KR100324015B1 - Method for fabricating contact hole of semiconductor device - Google Patents
Method for fabricating contact hole of semiconductor device Download PDFInfo
- Publication number
- KR100324015B1 KR100324015B1 KR1019980014393A KR19980014393A KR100324015B1 KR 100324015 B1 KR100324015 B1 KR 100324015B1 KR 1019980014393 A KR1019980014393 A KR 1019980014393A KR 19980014393 A KR19980014393 A KR 19980014393A KR 100324015 B1 KR100324015 B1 KR 100324015B1
- Authority
- KR
- South Korea
- Prior art keywords
- insulating film
- layer
- forming
- polysilicon layer
- insulating
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 86
- 239000004065 semiconductor Substances 0.000 title claims abstract description 56
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 61
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 238000009413 insulation Methods 0.000 claims abstract description 16
- 125000006850 spacer group Chemical group 0.000 claims abstract description 14
- 229920005591 polysilicon Polymers 0.000 claims description 51
- 238000005530 etching Methods 0.000 claims description 36
- 238000004519 manufacturing process Methods 0.000 claims description 28
- 239000007789 gas Substances 0.000 claims description 17
- 150000004767 nitrides Chemical class 0.000 claims description 13
- 238000001312 dry etching Methods 0.000 claims description 9
- 238000001039 wet etching Methods 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 3
- -1 CF 4 Chemical class 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims description 2
- 239000000243 solution Substances 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims 1
- 150000002431 hydrogen Chemical class 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 230000001052 transient effect Effects 0.000 claims 1
- 230000004888 barrier function Effects 0.000 abstract description 6
- 239000010408 film Substances 0.000 description 90
- 229920002120 photoresistant polymer Polymers 0.000 description 16
- 238000002955 isolation Methods 0.000 description 9
- 239000012535 impurity Substances 0.000 description 8
- 239000005380 borophosphosilicate glass Substances 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31127—Etching organic layers
- H01L21/31133—Etching organic layers by chemical means
- H01L21/31138—Etching organic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32135—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
- H01L21/32136—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
- H01L21/32137—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76819—Smoothing of the dielectric
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/823475—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
본 발명은 반도체소자의 콘택홀 제조방법에 관한 것으로, 특히 고집적 소자의 제조 공정시 오버레이 마진 문제로 SAC 공정에서 사용되는 식각방지막을 산화막에 대하여 식각선택비가 높은 다결정실리콘층을 형성하고, 상기 식각방지막으로 사용된 다결정실리콘층을 등방성식각하여 제거한 다음, BPSG 를 리플로우시키거나 중온산화막을 증착하여 상기 다결정실리콘막으로 인한 미세 배선간에 전기적인 쇼트가 발생하는 것을 방지하는 기술에 관한 것이다.The present invention relates to a method for manufacturing a contact hole of a semiconductor device, and in particular, to form a polysilicon layer having a high etching selectivity with respect to an oxide layer of an etch barrier layer used in an SAC process due to an overlay margin problem in a manufacturing process of a highly integrated device. After the isotropic etching of the polysilicon layer used to remove, and then reflow BPSG or deposit a mesophilic oxide film relates to a technique for preventing the electrical short between the micro-wiring caused by the polycrystalline silicon film.
최근의 반도체 장치의 고집적화 추세는 미세 패턴 형성 기술의 발전에 큰 영향을 받고 있다. 특히 감광막 패턴은 반도체장치의 제조 공정중에서 식각 또는 이온 주입공정 등의 마스크로 매우 폭 넓게 사용되고 있다.The recent trend of high integration of semiconductor devices is greatly influenced by the development of fine pattern formation technology. In particular, the photoresist pattern is widely used as a mask for etching or ion implantation in the semiconductor device manufacturing process.
따라서, 반도체소자의 고집적화를 위해서는 감광막 패턴의 미세화가 필수 요건인데, 상기 감광막 패턴의 분해능은 축소노광장치의 광원의 파장 및 공정변수에 비례하고, 축소노광장치의 렌즈구경(numerical aperture : NA, 개구수) 에 반비례한다.Therefore, miniaturization of the photoresist pattern is essential for high integration of semiconductor devices, and the resolution of the photoresist pattern is proportional to the wavelength and the process variable of the light source of the reduction exposure apparatus, and the numerical aperture (NA, aperture) of the reduction exposure apparatus. Inversely proportional to
여기서, 상기 축소노광장치의 광분해능을 향상시키기 위하여 광원의 파장을 감소시키게 되며, 예를 들어 파장이 436 및 365 nm 인 G-라인 및 i-라인 축소노광장치는 공정 분해능이 각각 약 0.7, 0.5 ㎛ 정도가 한계이다. 따라서, 0.5 ㎛ 이하의 미세 패턴을 형성하기 위해 파장이 작은 원자외선(deep ultra violet, DUV), 예를 들어 파장이 248 nm 인 KrF 레이저나 193 nm 인 ArF 레이저를 광원으로 사용하는 노광장치를 이용하는 방법과, 이미지 콘트라스트를 향상시킬 수 있는 별도의 박막을 웨이퍼 상에 형성하는 씨.이.엘.(contrast enhancement layer: 이하 CEL 이라함)방법이나 두층의 감광막 사이에 에스.오.지.(spin on glass : SOG) 등의 중간층을 개재시킨 삼층레지스트(Tri layer resister : 이하 TLR 이라 함) 방법 또는 감광막의 상측에 선택적으로 실리콘을 주입시키는 실리레이션 방법 등이 개발되어 분해능 한계치를 낮추고 있다.Here, the wavelength of the light source is reduced to improve the optical resolution of the reduced exposure apparatus. For example, the G-line and i-line reduced exposure apparatus having wavelengths of 436 and 365 nm have a process resolution of about 0.7 and 0.5, respectively. About μm is the limit. Therefore, an exposure apparatus using a deep ultra violet (DUV) wavelength, for example, a KrF laser having a wavelength of 248 nm or an ArF laser having a wavelength of 193 nm, as a light source is used to form a fine pattern of 0.5 μm or less. And a contrast enhancement layer (hereinafter referred to as CEL) method for forming a separate thin film on the wafer which can improve image contrast, or S.O.G. Tri-layer resister (hereinafter referred to as TLR) method with an intermediate layer such as on glass (SOG) or a silicide method for selectively injecting silicon into the upper side of the photosensitive film has been developed to lower the resolution limit.
