WO2007060833A1 - 炭素繊維束、プリプレグおよび炭素繊維強化複合材料 - Google Patents

炭素繊維束、プリプレグおよび炭素繊維強化複合材料 Download PDF

Info

Publication number
WO2007060833A1
WO2007060833A1 PCT/JP2006/322222 JP2006322222W WO2007060833A1 WO 2007060833 A1 WO2007060833 A1 WO 2007060833A1 JP 2006322222 W JP2006322222 W JP 2006322222W WO 2007060833 A1 WO2007060833 A1 WO 2007060833A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
epoxy resin
resin
fiber bundle
epoxy
Prior art date
Application number
PCT/JP2006/322222
Other languages
English (en)
French (fr)
Inventor
Hiroaki Sakata
Motohiro Kuroki
Masanobu Kobayashi
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to JP2006554359A priority Critical patent/JPWO2007060833A1/ja
Priority to US12/093,480 priority patent/US20090162653A1/en
Priority to EP06823126A priority patent/EP1959051A4/en
Publication of WO2007060833A1 publication Critical patent/WO2007060833A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/248Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using pre-treated fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/50Modified hand or grip properties; Softening compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Definitions

  • Carbon fiber bundles, pre-preda and carbon fiber reinforced composite materials are Carbon fiber bundles, pre-preda and carbon fiber reinforced composite materials.
  • the present invention relates to a carbon fiber bundle that can be suitably applied to sports applications such as golf shafts and fishing rods as well as structural materials for aircraft and other general industrial uses, and a pre-preda and a carbon fiber reinforced composite using the same. Regarding materials.
  • Carbon fiber reinforced composite materials are lightweight and excellent in mechanical strength such as specific strength and specific elastic modulus, and are therefore widely used in sports applications such as golf shafts and fishing rods, and structural materials for aircraft.
  • Such a carbon fiber reinforced composite material is obtained from a carbon fiber bundle and a matrix resin.
  • a sizing agent containing a thermosetting resin is attached to the carbon fiber bundle used for this.
  • thermosetting resin used for the sizing agent phenol resin, melamine resin, bismaleimide resin, unsaturated polyester resin, epoxy resin and the like are suitable.
  • epoxy resin is suitable as a sizing agent that provides a fiber-reinforced composite material having excellent heat resistance, moldability, and adhesion to carbon fibers and having high mechanical strength.
  • the tensile strength in the fiber length direction in the carbon fiber reinforced composite material is perpendicular to the fiber length direction.
  • it is required to achieve a high level of compressive strength in the fiber length direction!
  • Patent Document 1 In order to improve the tensile strength of the carbon fiber reinforced composite material, a method using dimer acid epoxy resin known as a flexibility imparting agent as a sizing agent has been proposed (Patent Document 1). reference).
  • Patent Document 1 a method using dimer acid epoxy resin known as a flexibility imparting agent as a sizing agent.
  • this method although the tensile strength in the fiber length direction of the carbon fiber reinforced composite material is excellent, the compressive strength in the fiber length direction, the tensile strength in the direction perpendicular to the fiber length direction, the interlaminar shear strength, and the like are desired. There was a problem that it was difficult to make things.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-149721
  • Patent Document 2 JP-A-7-279040
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-363253
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-149980
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-169260
  • An object of the present invention is to obtain a carbon fiber reinforced composite material excellent in tensile strength and compressive strength in the fiber length direction, tensile strength in the direction perpendicular to the fiber length direction, and interlaminar shear strength. To provide a bundle.
  • Another object of the present invention is to provide a carbon fiber reinforced composite material excellent in tensile strength and compressive strength in the fiber length direction, tensile strength in a direction perpendicular to the fiber length direction, and interlaminar shear strength. It is in.
  • the present invention employs the following means in order to solve the above problems.
  • flexible epoxy resin (A) and sizing agent containing V resin epoxy resin (B), which is incompatible with flexible epoxy resin (A), as an essential component were adhered.
  • the present invention also includes a pre-preda containing the carbon fiber bundle described above and a matrix resin containing a polyfunctional glycidylamine type epoxy resin and an aromatic diamine curing agent.
  • the present invention also provides a carbon fiber reinforced composite comprising the above carbon fiber bundle and a cured product of a resin composition containing a polyfunctional glycidylamine type epoxy resin and an aromatic diamine curing agent. Contains materials.
  • the present invention is a pre-preda containing a carbon fiber bundle and a matrix resin
  • the carbon fiber bundle includes a flexible epoxy resin (A) and the flexible epoxy resin (A).
  • a sizing agent containing an epoxy resin (B) as an essential component is attached, and the matrix resin is incompatible with the flexible epoxy resin (A).
  • Matrix resin is a pre-preda containing a polyfunctional glycidylamine type epoxy resin and an aromatic diamine curing agent.
  • the present invention also includes a carbon fiber reinforced composite material, which is a cured product of the above pre-preda.
  • a carbon fiber bundle having a good impregnation property of the matrix resin can be obtained in which the single fibers constituting the carbon fiber bundle are easily separated. Further, by using the carbon fiber bundle of the present invention, a carbon fiber reinforced composite material having excellent tensile strength and compressive strength in the fiber length direction and excellent tensile strength and interlayer shear strength in the direction perpendicular to the fiber length direction. Is obtained.
  • the present inventors have found that the flexible epoxy resin (A) and the flexible epoxy resin (A) are not compatible with each other!
  • the epoxy resin (B) is contained as an essential component. It was clarified that the above problems could be solved at once by the carbon fiber bundles to which the agent was attached.
  • the flexible epoxy resin (A) used in the present invention is a flexible epoxy resin having a skeleton containing an aliphatic hydrocarbon structure, a polyether structure, or the like.
  • Flexibility Poxy resin (A) has a high effect of increasing the tensile strength in the fiber length direction of the carbon fiber reinforced composite material. Therefore, it contains two or more epoxy groups, and the epoxy group is between the epoxy groups.
  • n represents an integer of 2 or more, and R represents hydrogen or an alkyl group having 1 to 4 carbon atoms.
  • R represents hydrogen or an alkyl group having 1 to 4 carbon atoms.
  • n is preferably 20 or less.
  • flexible epoxy resin (A) examples include dimer acid type epoxy resin, castor oil modified epoxy resin, soybean oil modified epoxy resin, linseed oil modified epoxy resin, fat Examples include aliphatic polyol-modified epoxy resin and alicyclic epoxy resin.
  • the commercially available flexible epoxy resin (A) include, for example, dimer monoacid type epoxy resin ("j ER “ (registered trademark) 871, “jER “(Registered Trademark) 872) [End of Japan Epoxy Resin Co., Ltd.], Castor Oil Modified Epoxy Resin (" ERISYS "(Registered Trademark) GE—35) [PTI Japan Co., Ltd.], Aliphatic Polio Lupolyglycidyl ether (“E RISYS” (registered trademark) GE-36) [PTI Japan Co., Ltd.], linseed oil-modified epoxy resin (L-500) [Daicel Engineering Co., Ltd.], flexible Alicyclic epoxy resin (GT-301, G T-401) [Daicel Engineering Co., Ltd.], chained alicyclic epoxy resin (EP-4000, EP -4005) [Asahi Denka Kogyo Co., Ltd.], linear carboxylic acid diglycidyl
  • a flexible epoxy resin is used as a matrix resin made of a high crosslink density epoxy resin.
  • the crosslink density of the matrix resin can be lowered, and the elongation of the resin can be improved.
  • flexible epoxy resin is useful as an additive for imparting flexibility and toughness to matrix resin.
  • the elastic modulus of the matrix resin decreases and, as a result, the compressive strength of the carbon fiber reinforced composite material decreases. There was a problem to do.
  • a flexible epoxy resin has a skeleton that imparts flexibility, so that it is generally characterized by low polarity. For this reason, when a flexible epoxy resin is used alone as a sizing agent, voids tend to be easily generated in a composite material obtained by impregnating a matrix resin such as epoxy resin into a carbon fiber bundle. There is a problem that the tensile strength and the interlaminar shear strength in the direction perpendicular to the fiber length direction of the carbon fiber reinforced composite material are lowered.
  • the flexible epoxy resin (A) is not compatible with the flexible epoxy resin (A)! , Use epoxy resin (B) together.
  • the epoxy resin (B) used in the present invention is particularly preferably an aliphatic polyglycidyl ether compound having 3 or more epoxy groups and an epoxy equivalent of 200 or less.
  • the adhesion to the carbon fiber is increased, and the tensile strength and the interlayer shear strength in the direction perpendicular to the fiber length direction are improved.
  • adhesion to carbon fiber is important and it is preferable to have many epoxy groups with high adhesion, but if there are 6 epoxy groups, The effect is often sufficient. If there are too many epoxy groups, the carbon fiber bundle tends to be too hard, or the expandability tends to decrease, and the carbon fiber handling properties tend to decrease.
  • the epoxy equivalent of the epoxy resin (B) is preferably 120 or more and 200 or less, more preferably 120 or more and 190 or less. If the epoxy equivalent exceeds 200, the adhesion to carbon fiber It tends to decrease.
  • Aliphatic polyglycidyl ether compounds having 3 or more epoxy groups and an epoxy equivalent of 200 or less include, for example, diglycerol polyglycidyl ether ("Denacol” (registered trademark) EX-421) [Nagase ChemteX Corporation] Co., Ltd.], polyglycerol polyglycidyl ether ("Denacol” (registered trademark) EX-512, EX-521) [manufactured by Nagase ChemteX Corporation], sorbitol polyglycidyl ether (“Denacol” (registered trademark) EX) — 614B) Force that can be used preferably by [Nagase ChemteX Corp.] It is not limited to this!
  • the present invention is characterized in that the flexible epoxy resin (A) and the epoxy resin (B) are used simultaneously as described above. Furthermore, the flexible epoxy resin (A) and the epoxy resin (B) are not compatible with each other, that is, the flexible epoxy resin (A) and the epoxy resin (B) are not compatible. is important. When flexible epoxy resin (A) and epoxy resin (B) are compatible, their effects are offset, and the desired balanced carbon fiber reinforced composite material cannot be obtained. Nao. Since the flexible epoxy resin (A) and the epoxy resin (B) are not compatible with each other, a target carbon fiber reinforced composite material can be obtained for the first time. The reason is considered as follows.
  • flexible epoxy resin (A) and epoxy resin (B) are used simultaneously as a sizing agent, they will not be compatible with the relatively polar epoxy resin (B) 1S flexible epoxy resin (A). Therefore, it selectively gathers on the surface of the carbon fiber in a form that is ejected to improve adhesion with the carbon fiber.
  • the flexible epoxy resin (A) gathers outside the epoxy resin (B) to form a flexible layer.
  • Another embodiment of the present invention is a pre-preda containing a carbon fiber bundle and a matrix resin, and the carbon fiber bundle includes a flexible epoxy resin (A) and the flexible epoxy resin (A )When A compatible sizing agent containing an epoxy resin (B) as an essential component is attached, and the matrix resin is not compatible with the flexible epoxy resin (A). It is a pre-preda that also has an epoxy resin composition power.
  • the epoxy resin (B) used in this embodiment includes an aliphatic polyglycidyl ether compound having 3 or more epoxy groups and an epoxy equivalent of 200 or less, and a polyfunctional glycidylamine type epoxy resin. Fats are preferred. An aliphatic polyglycidyl ether compound having 3 or more epoxy groups and an epoxy equivalent strength of S200 or less is particularly preferred.
  • aliphatic polyglycidyl ether compound having 3 or more epoxy groups and having an epoxy equivalent of 200 or less those described above can be preferably used.
  • polyfunctional glycidylamine type epoxy resin for example, tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol and triglycidylaminocresol can be preferably used.
  • tetraglycidyldiaminodiphenylmethane examples include “Sumiepoxy” (registered trademark) ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), YH4 34L (manufactured by Tohto Kasei Co., Ltd.), “Araldide, (registered trademark) ) MY720 (manufactured by Huntsman Advanced 'Materials Co., Ltd.), "jER” 604 (registered trademark, manufactured by Japan Epoxy Resin Co., Ltd.), etc. can be used, such as triglycidylaminophenol or triglycidyl amino acid.
  • nocresol examples include “Sumiepoxy” (registered trademark) ELM100 (manufactured by Sumitomo Chemical Co., Ltd.), “Araldide” (registered trademark) MY0510, “Araldide” (registered trademark) MY050 0, “Araldite” ( (Registered trademark) MY0600 (above, manufactured by Huntsman 'Advanced' Materials Co., Ltd.), “jER” 630 (registered trademark, manufactured by Japan Epoxy Resin Co., Ltd.), etc. can be used.
  • the flexible epoxy resin (A) and the epoxy resin (B), which are incompatible with each other as described above, have a sizing agent composition, and the flexible epoxy resin (A It is characterized by the simultaneous use of a specific epoxy resin matrix that is not compatible with Thereby, even when a sizing agent other than a combination of the flexible epoxy resin (A) and the aliphatic polyglycidyl ether compound is used, a pre-preda exhibiting the effects of the present invention is obtained. A carbon fiber reinforced composite material can be obtained. The reason is considered as follows. Flexible epoxy resin (A) is a combination of epoxy resin (B) and matrix resin.
  • the glycidylamine type epoxy resin contained in the relatively high polarity epoxy resin (B) and the matrix resin is compatible with each other, and the flexible epoxy resin (A) and Since they are not compatible with each other, they gather on the surface of the carbon fiber and suppress a decrease in adhesion between the carbon fiber and the matrix resin.
  • the lump that also has the flexible epoxy (A) force contributes to stress relaxation against the tension in the fiber length direction on the carbon fiber surface.
  • the compatibility with each other means that the flexible epoxy resin (A) and the epoxy resin (B) are mixed and then subjected to a heat history of molding conditions for curing the matrix resin.
  • the weight ratio (A) Z (B) of the flexible epoxy resin (A) to the epoxy resin (B) in the sizing agent is 0.6 to 2.0. More preferably,
  • A) / (B) 0.8 to 1.5.
  • the weight ratio (A) Z (B) is less than 0.6, fluff is likely to occur due to friction between the carbon fiber bundle and the metal guide when the carbon fiber bundle is prepreged and weaved. Therefore, the quality such as smoothness of the prepared pre-preparation may be degraded. Moreover, it exists in the tendency for the tensile strength of a fiber length direction to fall.
  • matrix resin such as epoxy resin does not easily impregnate the inside of the carbon fiber bundle, and voids are easily generated in the resulting composite material in the direction perpendicular to the fiber length direction. Tensile strength and interlaminar shear strength tend to decrease.
  • the amount of the sizing agent attached is preferably 0.3 to 3.0% by weight, more preferably 0.4 to 2.0% by weight, based on the total weight of the carbon fiber. It is. If the amount of the sizing agent attached per unit weight of the carbon fiber is too small, the effect of improving the elongation and toughness of the cured resin layer near the carbon fiber surface in the composite material becomes low. In this case, the tensile strength and compressive strength of the carbon fiber reinforced composite material tend to decrease. Also, when carbon fiber bundles are prepreged and weaved, they cannot withstand friction caused by passing metal guides, etc., and fluff is likely to occur. There is.
  • the sizing agent film around the carbon fiber bundle will block the matrix resin such as epoxy resin inside the carbon fiber bundle. It does not impregnate and tends to generate voids in the resulting composite material. In this case, the quality and mechanical properties of the carbon fiber reinforced composite material tend to be lowered.
  • the sizing agent used in the present invention increases the handleability, scratch resistance, and fluff resistance of the carbon fiber bundle, and improves the impregnation property of the matrix resin.
  • Auxiliaries other than epoxy resin such as polyester and polyamide, and auxiliary components such as a dispersant and a surfactant may be added.
  • the carbon fiber bundle used in the present invention is a bundle of tens of thousands of carbon fiber filaments.
  • carbon fiber filaments for example, known carbon fibers such as polyacrylonitrile (hereinafter referred to as PAN) carbon fiber, rayon carbon fiber or pitch carbon fiber can be used.
  • PAN polyacrylonitrile
  • rayon carbon fiber or pitch carbon fiber can be used.
  • PAN-based carbon fiber bundle from which a high-strength carbon fiber bundle can be easily obtained.
  • the total fineness of the carbon fiber bundle is preferably 400 to 3000 tex.
  • the number of filaments in the carbon fiber bundle is preferably ⁇ 1000 to 100,000, and more preferably ⁇ 3,000 to 500,000.
  • the strength of the carbon fiber bundle is preferably 1 to: LOGPa, more preferably 5 to 8 GPa, and the elastic modulus is preferably 100 to 1000 GPa, more preferably 200 to 600 GPa.
  • the spinning method for obtaining the precursor fiber of the carbon fiber bundle there can be employed a spinning method such as wet or dry! / Or dry and wet. easily obtain high-strength fibers!
  • the wet and wet spinning is preferred, and the wet and wet spinning method is particularly preferred.
