을 가해도 된다.
또한 부타디엔니트릴고무 등의 고무, 또는 에폭시말단 부타디엔니트릴고무 등의 선형에폭시변성 탄성중합화합물을 가해도 문제가 없다.
탄소섬유에 있어서 가호제의 양은, 가호제를 과량으로 소비하는 것을 피하고 수지와의 접착을 개선하는 관점에서 탄소섬유단위당 바람직하는 0.01∼10중량%, 보다 바람직하게는 0.05∼5중량%, 보다 더 바람직하게는 0.1∼2중량%이다.
본발명에 의한 가호제는 균일하게 피막된 것이 바람직하다.
즉 가호층의 두께는 두께의 최대값이 최소값의 두배를 넘지 않는 20∼200Å이 바람직하다. 이같이 균일한 가호층은 커플링효과가 보다 효과적으로 나타나도록 한다.
본발명에 의한 탄소섬유의 기계특성은 섬유강도가 350kgf/㎟이상, 바람직하게는 400kgf/㎟이상, 보다 바람직하게는 450kgf/㎟이상이다. 또한 탄소섬유의 탄성모듈은 바람직하게는 22tf/㎟이상, 보다 바람직하게는 24tf/㎟이상, 보다 더 바람직하게는 28tf/㎟이상이다. 탄소섬유의 섬유강도 또는 탄성모듈이 각각 350kgf/㎟이하 또는 22tf/㎟이면, 이때 그 복합체가 구조적인 재료로서 소망한 특성을 나타낼 경우얻어질 수 없다.
본발명에 의한 탄소섬유의 제조방법을 설명한다. 탄소섬유의 표면처리 및 가호처리는 다음에서 설명하며, 탄소섬유의 중합화, 방사(紡絲) 및 열처리는 방법을 한정하지 않는다.
본발명에 의한 방법에 적용되는 탄소섬유원료는 공지의 폴리아크릴로니트릴계, 피치계(pitch-based) 또는 레이온계 탄소섬유가 될 수 있다. 폴리아크릴로니트릴계 탄소섬유는 고장도의 탄소섬유가 보다 용이하게 얻어질 수 있으므로 바람직하다. 더 상세한 설명은 다음에서 폴리아크릴로니트릴계 탄소섬유를 참고로 한다.
적용된 방사법은 습식방사법, 건식방사법, 반습식방사법 등이 바람직하다. 고강도의 필라멘트를 얻기위해서 습식방사법 또는 반습식방사법이 바람직하고, 반습식방사법이 보다 바람직하다. 사용된 방사액은 폴리아크릴로니트릴의 단독중합체 또는 공중합체를 함유하는 용액 또는 현탁액이며, 중합체를 정제하여 불순물을 제거하는 것은 고성능의 탄소섬유를 얻는데 중요하다.
상기한 방사액은 전구(前體)필라멘트를 제조하기 위해서 산화, 탄화 및 필요에 따라서 흑연화하여 탄소섬유를 만들고, 응결, 세정, 드로오일(drawing) 및 급유처리한다. 섬유의 결함유도를 방지하고 인장응력에 의한 배향을 높여서 고성능 탄소섬유를 얻기 위해서는, 먼지 및 용액이나 부터의 외부물질 등의 불순물을 최소화하는 것이 중요하다. 본발명에 의한 탄소섬유를 얻기 위해서 탄화 및 흑연화는 1100℃이상의 최고가열온도에서, 바람직하게는 1400℃이상에서 실시해야 한다.
고강도, 고탄성모듈 및 미세한 탄소섬유를 얻기 위해서 모노필라멘트직경이 7.5㎛이하, 바람직하게는 6㎛이하, 보다 바람직하게는 5.5㎛이하이다. 이 탄소섬유를 다음에 표면처리 및 가호처리한다.
다음 방법은 화학변성 X선광전자현미경에 의한 표면수산기 농도(C-OH/C비). 표면 카르복시기농도(COOH/C비), 및 X선광전자현미경에 의한 O/C비가 상기한 범위인 탄소섬유의 제조방법이다.
한가지 방법은 알카리수용액중에서 탄소섬유를 전해처리하는 것이다. 이 알카리수용액은 pH가 7∼14, 바람직하게는 8∼14, 보다 바람직하게는 10∼14인 알카리수용액이어야 한다. 전해질은 수용액중에서 알카리도를 나타내는 것으로, 특히 수산화 나트륨, 수산화칼륨 및 수산화바륨, 암모니아 등의 수산화수용액, 탄산나트륨, 탄산수소나트륨 등의 무기염과 아세트산나트륨, 벤조산나트륨 등의 유기염 및 칼륨, 바륨 및 다른 금속류의 염, 암모늄염 및 히드라진 등의 유기화합물을 들 수 있다. 알카리금속을 포함하지 않는 것은 수지의 경화를 방해할 수 있으므로, 강한 알카리도를 나타내는 탄산암모늄, 탄산수소암모늄 또는 수산화테트라알킬암모늄 등의 무기성 알카리가 바람직하다.
전해질용액의 농도는 0.01~5몰/ℓ, 바람직하게는 0.1∼1몰/ℓ가 되어야 한다. 농도가 높아지면 환경의 심한 오염으로 인해서 파괴되어 전해전압이 낮아지므로 이 범위가 가장 적합하다.
전해질용액온도는 0∼100℃, 바람직하게는 10∼40℃가 되어야 한다. 고온에서 심한 오염에 의한 환경파괴를 피하기 위해서 저온이 바람직하며, 이것은 가격조정에 근거해서 활용하는 것이 바람직하다.
전류량은 처리될 탄소섬유의 탄화정도에 근거해서 활용하는 것이 바람직하며, 고탄성모듈의 필라멘트는 고전류를 요한다. 전해처리는 탄소섬유기질의 강도가 감소하는 것을 방지하고 생산성을 개선하며 표면의 저결정성을 촉진하는 관점에서, 수회반복하는 것이 바람직하다. 특히 전해조당 전류는 바람직하게는 5∼100쿨롱/g·전해조(각 전해조에 탄소섬유 1g당 쿨롱수), 보다 바람직하게는 10∼80쿨롱/g 전해조 및 보다 더 바람직하게는 20∼60쿨롱/g·전해조이다. 적합한 범위에서 표면층결정도의 감소를 유지하는 관점에서, 전화(電化)의 총전류는 5∼1000쿨롱/g의 범위가 바람직하고, 10∼500쿨롱/g가 보다 바람직하다.
전해조의 수는 2개이상이 바람직하며, 4개이상이 보다 바람직하다.
탄소섬유의 표면을 효과적으로 산화시키고, 안정되게 유지시키는 관점에서, 전해 처리용액의 탄소섬유표면 m2당 전류밀도는 1.5∼1000암페어/m2, 바람직하게는 3∼500 암페어/m2이다.
전해전압은 안정성을 고려해서 25V이하가 바람직하며, 0.5∼20V가 보다 바람직하다. 전해처리시간은 전해질농도를 기초로 활용되며, 생산성의 관점에서 수초내지 10분, 바람직하게는 약 10초 내지 2분으로 한다, 전해처리법은 배치시스템 또는 연속시스템이 이용될 수 있다. 연속시스템은 생산성을 높이고 진동을 저하시키므로 바람직하다. 전화법은 전류가 전극로울러와 직접 접촉하므로써 탄소섬유를 통해서 흐르는 직접전화이거나, 전류가 전해질용액을 통한 전극과 탄소섬유간을 통해서 흐르는 간접전화가 있다. 전해처리시 보푸라기의 발생이 적고 전기스파크가 적은 간접전화법이 바람직하다.
또한 전해처리법은 필요한 수의 전해조 각각을 통해서 필라멘트를 한번 통과시키거나, 또는 1개의 전해조에 필요한 회수의 필라멘트를 통과시켜서 처리할 수 있다. 양극의 길이는 5∼100mm가 바람직하고, 음극길이는 300∼1000mm가 바람직하고, 350~900mm가 보다 바람직하다.
다음 방법은 화학변성X선광전자현미경에 의한 표면수산기능도(C-OH/C비), 표면카르복시농도(C-COOH/C비) 및 X선광전자현미경에 의한 O/C비가 다음과 같은 탄소섬유의 제조방법이다. 즉 이 방법은 처리할 탄소섬유의 전해질용액을 산성 또는 염수용액을 사용하며, 알카리수용액으로 세정하는 것을 포함한다.
이 경우 전해질은 수용액중에서 산도를 나타내는 것을 사용하며, 예를들어 황산, 질산, 염산, 인산, 붕산, 탄산 등의 무기산, 아세트산, 부티르산, 옥살산, 아크릴산, 말레산 등의 유기산, 또는 황산암모늄, 황산수소암모늄 등의 염이 있으며, 이중산도가 높은 황산 및 질산이 바람직하다.
전해용액농도, 전해질온도, 전화전류, 총전류, 전해전압, 처리시간, 전해처리법 및 전화법은 상기한 알카리수용액에서 전해처리와 같지만, 고농도 및 고온에서의 처리가 더 강한 산화처리에 보다 효과적이다.
산성수용액중에서 전해처리한 후, 세정은 알카리수용액으로 한다.
세정액으로 사용될 알카리수용액은 pH가 7∼14, 보다 바람직하게는 10∼14의 알카리여야 한다.
특히 수산화나트륨, 수산화칼륨 및 수산화바륨, 암모니아 등의 수산화수용액, 탄산나트륨, 탄산수소나트륨 등의 무기염과 아세트산나트륨, 벤조산나트륨 등의 유기염 및 칼륨, 바륨 및 다른 금속류의 염, 암모늄염 및 히드라진 등의 유기화합물을 들 수 있다. 알카리금속을 포함하지 않는 것은 수지의 경화를 방해할 수 있으므로, 강한 알카리도를 나타내는 탄산암모늄, 탄산수소암모늄 또는 수산화테트라알킬암모늄 등의 무기성알카리가 바람직하다.