또한, 상하의 도전배선을 연결하는 콘택홀은 소자가 고집적화 되어감에 따라 자체의 크기와 주요 배선과의 간격이 감소되고, 콘택홀의 지름과 깊이의 비인 에스팩트비(aspect ratio)가 증가한다. 따라서, 다층의 도전배선을 구비하는 고집적 반도체소자에서는 콘택을 형성하기 위하여 제조 공정에서의 마스크들 간의 정확하고 엄격한 정렬이 요구되어 공정 여유도가 감소된다.In addition, the contact hole connecting the upper and lower conductive wirings is reduced in size and spacing between the main wiring as the device is highly integrated, and the aspect ratio, which is a ratio of the diameter and the depth of the contact hole, increases. Therefore, in a highly integrated semiconductor device having multiple conductive wirings, accurate and tight alignment between masks in a manufacturing process is required to form a contact, thereby reducing process margin.
이러한 콘택홀은 간격 유지를 위하여 마스크 정렬시의 오배열 여유(misalignment tolerance), 노광공정시의 렌즈 왜곡(lens distortion), 마스크 제작 및 사진식각 공정시의 임계크기 변화(critical dimension variation), 마스크간의 정합(registration) 등과 같은 요인들을 고려하여 마스크를 형성한다.These contact holes have misalignment tolerance during mask alignment, lens distortion during exposure process, critical dimension variation during mask fabrication and photolithography process, and between masks to maintain spacing. The mask is formed by considering factors such as registration.
또한, 콘텍홀 형성시 리소그래피 공정의 한계를 극복하기 위하여 자기 정렬 방법으로 콘택홀을 형성하는 기술이 개발되었다.In addition, in order to overcome the limitations of the lithography process when forming contact holes, a technique of forming contact holes by a self-aligning method has been developed.
이하 첨부된 도면을 참고로 하여 종래기술에 따른 반도체소자의 콘택홀 제조방법을 설명하기로 한다.Hereinafter, a method for manufacturing a contact hole of a semiconductor device according to the related art will be described with reference to the accompanying drawings.
도 1a 내지 도 1c 는 종래기술에 따른 반도체소자의 콘택홀 제조방법을 도시한 단면도이다.1A to 1C are cross-sectional views illustrating a method for manufacturing a contact hole in a semiconductor device according to the prior art.
먼저, 반도체기판(101)의 원하는 부분에 원하는 불순물의 종류를 이온주입하여 웰과 트랜지스터의 채널 부분 및 소자분리 영역의 아래 부분에 원하는 형태로 불순물이 존재하도록 한 후, 상기 반도체기판(101)에서 소자분리 영역으로 예정되어 있는 부분상에 소자분리 절연막(도시않됨)을 형성하고, 나머지 반도체기판(101)에 게이트 절연막(103)과 게이트 전극용 도전층(105), 제1절연막(107) 및 제2절연막(109)을 순차적으로 형성한 후, 게이트 전극 패턴닝 마스크를 사용하여 제2절연막(109), 제1절연막(107)과 게이트 전극용 도전층(105)을 순차적으로 식각하여 게이트전극과 그 상부에 적층되어 있는 제1, 제2절연막(107, 109) 패턴을 형성한다. 여기서, 상기 제1절연막(107)은 산화막으로 형성하고, 상기 제2절연막(109)은 질화막 또는 산화막을 사용하여 형성하고, 상기 제1, 제2절연막(107, 109) 패턴은 마스크 절연막으로 사용된다.First, a desired type of impurity is ion-implanted into a desired portion of the semiconductor substrate 101 so that impurities exist in a desired shape in the channel portion of the well and the transistor and the lower portion of the device isolation region, and then in the semiconductor substrate 101. A device isolation insulating film (not shown) is formed on the portion intended as the device isolation region, and the gate insulating film 103, the conductive layer 105 for the gate electrode, the first insulating film 107, and the remaining semiconductor substrate 101 are formed. After sequentially forming the second insulating layer 109, the second insulating layer 109, the first insulating layer 107, and the conductive layer 105 for the gate electrode are sequentially etched using the gate electrode patterning mask to sequentially form the gate electrode. And first and second insulating films 107 and 109 stacked on top of each other. Here, the first insulating film 107 is formed of an oxide film, the second insulating film 109 is formed using a nitride film or an oxide film, and the patterns of the first and second insulating films 107 and 109 are used as a mask insulating film. do.