  • the spinning dope can be a polyacrylo-tolyl homopolymer or copolymer solution or suspension.
  • This stock solution for spinning is spun through a die, solidified, washed with water, and drawn to obtain a precursor fiber.
  • a carbon fiber bundle is obtained by subjecting this precursor fiber to flameproofing treatment and carbonization treatment, and if necessary, graphitization treatment.
  • the obtained carbon fiber bundle is subjected to surface oxidation treatment such as electrolytic surface treatment as necessary in order to improve the adhesion to the matrix resin.
  • a sizing agent is adhered to the substantially untwisted carbon fiber bundle thus obtained.
  • a method of drying and removing the solvent after applying the sizing solution in which the sizing agent is dissolved or dispersed in the solvent to the carbon fiber bundle is simple.
  • a roller sizing method As means for applying the sizing liquid to the carbon fiber bundle, a roller sizing method, a roller dipping method, a spray method, or the like can be used.
  • the roller dip method is preferably used for carbon fiber bundles having a large number of single fibers per bundle, because the sizing agent can be uniformly applied.
  • the solvent used in the sizing solution is optimally an aqueous dispersion emulsified with a surfactant from the viewpoints of handleability and safety.
  • concentration of the sizing agent in the sizing liquid needs to be adjusted as appropriate by adjusting the sizing liquid application method and the amount of squeezing out the excess sizing liquid after application, but usually 0.2% to 20% by weight. % Range is preferred! / ,.
  • the liquid temperature of the sizing liquid is preferably in the range of 10 to 50 ° C in order to suppress fluctuations in the concentration of the sizing agent due to solvent evaporation.
  • the conditions for removing the solvent by drying are preferably in the range of 10 seconds to 10 minutes at a temperature of 120 to 300 ° C., more preferably in the range of 150 to 250 ° C. for 30 seconds to 4 minutes. Range.
  • a method of adhering two or more types of epoxy resins as a sizing agent to a carbon fiber bundle a method using a sizing solution in which two or more types of epoxy resins are simultaneously dissolved or dispersed in a solvent, There is a method in which a sizing solution obtained by individually dissolving or dispersing the epoxy resin in a solvent is applied to the carbon fiber bundle one by one and then dried.
  • a thermosetting resin or a thermoplastic resin can be used as the matrix resin of the carbon fiber reinforced composite material.
  • Epoxy resin is preferably used in terms of satisfying both moldability and mechanical properties. Among them, from the viewpoint of heat resistance, an epoxy resin containing a glycidyl ether group obtained by reacting an epichlorohydrin with a hydroxyl group or a glycidyl amino group obtained by reacting an epiminohydrin with an amino group is preferably used.
  • bisphenol A type Epo Glycidyl ethers such as xylose resin, bisphenol F type epoxy resin and bisphenol S type epoxy resin, and glycidylamines such as tetraglycidyldiaminodiphenylmethane and triglycidylaminophenol are preferably used.
  • cresol novolac type epoxy resin a cresol novolac type epoxy resin, a phenol aralkyl type epoxy resin, tetrakis (glycidyloxyphenol) ethane tris (glycidyloxy) methane, or a mixture thereof can also be used.
  • epoxy resins When these epoxy resins are used, catalysts such as acids and bases and curing agents may be added as necessary.
  • epoxy resins can be cured with Lewis acids such as boron halide complexes and p-toluenesulfonate, and polyamine curing agents such as diaminodiphenylsulfone, diaminodiphenylmethane and their derivatives and isomers. Preferably used.
  • a flexible epoxy resin is used as the matrix resin of the carbon fiber reinforced composite material of the present invention.
  • an epoxy resin composition that is not compatible with (A). Even if flexible epoxy resin (A) is used as a sizing agent for carbon fiber bundles, if it diffuses into the matrix resin during molding, stress relaxation is achieved against the tension in the fiber length direction on the carbon fiber surface. The effect of improving the tensile strength in the fiber length direction of the carbon fiber reinforced composite material is reduced. In addition, the diffusion of the flexible epoxy resin (A) in the matrix resin reduces the elastic modulus of the matrix resin when it is molded, and as a result, the carbon fiber reinforced composite material is subjected to the wet heat. Compressive strength decreases.
  • the term “compatible” refers to the heat history of the molding conditions for curing the matrix resin after mixing the flexible epoxy resin (A) and the epoxy resin composition that is a matrix resin. Means a uniform transparent state. Under the same conditions, any other state, for example, a state completely separated into two phases, or a uniform but opaque state, means that they are not compatible with each other.
  • the matrix resin it is particularly preferable to use an epoxy resin containing a polyfunctional glycidylamine type epoxy resin and an aromatic diamine curing agent.
  • matrix resin containing polyfunctional glycidylamine type epoxy resin and aromatic diamine curing agent is in addition, the heat resistance and compressive strength of the carbon fiber reinforced composite material having a high crosslinking density can be improved.
  • the tensile strength in the fiber length direction was lowered due to the low elongation of the sallow.
  • the flexible epoxy resin (A) causes stress relaxation to the fiber length direction tension on the surface of the carbon fiber, and the breakage of the carbon fiber causes the matrix fiber to break. Propagates to fat. As a result, the tensile strength in the fiber length direction of the carbon fiber reinforced composite material can be improved. Further, since the flexible epoxy resin (A) does not diffuse into the matrix resin, the compressive strength of the carbon fiber reinforced composite material is maintained without lowering the elastic modulus of the matrix resin.
  • the polyfunctional glycidylamine type epoxy resin for example, tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, and triglycidylaminocresol can be preferably used.
  • the polyfunctional glycidylamine type epoxy resin has the effect of improving heat resistance, and the ratio is preferably 30 to 100% by weight in 100% by weight of the total epoxy resin. 50 ⁇ : LOO wt%. If the proportion of darisidylamine type epoxy resin is less than 30% by weight, the compressive strength of the carbon fiber reinforced composite material may be reduced or the heat resistance may be poor.
  • Examples of the tetraglycidyldiaminodiphenol-methane include "Sumiepoxy” (registered trademark) ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), YH434L (manufactured by Tohto Kasei Co., Ltd.), "Araldide, (Registered trademark) MY720 (manufactured by Huntsman Advanced 'Materials Co., Ltd.), "jER” (registered trademark) 604 (manufactured by Japan Epoxy Resin Co., Ltd.), etc. can be used.
  • minophenol or triglycidylaminominoresol examples include “Sumiepoxy” (registered trademark) ELM100 (manufactured by Sumitomo Chemical Co., Ltd.), “Araldide” ( (Registered trademark) MY0510, “Araldite” (registered trademark) MY0600 (manufactured by Huntsman's Advanced Materials Co., Ltd.), “jER” (registered trademark) 630 (manufactured by Japan Epoxy Resin Co., Ltd.), etc. Can be used.
  • the aromatic diamine curing agent is not particularly limited as long as it is an aromatic amine used as an epoxy resin curing agent.
  • the aromatic diamine curing agent is included in a stoichiometric amount of 50 to 120% by weight based on the total epoxy resin, more preferably 60 to 120% by weight. 70-120% by weight. If the aromatic amine curing agent is less than 50% by weight of the stoichiometric amount with respect to the total epoxy resin, the resulting resin cured product may not have sufficient heat resistance. Further, when the aromatic amine curing agent exceeds 120% by weight, the toughness of the obtained resin cured product may be lowered.
  • the matrix resin of the carbon fiber reinforced composite material of the present invention can be blended with a thermoplastic resin in order to improve physical properties such as toughness of the obtained cured resin resin.
  • thermoplastic resins include carbon-carbon bonds, amide bonds, imide bonds (polyetherimide, etc.), ester bonds, ether bonds, siloxane bonds, carbonate bonds, urethane bonds, urea bonds, thioether bonds in the main chain. , A sulfone bond, an imidazole bond, and a carbonyl bond strength.
  • a thermoplastic resin having a selected bond can be used.
  • those having both heat resistance and toughness such as polysulfone, polyethersulfone, polyetherimide, polyimide, polyamide, polyamideimide, polyphenylene ether, phenoxy resin, and bur polymer can be preferably used.
  • polyethersulfone and polyetherimide are preferable because these effects can be exhibited without substantially impairing heat resistance.
  • polyethersulfone "Sumika "Etacel” (registered trademark) 3600P, “Sumikaecel” (registered trademark) 5003P, “Sumikaexel” (registered trademark) 5200P, “Sumikaecel” (registered trademark, manufactured by Sumitomo Chemical Co., Ltd.) 7200P, polyetherimide "Ultem, (registered trademark) 1000,” Ultem, (registered trademark) 1010, “Ultem” (registered trademark) 1040 (above, manufactured by GI Plastics Co., Ltd.) it can.
  • the powerful thermoplastic resin is uniformly dissolved in the epoxy resin composition or is finely dispersed in the form of particles so as not to interfere with the pre-preparer preparation process centering on impregnation. It is preferable.
  • the amount of the thermoplastic resin to be cured is preferably 1 to 20 parts by weight with respect to 100 parts by weight of the epoxy resin when dissolved in the epoxy resin composition. Preferably it is 1-15 weight part. On the other hand, when dispersed and used, 10 to 40 parts by weight is preferable with respect to 100 parts by weight of epoxy resin, and more preferably 15 to 30 parts by weight. If the thermoplastic resin is less than this amount, the effect of improving toughness may be insufficient. If the thermoplastic resin exceeds the above range, the impregnation property, tack drape, and heat resistance may decrease.
  • thermosetting resin other than epoxy resin, elastomer, filler, and other additives may be blended.
  • the pre-preda of the present invention is a product obtained by impregnating a reinforcing carbon fiber bundle with a matrix resin.
  • the pre-preda is manufactured by, for example, a wet method in which matrix resin is dissolved in a solvent such as methyl ethyl ketone or methanol to lower the viscosity and impregnated, or a hot melt method in which the viscosity is lowered by heating and impregnated. Can do.
  • the reinforced carbon fiber bundle can be immersed in a liquid containing matrix rosin, then pulled up, and the solvent can be evaporated using an oven or the like to obtain a pre-preda.
  • the hot melt method a method of directly impregnating a reinforced carbon fiber bundle with a matrix resin reduced in viscosity by heating, or a film in which a matrix resin composition is coated on release paper or the like is first performed.
  • the film is piled up from both sides or one side of the reinforced carbon fiber bundle, and heated and pressed to impregnate the reinforced carbon fiber bundle with the matrix resin.
  • a pre-preda can be manufactured.
  • the hot melt method is preferred because there is no solvent remaining in the prepreader.
  • Methods for applying heat and pressure include a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, and an internal pressure molding method. Especially for sports equipment, the wrapping tape method and An internal pressure molding method is preferably employed. For aircraft applications where higher quality and higher performance laminated composites are required, the autoclave molding method is preferably employed. A press molding method is preferably used for various vehicle exteriors.
  • each of flexible epoxy resin [A] and epoxy resin [B] are mixed and placed in a 2mm thick transparent container, and then the conditions for molding the matrix resin (heating rate 1.5 ° CZ min. And a thermal history of 2 hours at a temperature of 180 ° C.
  • the sizing agent was in a uniform and transparent state, it was considered compatible, and otherwise (when separated into two layers, it was uniform but opaque) it was considered incompatible.
  • the drum is heated to a temperature of 50 to 60 ° C in order to improve the resin impregnation between the carbon fiber bundles.
  • fiber ⁇ with 195 ⁇ 5gZm 2 By adjusting the rotation speed and the traverse of the feed speed of the drum, fiber ⁇ with 195 ⁇ 5gZm 2, to produce a Puripureda of ⁇ amount from about 35 weight 0/0.
  • the pre-preparer thus produced was cut, laminated, and heated using an autoclave (heating rate: 1.5 ° CZ min., 0.5 MPa pressure, 2 ° C at 180 ° C). To form a cured plate.
  • a pre-preda was laminated in one direction to produce a 1 mm thick cured plate.
  • the 0 ° tensile strength was measured according to JIS—K 7073 (1988).
  • a unidirectional 0 ° tensile specimen was prepared with a length of 230 ⁇ 0.4 mm, a width of 12.5 ⁇ 0.2 mm, and a thickness of 1 ⁇ 0.2 mm.
  • the gauge length was 125 ⁇ 0.2 mm, and the crosshead speed of the specimen tensile tester was 1.3 mmZ. Five samples were measured and the average value was determined. For measurements, dry at room temperature (25 ° C ⁇ 2 ° C, relative humidity 50%) I went there.
  • a pre-preda was laminated in one direction to prepare a 2 mm thick cured plate.
  • the 90 ° tensile strength was measured in accordance with JIS—K—7073 (1988).
  • a unidirectional 90 ° tensile test piece with a length of 150 ⁇ 0.4 mm, a width of 20 ⁇ 0.2 mm, and a thickness of 2 ⁇ 0.2 mm was prepared.
  • the crosshead speed of the specimen tensile tester was measured as ImmZ. Five samples were measured and the average value was obtained. The measurement was performed in a dry state at room temperature (25 ° C ⁇ 2 ° C, relative humidity 50%).
  • a pre-preda was laminated in one direction to prepare a 2 mm thick cured plate.
  • Interlaminar shear strength was measured by a three-point bending test according to JIS-K-7078 (1991).
  • a pre-preda was laminated in one direction to produce a 1 mm thick cured plate.
  • the 0 ° compressive strength was measured according to JIS-K-7076 (1991).
  • a unidirectional 0 ° compression test piece with a length of 80 ⁇ 0.2 mm, a width of 12.5 ⁇ 0.2 mm, and a thickness of 1 ⁇ 0.2 mm was prepared from a rigid board.
  • the crosshead speed of the compression tester was measured as 1.3 mmZ. Six samples were measured, and the average value was obtained. The measurement was performed in a dry state at room temperature (2 ° C at 25 ° C, 50% relative humidity).
  • Polyacrylonitrile containing 0.5 mol% of itaconic acid as a copolymerization component was spun, calcined at a carbonization temperature of 1500 ° C, and subjected to an electrolytic surface treatment of 80 cZg using an aqueous solution of ammonium bicarbonate to obtain a total filament.
  • a number of 24,000 carbon fiber bundles with no sizing agent added were obtained. The properties of this carbon fiber bundle are: total fineness 1000 tex, specific gravity 1.8, strand tension The strength was 6.2 GPa and the strand tensile modulus was 297 GPa.
  • the sizing agent As the sizing agent, the following components were mixed in the mixing ratios shown in Tables 1 and 2, and all emulsions emulsified with a nonionic surfactant were used.
  • the carbon fiber bundle was impregnated with a sizing solution by a dip method and then dried at 200 ° C. for 2 minutes with a hot air dryer to obtain a carbon fiber bundle with a sizing agent attached thereto.
  • the matrix rosin component was prepared using a heating-under a mixing ratio shown in Tables 1 to 3. Tables 1 to 3 show the results of various evaluation tests using this carbon fiber bundle and matrix resin.
  • epoxy resin (B) polyglycerol polyglycidyl ether
  • EX—512 epoxy group number 4, epoxy equivalent 168
  • sorbitol polyglycidyl ether epoxy group number 4, epoxy equivalent 173
  • jER bisphenol A type epoxy resin
  • Epoxy equivalent 189) [manufactured by Japan Epoxy Resin Co., Ltd.] and triglycidylaminophenol (“Sumiepoxy” (registered trademark) ELM100) [manufactured by Sumitomo Chemical Co., Ltd.] were used.
  • Matrix Uzuki is made of tetraglycidyldiaminodiphenol-nomethane ("Sumiepoxy” (registered trademark) ELM434) [manufactured by Sumitomo Chemical Co., Ltd.], bisphenol A type epoxy resin ("j ER” (registered trademark)) 828) [manufactured by Japan Epoxy Resin Co., Ltd.], 3, 3, -diaminodiphenyl sulfone (3, 3, -DAS) [manufactured by Konishi Chemical Co., Ltd.], polyethersulfone ("Sumikaetacel” (registered trademark) 5003P) [Sumitomo Chemical Co., Ltd.] was used.
  • Examples 1 to 9 all have excellent 0 ° tensile strength of the composite, 0 ° compressive strength, and Z or 90 ° tensile strength and interlaminar shear strength are high. It was a thing. Further, the fluff that the single fiber constituting the carbon fiber bundle was easily broken was not seen, and the impregnation with the sizing agent and the matrix resin was good. In contrast, in Comparative Example 1, voids were observed in the cured plate, and the 0 ° compressive strength, 90 ° tensile strength and interlaminar shear strength were low. In Comparative Example 2, fluff was observed in the carbon fiber bundle, and the 0 ° tensile strength was low. Comparative Example 3 and Comparative Example 4 have low 0 ° tensile strength, 90 ° tensile strength and interlaminar shear strength.
  • Example 10 As shown in Table 3, the prepreader of Example 10 is excellent in the 0 ° tensile strength of the composite. ° Compressive strength, 90 ° tensile strength and interlaminar shear strength were high. In Comparative Example 5, all of 0 ° compressive strength, 90 ° tensile strength and interlaminar shear strength were lower than Example 10.
  • the carbon fiber bundle of the present invention provides a carbon fiber reinforced composite material having excellent tensile strength and compressive strength in the fiber length direction and excellent tensile strength and interlayer shear strength in the direction perpendicular to the fiber length direction. It is suitable for structural materials, sports applications such as golf shafts and fishing rods, and other general industrial applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、可撓性エポキシ樹脂(A)および該可撓性エポキシ樹脂(A)とは相溶性のないエポキシ樹脂(B)を必須成分として含有するサイジング剤が付着された炭素繊維束であって、該エポキシ樹脂(B)が、エポキシ基を3個以上有し、かつ、エポキシ当量が200以下の脂肪族ポリグリシジルエーテル化合物である炭素繊維束である。本発明は、繊維長さ方向の引張強度と圧縮強度、繊維長さ方向に垂直な方向の引張強度および層間剪断強度に優れた炭素繊維強化複合材料を提供する。