알카리수용액중 알카리화합물의 농도는 pH를 상기한 특정범위로 조정하는 것이 바람직하며, 특히 0.01∼10몰/ℓ가 바람직하며, 0.1∼2몰ℓ가 보다 바람직하다. 세정액의 온도는 0∼100℃, 바람직하게는 실도∼60℃이다.
세정은 담금법(dip method), 분산법 등이 있으며, 쉽게 세정하기 위해서 담금법이 바람직하다. 또한 세정시 초음파로 탄소섬유를 진동시키는 것이 더 바람직하다.
전해처리 또는 세정처리후에 수세 또는 건조시키는 것이 바람직하다. 이 경우 건조온도가 너무 높으면 탄소섬유표면의 관능성기가 열분해되어 소멸될 수 있으므로, 건조는 가능한한 저온에서, 특히 250℃이하 210℃이하로 하는 것이 바람직하다.
표면산소농도(O/C비) 및 표면질소농도(N/C비)가 X선광전자현미경에 의해 상기한 특정범위에 있는 탄소섬유는 암모늄염의 수용액중에서 전해처리하므로써 얻어질 수 있다.
이 경우 전해용액은 암모늄이온을 포함하는 수용액으로, 사용가능한 전해용액은 예를들어 질산암모늄, 황산암모늄, 과황산암모늄, 염화암모늄, 브롬화암모늄, 인산이수소암모늄, 인산수소디암모늄, 탄산수소암모늄, 탄산암모늄 등 및 이들의혼합물이 있다. 황산암모늄, 질산암모늄 및 탄산수소암모늄이 바람직하며, 탄산암모늄 및 탄산수소암모늄은 수세 및 건조후 탄소섬유표면에 거의 잔류하지 않으므로 특히 바람직하다.
전해액농도, 전해온도, 전화전류, 총전류, 전해전압, 처리시간, 전해처리법 및 전화방법은 상기한 알카리수용액에서의 전해처리와 같다.
가호제를 적용하는 방법은 한정하지 않으며, 예를들어 로울러를 경유한 섬유를 가호제에 함침시키는 방법, 가호제로 피복된 섬유를 로울러와 접촉시키는 방법 및 연무로서 가호제를 스프레이하는 방법을 포함한다. 배치시스템이나 연속시스템이 이용될 수 있다. 연속시스템은 생산성이 높고 진동이 적어서 바람직하다. 적당한 범위에서 탄소섬유에 가호제성분을 효과적으로 균일하게 코우팅하기 위해서, 이때 가호제농도, 온도 및 필라멘트인장응력을 조절하는 것이 바람직하다. 가호제를 적용하는 동안 초음파로 탄소섬유를 진동시키는 것이 더 바람직하다.
건조시간 및 온도는 코우팅양에 따라서 조정되지만, 가호제적용에 사용된 용매의 완전제거 및 건조에 요구되는 시간을 줄이기 위해서, 탄소섬유다발이 열이나 경화에 의해 열화되어 분산능이 손상되는 것을 방지하기 위해서, 건조온도는 150∼350℃가 바람직하고, 180∼250℃가 더욱 바람직하다.
가호제에 사용된 용매는 물, 메탄올, 에탄올, 디메틸포름아미드, 디메틸아세트아미드, 아세톤 등이 있다. 취급의 용이성 및 화제방지의 관점에서 물이 바람직하다. 그러므로 사용된 가호제가 불용성이거나 물에 난용성의 화합물인 경우, 분산시키기 위해서 유화제, 계면활성제 등을 가한다. 특히 유화제 또는 계면활성제는스티렌/말레산무수물공중합체, 올레핀/말레산무수물공중합체, 나프탈렌술폰산염의 포르말린 축합체, 폴리아크릴산나트륨 등의 음이온성 유화제; 폴리에틸렌이민, 폴리비닐이마다졸린 등의 양이온성 유화제 또는 노닐페놀에틸렌옥시드첨가물, 폴리비닐알코올, 폴리옥시에틸렌에테르에스테르공중합체, 소르비탄에스테르에틸옥시드첨가물 등의 비이온성 유화제가 사용될 수 있다. 에폭시기와의 상호작용이 적은 비이온성 유화제가 바람직하다.
본발명에 의한 탄소섬유는 매트릭스와 조합시켜 복합체재료로 사용된다.
이 경우 적용되는 매트릭스는 에폭시 또는 폴리에스테르수지등의 열경화성수지, 나일론, 폴리에테르에테르케톤 등의 열가소성수지, 시멘트 또는 기타 등을 포함하는 것이다. 가호제화합물은 에폭시기를 포함하고 있으므로, 그것과 상용성이 높은 열경화성수지 또는 열가소성수지가 바람직하며, 에폭시수지가 특히 바람직하다.
특히 사용된 비스페놀성에폭시는 시판되고 있는 것으로, 예를들어 비스페놀 A형으로서, 에피코테 828, 1001, 1004, 1009(유카쉘), 에포-토흐토 YD019, YDO20, YD7019, YD7020, 페놀-트흐토 YP50, YP50P(쿄토카제이), 에피콜론 840, 850, 855, 860, 1050, 1010, 1030 (다이니혼 잉크 카가쿠 쿄오교오)등이 있다. 비스페놀F형은 에피콜론 830 및 831 (다이니혼 잉크 카가쿠 쿄오교오)등을 포함한다.
페놀블랙형 에폭시수지는 에피코테 152, 154(유카셀), 도우-에폭시 DEN431, 438, 439, 485(도우케미칼), 및 시바-게이지EPN1138, 1139(시바-게이지)를 포함한다. 변성크레졸노블랙형 에폭시류는 예를들어 시바-게이지 ECN1235, 1273, 1280,1299(시바-게이지), EOCN102, 103, 104(니혼카야쿠) 및 에피콜론 N660, N665, N670, N673, N680, N690, N695(다이니혼 잉크 카가쿠)를 포함한다. 또한 변성크레졸노볼랙형에폭시수지도 사용할 수 있다.
다관능성 에폭시수지는 N,N,N,'N'-테트라글리시딜 디아미노디페닐메탄, ELM434(수미토모카카쿠쿄오교오), MY720(시바-게이지) 및 YH434(쿄토카제이)를 포함한다.
목적에 따라서 이들 에폭시수지는 에폭시수지조성물을 제조하기 위해서 조합된다. 첨가제나 경화제에 관한 특별한 제한은 없으며, 첨가제는 폴리비닐아세탈수지, 폴리비닐부티랄수지, 폴리비닐포르말수지 등이 있으며, 경화제는 디아미노디페닐술폰, 보론삼플루오르화물/아민킬레이트, 이미다졸화합물, 디시안디아미드 및 우레아유도체가 있으며, 동시에 사용된 다중경화제가 있다.
또한 경화온도에 대한 제한은 없지만 복합제의 교차특성의 현저하게 개선하기 위해서, 탄소섬유에 대한 반응성이 낮은 에폭시수지조성물이 가장 적합하며, 경화온도는 200℃이하, 바람직하게는 150℃이하이다. 특히 사용에 적합한 것은 일본특허공보 63-60056, 일본특허공개 63-162732 및 일본특허공보 4-80054에 개시된 내열성이 개선된 180℃ 경화에폭시수지조성물이며, 낮은 반응성으로 인해서 130℃ 경화에폭시수지조성물이 특히 바람직하다.
본발명의 더 상세한 설명은 실시예를 참고로 설명될 것이다.
여러 특성값을 측정하기 위해서 본발명에서 사용된 방법들이 먼저 설명될 것이다.
원소분석에 의해 표면산소농도(O/C비), 표면질소농도(N/C비), 표면수산기농도(C-OH/C비), 표면카르복시기농도(COOH/C), 질소농도(N/C비) 및 마모보푸라기수는 다음 방법으로 측정되었다.
표면산소농도(O/C비)는 X선광전자현미경으로 측정되었고, 다음과 같이 실시되었다. 먼저 용매와 함께 제거되는 가호제로부터 탄소섬유다발을 컷트하여 스테인레스 티일 샘플베이스에 분산시키고, 이것을 X선원으로서 전자방출각도 90°, MgKα1, 2인 분광법을 실시한 후, 샘플내부를 진공도 1x10-8Torr로 유지시켰다. 측정시 정전자를 수반하는 피이크의 보상으로서, 주피이크 CIS의 결합에너지 값은 먼저 284.6eV로 맞춘다. CIS피치크의 면적은 282∼296 eV의 범위에서 선형의 기본선을, OIS피이크의 면적은 528∼540 eV의 범위에서 선형의 기본선을 빼서 계산된다. 표면산소농도(O/C비)는 비교감도펙터에 의해 상기한 OIS피이크면적 및 CIS피이크면적의 비를 나누어 계산된 원자비로 표시된다. 이 예에서 ESCA-750 (시미즈 세이사쿠쇼의 제품)이 사용되며, 비교감도펙터는 2.85이었다.
표면질소농도(N/C비)는 X선광전자현미경으로 측정되었고, 다음과 같이 실시되었다. 먼저 용매와 함께 제거되는 가호제로부터 탄소섬유다발을 컷트하여 스테인레스티일 샘플베이스에 분산시키고, 이것을 X선원으로서 2, 전자방출각도 90° , MgKα1의 분광법을 실시한 후, 샘플내부를 진공도 1X10-8Torr로 유지시켰다.