그 다음, 상기 게이트전극 양측의 반도체기판(101)에 엘.디.디.(lightly doped drain : LDD) 영역이 되는 저농도 불순물층(도시않됨)을 형성한 후, 상기 게이트 전극용 도전층(105) 패턴과 제1, 제2절연막(107, 109) 패턴의 측벽에 CVD 방법으로 제 3절연막(111)을 전면도포 및 전면 이방성 식각하여 제3절연막(111) 스페이서를 형성한다. 여기서, 상기 제3절연막(111)은 산화막을 사용하여 형성한다. (도 1a참조)Thereafter, a lightly doped impurity layer (not shown) to form a lightly doped drain (LDD) region is formed on the semiconductor substrate 101 at both sides of the gate electrode, and then the conductive layer 105 for the gate electrode is formed. ) And the third insulating layer 111 is formed on the sidewalls of the patterns and the first and second insulating layers 107 and 109 by CVD to form an entire surface and anisotropically etch the third insulating layer 111. The third insulating layer 111 is formed using an oxide film. (See FIG. 1A)
그 후, 상기 제3절연막(111) 스페이서 양측의 반도체기판(101)에 고농도 불순물영역(도시않됨)을 형성하고, 상기 구조의 전표면에 제4절연막(113)을 질화막으로 형성한다. 이때, 상기 제4절연막(113)은 식각방지막 역할을 한다.Thereafter, a high concentration impurity region (not shown) is formed in the semiconductor substrate 101 on both sides of the third insulating film 111 spacer, and the fourth insulating film 113 is formed on the entire surface of the structure as a nitride film. In this case, the fourth insulating layer 113 serves as an etch stop layer.
그 다음, 상기 제4절연막(113) 상부에 제5절연막(115)를 형성하여 평탄화시킨다. 이때, 상기 제5절연막(115)은 산화막을 사용하여 형성한다. (도 1b참조)Next, a fifth insulating layer 115 is formed on the fourth insulating layer 113 to be planarized. In this case, the fifth insulating film 115 is formed using an oxide film. (See FIG. 1B)
이어서, 상기 반도체기판(101)에서 비트라인 콘택으로 예정되어 있는 부분상의 제5절연막(115)을 제거하여 비트라인 콘택홀을 형성하되, 상기 제4절연막(113)도 제거하여 비트라인 콘택으로 예정되어 있는 부분의 반도체기판(101)을 노출시킨다. (도 1c참조)Subsequently, a bit line contact hole is formed by removing the fifth insulating layer 115 on the portion of the semiconductor substrate 101 which is supposed to be a bit line contact, but also removing the fourth insulating layer 113 to be a bit line contact. The semiconductor substrate 101 of the portion is exposed. (See FIG. 1C)
상기와 같이 종래기술에 따른 반도체소자의 콘택홀 제조방법은, 콘택홀을 형성하기 위한 식각공정시 질화막 또는 다결정실리콘층을 식각방지막으로 사용하는 경우 산화막에 대한 질화막의 식각선택비가 큰 식각 공정 및 질화막 식각공정을 개발하기가 용이하지 않고, 산화막에 대한 질화막의 식각 선택비가 큰 공정 및 질화막 식각공정을 개발하여도 그 식각 공정의 마진이 부족하여 재현성 및 신뢰성이 없는 공정이 이루어지고, 산화막 식각시 질화막에 대한 고선택비를 얻기 위해 다량의 폴리머를 사용하기 때문에 산화막 식각시 공정마진을 확보하기 어려우며, 상기 다결정 실리콘층을 식각방지막으로 사용하는 경우는 산화막에 대한 고선택비를 얻을 수는 있지만 미세 배선 간에 전기적 쇼트를 유발하여 소자제조 공정에 적용하기 어려운 문제점이 있다.As described above, in the method of manufacturing a contact hole of a semiconductor device according to the related art, in the case of using a nitride film or a polysilicon layer as an etch barrier during the etching process for forming the contact hole, an etching process and a nitride film having a large etching selectivity of the nitride film relative to the oxide film It is not easy to develop an etching process, and the process of developing the nitride film etching process with respect to the oxide film and the etching process of the nitride film is not easy, so the process lacks reproducibility and reliability due to the lack of the margin of the etching process. Since a large amount of polymer is used to obtain a high selectivity for the oxide, it is difficult to secure process margins during the etching of the oxide film. When the polycrystalline silicon layer is used as the etching prevention film, a high selectivity for the oxide film can be obtained, but the fine wiring It is difficult to apply to device manufacturing process by causing electrical short between have.
본 발명은 상기한 종래기술의 문제점을 해결하기 위하여, SAC 공정에서 산화막에 대한 식각방지막으로 상기 산화막에 대한 식각선택비가 큰 다결정실리콘층을 사용하여 공정 마진을 확보하여 재현성있는 공정을 실시하고, 미세 배선간에 전기적 쇼트를 방지하여 소자의 특성 및 신뢰성을 향상시킬 수 있는 반도체소자의 콘택홀 제조방법을 제공하는데 그 목적이 있다.The present invention to solve the problems of the prior art, by using a polysilicon layer having a large etching selectivity for the oxide film as an etching prevention film for the oxide film in the SAC process to secure a process margin to perform a reproducible process, fine SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a contact hole in a semiconductor device, which can prevent electrical shorts between wires and improve device characteristics and reliability.
도 1a 내지 도 1c 는 종래기술에 따른 반도체소자의 콘택홀 제조방법을 도시한 단면도.1A to 1C are cross-sectional views illustrating a method for manufacturing a contact hole in a semiconductor device according to the prior art.