Description

明 細 書
炭素繊維束、プリプレダおよび炭素繊維強化複合材料
技術分野
[0001] 本発明は、航空機用構造材料をはじめとして、ゴルフシャフトや釣り竿等のスポーツ 用途およびその他一般産業用途に好適に適用し得る炭素繊維束、およびそれを利 用したプリプレダおよび炭素繊維強化複合材料に関する。
背景技術
[0002] 炭素繊維強化複合材料は、軽量で比強度および比弾性率等の機械的強度に優れ ているため、ゴルフシャフトや釣り竿等のスポーツ用途や航空機用構造材料等に広く 用いられている。
[0003] このような炭素繊維強化複合材料は、炭素繊維束とマトリックス榭脂とから得られる 。これに用いられる炭素繊維束は、その炭素繊維束を集束するために、例えば、熱 硬化性榭脂を含むサイジング剤が付着されて ヽる。サイジング剤に用いられる熱硬 化性榭脂としては、フエノール榭脂、メラミン榭脂、ビスマレイミド榭脂、不飽和ポリエ ステル樹脂およびエポキシ榭脂などが好適である。中でも、エポキシ榭脂は、耐熱性 、成形性および炭素繊維との接着性に優れ、高度の機械的強度を有する繊維強化 複合材料を与えるサイジング剤として好適である。
[0004] カゝかる炭素繊維強化複合材料を、航空機、車両および船舶などの構造材料として 適用する場合は、炭素繊維強化複合材料中の繊維長さ方向の引張強度、繊維長さ 方向に垂直な方向の引張強度および剪断強度に加えて、繊維長さ方向の圧縮強度 を高 、レベルで実現させることが要求されて!、る。
[0005] 炭素繊維強化複合材料の引張強度を向上させるため、可撓性付与剤として知られ て 、るダイマー酸エポキシ榭脂をサイジング剤として使用する方法が提案されて!、る (特許文献 1参照)。しかしながら、この方法では、炭素繊維強化複合材料の繊維長 さ方向の引張強度は優れるものの、繊維長さ方向の圧縮強度、繊維長さ方向に垂直 な方向の引張強度および層間剪断強度等を所望のものとすることが困難であるという 問題があった。 [0006] また、炭素繊維強化複合材料を構成するマトリックス榭脂との接着性を高めるため、 反応性希釈剤として知られている多官能エポキシ榭脂をサイジング剤として使用する 方法が提案されている (特許文献 2参照)。しかしながら、この方法では、炭素繊維強 化複合材料の繊維長さ方向に垂直な方向の引張強度と層間剪断強度は優れている ものの、繊維長さ方向の引張強度および圧縮強度等を所望のものとすることが困難 であるという問題があった。
[0007] また、炭素繊維強化複合材料の圧縮強度を向上させるために、マトリックス榭脂とし て、分子内に 3個以上のエポキシ基を有するエポキシ榭脂と、 N, N—ジグリシジルァ 二リンと、芳香族ジァミンィ匕合物を用いる方法が提案されている (特許文献 3参照)。 しかしながら、この方法では圧縮強度を向上させることはできるが、炭素繊維束自身 の弓 I張強度を十分発現することができな 、という問題があった。
[0008] このほかにも、サイジング剤として、各種のエポキシ榭脂を使用する方法が提案さ れて 、る(特許文献 4および特許文献 5参照)ものの、 V、ずれも高 、レベルの繊維強 化複合材料特性を満足する炭素繊維束は得られて!/ヽな ヽのが現状である。
特許文献 1 :特開 2004— 149721号公報
特許文献 2:特開平 7— 279040号公報
特許文献 3:特開 2002— 363253号公報
特許文献 4:特開 2004— 149980号公報
特許文献 5 :特開 2004— 169260号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明の目的は、繊維長さ方向の引張強度と圧縮強度、繊維長さ方向に垂直な方 向の引張強度および層間剪断強度に優れた炭素繊維強化複合材料を得るための 炭素繊維束を提供することにある。
[0010] 本発明の他の目的は、繊維長さ方向の引張強度と圧縮強度、繊維長さ方向に垂 直な方向の引張強度および層間剪断強度に優れた炭素繊維強化複合材料を提供 することにある。
課題を解決するための手段 [0011] 本発明は、前記課題を解決するために、次のような手段を採用するものである。す なわち、可撓性エポキシ榭脂 (A)および該可撓性エポキシ榭脂 (A)とは相溶性のな Vヽエポキシ榭脂 (B)を必須成分として含有するサイジング剤が付着された炭素繊維 束であって、該エポキシ榭脂(B)力 エポキシ基を 3個以上有し、かつ、エポキシ当 量が 200以下の脂肪族ポリグリシジルエーテルィ匕合物である炭素繊維束である。
[0012] また、本発明は、上記の炭素繊維束と、多官能のグリシジルァミン型エポキシ榭脂 および芳香族ジァミン硬化剤を含有するマトリックス榭脂とを含むプリプレダを含む。
[0013] また、本発明は、上記の炭素繊維束と、多官能のグリシジルァミン型エポキシ榭脂 および芳香族ジァミン硬化剤を含有する榭脂組成物の硬化物とを含む炭素繊維強 化複合材料を含む。
[0014] また、本発明は、炭素繊維束およびマトリックス榭脂を含むプリプレダであって、該 炭素繊維束に、可撓性エポキシ榭脂 (A)および該可撓性エポキシ榭脂 (A)とは相 溶性のな!ヽエポキシ榭脂 (B)を必須成分として含有するサイジング剤が付着され、該 マトリックス榭脂が、該可撓性エポキシ榭脂 (A)とは相溶性がなぐかつ、該マトリック ス榭脂が多官能のグリシジルァミン型エポキシ榭脂および芳香族ジァミン硬化剤を含 有するプリプレダである。
[0015] また、本発明は、上記のプリプレダの硬化物である炭素繊維強化複合材料を含む。
発明の効果
[0016] 本発明によれば、炭素繊維束を構成する単繊維がバラケ易ぐマトリックス榭脂の含 浸性が良好な炭素繊維束が得られる。また、本発明の炭素繊維束を用いることにより 、繊維長さ方向の引張強度と圧縮強度に優れ、かつ繊維長さ方向に垂直な方向の 引張強度および層間剪断強度に優れた炭素繊維強化複合材料が得られる。
発明を実施するための最良の形態
[0017] 本発明者らは、可撓性エポキシ榭脂 (A)および該可撓性エポキシ榭脂 (A)とは相 溶性のな!、エポキシ榭脂 (B)を必須成分として含有するサイジング剤が付着された 炭素繊維束によって、上記の課題が一挙に解決されることを究明した。
[0018] 本発明で用いられる可撓性エポキシ榭脂 (A)とは、骨格に脂肪族炭化水素構造や ポリエーテル構造などを含む、可撓性を持ったエポキシ榭脂のことである。可撓性ェ ポキシ榭脂 (A)としては、炭素繊維強化複合材料の繊維長さ方向の引張強度を向 上させる効果が高いことから、 2つ以上のエポキシ基を含有し、エポキシ基とエポキシ 基の間に、下記構造式(1)および (2)
[0019] [化 1]
Figure imgf000005_0001
式 (1 )
[0020] [化 2]
CH,— CH一 0-
Figure imgf000005_0002
R 式 ( 2 )
[0021] (上記の式(1)および(2)において、 nは 2以上の整数を表し、 Rは水素または炭素数 1〜4のアルキル基を表す。 )
Figure imgf000005_0003
、ずれかの基(骨格)を 1つ以上含有して!/ヽ るものが好適である。 nは、 20以下であることが好ましい。
[0022] 可撓性エポキシ榭脂 (A)の具体的な例としては、ダイマー酸型エポキシ榭脂、ひま し油変性エポキシ榭脂、大豆油変性エポキシ榭脂、亜麻仁油変性エポキシ榭脂、脂 肪族ポリオール変性エポキシ榭脂および脂環式エポキシ榭脂等が挙げられる。
[0023] また、市販されて!、る可撓性エポキシ榭脂 (A)の具体的な例としては、例えば、ダ イマ一酸型エポキシ樹脂("jER" (登録商標) 871, "jER" (登録商標) 872) [以上、 ジャパンエポキシレジン (株)製]、ひまし油変性エポキシ榭脂("ERISYS" (登録商 標) GE— 35) [PTIジャパン (株)製]、脂肪族ポリオ一ルポリグリシジルエーテル("E RISYS" (登録商標) GE— 36) [PTIジャパン (株)製]、亜麻仁油変性エポキシ榭脂 (L- 500) [ダイセルィ匕学工業 (株)製]、可撓性脂環式エポキシ榭脂 (GT— 301、 G T-401) [ダイセルィ匕学工業 (株)製]、鎖状'脂環式エポキシ榭脂 (EP— 4000、 EP -4005) [旭電化工業 (株)社製]、直線状カルボン酸ジグリシジルエステル (IPU— 22G) [岡村製油 (株)製]などを挙げることができる。
[0024] 一般に、可撓性エポキシ榭脂を、高架橋密度のエポキシ榭脂からなるマトリックス榭 脂に添加した場合、マトリックス榭脂の架橋密度を下げ、硬化物の榭脂伸度を向上さ せることができる。また可撓性エポキシ榭脂は、マトリックス榭脂に柔軟性および靭性 を与える添加剤として有用である。し力しながら、可撓性のエポキシ榭脂を炭素繊維 強化複合材料のマトリックス榭脂に加えた場合、マトリックス榭脂の弾性率が低下し、 その結果、炭素繊維強化複合材料の圧縮強度が低下するという問題があった。とこ ろが、可撓性エポキシ榭脂を本発明のように炭素繊維束のサイジング剤として使用 する場合、可撓性エポキシ榭脂は炭素繊維表面のみに存在するため、マトリックス榭 脂の弾性率は低下しない。さらに、可撓性エポキシ榭脂が、炭素繊維表面における 繊維長さ方向の張力に対する応力緩和に寄与するので、炭素繊維強化複合材料の 繊維長さ方向の弓 I張強度が向上する。
[0025] 一方で、可撓性エポキシ榭脂は、柔軟性を与える骨格を持って 、るので、一般的に 極性が低いという特徴がある。そのため、可撓性エポキシ榭脂を単独でサイジング剤 として使用した場合、エポキシ榭脂などのマトリックス榭脂が炭素繊維束内部に含浸 し難ぐ得られる複合材料においてボイドが生成し易い傾向にあり、炭素繊維強化複 合材料の繊維長さ方向に垂直な方向の引張強度および層間剪断強度が低下すると いう問題がある。
[0026] そこで、本発明では、可撓性エポキシ榭脂 (A)に、該可撓性エポキシ榭脂 (A)とは 相溶性のな!、エポキシ榭脂 (B)を併用する。
[0027] 本発明で用いられるエポキシ榭脂(B)としては、エポキシ基を 3個以上有しェポキ シ当量が 200以下の脂肪族ポリグリシジルエーテルィ匕合物が特に好ましい。
[0028] エポキシ榭脂 (B)をサイジング剤に用いることにより、炭素繊維との接着性が高くな り、繊維長さ方向に垂直な方向の引張強度および層間剪断強度を向上させる。ェポ キシ榭脂 (B)としては、炭素繊維との接着性が重要であり、接着性の高いエポキシ基 を数多く持って 、ることが好ま 、が、エポキシ基を 6個も有すればその効果は十分 であることが多い。エポキシ基が多くなりすぎると、炭素繊維束が硬くなりすぎたり、拡 力 Sり性が低下したりと、炭素繊維の取り扱い性が低下する傾向にある。また、エポキシ 榭脂(B)のエポキシ当量は、 120以上かつ 200以下が好ましぐより好ましくは 120 以上かつ 190以下である。エポキシ当量が 200を超えると、炭素繊維との接着性が 低下する傾向にある。
[0029] 一方で、サイジンク剤としてエポキシ榭脂(B)を単独で使用した場合は、繊維長さ 方向に張力がかかると、炭素繊維全体に張力が分散することなく応力集中するため、 炭素繊維が破断し、それが順次繰り返されることで、炭素繊維強化複合材料の繊維 長さ方向の引張強度が低くなると 、う問題がある。