측정시 정전자를 수반하는 피이크의 보상으로서, 주피이크 CIS의 결합에너지값은 먼저 284.6 eV로 맞춘다 CIS피이크의 면적은 282∼296 eV의 범위에서 선형의 기본선을, NIS피이크의 면적은 398∼410 eV의 범위에서 선형의 기본선을 빼서 계산된다. 표면질소농도(N/C비)는 비교감도펙터에 의해 상기한 NIS피이크면적 및 CIS피이크면적의 비를 나누어 계산된 원자비로 표시된다. 이 예에서 ESCA-750 (시미즈 세이사쿠쇼의 제품)이 사용되며, 비교감도펙터는 1.7이었다.
표면수산기농도(C-OH/O비)는 화학변성 X선광전자현미경으로 다음과 같이 측정되었다. 먼저 용매와 함께 제거되는 가호제로부터 탄소섬유다발을 컷트하여 백금샘플 베이스에 분산되고, 화학적 변성을 위해서 실온에서 10분간 0.04몰/ℓ의 무수트리플루오로아세테이트가스를 함유하는 건조질소가스에 노출시킨 후, 이 샘플을 X선으로서 2, 전자방출각도 35° AlKα1의 분광법을 실시하기 위해서 X선광전자분광계에 장착하였으며, 샘플내부는 진공도 1X10-8Torr로 유지시켰다. 측정시 정전자를 수반하는 피이크의 보상으로서, 주피이크 CIS의 결합에너지값을 먼저 284.6 eV로 맞추었다. CIS피이크의 면적 [CIS]는 282∼296 eV범위에서 선형의 기본선을 빼어 산출하며, FIS피이크의 면적 [FIS]는 682-695 eV범위에서 선형의 기본선을 빼어 산출된다.
또 반응율 r은 동시에 화학적으로 변성된 폴리비닐알코올의 CIS피이크분산으로부터 산출되었다.
수산기의 표면농도(C-OH/C비)는 다음식으로 계산된 값으로 표시된다.
K값은 CIS피이크면적에 대한 FIS피이크면적의 비교감도펙터이며, 여기서 U.SSS1제품의 모델 SSX-100-206의 비교감도펙터는 3.919이었다.
표면카르복시기농도(COOH/O비)는 화학변성 X선광전자현미경으로 다음과 같이 측정되었다. 먼저 용매와 함께 제거되는 가호제로부터 탄소섬유다발을 컷트하여 백금 샘플베이스에 분산되고, 화학적 변성을 위해서 60℃에서 8시간동안 0.02몰/ℓ의 무수트리플루오로에탄올가스, 0.001몰/ℓ의 디시클로헥실카르보디이미드가스 및 0.04몰/ℓ의 피리딘가스를 함유하는 공기에 노출시킨 후, 이 샘플을 X선으로서 2, 전자방출각도 35° AlKα1의 분광법을 실시하기 위해서 X선광전자분광계에 장착하였으며, 샘플내부는 진공도 1X10-8Torr로 유지시켰다. 측정시 정전자를 수반하는 피이크의 보상으로서, 주피이크 CIS의 결합에너지값을 먼저 284.6 eV로 맞추었다. CIS피이크의 면적 [CIS]는 282∼296 eV범위에서 선형의 기본선을 빼어 산출하며, FIS피이크의 면적 [FIS]는 682-695 eV범위에서 선형의 기본선을 빼어 산출된다. 또 반응율 r은 동시에 화학적으로 변성된 폴리아크릴산의 CIS피이크분산으로부터 산출되었으며, 지속율 m은 동시에 화학적으로 변성된 디시클로헥실카르보디이미드유도체의 OIS피이크 분산으로부터 산출된다.
카르복시기의 표면농도(COOH/C비)는 다음식에 의해 산출된 값으로 표시된다.
K값은 CIS피이크면적에 대한 FIS피이크면적의 비교감도펙터이며, 여기서 U.S.SS1제품의 모델 SSX-100-206의 비교감도펙터는 3.919이었다.
원소분석에 의한 평균질소농도는 다음방법으로 산출되었다. 먼저 가호처리전에 약 20 mg의 탄소섬유다발을 표면에 붙은 불순물을 제거하기 위해 용매로 세정하며, 측정은 다음의 조건에서, 야나지모토 세이사큐쇼제 CHN coder-MT-3기구를 사용하였다.
CHN코더의 샘플연소반응기온도를 950℃로, 산화반응기를 850℃, 환원반응기를 550℃로 올리고, 헬릅을 유속 180㎖/분로 공급하고, 상기한 세정탄소섬유를 정확히 중량하여 상기 샘플연소반응기에 위치시켰다.
상기한 버너반웅기에서 약 5분간 산화반응기와 환원반웅기를 통한 균열가스부를 빨아 들이기 위해서 흡인펌프가 사용되었으며, 질소 대 산소 중량비가 CHN코더의 열전도검출기를 사용해서 N2의 양분석에 의해 측정되었다. 평균질소농도는 얻어진 중량비를 원자비로 전환한 것을 근거로 측정하였다.
보푸라기마모수는 다음방법으로 측정하였다. 먼저 마모장치가 사용되었다. 직경 10 mm의 스테인레스스틸막대(크롬판, 표면거칠기 1∼1.5S)5개를 50mm 간격으로 서로 평행하게 정렬시키고, 탄소섬유의 표면이 접촉하도록 120°로 지그재그로 접촉시켰다. 이 장치는 공급측에 필라멘트공급속도 3m/분으로 데니어당 0.09g의 탄소섬유필라멘트에 인장응력을 발휘하도록 사용했으며, 섬유필라멘트측을 90°에서 레이저광으로 발광하고, 보푸라기수를 검출하여 보푸라기검출기로 카운트하여 미터당 수자로서 표시하였다.
본발명에 의한 탄소섬유의 인장특성은 섬유의 인장강도, 탄성모듈 및 복합체의 인장강도를 측정하므로써 결정하였다. 복합체의 교차특성 즉 탄소섬유와 매트릭스간의 접착지수는 가장자리이층강도(EDS) 및 내부층전단강도(ILSS)를 측정하여 결정하였다.
차피(charpy)충돌특성의 영향도 조사되었다.
섬유인장강도 및 탄성모듈은 다음방법으로 측정되었다. 측정은 JIS-R-76이 수지침투섬유테스트에 의해서 이루어졌다. 사용된 수지는 바케라이트(유니온카바이드의 등록상표) ERL4221/모노에틸아미노 보로트리플로라이드/아세톤 = 100/3/4(중량부)이며, 경화조건은 상압, 130℃, 30분이었다. 10가닥의 섬유를 측정하여 평균값으로 산출하였다.
다음 2종류의 수지 A 및 B를 복합체특성의 평가용 수지로서 사용하였다.
A수지는 일본특허공보 4-80054의 실시예1에 개시된 다음 방법으로 제조되었다. 즉 수지조성물을 얻기 위해서, 에피코테 1001 (유카쉘제조, 35중량부) 3.5kg, 에피코테 828(유카쉘제조, 25중량부) 2.5kg, 에피콜론 N740 (다이니혼잉크 카가쿠 쿄오교오제, 30중량부) 3.0kg, 에피코테 152 (유카쉘제조, 15중량부) 1.5kg, 덴카포르말#20(덴키 카가쿠쿄오교오제조, 8중량부) 0.8kg 및 디클로로페닐디메틸우레아(5중량부) 0.5kg을 조합하고 30분간 교반시켰다. 이것은 다음에 수지필름으로 사용된 이형지를 피복하기 위해서 사용되었다.
경화는 135℃, 3kgf/㎠·G의 압력에서 2시간 실시되었다.
B수지는 일본특허공보 63-60056의 실시예1에 개시된 다음 방법으로 제조되었다. 즉 투명한 비스코스용액을 얻기 위해서, ELM434(수지토모 카가쿠제조. 60중량부) 6.0kg, 에피코테 825(유카쉘제조, 30중량부) 3.0kg, 에피콜로 830(다이니혼 잉크 카가쿠쿄오교오사제, 10중량부) 1.0kg 및 폴리에틸술폰(17.5중량부) 1.75kg을 150℃에서 30분간 가열 교반하였다. 그런다음 60℃로 냉각하고, 디아미노디페닐술폰(46중량부) 4.6kg을 균일하게 분산시켜 수지조성물을 얻는다. 이것은 다음에 수지필름으로 사용되는 이형지를 피복하기 위해 사용된다.
경화는 180℃, 6kgf/㎠·G의 압력에서 2시간 실시되었다.
복합체는 다음방법으로 제조되었다. 먼저 탄소섬유와 조합하기 위해서 수지와 실리콘 적용지를 코우팅하므로써 제조된 수지필름권취용 스틸드럼(원주가 약 2.7m)이 사용되었으며, 크릴(creel)로부터 당겨진 탄소섬유는 가로대(traverse)를 통해서 상기한 수지필름 주위를 권취하고, 섬유에 수지필름을 칠한후 섬유를 프레스롤러로부터 수지중으로 회전압력에 의해 함침시켜서, 폭 300mm, 길이 2.7m의 단방향 프리프레그를 제조하였다.
이때 섬유사이에 수지의 함침을 위해서, 드럼을 60∼70℃로 가열하고, 섬유증량이 약 200g/m2및 수지양이 약 35%인 프리프레그를 제조하기 위해서 드럼의 회전 및 가로대의 공급속도를 조정하였다.
이 방법으로 얻어진 프리프레그를 컷트하고, EDS용 구조(+25° /-25° /+25° /-25°90° )에서 층으로 쌓아올린 다음, 특정경화조건하에서 열경화하기 위해서 고압솥을 사용하여 약 2mm두께의 경화판넬을 제작하였다. ILSS 및 인장강도테스트하기 위해서, 프리프레그를 같은 방향으로 쌓아서 각각 약 2mm 및 1mm두께의 단방향프리프레그를 제조하였다.