도 2a 내지 도 2e 는 본 발명의 제1실시예에 따른 반도체소자의 콘택홀 제조방법을 도시한 단면도.2A to 2E are cross-sectional views illustrating a method for manufacturing a contact hole in a semiconductor device according to a first embodiment of the present invention.
도 3a 내지 도 3e는 본 발명의 제2실시예에 따른 반도체소자의 콘택홀 제조방법을 도시한 단면도.3A to 3E are cross-sectional views illustrating a method of manufacturing a contact hole in a semiconductor device according to a second embodiment of the present invention.
< 도면의 주요부분에 대한 부호의 설명 ><Explanation of symbols for the main parts of the drawings>
11, 12, 101 : 반도체기판 13, 14, 103 : 게이트 절연막11, 12, 101: semiconductor substrate 13, 14, 103: gate insulating film
15, 16, 105 : 게이트 전극용 도전층 17, 18, 107 : 제1절연막15, 16, 105: conductive layers for gate electrodes 17, 18, 107: first insulating film
19, 20, 109 : 제2절연막 21, 22, 111 : 제3절연막19, 20, 109: second insulating film 21, 22, 111: third insulating film
23, 26, 113 : 제4절연막 24, 25 : 다결정실리콘층23, 26, 113: fourth insulating film 24, 25: polysilicon layer
27, 115 : 제5절연막 28 : 감광막 패턴27, 115: fifth insulating film 28: photosensitive film pattern
29 : 제6절연막29: sixth insulating film
이상의 목적을 달성하기 위한 본 발명에 따른 반도체소자의 콘택홀 제조방법은,Contact hole manufacturing method of a semiconductor device according to the present invention for achieving the above object,
마스크 절연막으로 사용되는 제1절연막 패턴 및 제2절연막 패턴이 적층되어 있는 게이트 전극을 반도체기판 상에 형성하는 공정과,Forming a gate electrode on which a first insulating film pattern and a second insulating film pattern, which are used as a mask insulating film, are stacked, on a semiconductor substrate;
상기 제2절연막 패턴, 제1절연막 패턴 및 게이트 전극의 측벽에 제3절연막 스페이서를 형성하는 공정과,Forming a third insulating film spacer on sidewalls of the second insulating film pattern, the first insulating film pattern, and the gate electrode;
상기 제3절연막 스페이서의 양쪽 반도체기판에 소오스/드레인 영역을 형성하는 공정과,Forming a source / drain region on both semiconductor substrates of the third insulating film spacer;
상기 구조의 전표면에 제4절연막을 형성하는 공정과,Forming a fourth insulating film on the entire surface of the structure;
상기 제4절연막의 상부에 다결정실리콘층을 형성하는 공정과,Forming a polysilicon layer on the fourth insulating film;
상기 다결정실리콘층 상부에 콘택으로 예정되는 부분을 노출시키는 제5절연막 패턴을 형성하는 공정과,Forming a fifth insulating film pattern exposing a portion intended as a contact on the polysilicon layer;
상기 제5절연막 패턴에 의해 노출되는 상기 다결정실리콘층을 등방성 식각방법으로 소정 두께 제거하는 공정과,Removing a predetermined thickness of the polysilicon layer exposed by the fifth insulating film pattern by an isotropic etching method;
상기 구조 상부에 제6절연막을 형성하여 상기 다결정실리콘층 제거공정시 상기 다결정실리콘층이 제거된 측면을 메우는 공정과,Forming a sixth insulating layer on the structure to fill the side surface from which the polysilicon layer is removed during the polysilicon layer removal process;
상기 제6절연막과 제4절연막을 플라즈마를 이용한 이방성 건식식각방법으로 제거하여 콘택홀을 형성하는 공정을 포함하는 것을 제1특징으로 한다.The sixth and fourth insulating films may be removed by anisotropic dry etching using plasma to form contact holes.
또한, 이상의 목적을 달성하기 위한 본 발명에 따른 반도체소자의 콘택홀 제조방법은,In addition, the contact hole manufacturing method of the semiconductor device according to the present invention for achieving the above object,
마스크 절연막 패턴이 적층되어 있는 게이트 전극을 반도체기판 상에 형성하는 공정과,Forming a gate electrode on which a mask insulating film pattern is stacked on a semiconductor substrate;
상기 마스크 절연막 패턴 및 게이트 전극의 측벽에 제1절연막 스페이서를 형성하는 공정과,Forming a first insulating film spacer on sidewalls of the mask insulating film pattern and the gate electrode;
상기 제1절연막 스페이서의 양쪽 반도체기판에 소오스/드레인 영역을 형성하는 공정과,Forming a source / drain region on both semiconductor substrates of the first insulating film spacer;
상기 구조의 전표면에 제2절연막을 형성하는 공정과,Forming a second insulating film on the entire surface of the structure;
상기 제2절연막의 상부에 다결정실리콘층을 형성하는 공정과,Forming a polysilicon layer on the second insulating film;
상기 다결정실리콘층 상부에 제3절연막을 형성한 다음, 플로우시켜 평탄화하는 공정과,Forming a third insulating film over the polysilicon layer, and then flowing and planarizing the third insulating film;
상기 반도체기판의 콘택으로 예정되는 부분을 노출시키는 제3절연막 패턴을 형성하는 공정과,Forming a third insulating film pattern exposing a portion intended to be in contact with the semiconductor substrate;
상기 제3절연막 패턴에 의해 노출되는 상기 다결정실리콘층을 플라즈마를 이용한 건식식각방법으로 제거하는 공정과,Removing the polysilicon layer exposed by the third insulating layer pattern by a dry etching method using plasma;
상기 제2절연막을 제거하는 공정과,Removing the second insulating film;
상기 제3절연막 패턴을 리플로우시켜 상기 다결정실리콘층 및 제2절연막 제거공정시 상기 다결정실리콘층 및 제2절연막이 제거된 측면을 메워 미세 배선간 절연을 확보하는 공정을 포함하는 것을 제2특징으로 한다.And reflowing the third insulating layer pattern to fill side surfaces from which the polysilicon layer and the second insulating layer are removed during the removing of the polysilicon layer and the second insulating layer, thereby securing fine inter-wire insulation. do.