[0030] エポキシ基を 3個以上有しエポキシ当量が 200以下の脂肪族ポリグリシジルエーテ ル化合物としては、例えば、ジグリセロールポリグリシジルエーテル("デナコール"( 登録商標) EX— 421) [ナガセケムテックス (株)製]、ポリグリセロールポリグリシジル エーテル("デナコール"(登録商標) EX— 512、 EX- 521) [ナガセケムテックス (株 )製]、ソルビトールポリグリシジルエーテル("デナコール"(登録商標) EX— 614B) [ ナガセケムテックス (株)製]が好ましく使用できる力 これに限定するものではな!/、。 他に、トリメチロールプロパントリグリシジルエーテル("ERISYS" (登録商標) GE— 3 0) [PTIジャパン (株)製]、トリメチロールェタントリグリシジルエーテル("ERISYS" ( 登録商標) GE- 31) [PTIジャパン (株)製]などを挙げることができる。
[0031] 本発明では、このように可撓性エポキシ榭脂 (A)とエポキシ榭脂 (B)を同時に使用 することが特徴である。さらに可撓性エポキシ榭脂 (A)とエポキシ榭脂 (B)が互いに 相溶しない、すなわち、可撓性エポキシ榭脂 (A)とエポキシ榭脂 (B)に相溶性がな い、ということが重要である。可撓性エポキシ榭脂 (A)とエポキシ榭脂 (B)が相溶する 場合は、それぞれの効果が相殺され、 目的とするようなバランスの取れた炭素繊維強 化複合材料を得ることはできな ヽ。可撓性エポキシ榭脂 (A)とエポキシ榭脂 (B)が互 いに相溶しないことで、初めて目的とする炭素繊維強化複合材料を得ることができる 。その理由は、以下のように考えられる。可撓性エポキシ榭脂 (A)とエポキシ榭脂(B )を同時にサイジング剤として使うと、比較的極性の高いエポキシ榭脂(B) 1S 可撓性 エポキシ榭脂 (A)と相溶しな 、ために弾き出される形で選択的に炭素繊維表面に集 まり、炭素繊維との接着性を向上させる。そして、エポキシ榭脂 (B)の外側に可撓性 エポキシ榭脂 (A)が集まり、柔軟な層を形成する。
[0032] 本発明の別の態様は、炭素繊維束およびマトリックス榭脂を含むプリプレダであつ て、該炭素繊維束に、可撓性エポキシ榭脂 (A)および該可撓性エポキシ榭脂 (A)と は相溶性のな ヽエポキシ榭脂 (B)を必須成分として含有するサイジング剤が付着さ れ、かつ、該マトリックス榭脂が、該可撓性エポキシ榭脂 (A)とは相溶性のない特定 のエポキシ榭脂組成物力もなるプリプレダである。
[0033] 本態様で用いられるエポキシ榭脂(B)としては、エポキシ基を 3個以上有しェポキ シ当量が 200以下の脂肪族ポリグリシジルエーテルィ匕合物および多官能のグリシジ ルァミン型エポキシ榭脂などが好ましい。エポキシ基を 3個以上有し、エポキシ当量 力 S200以下の脂肪族ポリグリシジルエーテルィ匕合物が特に好ましい。
[0034] エポキシ基を 3個以上有しエポキシ当量が 200以下の脂肪族ポリグリシジルエーテ ル化合物としては、前記のものを好ましく使用することができる。
[0035] 多官能のグリシジルァミン型エポキシ榭脂としては、例えば、テトラグリシジルジアミ ノジフエニルメタン、トリグリシジルァミノフエノールおよびトリグリシジルァミノクレゾ一 ルなどを好ましく使用することができる。テトラグリシジルジアミノジフヱニルメタンとし ては、例えば、 "スミエポキシ"(登録商標) ELM434 (住友ィ匕学工業 (株)製)、 YH4 34L (東都化成 (株)製)、 "ァラルダイド,(登録商標) MY720 (ハンツマン ·アドバンス ト 'マテリアルズ (株)製)、および" jER"604 (登録商標、ジャパンエポキシレジン (株) 製)等を使用することができる。トリグリシジルァミノフエノールまたはトリグリシジルアミ ノクレゾールとしては、例えば、 "スミエポキシ"(登録商標) ELM100 (住友ィ匕学工業 (株)製)、 "ァラルダイド'(登録商標) MY0510、 "ァラルダイド'(登録商標) MY050 0、 "ァラルダイト"(登録商標) MY0600 (以上、ハンツマン 'アドバンスト'マテリアル ズ (株)製)、および" jER"630 (登録商標、ジャパンエポキシレジン (株)製)等を使用 することができる。
[0036] 本態様では、このように互いに相溶性のな 、可撓性エポキシ榭脂 (A)およびェポ キシ榭脂 (B)をサイジング剤の組成とし、かつ可撓性エポキシ榭脂 (A)と相溶性がな い特定のエポキシ榭脂マトリックスを同時に使用することが特徴である。これにより、 上記可撓性エポキシ榭脂 (A)と脂肪族ポリグリシジルエーテルィ匕合物を組み合わせ たサイジング剤以外を用いた場合でも、本発明の効果を発現するプリプレダが得られ 、 目的とする炭素繊維強化複合材料を得ることができる。その理由は、以下のように 考えられる。可撓性エポキシ榭脂 (A)は、エポキシ榭脂 (B)とマトリックス榭脂のいず れとも相溶しないために、炭素繊維近傍に塊として存在し、柔軟な層を形成すると考 えられる。一方、比較的極性の高いエポキシ榭脂(B)およびマトリックス榭脂に含ま れるグリシジルァミン型エポキシ榭脂は、お互いに相溶性があり、かつ、可撓性ェポ キシ榭脂 (A)と相溶しないために、炭素繊維表面に集まり、炭素繊維とマトリックス榭 脂との接着性低下を抑制する。一方、可撓性エポキシ (A)力もなる塊は、炭素繊維 表面における繊維長さ方向の張力に対する応力緩和に寄与する。
[0037] 本発明にお ヽて、互いに相溶するとは、可撓性エポキシ榭脂 (A)とエポキシ榭脂 ( B)を混合した後、マトリックス榭脂を硬化する成形条件の熱履歴を受けた場合に、均 一な透明状態になることを意味する。同条件下で、それ以外の、例えば、完全に 2相 に分離した状態や、均一でも不透明な状態は、互いに相溶しないことを意味する。
[0038] 本発明にお 、て、サイジング剤中における、可撓性エポキシ榭脂 (A)とエポキシ榭 脂(B)の重量比 (A)Z(B)は、 0. 6〜2. 0であることが好ましぐさらに好ましくは、 (
A) / (B) =0. 8〜1. 5である。重量比 (A)Z(B)が 0. 6より小さくなると、炭素繊維 束をプリプレグイ匕および製織する際に、炭素繊維束と金属ガイドなどとの間の摩擦に より毛羽が発生し易いことから、作成したプリプレダの平滑性などの品位が低下する 場合がある。また、繊維長さ方向の引張強度が低下する傾向にある。重量比 (A)Z(
B)が 2. 0より大きい場合は、エポキシ榭脂などのマトリックス榭脂が炭素繊維束内部 に含浸しにくくなり、得られる複合材料においてボイドが生成し易ぐ繊維長さ方向と 垂直な方向の引張強度および層間剪断強度が低下する傾向にある。
[0039] また、サイジング剤の付着量は、炭素繊維全重量に対して 0. 3〜3. 0重量%の割 合であることが好ましぐより好ましくは 0. 4〜2. 0重量%である。炭素繊維の単位重 量当たりのサイジング剤の付着量が少なすぎると、複合材料において炭素繊維表面 近傍の硬化榭脂層の伸度および靭性向上効果が低くなる。この場合、炭素繊維強 化複合材料の引張強度および圧縮強度が低下する傾向にある。また、炭素繊維束 をプリプレグイ匕および製織する際に、通過する金属ガイドなどによる摩擦に耐えられ ず、毛羽が発生し易いことから、作成したプリプレダの平滑性などの品位が低下して しまう場合がある。一方、サイジング剤の付着量が多すぎると、炭素繊維束周囲のサ イジング剤膜に阻害されてエポキシ榭脂などのマトリックス榭脂が炭素繊維束内部に 含浸せず、得られる複合材料においてボイドが生成し易い傾向にある。この場合、炭 素繊維強化複合材料の品位および機械物性が低くなる傾向にある。
[0040] さらに、本発明で用いられるサイジング剤には、炭素繊維束の取扱い性、耐擦過性 および耐毛羽性を高め、マトリックス榭脂の含浸性を向上させるため、必要に応じ、ポ リウレタン、ポリエステルおよびポリアミド等のエポキシ榭脂以外の榭脂や、分散剤お よび界面活性剤等の補助成分を添加しても良い。
[0041] 本発明で用いられる炭素繊維束とは、炭素繊維フィラメントが数千力 数万本束に なったものである。炭素繊維フィラメントとしては、例えば、ポリアクリロニトリル (以下、 PANと呼ぶ)系炭素繊維、レーヨン系炭素繊維あるいはピッチ系炭素繊維などの公 知の炭素繊維を用いる故知ができる。特に、補強効果を得る上で、高強度の炭素繊 維束が得られやすい PAN系炭素繊維束を使用することが好ましい。
[0042] また、炭素繊維束の総繊度は、好ましくは 400〜3000テックスである。炭素繊維束 のフィラメン卜数は好まし <は 1000〜100000本であり、さらに好まし <は 3000〜500 00本である。また、炭素繊維束の強度は、好ましくは 1〜: LOGPaであり、さらに好まし くは 5〜8GPaであり、弾性率は好ましくは 100〜1000GPaであり、さらに好ましく 20 0〜600GPaである。
[0043] 以下に、 PAN系炭素繊維束を用いる場合を例にとって、本発明の炭素繊維束を製 造する方法を詳細に説明する。
[0044] 炭素繊維束の前駆体繊維を得るための紡糸方法としては、湿式、乾式ある!/、は乾 湿式などの紡糸方法を採用することができる。高強度の繊維が得られやす!ヽ湿式あ るいは乾湿式紡糸が好ましぐ特に乾湿式紡糸法が好ましい。紡糸原液には、ポリア クリロ-トリルのホモポリマーあるいは共重合体の溶液あるいは懸濁液などを用いるこ とがでさる。
[0045] この紡糸原液を口金に通して紡糸し、凝固、水洗および延伸して前駆体繊維を得 る。この前駆体繊維を耐炎化処理および炭化処理、必要によってはさらに黒鉛化処 理をすることによって炭素繊維束を得る。得られた炭素繊維束は、マトリックス榭脂と の接着性を良好なものとするため、必要に応じて電解表面処理などの表面酸化処理 がなされる。 [0046] このようにして得られた実質的に撚りのない炭素繊維束に、サイジング剤を付着さ せる。炭素繊維束にサイジング剤を付着させるためには、サイジング剤が溶媒に溶解 または分散したサイジング液を、炭素繊維束に付与した後、溶媒を乾燥し、除去する 方法が簡便である。
[0047] サイジング液を炭素繊維束に付与する手段としては、ローラーサイジング法、ローラ ー浸漬法およびスプレー法などを用いることができる。中でも、一束あたりの単繊維 数が多い炭素繊維束についても、サイジング剤を均一に付与しうるため、ローラー浸 漬法が好ましく用いられる。
[0048] サイジング液に用いられる溶媒としては、取り扱い性および安全性の面から、界面 活性剤で乳化させた水分散液とすることが最適である。サイジング液におけるサイジ ング剤の濃度は、サイジング液の付与方法および付与した後に余剰のサイジング液 を絞り取る絞り量の調整等によって適宜調節する必要があるが、通常は 0. 2重量% 〜20重量%の範囲が好まし!/、。
[0049] サイジング液の液温は、溶媒蒸発によるサイジング剤の濃度変動を抑えるため、 10 〜50°Cの範囲であることが好ましい。また、サイジング液を付与した後に、余剰のサ イジング液を絞り取る絞り量を調整することにより、サイジング剤の付着量および炭素 繊維束内への均一付与ができる。溶媒を乾燥除去する際の条件は、 120〜300°C の温度で、 10秒〜 10分間の範囲が好適であり、より好適には 150〜250°Cの温度 で、 30秒〜 4分間の範囲とする。