EDS를 폭 25.4mm, 길이 230mm로 컷트하고, 규격길이 1277mm, 횡단헤드스피드 1mm/분의 장력시험기로 측정하였다. 모서리이층강도는 샘플측 모서리 상에서 내층의 이층이 시작되는 부하에 의해서 측정하였다. 5종류의 샘플을 측정하여 평균값으로 하였다. ILSS를 폭 12.7mm, 길이 28mm로 컷트하고, 변형속도 2.5mm/분 및 서포트스펜(support span)이 샘플두께의 4배인 3점유연시험기를 사용하여 측정을 실시하였다.
샘플의 인장강도는 폭 12.7mm, 길이 230mm로 컷트하고, 1.2mm두께, 50mm길이의 GFRP테브(tabs)를 샘플의 양끝에 꼿고(필요한 경우 탄성모듈 및 파괴변형을 측정하기 위해 샘플의 중앙에 변형규격을 지나게 한다), 크로스헤드스피드 1mm/분으로 측정을 하였다. 5종의 샘플을 측정하여 평균값으로 했다.
약 6mm두께의 단방향경화판넬이 차피충격테스트하기 위해서, ILSS 및 인장강도와 같은 방법으로 제조되었다. 샘플은 폭 10mm, 길이 60mm로 새김눈하였다.
사용된 차피충격시험기는 중량 30kgf·m (요네쿠라 세이사쿠쇼제조)의 표준형으로, 스트라이크부의 뒷면에 부사센서가 장착되어 있다. 부하센서증폭기로부터의 출력은 웨이브폼디지탈메모리를 경유하여 퍼스널컴퓨터에 공급되며, 측정은 최대부하 및 최대부하까지 흡수된 에너지양으로 이루어진다. 스트라이크방향은 평평한 방식(flat-wise)이며, 지지점사이의 거리는 40mm였다. 10종류를 측정하고 그 평균값으로 했다.
실시예 1
아크릴로니트릴 99.4몰% 및 메타크릴산 0.6몰%로 이루어진 공증합체를 반습식방사처리하여, 필라멘트카운트 12000 및 1데니어모노필라멘트의 아크릴섬유를 얻었다. 이 섬유다발을 1.05의 연신비로 공기중에서 240∼280℃로 가열한 후, 10%연신으로 질소분위기하에서 온도를 300∼900℃ 범위내에서 20℃/분으로 올린 후, 1300℃까지 탄화를 실시하였다.
전해용액으로서 0.1몰/ℓ의 수산화테트라에틸압모늄(TEAH) 수용액이 사용되었다. 각 전해조의 전화전류는 10쿨롱/g·전해조이고, 4개의 전해조를 사용하며, 총전류 40쿨롱/g의 처리가 4회 반복되었다. 전압은 12V, 전류밀도는 9.5A/m2이었다. 이때 전해용액이 회색으로 변했다. 전해처리한 탄소섬유를 수세하고, 150℃로 가열건조했다.
가호용액으로서 1중량% 수지조성물에 디메틸포름아미드(DMF)로 글리세롤트리글리시딜에테르를 희석하여 탄소섬유에 함침법으로 적용하며, 230℃로 건조시키는 것이 효과적이다. 절용량은 0.4%이었다.
얻어진 탄소섬유의 섬유강도 및 모듈탄성은 각각 484kgf ㎟, 23.8tf/㎟이었다. 표1에 A수지와의 표면관능성기의 농도, 인장강도 및 EDS의 측정결과를 나타내었다.
실시예 2, 3 및 4
처리전해조의 수 및 전해조당 전류가 총전류로서 5,10 및 20으로 변화시킨 것 이외에는 실시예1과 동일하게 하였다. 결과를 표1에 나타내었다.
실시예 5
전해용액을 농도 0.25몰/ℓ의 탄산수소암모늄으로 변화시킨 것 이외에는 실시예1과 동일하게 하였다. 결과를 표1에 나타낸다.
비교예 1
전해용액을 0.05몰/ℓ의 황산수용액으로, 처리조의 수 및 전해조당 전류를 총전류 100 쿨롱/g으로 변화시킨 것 이외에는 실시예1과 동일하게 하여 탄소섬유를 얻었다. 결과를 표1에 나타낸다.
실시예 6∼9
가호제의 수지조성을 글리세롤 디글리시딜에테르, 폴리에틸렌글리콜디글리시딜에테르(식[Ⅱ]의 화합물, 식중 R1은-CH2CN2- 및 m은 9), 디글리세롤폴리글리시딜에테르 또는 디에틸렌글리콜디글리시딜에테르로 변화시킨 것 이외에는 실시예1과 동일하게 하여 탄소섬유를 얻었다. 표2에 표면관능성기의 농도측정, A수지와의 인장강도 및 A수지와 EDS의 결과를 표시한다.
실시예 10, 11
가호제의 수지조성을 글리세롤디글리시딜에테 또는 폴리에틸렌글리콜디글리시딜에테르(식[Ⅱ]의 화합물, 식중 R1은-CH2CH2- 및 m은 9)로 변화시킨 것 이외에는 실시예5와 동일하게 하여 탄소섬유를 얻었다. 표2에 표면관능성기의 농도측정 및 A수지와의 인장강도 및 EDS의 결과를 나타냈다.
비교예 2
가호제함침을 가호성분을 포함하지 않는 DMF용액에서 처리한 것 이외에는 실시예1과 동일하게 실시하였으며, 결과를 표2에 표시하였다.
비교예 3 및 4
가호제의 수지성분을 방향족환함유 비스페놀A형디글리시딜에테르, 즉 에피코테 828(유카쉘제조, 에폭시기와 방향족환간의 원자수=2) 또는 페놀성 노볼랙형 글리시딜에테르, 즉 에피코테 154 (유카쉘제조, 에폭시기와 방향족환간의 원자수=2)로 변환시킨 것 이외에는 실시예1과 동일하게 하여 탄소섬유를 얻었다. 그 결과를 표2에 표시한다.
실시예 12
아크릴로니트릴 99.4몰% 및 메타크릴산 0.6몰%로 이루어진 공증합체를 반습식방사처리하여, 필라멘트카운트 12000 및 1데니어모노필라멘트의 아크릴섬유를 얻었다. 이 섬유다발을 1.05의 연신비로 공기중에서 240∼280℃로 가열한 후, 10%연신으로 질소분위기하에서 온도를 300∼900℃ 범위내에서 200℃/분으로 올린 후, 1800℃까지 탄화를 실시하였다.
전해용액으로서 0.1몰/ℓ의 수산화테트라에틸암모늄(TEAH) 수용액이 사용되었다. 각 전해조의 전화전류는 40쿨롱/g·전해조이고, 4개의 전해조를 사용하며, 총전류 200쿨롱/g의 처리가 5회 반복되었다. 전압은 6V, 전류밀도는 30A/m2이었다. 이때 전해용액이 회색으로 변했다. 전해처리한 탄소섬유를 수세하고, 150℃로 가열건조했다.
가호용액으로서 1중량% 수지조성물에 디메틸포름아미드(DMF)로 글리세롤트리글리시딜에테르를 희석하여 탄소섬유에 함침법으로 적용하며, 230℃로 건조시키는 것이 효과적이다. 절용량은 0.5%이었다.
얻어진 탄소섬유의 A수지와의 표면관능성기의 농도, 인장강도 및 EDS의 측정결과를 표3에 나타내었다.
실시예 2, 3 및 4
처리전해조의 수 및 전해조당 전류가 총전류로서 5,10 및 20으로 변화시킨 것 이외에는 실시예1과 동일하게 하였다. 결과를 표1에 나타내었다.
비교예 5
전해용액을 0.05몰/ℓ의 황상수용액으로, 가호제함침을 가호성분을 포함하지 않는 DMF용액에 처리한 것 이외에는 실시예12와 동일하게 하여 탄소섬유를 얻었다. 결과를 표3에 나타낸다.
실시예 13
비교예5의 탄소섬유를 황상수용액으로 전해처리하고, 수세 및 150℃의 공기중에서 가열건조한 후, 0.1몰/ℓ의 TEAH수용액에서 10분간 교반했다. 이때 전해용액이 회색으로 변했다. 세정 및 150℃에서 건조한 것 이외는 비교예5와 동일하게 하였으며 그 결과를 표3에 나타낸다.
실시예 4
가호제의 수지성분을 글리세롤글리시딜에테르로 변화시킨 것 이외에는 실시예13과 동일하게 하였다. 얻어진 탄소섬유의 표면관능성기의 농도 및 인장강도 및 A수지와의 EDS의 측정결과를 표3에 표시한다.
실시예 15
최대부하까지 흡수된 에너지양으로 이루어진다. 스트라이크방향은 평평한 방식(flat-wise)이며, 지지점사이의 거리는 40mm였다. 10종류를 측정하고 그 평균값으로 했다.
실시예 1
아크릴로니트릴 99.4몰% 및 메타크릴산 0.6몰%로 이루어진 공중합체를 반습식방사처리하여, 필라멘트카운트 12000 및 0.7데니어모노필라멘트의 아크릴섬유를 얻었다. 이 섬유다발을 1.05의 연신비로 공기중에서 240∼280℃로 가열한 후, 10%연신으로 질소분위기하에서 온도를 300∼900℃ 범위내에서 200℃/분으로 올린 후, 1800℃까지 탄화를 실시하였다.
전해용액으로서 0.25몰/ℓ의 탄산수소암모늄수용액이 사용되었다. 각 전해조의 전화전류는 20쿨롱/g 전해조이고, 4개의 전해조를 사용하며. 총전류 100쿨롱/g의 처리가 5회 반복되었다. 전압은 13V, 전류밀도는 15A/m2이었다. 이때 전해용액이 회색으로 변했다. 전해처리한 탄소섬유를 수세하고, 180℃로 가열건조했다.