이하, 첨부된 도면을 참조하여 본 발명에 따른 반도체소자의 콘택홀 제조방법을 상세히 설명하기로 한다.Hereinafter, a method of manufacturing a contact hole in a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings.
도 2a 내지 도 2e 는 본 발명의 제1실시예에 따른 반도체소자의 콘택홀 제조방법을 도시한 단면도이다.2A through 2E are cross-sectional views illustrating a method of manufacturing a contact hole in a semiconductor device according to a first embodiment of the present invention.
먼저, 반도체기판(11)의 원하는 부분에 원하는 불순물의 종류를 이온주입하여 웰과 트랜지스터의 채널 부분 및 소자분리 영역의 아래 부분에 원하는 형태로 불순물이 존재하도록 한 후, 상기 반도체기판(11)에서 소자분리 영역으로 예정되어 있는 부분상에 소자분리 산화막(도시않됨)을 형성하고, 전표면에 게이트 산화막(13)을 형성한 후, 게이트 전극용 도전층(15)과 마스크 절연막으로 사용되는 제1절연막(17), 제2절연막(19)을 순차적으로 형성한다. 이때, 상기 제2절연막(19)은 산화막 또는 질화막으로 형성할 수 있으며, 제2절연막(19)으로 질화막을 사용하는 경우 상기 질화막을 증착하기 전에 산화막을 10∼30nm 두께로 미리 증착한 다음 상기 질화막을 50∼150nm 두께로 증착하고, 산화막을 제2절연막(19)으로 사용하는 경우 50∼150nm 두께로 증착한다.First, a desired type of impurity is ion-implanted into a desired portion of the semiconductor substrate 11 so that impurities exist in a desired form in the channel portion of the well and the transistor and the lower portion of the device isolation region. After forming a device isolation oxide film (not shown) on the portion intended as the device isolation region and forming the gate oxide film 13 on the entire surface, the first electrode used as the gate electrode conductive layer 15 and the mask insulating film The insulating film 17 and the second insulating film 19 are sequentially formed. In this case, the second insulating film 19 may be formed of an oxide film or a nitride film. In the case of using the nitride film as the second insulating film 19, the oxide film is deposited in advance in a thickness of 10 to 30 nm before the nitride film is deposited, and then the nitride film is deposited. Is deposited to a thickness of 50 to 150 nm, and when the oxide film is used as the second insulating film 19, it is deposited to a thickness of 50 to 150 nm.
다음, 상기 제2절연막(19) 상부에 제2감광막(도시않됨)을 도포하고, 노광 및 현상공정을 실시하여 게이트 전극으로 예정되는 부분을 보호하는 제1감광막 패턴을 형성한다.Next, a second photoresist layer (not shown) is coated on the second insulating layer 19, and an exposure and development process is performed to form a first photoresist pattern that protects a portion intended as a gate electrode.
그 다음, 상기 제1감광막 패턴을 게이트 전극용 마스크로 사용한 식각공정으로 상기 제2절연막(19), 제1절연막(17) 및 게이트 전극용 도전층(15)을 패터닝하여 워드라인 패턴을 형성하고, 상기 제1감광막 패턴을 제거한다.Next, a word line pattern is formed by patterning the second insulating layer 19, the first insulating layer 17, and the conductive layer 15 for the gate electrode by an etching process using the first photoresist pattern as a mask for a gate electrode. The first photoresist pattern is removed.
그리고, 상기 전 표면에 제3절연막(도시않됨)을 형성한 다음, 전면식각공정을 실시하여 상기 워드라인 패턴의 양측벽에 제3절연막 스페이서(21)를 형성한다. (도 2a참조)A third insulating layer (not shown) is formed on the entire surface, and a third etching layer spacer 21 is formed on both sidewalls of the word line pattern by performing an entire surface etching process. (See Figure 2A)
다음, 상기 구조 전면에 5∼30nm 두께의 제4절연막(23)을 증착하고, 그 상부에 식각방지막인 다결정실리콘층(25)을 10∼100nm 두께로 증착한다.Next, a fourth insulating film 23 having a thickness of 5 to 30 nm is deposited on the entire structure, and a polysilicon layer 25, which is an etch stop layer, is deposited to have a thickness of 10 to 100 nm.
그 다음, 상기 구조 전면에 제5절연막(27)을 형성하여 평탄화한다. 이때, 상기 제5절연막(27)은 산화막을 사용하여 형성한다. (도 2b참조)Next, a fifth insulating film 27 is formed over the entire structure to planarize it. In this case, the fifth insulating layer 27 is formed using an oxide film. (See Figure 2b)
그 후, 상기 제5절연막(27) 상부에 상기 반도체기판(11)의 비트라인 콘택으로 예정되는 부분을 노출시키는 제2감광막 패턴(도시않됨)을 형성한다.Thereafter, a second photoresist pattern (not shown) is formed on the fifth insulating layer 27 to expose a portion of the semiconductor substrate 11 to be a bit line contact.