[0050] 2種類以上のエポキシ榭脂をサイジング剤として、炭素繊維束に付着させる方法と しては、溶媒に 2種類以上のエポキシ榭脂を同時に溶解または分散したサイジング 液を用いる方法や、それぞれのエポキシ榭脂を個別に溶媒に溶解または分散したサ イジング液を用い、一つずつ炭素繊維束に付与した後、乾燥する方法がある。
[0051] 炭素繊維強化複合材料のマトリックス榭脂としては、熱硬化性榭脂ゃ熱可塑性榭 脂を使用することができる。成形性と機械物性の両者を満足する点で、エポキシ榭脂 が好ましく用いられる。中でも、耐熱性の観点から、水酸基にェピクロロヒドリンを反応 させたグリシジルエーテル基や、ァミノ基にェピクロロヒドリンを反応させたグリシジル アミノ基を含むエポキシ榭脂が好ましく用いられる。例えば、ビスフエノール A型ェポ キシ榭脂、ビスフエノール F型エポキシ榭脂およびビスフエノール S型エポキシ榭脂な どのグリシジルエーテル類や、テトラグリシジルジアミノジフエ-ルメタンおよびトリグリ シジルァミノフエノールなどのグリシジルァミン類が好ましく用いられる。また、耐湿熱 性が良好で、剛直な榭脂を与えるビフエニル型エポキシ榭脂、ナフタレン型エポキシ 榭脂、ジシクロペンタジェン型エポキシ榭脂、ジフエニルフルオレン型エポキシ榭脂、 フエノールノボラック型エポキシ榭脂、クレゾ一ルノボラック型エポキシ榭脂、フエノー ルァラルキル型エポキシ榭脂、テトラキス(グリシジルォキシフエ-ル)エタンゃトリス( グリシジルォキシ)メタン等、またはこれらの混合物を使用することもできる。
[0052] これらのエポキシ榭脂を用いる場合、必要に応じて酸や塩基などの触媒や硬化剤 を添カ卩してよい。例えば、エポキシ榭脂の硬化には、ハロゲン化ホウ素錯体、 p—トル エンスルホン酸塩などのルイス酸や、ジアミノジフエ-ルスルホン、ジアミノジフエ-ル メタンおよびそれらの誘導体や異性体などのポリアミン硬化剤などが好ましく用いられ る。
[0053] 本発明の炭素繊維強化複合材料のマトリックス榭脂としては、可撓性エポキシ榭脂
(A)とは相溶性のな 、エポキシ榭脂組成物を用いることが好ま 、。可撓性エポキシ 榭脂 (A)を炭素繊維束のサイジング剤として使用しても、成形時にマトリックス榭脂中 に拡散してしまえば、炭素繊維表面で繊維長さ方向の張力に対して応力緩和を起こ すことができなくなり、炭素繊維強化複合材料の繊維長さ方向の引張強度の向上効 果は小さくなる。また、マトリックス榭脂中に可撓性エポキシ榭脂 (A)が拡散すること で、成形した時にマトリックス榭脂の弾性率が低下してしまい、その結果、炭素繊維 強化複合材料の湿熱下での圧縮強度が低下する。なお、本発明において相溶する とは、可撓性エポキシ榭脂 (A)とマトリックス榭脂であるエポキシ榭脂組成物を混合し た後、マトリックス榭脂を硬化する成形条件の熱履歴を受けた場合に、均一な透明状 態になることを意味する。同条件下で、それ以外の、例えば、完全に 2相に分離した 状態や、均一でも不透明な状態は、互いに相溶しないことを意味する。
[0054] マトリックス榭脂としては、特に多官能のグリシジルァミン型エポキシ榭脂と芳香族ジ ァミン硬化剤を含有したエポキシ榭脂を使用することが好まし 、。一般に多官能のグ リシジルァミン型エポキシ榭脂と芳香族ジァミン硬化剤を含有したマトリックス榭脂は 、架橋密度が高ぐ炭素繊維強化複合材料の耐熱性および圧縮強度を向上させるこ とができる。しかし、一方で榭脂伸度が小さいために繊維長さ方向の引張強度は低 下するという問題点があった。これは、繊維長さ方向に張力が加わった時、まず炭素 繊維が破断するが、榭脂伸度が小さいと炭素繊維の破断が樹脂に伝搬し、そのこと で隣の炭素繊維が破断するという現象を順次繰り返して、全体が破壊されるためであ る。しカゝしながら、可撓性エポキシ榭脂 (A)をサイジング剤として用いた炭素繊維束 を使用した場合、可撓性エポキシ榭脂 (A)は、多官能のグリシジルァミン型エポキシ 榭脂と芳香族ジァミン硬化剤を含有したマトリックス榭脂と相溶性が低 、ために、成 形時、マトリックス榭脂中に拡散しにくぐ炭素繊維表面に留まりやすい。従って、繊 維長さ方向に張力が加わった時に、可撓性エポキシ榭脂 (A)が炭素繊維表面で繊 維長さ方向の張力に対して応力緩和を起こし、炭素繊維の破断がマトリックス榭脂に 伝搬しに《なる。その結果、炭素繊維強化複合材料の繊維長さ方向の引張強度を 向上させることができる。また、可撓性エポキシ榭脂 (A)がマトリックス榭脂に拡散し ないので、マトリックス榭脂の弾性率が低下することなぐ炭素繊維強化複合材料の 圧縮強度は保持される。
[0055] 多官能のグリシジルァミン型エポキシ榭脂としては、例えば、テトラグリシジルジアミ ノジフエニルメタン、トリグリシジルァミノフエノールおよびトリグリシジルァミノクレゾ一 ルなどを好ましく使用することができる。多官能のグリシジルァミン型エポキシ榭脂は 耐熱性を高める効果があり、その割合は、全エポキシ榭脂 100重量%中、 30〜100 重量%含まれていることが好ましぐより好ましい割合は 50〜: LOO重量%である。ダリ シジルァミン型エポキシ榭脂の割合が 30重量%に満たな 、場合は、炭素繊維強化 複合材料の圧縮強度が低下したり、耐熱性に劣る場合がある。
[0056] 前記のテトラグリシジルジアミノジフエ-ノレメタンとしては、例えば、 "スミエポキシ" ( 登録商標) ELM434 (住友化学工業 (株)製)、 YH434L (東都化成 (株)製)、 "ァラ ルダイド,(登録商標) MY720 (ハンツマン.アドバンスト'マテリアルズ (株)製)、およ び" jER" (登録商標) 604 (ジャパンエポキシレジン (株)製)等を使用することができ る。トリグリシジルァミノフエノールまたはトリグリシジルァミノタレゾールとしては、例え ば、 "スミエポキシ"(登録商標) ELM100 (住友ィ匕学工業 (株)製)、"ァラルダイド'( 登録商標) MY0510、 "ァラルダイト"(登録商標) MY0600 (以上、ハンツマン 'アド バンスト ·マテリアルズ (株)製)、および" jER" (登録商標) 630 (ジャパンエポキシレジ ン (株)製)等を使用することができる。
[0057] 芳香族ジァミン硬化剤としては、エポキシ榭脂硬化剤として用いられる芳香族ァミン 類であれば特に限定されるものではないが、具体的には、 3, 3'ージアミノジフ -ル スルホン(3, 3,一 DDS)、 4, 4,一ジアミノジフエ-ルスルホン(4, 4,一 DDS)、ジァ ミノジフエ-ルメタン(DDM)、ジアミノジフエ-ルエーテル(DADPE)、ビスァ-リン、 ベンジルジメチルァ-リン、 2—(ジメチルアミノメチル)フエノール(DMP— 10)、 2, 4 , 6—トリス(ジメチルアミノメチル)フエノール(DMP— 30)、 DMP— 30のトリ一 2—ェ チルへキシル酸塩等、およびそれらの異性体、誘導体を好ましく使用することができ る。これらは、単独で用いても、あるいは 2種以上の混合物を用いてもよい。
[0058] カゝかる芳香族ジァミン硬化剤は、全エポキシ榭脂に対する化学量論量の 50〜 120 重量%含まれていることが好ましぐ 60〜120重量%がより好ましぐさらに好ましくは 70〜120重量%でぁる。芳香族ァミン硬化剤が、全エポキシ榭脂に対する化学量論 量の 50重量%に満たな ヽ場合は、得られる榭脂硬化物の耐熱性が十分でな 、場合 がある。また、芳香族ァミン硬化剤が 120重量%を超える場合は、得られる榭脂硬化 物の靱性が低下する場合がある。
[0059] 本発明の炭素繊維強化複合材料のマトリックス榭脂には、得られる榭脂硬化物の 靭性等の物性を向上させるため、熱可塑性榭脂を配合することができる。かかる熱可 塑性榭脂としては、例えば、主鎖に炭素炭素結合、アミド結合、イミド結合 (ポリエー テルイミド等)、エステル結合、エーテル結合、シロキサン結合、カーボネート結合、ゥ レタン結合、尿素結合、チォエーテル結合、スルホン結合、イミダゾール結合および カルボニル結合力 なる群力 選ばれた結合を有する熱可塑性榭脂を使用すること ができる。例えば、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド、ポリイミド 、ポリアミド、ポリアミドイミド、ポリフエ-レンエーテル、フエノキシ榭脂およびビュル系 ポリマー等の耐熱性と靭性とを兼備したものを好ましく使用することができる。
[0060] 特に、耐熱性をほとんど損なわずにこれらの効果を発揮できることから、ポリエーテ ルスルホンやポリエーテルイミドが好適である。ポリエーテルスルホンとしては、 "スミカ エタセル"(登録商標) 3600P、 "スミカエタセル"(登録商標) 5003P、 "スミカェクセ ル"(登録商標) 5200P、 "スミカエタセル"(登録商標、以上、住友化学工業 (株)製) 7200P、ポリエーテルイミドとしては、 "ウルテム,,(登録商標) 1000、 "ウルテム,,(登 録商標) 1010、 "ウルテム"(登録商標) 1040 (以上、 日本ジーィ一プラスチックス (株 )製)などを使用することができる。
[0061] 力かる熱可塑性榭脂は、特に含浸性を中心としたプリプレダ作製工程に支障をきた さないように、エポキシ榭脂組成物中に均一溶解しているか、粒子の形態で微分散し ていることが好ましい。
[0062] また、カゝかる熱可塑性榭脂の配合量は、エポキシ榭脂組成物中に溶解せしめる場 合には、エポキシ榭脂 100重量部に対して 1〜20重量部が好ましぐより好ましくは 1 〜15重量部である。一方、分散させて用いる場合には、エポキシ榭脂 100重量部に 対して 10〜40重量部が好ましぐより好ましくは 15〜30重量部である。熱可塑性榭 脂がかかる配合量に満たないと、靭性向上効果が不十分となる場合がある。また、熱 可塑性榭脂が前記範囲を超える場合は、含浸性、タック ·ドレープおよび耐熱性が低 下する場合がある。
[0063] さらに、本発明のマトリックス榭脂を改質するために、エポキシ榭脂以外の熱硬化性 榭脂、エラストマ一、フィラーおよびその他の添加剤を配合することもできる。
[0064] 次に、本発明のプリプレダの製造方法について説明する。本発明のプリプレダは、 マトリックス榭脂を強化炭素繊維束に含浸せしめたものである。プリプレダは、例えば 、マトリックス榭脂をメチルェチルケトンやメタノールなどの溶媒に溶解して低粘度化 し、含浸させるウエット法あるいは加熱により低粘度化し、含浸させるホットメルト法な どの方法により製造することができる。
[0065] ウエット法では、強化炭素繊維束をマトリックス榭脂が含まれる液体に浸漬した後、 引き上げ、オーブンなどを用いて溶媒を蒸発させてプリプレダを得ることができる。
[0066] また、ホットメルト法では、加熱により低粘度化したマトリックス榭脂を直接強化炭素 繊維束に含浸させる方法、あるいはー且マトリックス榭脂組成物を離型紙などの上に コーティングしたフィルムをまず作成し、っ 、で強化炭素繊維束の両側あるいは片側 から該フィルムを重ね、加熱加圧してマトリックス榭脂を強化炭素繊維束に含浸させ る方法により、プリプレダを製造することができる。ホットメルト法は、プリプレダ中に残 留する溶媒がな 、ため好ま U、手段である。