가호용액으로서 1중량% 수지에 물로 희석된 5중량% 글리세롤트리글리시딜 에테르에 비이온성 유화제를 가하여 가호용액을 제조하고, 탄소섬유에 함침법으로 적용하며, 180℃로 건조시키는 것이 효과적이다. 절용량은 0.4%이었다.
얻어진 탄소섬유의 복합체인장탄성모듈은 17.1tf/㎟이었다. 표4에 표면관능성기의 농도, 섬유강도, 섬유탄성모듈, 및 A수지와의 EDS의 측정결과를 나타내었다.
차피충격시험으로부터 최대부하까지 흡수된 에너지량은 55KJ/m2, 최대부하는 5.2KN이 었다.
실시예 16
전화전류를 각 전해조당 20쿨롱/g·전해조로, 총전류200쿨롱/g으로 상기한 탄소섬유처리를 10회 반복한 것 이외에는 실시예15와 동일하게 하였다. 그 결과를 표4에 나타낸다.
실시예 17∼19
전해용액을 0.25몰/ℓ의 탄산암모늄수용액, 0.10몰/ℓ의 황산암모늄수용액 또는 0.10몰/ℓ의 질산암모늄수용액으로 변화시킨 것 이외는 실시예15와 동일하게 하여 탄소섬유를 얻었으며, 그 결과를 표4에 나타낸다.
비교예 6
전해처리하지 않은 것을 제외하고는 실시예15와 동일하게 하였으며, 그 결과를 표4에 나타낸다.
비교예 7
전해용액을 0.05몰/1의 황산수용액으로 한 것 이외는 실시예15와 동일하게 실시하였다. 그 결과를 표4에 표시한다. 복합체인장탄성모듈은 17.2tf/㎟이었다.
차피충격시험으로부터 최대부하까지 흡수된 에너지양은 46kJ/m2이고, 최대부하는 4.6kN이었다.
비교예 9
전해용액을 0.10몰/1의 수산화나트륨수용액으로 한 것 이외는 실시예15와 동일하게 실시하였다. 그 결과를 표4에 표시한다.
실시예 21 ∼31
가호제의 수지성분을 글리세롤디글리시딜에테르, 디에틸렌옥시드 디글리시딜에테르, 폴리에틸렌옥시드 디글리시딜에테르(식[Ⅱ]의 화합물, 식중 R1은 -CH2CH2-,m은 9 또는30), 폴리프로필렌옥시드 디글리시딜에테르(식[Ⅱ]의 화합물, 식중 R1은 CH(CH3)CH2-,m은 7, 9, 17 또는 69), 1,6-헥산디올디글리시딜에테르, 알칸디올디글리시딜에테르(식[Ⅲ]의 화합물, 식중 n은 12) 또는 식[Ⅳ]의 화합물(식중 R1은 -CH2CH2-, R3, R4및 R5는 글리시딜기, x+y+z=20 또는 30)로 변화시킨 것 이외는 실시예15와 동일하게 하여 탄소섬유를 얻었다. 그 결과를 표5에 나타낸다.
비교예 9
가호제적용단계를 제외하고 실시예15와 동일하게 하여 탄소섬유를 얻었다. 그 결과를 표5에 나타낸다.
비교예 10
가호제의 수지성분을 라우릴모노디글리시딜에테르로 변화시킨 것 이외는 실시예15와 동일하게 하여 탄소섬유를 얻었다. 그 결과를 표5에 나타낸다.
비교예 11 및 12
가호제의 수지성분을 비스페놀A형 디글리시딜에테르 즉, 에피코테 828(유카쉘제조, 에폭시환과 방향족환간의 원자수=2) 또는 페놀성노볼랙형 글리시딜에테르 즉, 에피코테 154(유카쉘제조, 에폭시환과 방향족환간의 원자수=2)로 변화시킨 것 이외는 실시예15와 동일하게 하여 탄소섬유를 얻었다. 그 결과를 표5에 나타낸다.
실시예 32
실시예12와 동일한 방법으로 방사 및 1800℃에서 탄화한 필라멘트를 전해용액(각 전해조당 전화전류가 20쿨롱/g 전해조)으로서 0.25몰/1의 탄산수소암모늄수용액으로 처리하고, 총전류 100쿨롱/g의 상기한 탄소섬유처리하기 위해서 5전해조에서 반복하였다. 전해처리된 탄소섬유를 수세하고, 180℃에서 가열건조하였다.
탄소섬유의 수지성분이 식[1]의 화합물(식중 R2은 -CH2CH2-, R3은 -CH3, m은 15,n은 15)인 가호용액 1중량%를 함유하는 유화수용액에 함침시켜 가호용액을 적용시키며, 건조는 180℃가 효과적이다. 가호제의 양은 0.8중량%이었다.
이 방법으로 얻어진 탄소섬유의 표면관능성기의 농도, 보푸라기마모수, 섬유강도 및 A수지와의 복합체인장강도 및 EDS의 측정결과를 표6에 나타낸다.
또한 섬유인장탄성모듈은 30.5tf/㎟, ILSS는 11.8kgf/㎟,평균질소농도는 0.019이었다.
실시예 33, 34 및 35
전해용액을 0.25몰/1의 탄산암모늄수용액, 0.10몰/1의 황산암모늄수용액 또는 0.10몰/1의 질산암모늄수용액으로 변화한 것 이외는 실시예32와 동일하게 하여 탄소섬유를 얻었다. 그 결과를 표6에 나타낸다.
비교예 13
전해용액을 0.05몰/1의 광산수용액으로 변화한 것 이외는 실시예32와 동일하게 하여 탄소섬유를 얻었다. 그 결과를 표6에 나타낸다. 섬유인장탄성모듈은 30.5tf/㎟, ILSS는 10.8kgf/㎟이였다.
비교예 14
전해용액을 0.10몰㎟의 수산화나트륨수용액으로 변화한 것 이외는 실시예32와 동일하게 하여 탄소섬유를 얻었다. 그 결과를 표6에 나타낸다.
실시예 36
수지성분이 식[1]의 화합물(식중 R2은 -CH2CH2-, R3은 -CH3, m 및 n은 모두 2)인 가호제 1중량%가 함유된 유화수용액을 사용한 것 이외는 실시예32와 동일하게 하여 탄소섬유를 얻었다. 그 결과를 표7에 나타낸다. O/C비는 0.10이고 N/C비는0.02이었다.
실시예 37∼40
가호제가 R2은 -CH2CH2-, R3은 -CH3, m 및 n은 모두 5인 식[1]의 화합물: R2은 -CH2CH2-, R3은 -CH3, m 및 n은 모두 10인 식[1]의 화합물: R2은 -CH2CH2-, R3은 -CH3, m 및 n은 모두 15인 식[1]의 화합물: 또는 R2은 -CH2CH2-, R3은 -CH3, m 및 n은 모두 30인 식[1]의 화합물인 것을 제외하고는 실시예32와 동일하게 하여 탄소섬유를 얻었다. 그 결과를 표7에 나타낸다. O/C비는 0.10이고 N/C비는 0.02이었다.
비교예 15
수지성분이 식[1]의 화합물(식중 R1은 -OH, R2은 -CH2CH2-, R3은 -CH3, m 및 n은 모두 15)인 가호제 1중량%가 함유된 유화수용액을 사용한 것 이외는 실시예32와 동일하게 하여 탄소섬유를 얻었다, 그 결과를 표7에 나타낸다. O/C비는 0.10이고 N/C비는 0.02이었다. 섬유인장탄성모듈은 30.5tf/㎟, ILSS는 10.9kgf/㎟이었다.
비교예 16
수지성분이 식[1]의 화합물(식중 R2은 -CH2CH2-, R3은 -CH3, m 및 n은 모두 1)인 가호제 1중량%가 함유된 유화수용액을 사용한 것 이외는 실시예32와 동일하게 하여 탄소섬유를 얻었다. 그 결과를 표7에 나타낸다. O/C비는 0.10이고 N/C비는 0.02이었다.
실시예 41
가호용액의 모액을 조정하기 위해서, 1,6-나프탈렌폴리에틸렌옥시드(6몰첨가)디글리시딜에테르를 1중량%수지용액에서 디메틸포름아미드로 희석하고, 가호용액을 탄소섬유에 함침법으로 적용시킨후, 230℃에서 건조하는 것이 효과적이다. 그 결과를 표8에 나타낸다. O/C비는 0.10이고 N/C비는 0.03이었다.
비교예 17
전해용액을 0.05몰/l의 황산수용액으로 변화한 것 이외는 실시예41와 동일하게 하여 탄소섬유를 얻었다. 그 결과를 표8에 나타낸다. O/C비는 0.15이고 N/C비는 0.01이었다.
실시예 42
가호제로 사용된 수지성분이 식[1]의 화합물(식중 R2은 -CH2CH2-, R3은 -CH3, m 및 n은 모두 15)인 것을 제외하고는 실시예1과 동일하게 하여 탄소섬유를 얻었다. 복합체인장강도 및 A수지와의 EDS의 측정결과를 표9에 나타낸다.
실시예 43
실시예1에서 얻어진 탄소섬유를 복합체인장강도 및 B수지와의 EDS의 측정을 실시하였다. 그 결과를 표9에 나타낸다.
실시예 44∼46
실시예6, 7 및 42에서 얻어진 탄소섬유를 복합체인장강도 및 B수지와의 EDS의 측정을 실시하였다. 그 결과를 표9에 나타낸다.
비교예 18
비교예2에서 얻어진 탄소섬유를 복합체인장강도 및 B수지와의 EDS의 측정을실시하였다. 그 결과를 표9에 나타낸다.