그리고, 상기 제2감광막 패턴을 식각마스크로 사용하여 상기 제5절연막(27)을 이방성 건식식각하여 제거한다. 이때, 상기 다결정실리콘층(25)은 상기 제5절연막(27)에 대하여 식각선택비가 크기 때문에 거의 식각이 되지 않는다. (도 2c참조)The fifth insulating layer 27 is anisotropic dry etched and removed using the second photoresist pattern as an etching mask. In this case, the polysilicon layer 25 is hardly etched because the etch selectivity with respect to the fifth insulating layer 27 is large. (See FIG. 2C)
다음, 상기 제5절연막(27)에 의해 노출되는 상기 다결정실리콘층(25)을 제거한다. 여기서, 상기 다결정실리콘층(25)의 제거정도는 제거되지 않은 ⓐ 부분의 다결정실리콘층(25)과 비트라인이 연결되지 않고, 후속 공정시 빈 공간에 채워지는 절연막이 충분히 확산 방지막으로 사용되고, 기생 캐패시터로서 작용되지 않도록 빈공간을 채울 수 있을 정도로 상기 다결정실리콘층(25)을 제거한다. 이때, 상기 다결정실리콘층(25)이 제거되지 않은 부분인 ⓐ 의 크기는 20∼150nm 의 범위를 갖는다.Next, the polysilicon layer 25 exposed by the fifth insulating layer 27 is removed. Here, the degree of removal of the polysilicon layer 25 is not removed from the polysilicon layer 25 and the bit line is not removed, the insulating film filled in the empty space during the subsequent process is sufficiently used as a diffusion barrier, parasitic The polysilicon layer 25 is removed to fill the void space so that it does not act as a capacitor. At this time, the size of ⓐ which is a portion where the polysilicon layer 25 is not removed has a range of 20 to 150 nm.
한편, 상기 다결정실리콘층(25)을 제거하는 방법은 NH4OH/H2O2혼합용액과 KOH 용액을 사용한 습식식각방법과, NF3/O2/Ar 혼합 가스 플라즈마를 사용한 등방성 플라즈마 건식식각방법을 사용한다.Meanwhile, a method of removing the polysilicon layer 25 is a wet etching method using an NH 4 OH / H 2 O 2 mixed solution and a KOH solution, and an isotropic plasma dry etching using an NF 3 / O 2 / Ar mixed gas plasma. Use the method.
다음, 상기 구조 전면에 제6절연막(29)을 증착한다. 이때, 상기 제6절연막(29)은 상기 다결정실리콘층(25)이 제거되어 형성된 빈공간을 충분히 채울 수 있는 중온 산화막(midium temperature oxide, 이하 MTO 라 함)을 사용한다. (도 2d참조)Next, a sixth insulating layer 29 is deposited on the entire structure. In this case, the sixth insulating layer 29 uses a medium temperature oxide (MTO) to sufficiently fill the empty space formed by removing the polysilicon layer 25. (See FIG. 2D)
그 다음, 이방성 건식식각방법으로 상기 제6절연막(29)을 제거한다. 이때, 상기 다결정실리콘층(25)을 형성하기 전에 증착된 제4절연막(23)도 함께 제거되어 비트라인 콘택으로 예정되는 부분의 반도체기판(11)이 노출된다. (도 2e참조)Next, the sixth insulating layer 29 is removed by an anisotropic dry etching method. At this time, the fourth insulating layer 23 deposited before the polysilicon layer 25 is also removed, thereby exposing the semiconductor substrate 11 at a portion intended to be a bit line contact. (See Figure 2E)
본 발명의 제2실시예에 대하여 살펴보면 다음과 같다.Looking at the second embodiment of the present invention.
도 3a 내지 도 3e 는 본 발명의 제2실시예에 따른 반도체소자의 콘택홀 제조방법을 도시한 단면도이다.3A to 3E are cross-sectional views illustrating a method of manufacturing a contact hole in a semiconductor device according to a second embodiment of the present invention.
먼저, 반도체기판(12)의 원하는 부분에 원하는 불순물의 종류를 이온주입하여 웰과 트랜지스터의 채널 부분 및 소자분리 영역의 아래 부분에 원하는 형태로 불순물이 존재하도록 한 후, 상기 반도체기판(12)에서 소자분리 영역으로 예정되어 있는 부분상에 소자분리 산화막(도시않됨)을 형성하고, 전표면에 게이트 산화막(14)을 형성한 후, 게이트 전극용 도전층(16)과 마스크 절연막으로 사용되는 제1절연막(18)을 순차적으로 형성한다.First, a desired type of impurity is ion-implanted into a desired portion of the semiconductor substrate 12 so that impurities exist in a desired shape in the channel portion of the well and the transistor and the lower portion of the device isolation region, and then in the semiconductor substrate 12 After forming a device isolation oxide film (not shown) on the portion intended as the device isolation region and forming a gate oxide film 14 on the entire surface, the first electrode used as the gate electrode conductive layer 16 and the mask insulating film The insulating film 18 is formed sequentially.
다음, 상기 제1절연막(18) 상부에 제1감광막(도시않됨)을 형성하고, 노광 및 현상공정을 실시하여 게이트 전극으로 예정되는 부분을 보호하는 제1감광막 패턴을 형성한다.Next, a first photoresist layer (not shown) is formed on the first insulating layer 18, and an exposure and development process is performed to form a first photoresist layer pattern that protects a portion intended as a gate electrode.