[0067] 本発明のプリプレダを用いて炭素繊維強化複合材料を成形するには、プリプレダを 積層後、積層物に圧力を付与しながらマトリックス榭脂を加熱硬化させる方法などを 用!/、ることができる。
[0068] 熱および圧力を付与する方法には、プレス成形法、オートクレープ成形法、バツギ ング成形法、ラッピングテープ法および内圧成形法などがあり、特にスポーツ用品に 関しては、ラッピングテープ法と内圧成形法が好ましく採用される。より高品質で高性 能の積層複合材料が要求される航空機用途においては、オートクレープ成形法が好 ましく採用される。各種車輛外装にはプレス成形法が好ましく用いられる。
[0069] また、本発明にお ヽて炭素繊維強化複合材料を得る方法としては、プリプレダを用 いて得る方法の他に、ハンドレイアップ、 RTM、 "SCRIMP" (登録商標)、フィラメン トワインディング、プルトルージョンおよびレジンフィルムインフュージョンなどの成形 法を目的に応じて選択し適用することができる。
実施例
[0070] 以下、本発明の炭素繊維束について、実施例を用いてさらに具体的に説明する。
実施例中における各種特性の測定法は、次のとおりである。
[0071] <サイジング剤同士の相溶性評価 >
可撓性エポキシ榭脂 [A]とエポキシ榭脂 [B]をそれぞれ 10gずつ混合し、 2mm厚 の透明容器に入れた後、マトリックス榭脂を成形する条件 (昇温速度 1. 5°CZ分、温 度 180°Cで 2時間)の熱履歴を与えた。サイジング剤が均一で透明な状態になってい る場合は相溶性とし、それ以外 (2層に分離した場合、均一だが不透明な場合)は非 相溶性とした。
[0072] <サイジング剤とマトリックス榭脂の相溶性評価 >
可撓性エポキシ榭脂 [A] 4gとマトリックス榭脂であるエポキシ榭脂組成物 30gとを 混合し、 2mm厚の透明容器に入れた後、マトリックス榭脂を成形する条件 (昇温速度 1. 5°CZ分、温度 180°Cで 2時間)の熱履歴を与えた。硬化物が均一で透明な状態 になっている場合は相溶性とし、それ以外 (2層に分離した場合、均一だが不透明な 場合)は非相溶性とした。
[0073] <サイジング剤付着量 >
約 2gの炭素繊維束を秤量 (W1)した後、 50リットル Z分の窒素気流中、温度 450 °Cに設定した電気炉 (容量 120cm3)に 15分間放置し、サイジング剤を完全に熱分 解させる。そして、 20リットル Z分の乾燥窒素気流中の容器に移し、 15分間冷却した 後の炭素繊維束を秤量 (W2)して、次式よりサイジング剤付着量を求める。
サイジング付着量 (重量0 /0) = [Wl (g) -W2 (g) ]/[Wl (g) ] X 100
くコンポジット物性 >
[コンポジット試験片の作製]
先ず、ナイフコーターを用いて離型紙上にマトリックス榭脂をコーティングし、 目付 5 2gZm2の榭脂フィルムを作製した。次に、円周約 2. 7mの鋼製ドラムに、作製した榭 脂フィルムを巻き、次にクリール力も引き出した炭素繊維束をトラバースを介して前記 榭脂フィルム上に巻き取り、配列した。さらにその炭素繊維束の上力 前記榭脂フィ ルムを再度かぶせた後、加圧ロールで回転加圧してマトリックス榭脂を炭素繊維束内 に含浸せしめ、幅 300mm、長さ 2. 7mの一方向プリプレダを作製する。
[0074] このとき、炭素繊維束間への榭脂含浸を良くするために、ドラムは 50〜60°Cの温 度に加熱する。ドラムの回転数とトラバースの送り速度とを調整することによって、繊 維目付 195±5gZm2、榭脂量約 35重量0 /0のプリプレダを作製する。
[0075] このようにして作製したプリプレダを裁断し、積層し、オートクレープを用いて加熱硬 ィ匕 (昇温速度 1. 5°CZ分、 0. 59MPaの圧力下、温度 180°Cで 2時間で成形)させ、 硬化板を作製する。
[0°引張強度の測定]
上記のコンポジット試験片の作製において、プリプレダを一方向積層して、 1mm厚 の硬化板を作成した。 0° 引張強度は、 JIS— K 7073 (1988)に従い測定した。硬 ィ匕板力ら、長さ 230±0. 4mm、幅 12. 5±0. 2mm、厚さ 1 ±0. 2mmの一方向 0° 引張試験片を作成した。ゲージ長は 125±0. 2mmとし、試験片引張試験機のクロ スヘッドスピードは 1. 3mmZ分として測定した。 5個のサンプルについて測定し、平 均値を求めた。また測定については、室温乾燥状態(25°C±2°C、相対湿度 50%) で行った。
[90°引張強度の測定]
上記のコンポジット試験片の作製において、プリプレダを一方向積層して、 2mm厚 の硬化板を作成した。 90° 引張強度は、 JIS—K— 7073 (1988)に従い測定した。 硬ィ匕板力ら、長さ 150±0. 4mm、幅 20±0. 2mm、厚さ 2±0. 2mmの一方向 90° 引張試験片を作成した。試験片引張試験機のクロスヘッドスピードは ImmZ分とし て測定した。 5個のサンプルについて測定し、平均値を求めた。また測定については 、室温乾燥状態(25°C± 2°C、相対湿度 50%)で行った。
[層間剪断強度の測定]
上記のコンポジット試験片の作製において、プリプレダを一方向積層して、 2mm厚 の硬化板を作成した。層間剪断強度は、 JIS—K— 7078 (1991)に従い 3点曲げ試 験で測定した。硬化板から、長さ 14±0. 4mm、幅 10±0. 2mm、厚さ 2±0. 4mm の 0°方向材試験片を作成し、スパン (1)と試験片厚み(d)の比は lZd= 5±0. 2とし 、曲げ試験機のクロスヘッドスピードは ImmZ分として測定した。 5個のサンプルにつ いて測定し、平均値を求めた。また測定については、室温乾燥状態(25°C± 2°C、相 対湿度 50%)で行った。
[0° 圧縮強度の測定]
上記のコンポジット試験片の作製において、プリプレダを一方向積層して、 1mm厚 の硬化板を作成した。 0° 圧縮強度は、 JIS— K— 7076 (1991)に従い測定した。硬 ィ匕板から、長さ 80±0. 2mm、幅 12. 5±0. 2mm、厚さ 1 ±0. 2mmの一方向 0°圧 縮試験片を作成した。圧縮試験機のクロスヘッドスピードは 1. 3mmZ分として測定 した。 6個のサンプルについて測定し、平均値を求めた。また測定については、室温 乾燥状態(25°C士 2°C、相対湿度 50%)で行った。
(実施例 1〜10、比較例 1〜5)
ィタコン酸 0. 5モル%を共重合成分として含有するポリアクリロニトリルを紡糸し、炭 化温度 1500°Cで焼成し、重炭酸アンモ-ゥム水溶液を用いて 80cZgの電解表面 処理を行い、総フィラメント数 24, 000本でサイジング剤付与していない炭素繊維束 を得た。この炭素繊維束の特性は、総繊度 1000テックス、比重 1. 8、ストランド引張 強度 6. 2GPa、ストランド引張弾性率 297GPaであった。サイジング剤は、下記の 成分のものを表 1と表 2に示す配合比とし、全てノ-オン系界面活性剤で乳化した水 ェマルジヨンを用いた。ディップ法により、前記炭素繊維束にサイジング液を含浸させ た後、熱風乾燥機で 200°Cの温度で 2分間乾燥することにより、サイジング剤が付着 された炭素繊維束を得た。また、表 1〜表 3に示す配合比でマトリックス榭脂成分を加 熱-一ダーを用いて調製した。この炭素繊維束と、マトリックス榭脂を用いて、各種評 価試験を行った結果を、表 1〜表 3に示す。
[0076] [サイジング剤成分]
可撓性エポキシ榭脂 (A)として、ダイマー酸型エポキシ榭脂("jER" (登録商標) 87 2) [ジャパンエポキシレジン (株)製]、ひまし油変性エポキシ榭脂("ERISYS" (登録 商標) GE— 35) [PTIジャパン (株)製]、可撓性脂環式エポキシ榭脂 (GT— 401) [ ダイセル化学工業 (株)製]、ポリエチレングリコールジグリシジルエーテル("デナコー ル"(登録商標) EX-830) [ナガセケムテックス (株)製]を用いた。
[0077] エポキシ榭脂 (B)として、ポリグリセロールポリグリシジルエーテル("デナコール"( 登録商標) EX— 512 :エポキシ基数 4、エポキシ当量 168) [ナガセケムテックス (株) 製]、ソルビトールポリグリシジルエーテル("デナコール"(登録商標) EX—614B :ェ ポキシ基数 4、エポキシ当量 173) [ナガセケムテックス (株)製]、ビスフエノール A型 エポキシ榭脂("jER" (登録商標) 828 :エポキシ基数 2、エポキシ当量 189) [ジャパ ンエポキシレジン (株)製]、および、トリグリシジルァミノフエノール("スミエポキシ"(登 録商標) ELM100) [住友化学工業 (株)製]を用いた。
[0078] [マトリックス榭脂成分]
マトリックス榭月旨としては、テトラグリシジルジアミノジフエ-ノレメタン("スミエポキシ"( 登録商標) ELM434) [住友化学工業 (株)製]、ビスフ ノール A型エポキシ榭脂("j ER" (登録商標) 828) [ジャパンエポキシレジン (株)製]、 3, 3,ージアミノジフヱ-ル スルホン(3, 3, -DAS) [小西化学 (株)製]、ポリエーテルスルホン("スミカエタセル " (登録商標) 5003P) [住友化学工業 (株)製]を用 V、た。
[0079] [表 1] 表 1
Figure imgf000020_0001
Figure imgf000020_0002
表 2
Figure imgf000021_0001
Figure imgf000021_0002
3
Figure imgf000022_0001
[0082] 表 1と表 2に示すように、実施例 1〜9は、何れもコンポジットの 0° 引張強度に優れ 、0° 圧縮強度、および Zまたは、 90° 引張強度および層間剪断強度が高いもので あった。また、炭素繊維束を構成する単繊維がバラケ易ぐ毛羽は見られず、サイジ ング剤とマトリックス榭脂の含浸が良好であった。それに対して、比較例 1は硬化版に ボイドが観察され、 0° 圧縮強度、 90° 引張強度および層間剪断強度が低力つた。 比較例 2は炭素繊維束に毛羽が見られ、 0° 引張強度が低力つた。比較例 3および 比較例 4は 0° 引張強度、 90° 引張強度および層間剪断強度の両方とも低いもので めつに。
[0083] 表 3に示すように、実施例 10のプリプレダは、コンポジットの 0° 引張強度に優れ、 0 ° 圧縮強度、および 90° 引張強度および層間剪断強度が高いものであった。比較 例 5は 0° 圧縮強度、 90° 引張強度および層間剪断強度ともに、実施例 10より低い ものであった。
産業上の利用可能性
本発明の炭素繊維束は、繊維長さ方向の引張強度、圧縮強度に優れ、かつ繊維 長さ方向に垂直な方向の引張強度および層間剪断強度に優れた炭素繊維強化複 合材料を与え、航空機用構造材料、ゴルフシャフトや釣り竿等のスポーツ用途、およ びその他一般産業用途に好適である。