Claims (27)

  1. X선 광전자현미경에 의한 표면산소농도(O/C비)가 0.02~0.2, 화학변성 X선 광전자현미경에 의한 표면수산기농도(O-OH/C비)가 0.5~3.0%이며, 화학변성 X선 광전자현미경에 의한 표면카르복시기농도(COOH/C비)가 0.2~2.0%이고, 가호제로서 적용된 다중에폭시기를 보유하는 지방족화합물로 이루어지는 탄소섬유.
  2. X선 광전자현미경에 의한 표면산소농도(O/C비)가 0.20∼0.2, 화학변성 X선 광전자현미경에 의한 표면수산기농도(O-OH/C비)가 0.5~3.0%이며, 화학변성 X선 광전자현미경에 의한 표면카르복시기농도(COOH/C비)가 0.2~2.0%이고, 가호제로서 에폭시기와 방향족환 간의 원소수가 6 이상인 다중에폭시기를 보유하는 방향족화합물로 이루어지는 탄소섬유.
  3. X선 광전자현미경에 의한 표면산소농도(O/C비)가 0.02~0.20이며, 표면질소농도(N/C비)가 0.02이상이고, 가호제로서 적용된 다중에폭시기를 보유하는 지방족화합물로 이루어지는 탄소섬유.
  4. X선 광전자현미경에 의한 표면산소농도(O/C비)가 0.02~0.20이며, 표면질소농도(N/C비)가 0.02이상이고, 가호제로서 에폭시기와 방향족환간의 원소수가 6이상인다중에폭시기를 보유하는 방향족화합물로 이루어지는 탄소섬유.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기한 화합물은 최장원자쇄의 양끝에 에폭시기를 보유하는 탄소섬유.
  6. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기한 화합물은 최장원자쇄의 양끝에만 에폭시기를 보유하는 탄소섬유.
  7. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 에폭시기가 글리시딜기인 탄소섬유.
  8. 제1항 또는 제3항에 있어서, 상기 다중에폭시기를 지니는 지방족화합물의 최장원자쇄의 원자수가 20∼200인 탄소섬유.
  9. 제1항 또는 제3항에 있어서, 상기 다중에폭시기를 지니는 지방족화합물은 글리세롤폴리글리시딜에테르, 디글리세롤폴리글리시딜에테르, 폴리에틸렌글리콜디글리시딜에테르 및 폴리프로필렌글리콜디글리시딜에테르로 이루어지는 기에서 선택된 적어도 일종의 화합물인 탄소섬유.
  10. 제2항 또는 제4항에 있어서, 에폭시기와 방향족환간의 원소수가 6이상인 다중에폭시기를 보유하는 방향족화합물이 다음 식으로 표시되며,
    식 중 R1은 다음 기로 표시되며,
    R2는 탄소수 2∼30의 알킬렌기, R3는 -H또는 -CH3를, m 및 n은 각각 2∼48의 정수, m+n은 4∼50을 나타내는 화합물인 탄소섬유.
  11. 제10항에 있어서, R2는 -CH2CH2-또는 -CH(CH3)CH2-인 탄소섬유.
  12. 제2항 또는 제4항에 있어서, 방향족화합물이 축합된 폴리시클릭 방향족화합물인 탄소섬유.
  13. 제12항에 있어서, 축합된 폴리시클릭 방향족화합물의 주구조는 나프탈렌, 안트라센, 페난트렌 또는 피렌인 탄소섬유.
  14. 탄소섬유를 알카리수용액 중에서 전화시키거나, 또는 산수용액 중에서 전화하고 알카리수용액으로 세정한 후, 가호제로서 섬유에 다중에폭시기를 지닌 지방족화합물을 적용하는 탄소섬유의 제조방법.
  15. 탄소섬유를 알카리수용액 중에서 전화시키거나 또는 산수용액 중에서 전화하고 알카리수용액으로 세정한 후, 가호제로서 탄소섬유에 에폭시기와 방향족환 간의 원소수가 6이상인 다중에폭시기를 지니는 방향족화합물을 적용하는 탄소섬유의 제조방법.
  16. 탄소섬유를 암모늄염수용액 중에서 전화시킨 후, 가호제로서 섬유에 다중에폭시기를 지닌 지방족화합물을 적용하는 탄소섬유의 제조방법.
  17. 탄소섬유를 암모늄염수용액 중에서 전화시킨 후, 가호제로서 섬유에 에폭시기와 방향족환간의 원소수가 6이상인 다중에폭시기를 지니는 방향족화합물을 적용하는 탄소섬유의 제조방법.
  18. 제14항 내지 제17항 중 어느 한 항에 있어서, 이 화합물은 최장원자쇄의 두양 끝에 애폭시기를 보유하는 탄소섬유의 제조방법.
  19. 제14항 내지 제17항 중 어느 한 항에 있어서, 이 화합물은 최장원자쇄의 두양끝에만 에폭시기를 보유하는 탄소섬유의 제조방법.
  20. 제14항 내지 제17항 중 어느 한 항에 있어서, 에폭시기가 글리시딜기인 탄소섬유의 제조방법.
  21. 제14항 또는 제16항에 있어서, 다중에폭시기를 지니는 지방족화합물의 최장원자쇄의 원자수가 20∼200인 탄소섬유의 제조방법.
  22. 제14항 또는 제16항에 있어서, 다중에폭시기를 지니는 지방족화합물은 글리세롤폴리글리시딜에테르, 디글리세롤폴리글리시딜에테르, 폴리에틸렌글리콜디글리시딜에테르 및 폴리프로필렌글러콜디글리시딜에테르로 이루어지는 기에서 선택된 적어도 일종의 화합물인 탄소섬유의 제조방법.
  23. 제15항 또는 17항에 있어서, 에폭시기와 방향족환 간의 원소수가 6이상인 다중에폭시기를 보유하는 방향족화합물이 다음 식으로 표시되며,
    식 중 R1은 다음 기로 표시되고,
    R2는 탄소수 2∼30의 알킬렌기, R3는 -H또는 -CH3를, m및 n은 각각 2∼48, m+n은 4∼50의 정수를 나타내는 화합물인 탄소섬유의 제조방법.
  24. 제23항에 있어서, R2는 -CH2CH2- 또는 CH(CH3)CH2-인 탄소섬유의 제조방법.
  25. 제15항 또는 제17항에 있어서, 방향족화합물은 축합된 폴리시클릭 방향족화합물인 탄소섬유의 제조방법.
  26. 제25항에 있어서, 축합된 폴리시클릭 방향족화합물의 주구조는 나프탈렌, 안트라센, 페난트렌 또는 피렌인 탄소섬유의 제조방법.
  27. 제14항 내지 제17항 중 어느 한 항에 있어서, 가호제는 수용성 용매계에서 적용되는 탄소섬유의 제조방법.
KR1019940021290A 1993-08-25 1994-08-25 탄소섬유및그제조방법 KR100333246B1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP21028293 1993-08-25
JP93-210282 1993-08-25
JP258294 1994-01-14
JP94-2582 1994-01-14
JP94-19219 1994-02-16
JP1921994 1994-02-16