그 다음, 상기 제1감광막 패턴을 식각마스크로 사용하여 상기 제1절연막(18)을 식각하여 제1절연막(18) 패턴을 형성하고, 상기 제1감광막 패턴을 제거한다.Next, the first insulating layer 18 is etched using the first photoresist pattern as an etching mask to form a first insulating layer 18 pattern, and the first photoresist pattern is removed.
그리고, 상기 제1절연막(18) 패턴을 식각마스크로 사용하여 상기 게이트 전극용 도전층(16)을 식각하여 게이트 전극을 형성한다.The gate electrode conductive layer 16 is etched using the first insulating layer 18 as an etch mask to form a gate electrode.
다음, 상기 게이트 전극 및 제1절연막(18) 패턴의 양측벽에 제2절연막(20) 스페이서를 형성한다.Next, spacers of the second insulating layer 20 are formed on both sidewalls of the gate electrode and the first insulating layer 18.
그리고, 상기 구조 전면에 5∼30nm 두께의 제3절연막(22)을 증착하고, 그 상부에 식각방지막인 다결정실리콘층(24)을 10∼100nm 두께로 증착한다. (도 3a 참조)A third insulating film 22 having a thickness of 5 to 30 nm is deposited on the entire structure, and a polysilicon layer 24, which is an etch stop film, is deposited on the top of the structure, having a thickness of 10 to 100 nm. (See Figure 3A)
그 다음, 상기 구조 전면에 제5절연막(26)을 형성하여 평탄화한다. 이때, 상기 제4절연막(26)은 비.피.에스.지.(borophospho silicate glass, 이하, BPSG 라 함)를 사용하여 형성하고, 플로우시켜 평탄화시킨다.Next, a fifth insulating film 26 is formed on the entire surface of the structure and planarized. In this case, the fourth insulating layer 26 is formed using B. P. G. (Brophospho silicate glass, hereinafter referred to as BPSG), and flows to planarize it.
그 후, 상기 제4절연막(26) 상부에 상기 반도체기판(12)의 비트라인 콘택으로 예정되는 부분을 노출시키는 제2감광막 패턴(28)을 형성한다. (도 3b 참조)Thereafter, a second photoresist layer pattern 28 is formed on the fourth insulating layer 26 to expose a portion of the semiconductor substrate 12 to be a bit line contact. (See Figure 3b)
그리고, 상기 제2감광막 패턴(28)을 식각마스크로 사용하여 상기 제4절연막(26)을 이방성 건식식각하여 패터닝한다. 이때, 상기 다결정실리콘층(24)은 상기 제4절연막(26)에 대하여 식각선택비가 크기 때문에 거의 식각이 되지 않는다.In addition, the fourth insulating layer 26 is anisotropically dry-etched and patterned using the second photoresist layer pattern 28 as an etching mask. In this case, the polysilicon layer 24 is hardly etched because the etch selectivity with respect to the fourth insulating layer 26 is large.
여기서, 상기 제4절연막(26)은 CF4, CH3F 또는 C2H2, H2, CH2F2, C2HF5와 같이 수소를 포함하는 가스를 사용하여 식각함으로써 상기 다결정실리콘층(24)에 대한 높은 식각선택비를 얻을 수 있고, C2F6, C3F8, C4F8과 같은 가스를 사용하여 식각함으로써 상기 다결정실리콘층(24)에 대한 높은 식각선택비를 위해 보다 넓은 프로세스 윈도우(process window)를 확보한다. 또한, 플라즈마의 안정화를 위하여 Ar, Ne, He, Xe 와 같은 불활성 가스를 혼합하여 식각균일도를 향상시킨다. 그리고, 상기 C2H2, H2, CH2F2, C2HF5, C2F6, C3F8, C4F8및 상기 불활성 가스를 혼합하여 상기 다결정실리콘층에 대하여 높은 식각선택비와 식각균일도를 얻을 수 있다.Here, the fourth insulating layer 26 is etched using a gas containing hydrogen such as CF 4 , CH 3 F or C 2 H 2 , H 2 , CH 2 F 2 , C 2 HF 5 to form the polysilicon layer. It is possible to obtain a high etching selectivity for (24), by etching using a gas such as C 2 F 6 , C 3 F 8 , C 4 F 8 to obtain a high etching selectivity for the polysilicon layer 24 To get a wider process window. In addition, in order to stabilize the plasma, inert gases such as Ar, Ne, He, and Xe are mixed to improve the etching uniformity. In addition, the C 2 H 2 , H 2 , CH 2 F 2 , C 2 HF 5 , C 2 F 6 , C 3 F 8 , C 4 F 8 and the inert gas are mixed to etch high with respect to the polysilicon layer Selectivity and etching uniformity can be obtained.
그 다음, 상기 제2감광막패턴(28)을 제거하고, 상기 제4절연막(26) 패턴에 의해 노출되는 다결정실리콘층(24)은 CF4, NF3, SF6등의 가스를 사용하여 등방적으로 식각함으로써 밑면과 동시에 측면을 제거하거나, 상기 가스에 O2, He, Ne, Ar, N2가스를 혼합하여 식각특성을 향상시킨다.Next, the second photoresist layer pattern 28 is removed, and the polysilicon layer 24 exposed by the fourth insulation layer pattern 26 is isotropically formed using gases such as CF 4 , NF 3 , SF 6, and the like. By etching to remove the side at the same time as the bottom, or by mixing the gas O 2 , He, Ne, Ar, N 2 gas to improve the etching characteristics.
그 다음, 인-시튜방법으로 상기 제3절연막(22)까지 제거하여 비트라인 콘택으로 예정되는 부분의 반도체기판(12)을 노출시킨다. 이때, 상기 제3절연막(22)은 건식식각방법으로 제거하거나 플라즈마 데미지를 감소시키기 위하여 습식식각방법으로 제거하기도 한다. (도 3c, 도 3d참조)Next, the third insulating layer 22 is removed by an in-situ method to expose the semiconductor substrate 12 in a portion intended for the bit line contact. In this case, the third insulating layer 22 may be removed by a dry etching method or a wet etching method to reduce plasma damage. (See FIG. 3C, FIG. 3D)
그리고, 상기 제4절연막(26) 패턴을 800∼900℃에서 리플로우시켜 평탄화시키는 동시에 상기 다결정실리콘층(24) 및 제3절연막(22) 제거시 형성된 빈공간을 제4절연막(26)으로 채워 미세 배선간에 접촉되는 것을 방지한다. (도 3e참조)The fourth insulating layer 26 is reflowed and planarized at 800 to 900 ° C., and the empty space formed when the polysilicon layer 24 and the third insulating layer 22 are removed is filled with the fourth insulating layer 26. Prevents contact between fine wirings. (See Figure 3e)
이상에서 설명한 바와같이 본 발명에 따른 반도체소자의 콘택홀 제조방법은, 오버레이 마진 문제로 SAC 공정에서 식각방지막으로 식각선택비가 높은 다결정실리콘층을 사용하고, 상기 식각방지막으로 사용된 다결정실리콘층을 등방성식각하여 제거한 다음, BPSG 를 리플로우시키거나 MTO을 증착하여 상기 다결정실리콘막으로 인한 미세 배선간에 전기적인 쇼트가 발생하는 것을 방지함으로써 반도체소자의 특성 및 신뢰성을 향상시키는 이점이 있다.As described above, the method for manufacturing a contact hole of a semiconductor device according to the present invention uses a polysilicon layer having a high etch selectivity as an etch barrier in the SAC process due to an overlay margin problem, and isotropic the polycrystalline silicon layer used as the etch barrier. After etching and removing, the BPSG is reflowed or MTO is deposited to prevent the electrical short between the micro wirings caused by the polysilicon film, thereby improving the characteristics and reliability of the semiconductor device.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980014393A KR100324015B1 (en) | 1998-04-22 | 1998-04-22 | Method for fabricating contact hole of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980014393A KR100324015B1 (en) | 1998-04-22 | 1998-04-22 | Method for fabricating contact hole of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990080854A KR19990080854A (en) | 1999-11-15 |
KR100324015B1 true KR100324015B1 (en) | 2002-09-19 |
Family
ID=37460860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980014393A KR100324015B1 (en) | 1998-04-22 | 1998-04-22 | Method for fabricating contact hole of semiconductor device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100324015B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100470164B1 (en) * | 1998-06-29 | 2005-04-06 | 주식회사 하이닉스반도체 | Contact manufacturing method of semiconductor device |
US10847416B2 (en) | 2018-03-22 | 2020-11-24 | Samsung Electronics Co., Ltd. | Semiconductor device including self-aligned contact and method of fabricating the semiconductor device |
-
1998
- 1998-04-22 KR KR1019980014393A patent/KR100324015B1/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100470164B1 (en) * | 1998-06-29 | 2005-04-06 | 주식회사 하이닉스반도체 | Contact manufacturing method of semiconductor device |
US10847416B2 (en) | 2018-03-22 | 2020-11-24 | Samsung Electronics Co., Ltd. | Semiconductor device including self-aligned contact and method of fabricating the semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
KR19990080854A (en) | 1999-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100474546B1 (en) | Fabricating method for semiconductor device | |
KR100535030B1 (en) | Fabricating method for semiconductor device | |
US6528418B1 (en) | Manufacturing method for semiconductor device | |
KR100726148B1 (en) | Manufacturing method for semiconductor device | |
KR100527577B1 (en) | Fabricating method for semiconductor device | |
KR100324015B1 (en) | Method for fabricating contact hole of semiconductor device | |
KR100420413B1 (en) | Manufacturing method for semiconductor device | |
KR100546144B1 (en) | Manufacturing method of semiconductor device | |
KR100307556B1 (en) | Manufacturing method of semiconductor device | |
KR100324023B1 (en) | Manufacturing method of semiconductor device | |
KR100434961B1 (en) | Method of forming contact hole of semiconductor device using nitride pattern formed on only gate electrode as etch stop layer | |
KR100861188B1 (en) | Manufacturing method for semiconductor device | |
KR100465604B1 (en) | Manufacturing method of semiconductor device | |
KR20000045358A (en) | Fabrication method of semiconductor device | |
KR20000045365A (en) | Method for forming transistor | |
KR20000027639A (en) | Method for manufacturing contact plug of semiconductor devices | |
KR20010057490A (en) | Manufacturing method for semiconductor device | |
KR20000045357A (en) | Method for fabricating semiconductor device | |
KR20010003254A (en) | Fabricating method for semiconductor device | |
KR20010059453A (en) | Manufacturing method of semiconductor device | |
KR20030059416A (en) | Manufacturing method for semiconductor device | |
KR20010005156A (en) | Fabricating method for semiconductor device | |
KR20010059016A (en) | Manufacturing method of semiconductor device | |
KR20060126110A (en) | Manufacturing method for semiconductor device | |
KR20020002642A (en) | Manufacturing method for semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20101224 Year of fee payment: 10 |
|
LAPS | Lapse due to unpaid annual fee |