Claims

請求の範囲
[1] 可撓性エポキシ榭脂 (A)および該可撓性エポキシ榭脂 (A)とは相溶性のな ヽェポ キシ榭脂 (B)を必須成分として含有するサイジング剤が付着された炭素繊維束であ つて、該エポキシ榭脂(B)力 エポキシ基を 3個以上有し、かつ、エポキシ当量が 20 0以下の脂肪族ポリグリシジルエーテルィ匕合物である炭素繊維束。
[2] 可撓性エポキシ榭脂 (A)力 2つ以上のエポキシ基を含有し、エポキシ基とェポキ シ基の間に、下記構造式(1)および(2)
[化 3]
Figure imgf000024_0001
[化 4]
Figure imgf000024_0002
式 ( 2 )
(上記の式(1)および(2)において、 nは 2以上の整数を表し、 Rは水素または炭素数
1〜4のアルキル基を表す。)で示される 、ずれかの基を 1つ以上含有して 、る請求 項 1記載の炭素繊維束。
[3] サイジング剤中の可撓性エポキシ榭脂 (A)とエポキシ榭脂 (B)の重量比 (A) / (B
)力 0. 6〜2. 0である請求項 1および 2のいずれかに記載の炭素繊維束。
[4] サイジング剤の付着量力 炭素繊維全重量に対して 0. 3〜3. 0重量%である請求 項 1〜3のいずれかに記載の炭素繊維束。
[5] 請求項 1〜4のいずれかに記載の炭素繊維束と、多官能のグリシジルァミン型ェポ キシ榭脂および芳香族ジァミン硬化剤を含有するマトリックス榭脂とを含むプリプレダ
[6] 請求項 1〜4のいずれかに記載の炭素繊維束と、多官能のグリシジルァミン型ェポ キシ榭脂および芳香族ジァミン硬化剤を含有する榭脂組成物の硬化物とを含む炭 素繊維強化複合材料。
[7] 炭素繊維束およびマトリックス榭脂を含むプリプレダであって、該炭素繊維束に、可 橈'性エポキシ榭脂 (A)および該可撓性エポキシ榭脂 (A)とは相溶'性のな ヽエポキシ 榭脂 (B)を必須成分として含有するサイジング剤が付着され、該マトリックス榭脂が、 該可撓性エポキシ榭脂 (A)とは相溶性がなぐかつ、該マトリックス榭脂が多官能の グリシジルァミン型エポキシ榭脂および芳香族ジァミン硬化剤を含有するプリプレダ。
[8] 可撓性エポキシ榭脂 (A)力 2つ以上のエポキシ基を含有し、エポキシ基とェポキ シ基の間に、下記構造式(1)および(2)
[化 5]
Figure imgf000025_0001
式 (1 )
[化 6]
Figure imgf000025_0002
式 (2 )
(上記の式(1)および(2)において、 nは 2以上の整数を表し、 Rは水素または炭素数 1〜4のアルキル基を表す。)で示される 、ずれかの基を 1つ以上含有して 、る請求 項 8記載のプリプレダ。
[9] エポキシ榭脂 (B)力 エポキシ基を 3個以上有し、かつ、エポキシ当量が 200以下 の脂肪族ポリグリシジルエーテルィ匕合物である請求項 7および 8のいずれかに記載の プリプレダ。
[10] 請求項 7〜9の 、ずれかに記載のプリプレダの硬化物である炭素繊維強化複合材 料。
PCT/JP2006/322222 2005-11-25 2006-11-08 炭素繊維束、プリプレグおよび炭素繊維強化複合材料 WO2007060833A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006554359A JPWO2007060833A1 (ja) 2005-11-25 2006-11-08 炭素繊維束、プリプレグおよび炭素繊維強化複合材料
US12/093,480 US20090162653A1 (en) 2005-11-25 2006-11-08 Carbon fiber bundle, prepreg, and carbon fiber reinforced composite
EP06823126A EP1959051A4 (en) 2005-11-25 2006-11-08 CARBON FIBER BUNDLE, PREPREG AND CARBON FIBER REINFORCED COMPOSITE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-340560 2005-11-25
JP2005340560 2005-11-25

Publications (1)

Publication Number Publication Date
WO2007060833A1 true WO2007060833A1 (ja) 2007-05-31

Family

ID=38067066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322222 WO2007060833A1 (ja) 2005-11-25 2006-11-08 炭素繊維束、プリプレグおよび炭素繊維強化複合材料

Country Status (6)

Country Link
US (1) US20090162653A1 (ja)
EP (1) EP1959051A4 (ja)
JP (1) JPWO2007060833A1 (ja)
CN (1) CN101313106A (ja)
TW (1) TW200730692A (ja)
WO (1) WO2007060833A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058073A (zh) * 2013-01-07 2013-04-24 徐工集团工程机械股份有限公司江苏徐州工程机械研究院 一种碳纤维复合材料拉板的制造方法
JP2014181418A (ja) * 2013-03-19 2014-09-29 Toray Ind Inc サイジング剤塗布炭素繊維、サイジング剤塗布炭素繊維の製造方法、プリプレグおよび炭素繊維強化複合材料
JP2015028147A (ja) * 2013-06-26 2015-02-12 東レ株式会社 サイジング剤塗布炭素繊維およびその製造方法、プリプレグおよび炭素繊維強化複合材料
KR20160132040A (ko) 2014-03-12 2016-11-16 도레이 카부시키가이샤 사이징제 도포 강화 섬유, 사이징제 도포 강화 섬유의 제조 방법, 프리프레그 및 섬유 강화 복합 재료
JP2018172820A (ja) * 2017-03-31 2018-11-08 帝人株式会社 炭素繊維束
CN113702343A (zh) * 2021-08-04 2021-11-26 上海交通大学 碳纤维增强环氧树脂复合材料、制备方法及其界面示踪和破坏监测方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012006935B1 (pt) * 2009-10-01 2020-01-14 Albany Eng Composites Inc pré-forma tecida tridimensional, compósito reforçado de fibra, métodos de formação de pré-forma tecida tridimensional e de compósito reforçado com fibra
CN102666050B (zh) 2009-10-01 2015-09-16 奥尔巴尼工程两合公司 编织预制件、复合材料、及其制造方法
CN102959154B (zh) * 2010-06-30 2014-07-02 东丽株式会社 上浆剂涂布碳纤维的制造方法及上浆剂涂布碳纤维
US8686069B2 (en) * 2010-10-12 2014-04-01 Hexcel Corporation Solvent resistance of epoxy resins toughened with polyethersulfone
US10184034B2 (en) * 2011-12-05 2019-01-22 Toray Industries, Inc. Carbon fiber forming raw material, formed material, and carbon fiber-reinforced composite material
JP5845865B2 (ja) * 2011-12-05 2016-01-20 東レ株式会社 サイジング剤塗布炭素繊維の製造方法
JP5845864B2 (ja) * 2011-12-05 2016-01-20 東レ株式会社 サイジング剤塗布炭素繊維およびサイジング剤塗付炭素繊維の製造方法
US20130143025A1 (en) * 2011-12-06 2013-06-06 Makoto Kibayashi Thermoplastic resin impregnated tape
JP5853671B2 (ja) * 2011-12-22 2016-02-09 東レ株式会社 サイジング剤塗布炭素繊維およびサイジング剤塗布炭素繊維の製造方法
JP5853670B2 (ja) * 2011-12-22 2016-02-09 東レ株式会社 サイジング剤塗布炭素繊維、炭素繊維強化熱可塑性樹脂組成物および成形品
US20130260131A1 (en) * 2012-03-28 2013-10-03 Satoshi Seike Thermoplastic molding preform
US20130309490A1 (en) * 2012-05-15 2013-11-21 Satoshi Seike Carbon fiber braid
EP2886590B1 (en) * 2012-09-28 2017-11-08 Toray Industries, Inc. Prepreg, and carbon fiber reinforced composite material
HUE039053T2 (hu) * 2012-11-26 2018-12-28 Mitsubishi Chem Corp Darabolt szénszál kötegek, és eljárás darabolt szénszál kötegek elõállítására
EP2927267B1 (en) * 2012-11-27 2020-03-25 Mitsubishi Chemical Corporation Fiber-reinforced thermoplastic resin prepreg, molded body of same, and method for producing fiber-reinforced thermoplastic resin prepreg
CN106457154B (zh) * 2014-06-04 2019-10-18 三菱化学株式会社 膜组件用灌封材及使用其的中空纤维膜组件
CN104141230B (zh) * 2014-07-24 2016-03-16 中复神鹰碳纤维有限责任公司 一种降低碳纤维摩擦系数的方法
MX2017006960A (es) * 2015-01-21 2017-08-10 Toray Industries Haz de fibras de carbono revestido con agente de encolado, metodo para la fabricacion del mismo, preimpregnado y material compuesto reforzado con fibra de carbono.
CN106592242B (zh) * 2015-10-14 2020-11-06 中国石油化工股份有限公司 一种改性环氧树脂大丝束通用型碳纤维上浆剂、制备方法及其应用
US20200181391A1 (en) * 2016-09-26 2020-06-11 Sabic Global Technologies B.V. High heat and high toughness epoxy compositions, articles, and uses thereof
CN111253712A (zh) * 2020-01-22 2020-06-09 核工业第八研究所 一种碳纤维复合材料高压容器湿法缠绕用基体树脂材料
CN112961464A (zh) * 2021-02-08 2021-06-15 航天材料及工艺研究所 一种高性能大丝束碳纤维复合材料及其制备方法
US20230087214A1 (en) * 2021-09-22 2023-03-23 Hao-Chia WU Method for splitting carbon fiber tow

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160398A (ja) * 1974-06-18 1975-12-25
JPS61252371A (ja) * 1985-05-02 1986-11-10 旭化成株式会社 炭素繊維表面処理用サイジング剤
WO2000053654A1 (fr) * 1999-03-11 2000-09-14 Toray Industries, Inc. Composition de resine epoxy, composition de resine epoxy pour materiau composite a fibres, et materiau composite a fibres contenant ladite composition
JP2001335651A (ja) * 1999-12-27 2001-12-04 Shin Kobe Electric Mach Co Ltd 有機繊維基材含浸用エポキシ樹脂組成物ならびにそれを用いたプリプレグ、積層板及びプリント配線板
JP2002018843A (ja) * 2000-07-11 2002-01-22 Toray Ind Inc プリプレグ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813781A (ja) * 1981-07-14 1983-01-26 東レ株式会社 耐擦過性にすぐれた炭素繊維
CA2130588A1 (en) * 1993-08-25 1995-02-26 Masanobu Kobayashi Carbon fibers and process for preparing same
DE69632846T2 (de) * 1995-01-09 2005-07-14 Toray Industries, Inc. Prepregs und kohlenwasserstofffaserverstärktes Verbundmaterial
US6020064A (en) * 1997-05-13 2000-02-01 Owens Corning Fiberglas Technology, Inc. Nonaqueous sizing for glass and carbon fibers
US6399199B1 (en) * 1999-12-28 2002-06-04 Toray Industries Inc. Prepeg and carbon fiber reinforced composite materials
TWI220147B (en) * 2001-07-24 2004-08-11 Mitsubishi Rayon Co Sizing agent for carbon fibers and water dispersion thereof, sized carbon fibers, sheet-like articles using said carbon fibers, and carbon fiber enhanced composite material
JP4603978B2 (ja) * 2002-11-28 2010-12-22 三菱レイヨン株式会社 繊維強化複合材料成形品の製造方法
JP2004224979A (ja) * 2003-01-24 2004-08-12 Mitsubishi Rayon Co Ltd プリプレグおよび該プリプレグを用いた繊維強化複合材料成形品の製造方法。
US7585558B2 (en) * 2003-01-30 2009-09-08 Toho Tenax Co., Ltd. Carbon fiber-reinforced resin composite materials
JP4360233B2 (ja) * 2004-03-11 2009-11-11 東レ株式会社 ゴルフシャフト
JP2005272765A (ja) * 2004-03-26 2005-10-06 Toshiba Corp 樹脂組成物およびこれを用いた塗料、接着剤
BRPI0509351B1 (pt) * 2004-03-31 2015-03-03 Toho Tenax Europe Gmbh Fio, uso do mesmo, pré-forma, método para produzir a mesma, e, uso da pré-forma

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160398A (ja) * 1974-06-18 1975-12-25
JPS61252371A (ja) * 1985-05-02 1986-11-10 旭化成株式会社 炭素繊維表面処理用サイジング剤
WO2000053654A1 (fr) * 1999-03-11 2000-09-14 Toray Industries, Inc. Composition de resine epoxy, composition de resine epoxy pour materiau composite a fibres, et materiau composite a fibres contenant ladite composition
JP2001335651A (ja) * 1999-12-27 2001-12-04 Shin Kobe Electric Mach Co Ltd 有機繊維基材含浸用エポキシ樹脂組成物ならびにそれを用いたプリプレグ、積層板及びプリント配線板
JP2002018843A (ja) * 2000-07-11 2002-01-22 Toray Ind Inc プリプレグ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1959051A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058073A (zh) * 2013-01-07 2013-04-24 徐工集团工程机械股份有限公司江苏徐州工程机械研究院 一种碳纤维复合材料拉板的制造方法
CN103058073B (zh) * 2013-01-07 2015-10-28 徐工集团工程机械股份有限公司江苏徐州工程机械研究院 一种碳纤维复合材料拉板的制造方法
JP2014181418A (ja) * 2013-03-19 2014-09-29 Toray Ind Inc サイジング剤塗布炭素繊維、サイジング剤塗布炭素繊維の製造方法、プリプレグおよび炭素繊維強化複合材料
JP2015028147A (ja) * 2013-06-26 2015-02-12 東レ株式会社 サイジング剤塗布炭素繊維およびその製造方法、プリプレグおよび炭素繊維強化複合材料
KR20160132040A (ko) 2014-03-12 2016-11-16 도레이 카부시키가이샤 사이징제 도포 강화 섬유, 사이징제 도포 강화 섬유의 제조 방법, 프리프레그 및 섬유 강화 복합 재료
US10208173B2 (en) 2014-03-12 2019-02-19 Toray Industries, Inc. Sizing agent-coated reinforcing fibers, method for producing sizing agent-coated reinforcing fibers, prepreg, and fiber-reinforced composite material
JP2018172820A (ja) * 2017-03-31 2018-11-08 帝人株式会社 炭素繊維束
CN113702343A (zh) * 2021-08-04 2021-11-26 上海交通大学 碳纤维增强环氧树脂复合材料、制备方法及其界面示踪和破坏监测方法
CN113702343B (zh) * 2021-08-04 2022-06-10 上海交通大学 碳纤维增强环氧树脂复合材料、制备方法及其界面示踪和破坏监测方法

Also Published As

Publication number Publication date
TW200730692A (en) 2007-08-16
JPWO2007060833A1 (ja) 2009-05-07
EP1959051A4 (en) 2010-05-26
EP1959051A1 (en) 2008-08-20
CN101313106A (zh) 2008-11-26
US20090162653A1 (en) 2009-06-25

Similar Documents

Publication Publication Date Title
WO2007060833A1 (ja) 炭素繊維束、プリプレグおよび炭素繊維強化複合材料
JP6011345B2 (ja) サイジング剤塗布炭素繊維、サイジング剤塗布炭素繊維の製造方法、プリプレグおよび炭素繊維強化複合材料
JP6418161B2 (ja) 高弾性率繊維強化ポリマー複合材料
RU2605424C2 (ru) Композиция на основе эпоксидных смол и пленка, препрег и армированный волокнами пластик, полученные с использованием такой композиции
KR101836960B1 (ko) 탄소 섬유 강화 복합 재료제 관상체 및 골프 클럽 샤프트
JP6115461B2 (ja) サイジング剤塗布炭素繊維およびその製造方法、炭素繊維強化熱可塑性樹脂組成物
JP7063021B2 (ja) プリプレグおよび炭素繊維強化複合材料
JP2014181418A (ja) サイジング剤塗布炭素繊維、サイジング剤塗布炭素繊維の製造方法、プリプレグおよび炭素繊維強化複合材料
JP5189547B2 (ja) 炭素繊維束及び炭素繊維強化複合材料
JP5516768B2 (ja) プリプレグおよび炭素繊維強化複合材料
US20050271874A1 (en) Carbon fiber strand
JP6394085B2 (ja) サイジング剤塗布炭素繊維およびその製造方法、プリプレグおよび炭素繊維強化複合材料
JP2007016364A (ja) 炭素繊維束
JP2008095222A (ja) 炭素繊維束およびプリプレグ
EP4130371B1 (en) Stitched reinforcing-fiber base material, preform material, fiber-reinforced composite material, and production method for stitched reinforcing-fiber base material, preform material, and fiber-reinforced composite material
KR20160026831A (ko) 열가소성 복합 재료 제조용 조성물 및 열가소성 복합 재료의 제조 방법
JP5059579B2 (ja) サイジング剤およびサイジング処理炭素繊維束
JP5561390B2 (ja) プリプレグおよび炭素繊維強化複合材料
JP7239401B2 (ja) 炭素繊維束、プリプレグ、繊維強化複合材料
JP6782553B2 (ja) プリプレグの製造方法
JP6070218B2 (ja) サイジング剤塗布炭素繊維、サイジング剤塗布炭素繊維の製造方法、プリプレグおよび炭素繊維強化複合材料
JP6015027B2 (ja) サイジング剤、炭素繊維束および炭素繊維束の製造方法
JPWO2019208040A1 (ja) 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグ、炭素繊維強化複合材料
JP4437420B2 (ja) 炭素繊維ストランド
JP2007145963A (ja) 炭素繊維強化複合材料成形用中間体および炭素繊維強化複合材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680043931.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006554359

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12093480

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006823126

Country of ref document: EP