Publications (2)

Publication Number Publication Date
KR950006045A KR950006045A (ko) 1995-03-20
KR100333246B1 true KR100333246B1 (ko) 2002-10-25

Family

ID=27275427

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940021290A KR100333246B1 (ko) 1993-08-25 1994-08-25 탄소섬유및그제조방법

Country Status (7)

Country Link
US (4) US5462799A (ko)
EP (1) EP0640702B1 (ko)
KR (1) KR100333246B1 (ko)
AT (1) ATE176807T1 (ko)
CA (1) CA2130588A1 (ko)
DE (1) DE69416553T2 (ko)
TW (1) TW253910B (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140114342A (ko) * 2012-01-20 2014-09-26 도레이 카부시키가이샤 섬유 강화 폴리프로필렌 수지 조성물, 성형 재료 및 프리프레그
KR101528115B1 (ko) * 2011-10-04 2015-06-10 도레이 카부시키가이샤 탄소 섬유 강화 열가소성 수지 조성물, 성형 재료, 프리프레그, 및 이들의 제조 방법

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910456A (en) * 1995-01-09 1999-06-08 Toray Industries, Inc. Prepregs and carbon fiber-reinforced composite materials
TW459075B (en) 1996-05-24 2001-10-11 Toray Ind Co Ltd Carbon fiber, acrylic fiber and preparation thereof
US5804108A (en) * 1996-10-31 1998-09-08 Wilkinson; Kenneth Process for the preparation of carbon fiber
US6054214A (en) * 1996-10-31 2000-04-25 Wilkinson; Kenneth Process for the preparation of carbon fiber
JP3807066B2 (ja) * 1998-01-06 2006-08-09 東レ株式会社 炭素繊維用サイジング剤およびそれでサイズ処理された炭素繊維およびそれからなる複合材料
KR100269723B1 (ko) * 1998-08-08 2000-10-16 김충섭 양극산화에 의한 고기능성 활성 탄소섬유의 제조방법
FR2890985B1 (fr) 2005-09-16 2007-12-07 Eads Soc Par Actions Simplifie Procede pour ameliorer l'adherence de fibres de carbone vis-a-vis d'une matrice organique
EP1959051A4 (en) * 2005-11-25 2010-05-26 Toray Industries CARBON FIBER BUNDLE, PREPREG AND CARBON FIBER REINFORCED COMPOSITE
DK2016220T3 (da) 2006-04-28 2012-11-19 Toho Tenax Europe Gmbh Carbonfiber
FR2909676B1 (fr) 2006-12-11 2009-03-20 Astrium Sas Soc Par Actions Si Procede pour ameliorer l'adherence de fibres de carbone vis-a-vis d'une matrice organique
EP1978363B1 (en) * 2007-04-03 2010-02-24 Sysmex Corporation Immunoassay method, reagent kit for detecting alkaline phosphatase, and reagent kit for immunoassay
US9174847B2 (en) 2008-05-01 2015-11-03 Honda Motor Co., Ltd. Synthesis of high quality carbon single-walled nanotubes
US8591858B2 (en) * 2008-05-01 2013-11-26 Honda Motor Co., Ltd. Effect of hydrocarbon and transport gas feedstock on efficiency and quality of grown single-walled nanotubes
US20110000617A1 (en) 2009-07-02 2011-01-06 E. I. Du Pont De Nemours And Company Process for making a composite
SG177442A1 (en) 2009-07-02 2012-02-28 Du Pont Semiconductor manufacture component
US8178259B2 (en) * 2010-02-09 2012-05-15 GM Global Technology Operations LLC Optimized gas diffusion media to improve fuel cell performance
KR101300943B1 (ko) 2010-06-30 2013-08-27 도레이 카부시키가이샤 사이즈제 도포 탄소 섬유의 제조 방법 및 사이즈제 도포 탄소 섬유
US20130252497A1 (en) * 2011-11-14 2013-09-26 Faserinstitut Bremen E.V. Thermoplastic fibre, hybrid yarn, fibre perform and method for producing fibre performs for fibre composite components, in particular high performance fibre composite component, using the same, fibre composite component and method for producing fibre composite components, in particular high performance fibre composite components
RU2014127302A (ru) 2011-12-05 2016-01-27 Торэй Индастриз, Инк. Формирующий углеродные волокна сырьевой материал, сформированный материал и армированный углеродными волокнами композитный материал
KR101863990B1 (ko) 2011-12-27 2018-07-04 도레이 카부시키가이샤 사이징제 도포 탄소 섬유, 사이징제 도포 탄소 섬유의 제조 방법, 프리프레그 및 탄소 섬유 강화 복합 재료
CN104487495B (zh) 2012-07-25 2016-09-07 东丽株式会社 预浸料坯及碳纤维增强复合材料
WO2014017339A1 (ja) 2012-07-25 2014-01-30 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
JP5565529B1 (ja) 2012-09-28 2014-08-06 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
KR101580437B1 (ko) * 2012-10-18 2015-12-23 도레이 카부시키가이샤 탄소 섬유 강화 수지 조성물, 탄소 섬유 강화 수지 조성물의 제조 방법, 성형 재료, 성형 재료의 제조 방법 및 탄소 섬유 강화 수지 성형품
WO2014142109A1 (ja) 2013-03-12 2014-09-18 倉敷紡績株式会社 繊維強化樹脂用繊維及びその製造方法
EP3222772A1 (en) * 2013-03-26 2017-09-27 Toray Industries, Inc. Carbon fiber nonwoven fabric
EP3064551B1 (en) * 2013-10-29 2018-07-25 Toray Industries, Inc. Fiber-reinforced resin composition, and fiber-reinforced composite material
FR3017394B1 (fr) 2014-02-12 2017-10-20 Astrium Sas Composition d'ensimage pour fibres de renfort et ses applications
US20160090685A1 (en) * 2014-09-25 2016-03-31 E I Du Pont De Nemours And Company Carbon fibers
EP3239391B1 (en) * 2014-12-26 2019-10-23 Noriaki Ijuin Carbon-fiber-reinforced resin composition
CN104963200A (zh) * 2015-07-30 2015-10-07 北京化工大学常州先进材料研究院 一种水溶性碳纤维上浆剂的制备方法和用途
EP3631058A1 (en) 2017-05-26 2020-04-08 Dow Global Technologies LLC Electrochemical grafting of carbon fibers with aliphatic amines for improved composite strength
CN112760984B (zh) * 2019-10-21 2024-01-23 中国石油化工股份有限公司 制备复合材料用碳纤维的方法
KR20220139870A (ko) * 2020-03-03 2022-10-17 데이진 가부시키가이샤 피치계 극세 탄소 섬유, 및 피치계 극세 탄소 섬유 분산체
TWI767796B (zh) * 2021-07-22 2022-06-11 臺灣塑膠工業股份有限公司 碳纖維的製造方法和碳纖維複合瓶

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0252985A1 (en) * 1985-12-19 1988-01-20 Mitsubishi Rayon Co., Ltd. Carbon fiber for composite materials

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3832297A (en) * 1973-03-09 1974-08-27 Hercules Inc Process for electrolytic treatment of graphite fibers
US3914504A (en) * 1973-10-01 1975-10-21 Hercules Inc Sized carbon fibers
US3957716A (en) * 1973-10-01 1976-05-18 Hercules Incorporated Sized carbon fibers
US4163003A (en) * 1975-05-23 1979-07-31 Hercules Incorporated Unsaturated epoxides as coupling agents for carbon fibers and unsaturated matrix resins
US4364993A (en) * 1980-07-14 1982-12-21 Celanese Corporation Sized carbon fibers, and thermoplastic polyester based composite structures employing the same
JPS5813781A (ja) * 1981-07-14 1983-01-26 東レ株式会社 耐擦過性にすぐれた炭素繊維
GB2149178B (en) * 1983-11-03 1987-02-04 Albert James Collingwood Lewis Stock control device
FR2564489B1 (fr) * 1984-05-18 1986-10-10 Onera (Off Nat Aerospatiale) Procede electrochimique de traitement de surface de fibres de carbone, fibre traitee par ce procede et materiau composite comportant de telles fibres
US4600640A (en) * 1984-08-13 1986-07-15 General Electric Company Thermoplastic resinous substrates having an external thin glass sheet protective layer
JPS62276075A (ja) * 1986-02-07 1987-11-30 三菱レイヨン株式会社 炭素繊維及びその製造法
JPS6385167A (ja) * 1986-09-22 1988-04-15 東レ株式会社 表面改質炭素繊維とその製造方法
JPS63120741A (ja) * 1986-11-10 1988-05-25 Showa Denko Kk 炭素繊維複合高分子組成物
FR2607528B1 (fr) * 1986-12-02 1989-03-17 Onera (Off Nat Aerospatiale) Procede electrochimique de traitement de surface de carbone; carbone, notamment fibres de carbone, traite par ce procede et materiau composite comportant de telles fibres
JPH06102870B2 (ja) * 1987-06-16 1994-12-14 竹本油脂株式会社 炭素繊維用サイジング剤
US4867852A (en) * 1987-06-16 1989-09-19 Mitsubishi Rayon Co., Ltd. Electrolytic method for after-treatment of carbon fiber
JP2685221B2 (ja) * 1988-04-22 1997-12-03 東レ株式会社 高次加工性の優れた炭素繊維
US5124010A (en) * 1988-12-12 1992-06-23 Mitsubishi Rayon Company, Limited Carbon fibers having modified surfaces and process for producing the same
JPH0367143A (ja) * 1989-08-07 1991-03-22 Mitsubishi Electric Corp 間欠吹出式風洞試験装置
JPH0444016A (ja) * 1990-06-12 1992-02-13 Toyobo Co Ltd 非線形光学材料
JP2530767B2 (ja) * 1991-06-04 1996-09-04 東レ株式会社 炭素繊維及びその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0252985A1 (en) * 1985-12-19 1988-01-20 Mitsubishi Rayon Co., Ltd. Carbon fiber for composite materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101528115B1 (ko) * 2011-10-04 2015-06-10 도레이 카부시키가이샤 탄소 섬유 강화 열가소성 수지 조성물, 성형 재료, 프리프레그, 및 이들의 제조 방법
KR20140114342A (ko) * 2012-01-20 2014-09-26 도레이 카부시키가이샤 섬유 강화 폴리프로필렌 수지 조성물, 성형 재료 및 프리프레그
KR101956415B1 (ko) * 2012-01-20 2019-03-08 도레이 카부시키가이샤 섬유 강화 폴리프로필렌 수지 조성물, 성형 재료 및 프리프레그

Also Published As

Publication number Publication date
KR950006045A (ko) 1995-03-20
DE69416553T2 (de) 1999-06-24
US5691055A (en) 1997-11-25
US5462799A (en) 1995-10-31
ATE176807T1 (de) 1999-03-15
US5589055A (en) 1996-12-31
EP0640702A1 (en) 1995-03-01
US5587240A (en) 1996-12-24
CA2130588A1 (en) 1995-02-26
TW253910B (ko) 1995-08-11
DE69416553D1 (de) 1999-03-25
EP0640702B1 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
KR100333246B1 (ko) 탄소섬유및그제조방법
JP3003513B2 (ja) 炭素繊維およびその製造方法
EP0965679B1 (en) Carbon fibers and process for the production thereof
KR101335140B1 (ko) 탄소 섬유, 탄소 섬유 제조용 폴리아크릴로니트릴계 전구체섬유의 제조 방법, 및 탄소 섬유의 제조 방법
JP2010057462A (ja) 釣竿穂先用プリプレグ、釣竿穂先用繊維強化複合材料、釣竿穂先用中実体、釣竿穂先用管状体及び釣竿穂先
JP3003521B2 (ja) 炭素繊維およびその製造方法
JP2530767B2 (ja) 炭素繊維及びその製造方法
JPS6361432B2 (ko)
JP4305081B2 (ja) 炭素繊維製造用油剤及び炭素繊維の製造方法
JP3755255B2 (ja) 炭素繊維およびその製造方法
US4603157A (en) Intermediate for composite material
JP2005256226A (ja) サイジング被覆炭素繊維およびその製造方法
JP2004277907A (ja) 炭素繊維およびその製造方法
JP3557686B2 (ja) 炭素繊維およびその製造方法
JPS6314114B2 (ko)
JP6944802B2 (ja) 炭素繊維束
JP2005314830A (ja) ポリアクリロニトリル系炭素繊維及びその製造方法
JP4547969B2 (ja) 温水洗浄装置、及びこれを用いた炭素繊維束の処理方法
JPH09249747A (ja) シリコーンゴム、シリコーンゴム粒子、炭素繊維用プリカーサーおよび炭素繊維
JP3136883B2 (ja) 炭素繊維強化樹脂複合材料およびプリプレグ
JP3880101B2 (ja) 炭素繊維及びその製造方法
JP2000355883A (ja) 強化繊維用サイジング剤
JPH0813256A (ja) 樹脂補強用炭素繊維
JP4370836B2 (ja) 炭素繊維製造用油剤及び炭素繊維の製造方法
JPH0770925A (ja) 炭素繊維の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090326

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee