KR100324015B1 - Method for fabricating contact hole of semiconductor device - Google Patents

Method for fabricating contact hole of semiconductor device Download PDF

Info

Publication number
KR100324015B1
KR100324015B1 KR1019980014393A KR19980014393A KR100324015B1 KR 100324015 B1 KR100324015 B1 KR 100324015B1 KR 1019980014393 A KR1019980014393 A KR 1019980014393A KR 19980014393 A KR19980014393 A KR 19980014393A KR 100324015 B1 KR100324015 B1 KR 100324015B1
Authority
KR
South Korea
Prior art keywords
insulating film
layer
forming
polysilicon layer
insulating
Prior art date
Application number
KR1019980014393A
Other languages
Korean (ko)
Other versions
KR19990080854A (en
Inventor
김유창
류재옥
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1019980014393A priority Critical patent/KR100324015B1/en
Publication of KR19990080854A publication Critical patent/KR19990080854A/en
Application granted granted Critical
Publication of KR100324015B1 publication Critical patent/KR100324015B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • H01L21/32137Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76819Smoothing of the dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823475MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A method for fabricating a contact hole of a semiconductor device is provided to guarantee a process margin by using a polycrystalline silicon layer as an etch barrier layer regarding an oxide layer such that the polycrystalline silicon layer has a large etch selectivity regarding the oxide layer. CONSTITUTION: A gate electrode in which the first and second insulation layer patterns used as a mask insulation layer are stacked is formed on a semiconductor substrate(12). The third insulation layer spacer is formed on the sidewalls of the second insulation layer pattern, the first insulation layer pattern and the gate electrode. A source/drain region is formed in the semiconductor substrate at both sides of the third insulation layer spacer. The fourth insulation layer(26) is formed. A polycrystalline silicon layer(24) is formed on the fourth insulation layer. The fifth insulation layer pattern exposing a portion reserved for a contact is formed on the polycrystalline silicon layer. A predetermined thickness of the polycrystalline silicon layer exposed by the fifth insulation layer pattern is eliminated by an isotropic etch method. The sixth insulation layer is formed to fill the side surface from which the polycrystalline silicon layer is removed when the polycrystalline silicon layer is eliminated. The sixth insulation layer and the fourth insulation layer are removed to form a contact hole by an anisotropic dry etch method using plasma.

Description

반도체소자의 콘택홀 제조방법Method for manufacturing contact hole of semiconductor device

본 발명은 반도체소자의 콘택홀 제조방법에 관한 것으로, 특히 고집적 소자의 제조 공정시 오버레이 마진 문제로 SAC 공정에서 사용되는 식각방지막을 산화막에 대하여 식각선택비가 높은 다결정실리콘층을 형성하고, 상기 식각방지막으로 사용된 다결정실리콘층을 등방성식각하여 제거한 다음, BPSG 를 리플로우시키거나 중온산화막을 증착하여 상기 다결정실리콘막으로 인한 미세 배선간에 전기적인 쇼트가 발생하는 것을 방지하는 기술에 관한 것이다.The present invention relates to a method for manufacturing a contact hole of a semiconductor device, and in particular, to form a polysilicon layer having a high etching selectivity with respect to an oxide layer of an etch barrier layer used in an SAC process due to an overlay margin problem in a manufacturing process of a highly integrated device. After the isotropic etching of the polysilicon layer used to remove, and then reflow BPSG or deposit a mesophilic oxide film relates to a technique for preventing the electrical short between the micro-wiring caused by the polycrystalline silicon film.

최근의 반도체 장치의 고집적화 추세는 미세 패턴 형성 기술의 발전에 큰 영향을 받고 있다. 특히 감광막 패턴은 반도체장치의 제조 공정중에서 식각 또는 이온 주입공정 등의 마스크로 매우 폭 넓게 사용되고 있다.The recent trend of high integration of semiconductor devices is greatly influenced by the development of fine pattern formation technology. In particular, the photoresist pattern is widely used as a mask for etching or ion implantation in the semiconductor device manufacturing process.

따라서, 반도체소자의 고집적화를 위해서는 감광막 패턴의 미세화가 필수 요건인데, 상기 감광막 패턴의 분해능은 축소노광장치의 광원의 파장 및 공정변수에 비례하고, 축소노광장치의 렌즈구경(numerical aperture : NA, 개구수) 에 반비례한다.Therefore, miniaturization of the photoresist pattern is essential for high integration of semiconductor devices, and the resolution of the photoresist pattern is proportional to the wavelength and the process variable of the light source of the reduction exposure apparatus, and the numerical aperture (NA, aperture) of the reduction exposure apparatus. Inversely proportional to

여기서, 상기 축소노광장치의 광분해능을 향상시키기 위하여 광원의 파장을 감소시키게 되며, 예를 들어 파장이 436 및 365 nm 인 G-라인 및 i-라인 축소노광장치는 공정 분해능이 각각 약 0.7, 0.5 ㎛ 정도가 한계이다. 따라서, 0.5 ㎛ 이하의 미세 패턴을 형성하기 위해 파장이 작은 원자외선(deep ultra violet, DUV), 예를 들어 파장이 248 nm 인 KrF 레이저나 193 nm 인 ArF 레이저를 광원으로 사용하는 노광장치를 이용하는 방법과, 이미지 콘트라스트를 향상시킬 수 있는 별도의 박막을 웨이퍼 상에 형성하는 씨.이.엘.(contrast enhancement layer: 이하 CEL 이라함)방법이나 두층의 감광막 사이에 에스.오.지.(spin on glass : SOG) 등의 중간층을 개재시킨 삼층레지스트(Tri layer resister : 이하 TLR 이라 함) 방법 또는 감광막의 상측에 선택적으로 실리콘을 주입시키는 실리레이션 방법 등이 개발되어 분해능 한계치를 낮추고 있다.Here, the wavelength of the light source is reduced to improve the optical resolution of the reduced exposure apparatus. For example, the G-line and i-line reduced exposure apparatus having wavelengths of 436 and 365 nm have a process resolution of about 0.7 and 0.5, respectively. About μm is the limit. Therefore, an exposure apparatus using a deep ultra violet (DUV) wavelength, for example, a KrF laser having a wavelength of 248 nm or an ArF laser having a wavelength of 193 nm, as a light source is used to form a fine pattern of 0.5 μm or less. And a contrast enhancement layer (hereinafter referred to as CEL) method for forming a separate thin film on the wafer which can improve image contrast, or S.O.G. Tri-layer resister (hereinafter referred to as TLR) method with an intermediate layer such as on glass (SOG) or a silicide method for selectively injecting silicon into the upper side of the photosensitive film has been developed to lower the resolution limit.

또한, 상하의 도전배선을 연결하는 콘택홀은 소자가 고집적화 되어감에 따라 자체의 크기와 주요 배선과의 간격이 감소되고, 콘택홀의 지름과 깊이의 비인 에스팩트비(aspect ratio)가 증가한다. 따라서, 다층의 도전배선을 구비하는 고집적 반도체소자에서는 콘택을 형성하기 위하여 제조 공정에서의 마스크들 간의 정확하고 엄격한 정렬이 요구되어 공정 여유도가 감소된다.In addition, the contact hole connecting the upper and lower conductive wirings is reduced in size and spacing between the main wiring as the device is highly integrated, and the aspect ratio, which is a ratio of the diameter and the depth of the contact hole, increases. Therefore, in a highly integrated semiconductor device having multiple conductive wirings, accurate and tight alignment between masks in a manufacturing process is required to form a contact, thereby reducing process margin.

이러한 콘택홀은 간격 유지를 위하여 마스크 정렬시의 오배열 여유(misalignment tolerance), 노광공정시의 렌즈 왜곡(lens distortion), 마스크 제작 및 사진식각 공정시의 임계크기 변화(critical dimension variation), 마스크간의 정합(registration) 등과 같은 요인들을 고려하여 마스크를 형성한다.These contact holes have misalignment tolerance during mask alignment, lens distortion during exposure process, critical dimension variation during mask fabrication and photolithography process, and between masks to maintain spacing. The mask is formed by considering factors such as registration.

또한, 콘텍홀 형성시 리소그래피 공정의 한계를 극복하기 위하여 자기 정렬 방법으로 콘택홀을 형성하는 기술이 개발되었다.In addition, in order to overcome the limitations of the lithography process when forming contact holes, a technique of forming contact holes by a self-aligning method has been developed.

이하 첨부된 도면을 참고로 하여 종래기술에 따른 반도체소자의 콘택홀 제조방법을 설명하기로 한다.Hereinafter, a method for manufacturing a contact hole of a semiconductor device according to the related art will be described with reference to the accompanying drawings.

도 1a 내지 도 1c 는 종래기술에 따른 반도체소자의 콘택홀 제조방법을 도시한 단면도이다.1A to 1C are cross-sectional views illustrating a method for manufacturing a contact hole in a semiconductor device according to the prior art.

먼저, 반도체기판(101)의 원하는 부분에 원하는 불순물의 종류를 이온주입하여 웰과 트랜지스터의 채널 부분 및 소자분리 영역의 아래 부분에 원하는 형태로 불순물이 존재하도록 한 후, 상기 반도체기판(101)에서 소자분리 영역으로 예정되어 있는 부분상에 소자분리 절연막(도시않됨)을 형성하고, 나머지 반도체기판(101)에 게이트 절연막(103)과 게이트 전극용 도전층(105), 제1절연막(107) 및 제2절연막(109)을 순차적으로 형성한 후, 게이트 전극 패턴닝 마스크를 사용하여 제2절연막(109), 제1절연막(107)과 게이트 전극용 도전층(105)을 순차적으로 식각하여 게이트전극과 그 상부에 적층되어 있는 제1, 제2절연막(107, 109) 패턴을 형성한다. 여기서, 상기 제1절연막(107)은 산화막으로 형성하고, 상기 제2절연막(109)은 질화막 또는 산화막을 사용하여 형성하고, 상기 제1, 제2절연막(107, 109) 패턴은 마스크 절연막으로 사용된다.First, a desired type of impurity is ion-implanted into a desired portion of the semiconductor substrate 101 so that impurities exist in a desired shape in the channel portion of the well and the transistor and the lower portion of the device isolation region, and then in the semiconductor substrate 101. A device isolation insulating film (not shown) is formed on the portion intended as the device isolation region, and the gate insulating film 103, the conductive layer 105 for the gate electrode, the first insulating film 107, and the remaining semiconductor substrate 101 are formed. After sequentially forming the second insulating layer 109, the second insulating layer 109, the first insulating layer 107, and the conductive layer 105 for the gate electrode are sequentially etched using the gate electrode patterning mask to sequentially form the gate electrode. And first and second insulating films 107 and 109 stacked on top of each other. Here, the first insulating film 107 is formed of an oxide film, the second insulating film 109 is formed using a nitride film or an oxide film, and the patterns of the first and second insulating films 107 and 109 are used as a mask insulating film. do.

그 다음, 상기 게이트전극 양측의 반도체기판(101)에 엘.디.디.(lightly doped drain : LDD) 영역이 되는 저농도 불순물층(도시않됨)을 형성한 후, 상기 게이트 전극용 도전층(105) 패턴과 제1, 제2절연막(107, 109) 패턴의 측벽에 CVD 방법으로 제 3절연막(111)을 전면도포 및 전면 이방성 식각하여 제3절연막(111) 스페이서를 형성한다. 여기서, 상기 제3절연막(111)은 산화막을 사용하여 형성한다. (도 1a참조)Thereafter, a lightly doped impurity layer (not shown) to form a lightly doped drain (LDD) region is formed on the semiconductor substrate 101 at both sides of the gate electrode, and then the conductive layer 105 for the gate electrode is formed. ) And the third insulating layer 111 is formed on the sidewalls of the patterns and the first and second insulating layers 107 and 109 by CVD to form an entire surface and anisotropically etch the third insulating layer 111. The third insulating layer 111 is formed using an oxide film. (See FIG. 1A)

그 후, 상기 제3절연막(111) 스페이서 양측의 반도체기판(101)에 고농도 불순물영역(도시않됨)을 형성하고, 상기 구조의 전표면에 제4절연막(113)을 질화막으로 형성한다. 이때, 상기 제4절연막(113)은 식각방지막 역할을 한다.Thereafter, a high concentration impurity region (not shown) is formed in the semiconductor substrate 101 on both sides of the third insulating film 111 spacer, and the fourth insulating film 113 is formed on the entire surface of the structure as a nitride film. In this case, the fourth insulating layer 113 serves as an etch stop layer.

그 다음, 상기 제4절연막(113) 상부에 제5절연막(115)를 형성하여 평탄화시킨다. 이때, 상기 제5절연막(115)은 산화막을 사용하여 형성한다. (도 1b참조)Next, a fifth insulating layer 115 is formed on the fourth insulating layer 113 to be planarized. In this case, the fifth insulating film 115 is formed using an oxide film. (See FIG. 1B)

이어서, 상기 반도체기판(101)에서 비트라인 콘택으로 예정되어 있는 부분상의 제5절연막(115)을 제거하여 비트라인 콘택홀을 형성하되, 상기 제4절연막(113)도 제거하여 비트라인 콘택으로 예정되어 있는 부분의 반도체기판(101)을 노출시킨다. (도 1c참조)Subsequently, a bit line contact hole is formed by removing the fifth insulating layer 115 on the portion of the semiconductor substrate 101 which is supposed to be a bit line contact, but also removing the fourth insulating layer 113 to be a bit line contact. The semiconductor substrate 101 of the portion is exposed. (See FIG. 1C)

상기와 같이 종래기술에 따른 반도체소자의 콘택홀 제조방법은, 콘택홀을 형성하기 위한 식각공정시 질화막 또는 다결정실리콘층을 식각방지막으로 사용하는 경우 산화막에 대한 질화막의 식각선택비가 큰 식각 공정 및 질화막 식각공정을 개발하기가 용이하지 않고, 산화막에 대한 질화막의 식각 선택비가 큰 공정 및 질화막 식각공정을 개발하여도 그 식각 공정의 마진이 부족하여 재현성 및 신뢰성이 없는 공정이 이루어지고, 산화막 식각시 질화막에 대한 고선택비를 얻기 위해 다량의 폴리머를 사용하기 때문에 산화막 식각시 공정마진을 확보하기 어려우며, 상기 다결정 실리콘층을 식각방지막으로 사용하는 경우는 산화막에 대한 고선택비를 얻을 수는 있지만 미세 배선 간에 전기적 쇼트를 유발하여 소자제조 공정에 적용하기 어려운 문제점이 있다.As described above, in the method of manufacturing a contact hole of a semiconductor device according to the related art, in the case of using a nitride film or a polysilicon layer as an etch barrier during the etching process for forming the contact hole, an etching process and a nitride film having a large etching selectivity of the nitride film relative to the oxide film It is not easy to develop an etching process, and the process of developing the nitride film etching process with respect to the oxide film and the etching process of the nitride film is not easy, so the process lacks reproducibility and reliability due to the lack of the margin of the etching process. Since a large amount of polymer is used to obtain a high selectivity for the oxide, it is difficult to secure process margins during the etching of the oxide film. When the polycrystalline silicon layer is used as the etching prevention film, a high selectivity for the oxide film can be obtained, but the fine wiring It is difficult to apply to device manufacturing process by causing electrical short between have.

본 발명은 상기한 종래기술의 문제점을 해결하기 위하여, SAC 공정에서 산화막에 대한 식각방지막으로 상기 산화막에 대한 식각선택비가 큰 다결정실리콘층을 사용하여 공정 마진을 확보하여 재현성있는 공정을 실시하고, 미세 배선간에 전기적 쇼트를 방지하여 소자의 특성 및 신뢰성을 향상시킬 수 있는 반도체소자의 콘택홀 제조방법을 제공하는데 그 목적이 있다.The present invention to solve the problems of the prior art, by using a polysilicon layer having a large etching selectivity for the oxide film as an etching prevention film for the oxide film in the SAC process to secure a process margin to perform a reproducible process, fine SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a contact hole in a semiconductor device, which can prevent electrical shorts between wires and improve device characteristics and reliability.

도 1a 내지 도 1c 는 종래기술에 따른 반도체소자의 콘택홀 제조방법을 도시한 단면도.1A to 1C are cross-sectional views illustrating a method for manufacturing a contact hole in a semiconductor device according to the prior art.

도 2a 내지 도 2e 는 본 발명의 제1실시예에 따른 반도체소자의 콘택홀 제조방법을 도시한 단면도.2A to 2E are cross-sectional views illustrating a method for manufacturing a contact hole in a semiconductor device according to a first embodiment of the present invention.

도 3a 내지 도 3e는 본 발명의 제2실시예에 따른 반도체소자의 콘택홀 제조방법을 도시한 단면도.3A to 3E are cross-sectional views illustrating a method of manufacturing a contact hole in a semiconductor device according to a second embodiment of the present invention.

< 도면의 주요부분에 대한 부호의 설명 ><Explanation of symbols for the main parts of the drawings>

11, 12, 101 : 반도체기판 13, 14, 103 : 게이트 절연막11, 12, 101: semiconductor substrate 13, 14, 103: gate insulating film

15, 16, 105 : 게이트 전극용 도전층 17, 18, 107 : 제1절연막15, 16, 105: conductive layers for gate electrodes 17, 18, 107: first insulating film

19, 20, 109 : 제2절연막 21, 22, 111 : 제3절연막19, 20, 109: second insulating film 21, 22, 111: third insulating film

23, 26, 113 : 제4절연막 24, 25 : 다결정실리콘층23, 26, 113: fourth insulating film 24, 25: polysilicon layer

27, 115 : 제5절연막 28 : 감광막 패턴27, 115: fifth insulating film 28: photosensitive film pattern

29 : 제6절연막29: sixth insulating film

이상의 목적을 달성하기 위한 본 발명에 따른 반도체소자의 콘택홀 제조방법은,Contact hole manufacturing method of a semiconductor device according to the present invention for achieving the above object,

마스크 절연막으로 사용되는 제1절연막 패턴 및 제2절연막 패턴이 적층되어 있는 게이트 전극을 반도체기판 상에 형성하는 공정과,Forming a gate electrode on which a first insulating film pattern and a second insulating film pattern, which are used as a mask insulating film, are stacked, on a semiconductor substrate;

상기 제2절연막 패턴, 제1절연막 패턴 및 게이트 전극의 측벽에 제3절연막 스페이서를 형성하는 공정과,Forming a third insulating film spacer on sidewalls of the second insulating film pattern, the first insulating film pattern, and the gate electrode;

상기 제3절연막 스페이서의 양쪽 반도체기판에 소오스/드레인 영역을 형성하는 공정과,Forming a source / drain region on both semiconductor substrates of the third insulating film spacer;

상기 구조의 전표면에 제4절연막을 형성하는 공정과,Forming a fourth insulating film on the entire surface of the structure;

상기 제4절연막의 상부에 다결정실리콘층을 형성하는 공정과,Forming a polysilicon layer on the fourth insulating film;

상기 다결정실리콘층 상부에 콘택으로 예정되는 부분을 노출시키는 제5절연막 패턴을 형성하는 공정과,Forming a fifth insulating film pattern exposing a portion intended as a contact on the polysilicon layer;

상기 제5절연막 패턴에 의해 노출되는 상기 다결정실리콘층을 등방성 식각방법으로 소정 두께 제거하는 공정과,Removing a predetermined thickness of the polysilicon layer exposed by the fifth insulating film pattern by an isotropic etching method;

상기 구조 상부에 제6절연막을 형성하여 상기 다결정실리콘층 제거공정시 상기 다결정실리콘층이 제거된 측면을 메우는 공정과,Forming a sixth insulating layer on the structure to fill the side surface from which the polysilicon layer is removed during the polysilicon layer removal process;

상기 제6절연막과 제4절연막을 플라즈마를 이용한 이방성 건식식각방법으로 제거하여 콘택홀을 형성하는 공정을 포함하는 것을 제1특징으로 한다.The sixth and fourth insulating films may be removed by anisotropic dry etching using plasma to form contact holes.

또한, 이상의 목적을 달성하기 위한 본 발명에 따른 반도체소자의 콘택홀 제조방법은,In addition, the contact hole manufacturing method of the semiconductor device according to the present invention for achieving the above object,

마스크 절연막 패턴이 적층되어 있는 게이트 전극을 반도체기판 상에 형성하는 공정과,Forming a gate electrode on which a mask insulating film pattern is stacked on a semiconductor substrate;

상기 마스크 절연막 패턴 및 게이트 전극의 측벽에 제1절연막 스페이서를 형성하는 공정과,Forming a first insulating film spacer on sidewalls of the mask insulating film pattern and the gate electrode;

상기 제1절연막 스페이서의 양쪽 반도체기판에 소오스/드레인 영역을 형성하는 공정과,Forming a source / drain region on both semiconductor substrates of the first insulating film spacer;

상기 구조의 전표면에 제2절연막을 형성하는 공정과,Forming a second insulating film on the entire surface of the structure;

상기 제2절연막의 상부에 다결정실리콘층을 형성하는 공정과,Forming a polysilicon layer on the second insulating film;

상기 다결정실리콘층 상부에 제3절연막을 형성한 다음, 플로우시켜 평탄화하는 공정과,Forming a third insulating film over the polysilicon layer, and then flowing and planarizing the third insulating film;

상기 반도체기판의 콘택으로 예정되는 부분을 노출시키는 제3절연막 패턴을 형성하는 공정과,Forming a third insulating film pattern exposing a portion intended to be in contact with the semiconductor substrate;

상기 제3절연막 패턴에 의해 노출되는 상기 다결정실리콘층을 플라즈마를 이용한 건식식각방법으로 제거하는 공정과,Removing the polysilicon layer exposed by the third insulating layer pattern by a dry etching method using plasma;

상기 제2절연막을 제거하는 공정과,Removing the second insulating film;

상기 제3절연막 패턴을 리플로우시켜 상기 다결정실리콘층 및 제2절연막 제거공정시 상기 다결정실리콘층 및 제2절연막이 제거된 측면을 메워 미세 배선간 절연을 확보하는 공정을 포함하는 것을 제2특징으로 한다.And reflowing the third insulating layer pattern to fill side surfaces from which the polysilicon layer and the second insulating layer are removed during the removing of the polysilicon layer and the second insulating layer, thereby securing fine inter-wire insulation. do.

이하, 첨부된 도면을 참조하여 본 발명에 따른 반도체소자의 콘택홀 제조방법을 상세히 설명하기로 한다.Hereinafter, a method of manufacturing a contact hole in a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings.

도 2a 내지 도 2e 는 본 발명의 제1실시예에 따른 반도체소자의 콘택홀 제조방법을 도시한 단면도이다.2A through 2E are cross-sectional views illustrating a method of manufacturing a contact hole in a semiconductor device according to a first embodiment of the present invention.

먼저, 반도체기판(11)의 원하는 부분에 원하는 불순물의 종류를 이온주입하여 웰과 트랜지스터의 채널 부분 및 소자분리 영역의 아래 부분에 원하는 형태로 불순물이 존재하도록 한 후, 상기 반도체기판(11)에서 소자분리 영역으로 예정되어 있는 부분상에 소자분리 산화막(도시않됨)을 형성하고, 전표면에 게이트 산화막(13)을 형성한 후, 게이트 전극용 도전층(15)과 마스크 절연막으로 사용되는 제1절연막(17), 제2절연막(19)을 순차적으로 형성한다. 이때, 상기 제2절연막(19)은 산화막 또는 질화막으로 형성할 수 있으며, 제2절연막(19)으로 질화막을 사용하는 경우 상기 질화막을 증착하기 전에 산화막을 10∼30nm 두께로 미리 증착한 다음 상기 질화막을 50∼150nm 두께로 증착하고, 산화막을 제2절연막(19)으로 사용하는 경우 50∼150nm 두께로 증착한다.First, a desired type of impurity is ion-implanted into a desired portion of the semiconductor substrate 11 so that impurities exist in a desired form in the channel portion of the well and the transistor and the lower portion of the device isolation region. After forming a device isolation oxide film (not shown) on the portion intended as the device isolation region and forming the gate oxide film 13 on the entire surface, the first electrode used as the gate electrode conductive layer 15 and the mask insulating film The insulating film 17 and the second insulating film 19 are sequentially formed. In this case, the second insulating film 19 may be formed of an oxide film or a nitride film. In the case of using the nitride film as the second insulating film 19, the oxide film is deposited in advance in a thickness of 10 to 30 nm before the nitride film is deposited, and then the nitride film is deposited. Is deposited to a thickness of 50 to 150 nm, and when the oxide film is used as the second insulating film 19, it is deposited to a thickness of 50 to 150 nm.

다음, 상기 제2절연막(19) 상부에 제2감광막(도시않됨)을 도포하고, 노광 및 현상공정을 실시하여 게이트 전극으로 예정되는 부분을 보호하는 제1감광막 패턴을 형성한다.Next, a second photoresist layer (not shown) is coated on the second insulating layer 19, and an exposure and development process is performed to form a first photoresist pattern that protects a portion intended as a gate electrode.

그 다음, 상기 제1감광막 패턴을 게이트 전극용 마스크로 사용한 식각공정으로 상기 제2절연막(19), 제1절연막(17) 및 게이트 전극용 도전층(15)을 패터닝하여 워드라인 패턴을 형성하고, 상기 제1감광막 패턴을 제거한다.Next, a word line pattern is formed by patterning the second insulating layer 19, the first insulating layer 17, and the conductive layer 15 for the gate electrode by an etching process using the first photoresist pattern as a mask for a gate electrode. The first photoresist pattern is removed.

그리고, 상기 전 표면에 제3절연막(도시않됨)을 형성한 다음, 전면식각공정을 실시하여 상기 워드라인 패턴의 양측벽에 제3절연막 스페이서(21)를 형성한다. (도 2a참조)A third insulating layer (not shown) is formed on the entire surface, and a third etching layer spacer 21 is formed on both sidewalls of the word line pattern by performing an entire surface etching process. (See Figure 2A)

다음, 상기 구조 전면에 5∼30nm 두께의 제4절연막(23)을 증착하고, 그 상부에 식각방지막인 다결정실리콘층(25)을 10∼100nm 두께로 증착한다.Next, a fourth insulating film 23 having a thickness of 5 to 30 nm is deposited on the entire structure, and a polysilicon layer 25, which is an etch stop layer, is deposited to have a thickness of 10 to 100 nm.

그 다음, 상기 구조 전면에 제5절연막(27)을 형성하여 평탄화한다. 이때, 상기 제5절연막(27)은 산화막을 사용하여 형성한다. (도 2b참조)Next, a fifth insulating film 27 is formed over the entire structure to planarize it. In this case, the fifth insulating layer 27 is formed using an oxide film. (See Figure 2b)

그 후, 상기 제5절연막(27) 상부에 상기 반도체기판(11)의 비트라인 콘택으로 예정되는 부분을 노출시키는 제2감광막 패턴(도시않됨)을 형성한다.Thereafter, a second photoresist pattern (not shown) is formed on the fifth insulating layer 27 to expose a portion of the semiconductor substrate 11 to be a bit line contact.

그리고, 상기 제2감광막 패턴을 식각마스크로 사용하여 상기 제5절연막(27)을 이방성 건식식각하여 제거한다. 이때, 상기 다결정실리콘층(25)은 상기 제5절연막(27)에 대하여 식각선택비가 크기 때문에 거의 식각이 되지 않는다. (도 2c참조)The fifth insulating layer 27 is anisotropic dry etched and removed using the second photoresist pattern as an etching mask. In this case, the polysilicon layer 25 is hardly etched because the etch selectivity with respect to the fifth insulating layer 27 is large. (See FIG. 2C)

다음, 상기 제5절연막(27)에 의해 노출되는 상기 다결정실리콘층(25)을 제거한다. 여기서, 상기 다결정실리콘층(25)의 제거정도는 제거되지 않은 ⓐ 부분의 다결정실리콘층(25)과 비트라인이 연결되지 않고, 후속 공정시 빈 공간에 채워지는 절연막이 충분히 확산 방지막으로 사용되고, 기생 캐패시터로서 작용되지 않도록 빈공간을 채울 수 있을 정도로 상기 다결정실리콘층(25)을 제거한다. 이때, 상기 다결정실리콘층(25)이 제거되지 않은 부분인 ⓐ 의 크기는 20∼150nm 의 범위를 갖는다.Next, the polysilicon layer 25 exposed by the fifth insulating layer 27 is removed. Here, the degree of removal of the polysilicon layer 25 is not removed from the polysilicon layer 25 and the bit line is not removed, the insulating film filled in the empty space during the subsequent process is sufficiently used as a diffusion barrier, parasitic The polysilicon layer 25 is removed to fill the void space so that it does not act as a capacitor. At this time, the size of ⓐ which is a portion where the polysilicon layer 25 is not removed has a range of 20 to 150 nm.

한편, 상기 다결정실리콘층(25)을 제거하는 방법은 NH4OH/H2O2혼합용액과 KOH 용액을 사용한 습식식각방법과, NF3/O2/Ar 혼합 가스 플라즈마를 사용한 등방성 플라즈마 건식식각방법을 사용한다.Meanwhile, a method of removing the polysilicon layer 25 is a wet etching method using an NH 4 OH / H 2 O 2 mixed solution and a KOH solution, and an isotropic plasma dry etching using an NF 3 / O 2 / Ar mixed gas plasma. Use the method.

다음, 상기 구조 전면에 제6절연막(29)을 증착한다. 이때, 상기 제6절연막(29)은 상기 다결정실리콘층(25)이 제거되어 형성된 빈공간을 충분히 채울 수 있는 중온 산화막(midium temperature oxide, 이하 MTO 라 함)을 사용한다. (도 2d참조)Next, a sixth insulating layer 29 is deposited on the entire structure. In this case, the sixth insulating layer 29 uses a medium temperature oxide (MTO) to sufficiently fill the empty space formed by removing the polysilicon layer 25. (See FIG. 2D)

그 다음, 이방성 건식식각방법으로 상기 제6절연막(29)을 제거한다. 이때, 상기 다결정실리콘층(25)을 형성하기 전에 증착된 제4절연막(23)도 함께 제거되어 비트라인 콘택으로 예정되는 부분의 반도체기판(11)이 노출된다. (도 2e참조)Next, the sixth insulating layer 29 is removed by an anisotropic dry etching method. At this time, the fourth insulating layer 23 deposited before the polysilicon layer 25 is also removed, thereby exposing the semiconductor substrate 11 at a portion intended to be a bit line contact. (See Figure 2E)

본 발명의 제2실시예에 대하여 살펴보면 다음과 같다.Looking at the second embodiment of the present invention.

도 3a 내지 도 3e 는 본 발명의 제2실시예에 따른 반도체소자의 콘택홀 제조방법을 도시한 단면도이다.3A to 3E are cross-sectional views illustrating a method of manufacturing a contact hole in a semiconductor device according to a second embodiment of the present invention.

먼저, 반도체기판(12)의 원하는 부분에 원하는 불순물의 종류를 이온주입하여 웰과 트랜지스터의 채널 부분 및 소자분리 영역의 아래 부분에 원하는 형태로 불순물이 존재하도록 한 후, 상기 반도체기판(12)에서 소자분리 영역으로 예정되어 있는 부분상에 소자분리 산화막(도시않됨)을 형성하고, 전표면에 게이트 산화막(14)을 형성한 후, 게이트 전극용 도전층(16)과 마스크 절연막으로 사용되는 제1절연막(18)을 순차적으로 형성한다.First, a desired type of impurity is ion-implanted into a desired portion of the semiconductor substrate 12 so that impurities exist in a desired shape in the channel portion of the well and the transistor and the lower portion of the device isolation region, and then in the semiconductor substrate 12 After forming a device isolation oxide film (not shown) on the portion intended as the device isolation region and forming a gate oxide film 14 on the entire surface, the first electrode used as the gate electrode conductive layer 16 and the mask insulating film The insulating film 18 is formed sequentially.

다음, 상기 제1절연막(18) 상부에 제1감광막(도시않됨)을 형성하고, 노광 및 현상공정을 실시하여 게이트 전극으로 예정되는 부분을 보호하는 제1감광막 패턴을 형성한다.Next, a first photoresist layer (not shown) is formed on the first insulating layer 18, and an exposure and development process is performed to form a first photoresist layer pattern that protects a portion intended as a gate electrode.

그 다음, 상기 제1감광막 패턴을 식각마스크로 사용하여 상기 제1절연막(18)을 식각하여 제1절연막(18) 패턴을 형성하고, 상기 제1감광막 패턴을 제거한다.Next, the first insulating layer 18 is etched using the first photoresist pattern as an etching mask to form a first insulating layer 18 pattern, and the first photoresist pattern is removed.

그리고, 상기 제1절연막(18) 패턴을 식각마스크로 사용하여 상기 게이트 전극용 도전층(16)을 식각하여 게이트 전극을 형성한다.The gate electrode conductive layer 16 is etched using the first insulating layer 18 as an etch mask to form a gate electrode.

다음, 상기 게이트 전극 및 제1절연막(18) 패턴의 양측벽에 제2절연막(20) 스페이서를 형성한다.Next, spacers of the second insulating layer 20 are formed on both sidewalls of the gate electrode and the first insulating layer 18.

그리고, 상기 구조 전면에 5∼30nm 두께의 제3절연막(22)을 증착하고, 그 상부에 식각방지막인 다결정실리콘층(24)을 10∼100nm 두께로 증착한다. (도 3a 참조)A third insulating film 22 having a thickness of 5 to 30 nm is deposited on the entire structure, and a polysilicon layer 24, which is an etch stop film, is deposited on the top of the structure, having a thickness of 10 to 100 nm. (See Figure 3A)

그 다음, 상기 구조 전면에 제5절연막(26)을 형성하여 평탄화한다. 이때, 상기 제4절연막(26)은 비.피.에스.지.(borophospho silicate glass, 이하, BPSG 라 함)를 사용하여 형성하고, 플로우시켜 평탄화시킨다.Next, a fifth insulating film 26 is formed on the entire surface of the structure and planarized. In this case, the fourth insulating layer 26 is formed using B. P. G. (Brophospho silicate glass, hereinafter referred to as BPSG), and flows to planarize it.

그 후, 상기 제4절연막(26) 상부에 상기 반도체기판(12)의 비트라인 콘택으로 예정되는 부분을 노출시키는 제2감광막 패턴(28)을 형성한다. (도 3b 참조)Thereafter, a second photoresist layer pattern 28 is formed on the fourth insulating layer 26 to expose a portion of the semiconductor substrate 12 to be a bit line contact. (See Figure 3b)

그리고, 상기 제2감광막 패턴(28)을 식각마스크로 사용하여 상기 제4절연막(26)을 이방성 건식식각하여 패터닝한다. 이때, 상기 다결정실리콘층(24)은 상기 제4절연막(26)에 대하여 식각선택비가 크기 때문에 거의 식각이 되지 않는다.In addition, the fourth insulating layer 26 is anisotropically dry-etched and patterned using the second photoresist layer pattern 28 as an etching mask. In this case, the polysilicon layer 24 is hardly etched because the etch selectivity with respect to the fourth insulating layer 26 is large.

여기서, 상기 제4절연막(26)은 CF4, CH3F 또는 C2H2, H2, CH2F2, C2HF5와 같이 수소를 포함하는 가스를 사용하여 식각함으로써 상기 다결정실리콘층(24)에 대한 높은 식각선택비를 얻을 수 있고, C2F6, C3F8, C4F8과 같은 가스를 사용하여 식각함으로써 상기 다결정실리콘층(24)에 대한 높은 식각선택비를 위해 보다 넓은 프로세스 윈도우(process window)를 확보한다. 또한, 플라즈마의 안정화를 위하여 Ar, Ne, He, Xe 와 같은 불활성 가스를 혼합하여 식각균일도를 향상시킨다. 그리고, 상기 C2H2, H2, CH2F2, C2HF5, C2F6, C3F8, C4F8및 상기 불활성 가스를 혼합하여 상기 다결정실리콘층에 대하여 높은 식각선택비와 식각균일도를 얻을 수 있다.Here, the fourth insulating layer 26 is etched using a gas containing hydrogen such as CF 4 , CH 3 F or C 2 H 2 , H 2 , CH 2 F 2 , C 2 HF 5 to form the polysilicon layer. It is possible to obtain a high etching selectivity for (24), by etching using a gas such as C 2 F 6 , C 3 F 8 , C 4 F 8 to obtain a high etching selectivity for the polysilicon layer 24 To get a wider process window. In addition, in order to stabilize the plasma, inert gases such as Ar, Ne, He, and Xe are mixed to improve the etching uniformity. In addition, the C 2 H 2 , H 2 , CH 2 F 2 , C 2 HF 5 , C 2 F 6 , C 3 F 8 , C 4 F 8 and the inert gas are mixed to etch high with respect to the polysilicon layer Selectivity and etching uniformity can be obtained.

그 다음, 상기 제2감광막패턴(28)을 제거하고, 상기 제4절연막(26) 패턴에 의해 노출되는 다결정실리콘층(24)은 CF4, NF3, SF6등의 가스를 사용하여 등방적으로 식각함으로써 밑면과 동시에 측면을 제거하거나, 상기 가스에 O2, He, Ne, Ar, N2가스를 혼합하여 식각특성을 향상시킨다.Next, the second photoresist layer pattern 28 is removed, and the polysilicon layer 24 exposed by the fourth insulation layer pattern 26 is isotropically formed using gases such as CF 4 , NF 3 , SF 6, and the like. By etching to remove the side at the same time as the bottom, or by mixing the gas O 2 , He, Ne, Ar, N 2 gas to improve the etching characteristics.

그 다음, 인-시튜방법으로 상기 제3절연막(22)까지 제거하여 비트라인 콘택으로 예정되는 부분의 반도체기판(12)을 노출시킨다. 이때, 상기 제3절연막(22)은 건식식각방법으로 제거하거나 플라즈마 데미지를 감소시키기 위하여 습식식각방법으로 제거하기도 한다. (도 3c, 도 3d참조)Next, the third insulating layer 22 is removed by an in-situ method to expose the semiconductor substrate 12 in a portion intended for the bit line contact. In this case, the third insulating layer 22 may be removed by a dry etching method or a wet etching method to reduce plasma damage. (See FIG. 3C, FIG. 3D)

그리고, 상기 제4절연막(26) 패턴을 800∼900℃에서 리플로우시켜 평탄화시키는 동시에 상기 다결정실리콘층(24) 및 제3절연막(22) 제거시 형성된 빈공간을 제4절연막(26)으로 채워 미세 배선간에 접촉되는 것을 방지한다. (도 3e참조)The fourth insulating layer 26 is reflowed and planarized at 800 to 900 ° C., and the empty space formed when the polysilicon layer 24 and the third insulating layer 22 are removed is filled with the fourth insulating layer 26. Prevents contact between fine wirings. (See Figure 3e)

이상에서 설명한 바와같이 본 발명에 따른 반도체소자의 콘택홀 제조방법은, 오버레이 마진 문제로 SAC 공정에서 식각방지막으로 식각선택비가 높은 다결정실리콘층을 사용하고, 상기 식각방지막으로 사용된 다결정실리콘층을 등방성식각하여 제거한 다음, BPSG 를 리플로우시키거나 MTO을 증착하여 상기 다결정실리콘막으로 인한 미세 배선간에 전기적인 쇼트가 발생하는 것을 방지함으로써 반도체소자의 특성 및 신뢰성을 향상시키는 이점이 있다.As described above, the method for manufacturing a contact hole of a semiconductor device according to the present invention uses a polysilicon layer having a high etch selectivity as an etch barrier in the SAC process due to an overlay margin problem, and isotropic the polycrystalline silicon layer used as the etch barrier. After etching and removing, the BPSG is reflowed or MTO is deposited to prevent the electrical short between the micro wirings caused by the polysilicon film, thereby improving the characteristics and reliability of the semiconductor device.

Claims (16)

마스크 절연막으로 사용되는 제1절연막 패턴 및 제2절연막 패턴이 적층되어 있는 게이트 전극을 반도체기판 상에 형성하는 공정과,Forming a gate electrode on which a first insulating film pattern and a second insulating film pattern, which are used as a mask insulating film, are stacked, on a semiconductor substrate; 상기 제2절연막 패턴, 제1절연막 패턴 및 게이트 전극의 측벽에 제3절연막 스페이서를 형성하는 공정과,Forming a third insulating film spacer on sidewalls of the second insulating film pattern, the first insulating film pattern, and the gate electrode; 상기 제3절연막 스페이서의 양쪽 반도체기판에 소오스/드레인 영역을 형성하는 공정과,Forming a source / drain region on both semiconductor substrates of the third insulating film spacer; 상기 구조의 전표면에 제4절연막을 형성하는 공정과,Forming a fourth insulating film on the entire surface of the structure; 상기 제4절연막의 상부에 다결정실리콘층을 형성하는 공정과,Forming a polysilicon layer on the fourth insulating film; 상기 다결정실리콘층 상부에 콘택으로 예정되는 부분을 노출시키는 제5절연막 패턴을 형성하는 공정과,Forming a fifth insulating film pattern exposing a portion intended as a contact on the polysilicon layer; 상기 제5절연막 패턴에 의해 노출되는 상기 다결정실리콘층을 등방상 식각방법으로 소정 두께 제거하는 공정과,Removing a predetermined thickness of the polysilicon layer exposed by the fifth insulating film pattern by an isotropic etching method; 상기 구조 상부에 제6절연막을 형성하여 상기 다결정실리콘층 제거공정시 상기 다결정실리콘층이 제거된 측면을 메우는 공정과,Forming a sixth insulating layer on the structure to fill the side surface from which the polysilicon layer is removed during the polysilicon layer removal process; 상기 제6절연막과 제4절연막을 플라즈마를 이용한 이방성 건식식각방법으로 제거하여 콘택홀을 형성하는 공정을 포함하는 반도체소자의 콘택홀 제조방법.And removing the sixth insulating layer and the fourth insulating layer by an anisotropic dry etching method using plasma to form contact holes. 제 1 항에 있어서,The method of claim 1, 상기 제2절연막 패턴은 50∼150nm 두께로 형성된 산화막으로 게이트 전극용 마스크로 사용되고, 상기 제3절연막 스페이서 형성공정시 과도식각에 대한 공정마진을 확보할 수 있도록 하는 것을 특징으로 하는 반도체소자의 콘택홀 제조방법.The second insulating layer pattern is an oxide film having a thickness of 50 to 150 nm and is used as a mask for a gate electrode. The contact hole of the semiconductor device may ensure a process margin for transient etching during the third insulating layer spacer forming process. Manufacturing method. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 제2절연막 패턴을 질화막으로 형성하는 경우 미리 5∼30nm 두께의 산화막을 증착한 다음에 50∼150nm 두께의 질화막을 형성하는 것을 특징으로 하는 반도체소자의 콘택홀 제조방법.And forming a nitride film having a thickness of 50 to 150 nm after depositing an oxide film having a thickness of 5 to 30 nm in advance when the second insulating pattern is formed of a nitride film. 제 1 항에 있어서,The method of claim 1, 상기 제4절연막은 산화막을 사용하여 5∼30nm 두께로 형성하는 것을 특징으로 하는 반도체소자의 콘택홀 제조방법.The fourth insulating film is a contact hole manufacturing method of a semiconductor device, characterized in that to form a thickness of 5 to 30nm using an oxide film. 제 1 항에 있어서,The method of claim 1, 상기 다결정실리콘층의 제거공정은 NH4OH/H2O2혼합용액, KOH용액을 사용한 습식식각방법으로 실시하는 것을 특징으로 하는 반도체소자의 콘택홀 제조방법.The process of removing the polysilicon layer is a contact hole manufacturing method of a semiconductor device, characterized in that the wet etching method using a NH 4 OH / H 2 O 2 mixed solution, KOH solution. 제 1 항에 있어서,The method of claim 1, 상기 다결정실리콘층의 제거공정은 NF3/O2/Ar, CF4/O2/Ar 혼합기체를 사용한등방성 플라즈마 건식식각방법으로 실시하는 것을 특징으로 하는 반도체소자의 콘택홀 제조방법.The removing of the polysilicon layer is performed by an isotropic plasma dry etching method using NF 3 / O 2 / Ar, CF 4 / O 2 / Ar mixture gas. 제 1 항 또는 제 5 항에 있어서,The method according to claim 1 or 5, 상기 다결정실리콘층 제거공정시 제거되지 않고 남은 부분은 20∼150nm 범위를 갖는 것을 특징으로 하는 반도체소자의 콘택홀 제조방법.The remaining portion of the polysilicon layer removal process is removed without removing the contact hole manufacturing method of the semiconductor device characterized in that it has a range of 20 ~ 150nm. 제 1 항에 있어서,The method of claim 1, 상기 제6절연막은 MTO 또는 CVD 산화막을 사용하여 형성하는 것을 특징으로 하는 반도체소자의 콘택홀 제조방법.The sixth insulating film is a contact hole manufacturing method of a semiconductor device, characterized in that formed using MTO or CVD oxide film. 마스크 절연막 패턴이 적층되어 있는 게이트 전극을 반도체기판 상에 형성하는 공정과,Forming a gate electrode on which a mask insulating film pattern is stacked on a semiconductor substrate; 상기 마스크 절연막 패턴 및 게이트 전극의 측벽에 제1절연막 스페이서를 형성하는 공정과,Forming a first insulating film spacer on sidewalls of the mask insulating film pattern and the gate electrode; 상기 제1절연막 스페이서의 양쪽 반도체기판에 소오스/드레인 영역을 형성하는 공정과,Forming a source / drain region on both semiconductor substrates of the first insulating film spacer; 상기 구조의 전표면에 제2절연막을 형성하는 공정과,Forming a second insulating film on the entire surface of the structure; 상기 제2절연막의 상부에 다결정실리콘층을 형성하는 공정과,Forming a polysilicon layer on the second insulating film; 상기 다결정실리콘층 상부에 제3절연막을 형성한 다음, 플로우시켜 평탄화하는 공정과,Forming a third insulating film over the polysilicon layer, and then flowing and planarizing the third insulating film; 상기 반도체기판의 콘택으로 예정되는 부분을 노출시키는 제3절연막 패턴을 형성하는 공정과,Forming a third insulating film pattern exposing a portion intended to be in contact with the semiconductor substrate; 상기 제3절연막 패턴에 의해 노출되는 상기 다결정실리콘층을 플라즈마를 이용한 건식식각방법으로 제거하는 공정과,Removing the polysilicon layer exposed by the third insulating layer pattern by a dry etching method using plasma; 상기 제2절연막을 제거하는 공정과,Removing the second insulating film; 상기 제3절연막 패턴을 리플로우시켜 상기 다결정실리콘층 및 제2절연막 제거공정시 상기 다결정실리콘층 및 제2절연막이 제거된 측면을 메워 미세 배선간 절연을 확보하는 공정을 포함하는 반도체소자의 콘택홀 제조방법.Reflowing the third insulating layer pattern to fill sidewalls from which the polysilicon layer and the second insulating layer are removed during the removal process of the polysilicon layer and the second insulating layer to secure insulation between the micro-wires. Manufacturing method. 제 9 항에 있어서,The method of claim 9, 상기 제3절연막 패턴을 형성하는 공정은 CF4, CH3F 가스 또는 C2H2, H2, CH2F2, C2HF5가스와 같은 수소를 포함하는 가스를 사용하여 상기 다결정실리콘층에 대한 식각선택비를 높이는 것을 특징으로 하는 반도체소자의 콘택홀 제조방법.The polysilicon layer may be formed by using a gas including hydrogen, such as CF 4 , CH 3 F gas, or C 2 H 2 , H 2 , CH 2 F 2 , C 2 HF 5 gas. Method for manufacturing a contact hole of a semiconductor device, characterized in that for increasing the etching selectivity. 제 9 항에 있어서,The method of claim 9, 상기 제3절연막 패턴을 형성하는 공정은 C2F6, C3F8, C4F8과 같은 가스를 사용하여 식각공정을 실시하여 상기 다결정실리콘층에 대한 식각선택비를 높이고, 프로세스 윈도우를 확보하는 것을 특징으로 하는 반도체소자의 콘택홀 제조방법.In the forming of the third insulating layer pattern, an etching process is performed using gases such as C 2 F 6 , C 3 F 8 , and C 4 F 8 to increase the etching selectivity of the polysilicon layer and to increase the process window. Contact hole manufacturing method of a semiconductor device, characterized in that secured. 제 9 항에 있어서,The method of claim 9, 상기 제3절연막패턴은 수소 함유 가스 및 C2F6, C3F8, C4F8가스에 불활성 가스를 혼합한 가스를 사용하는 식각공정으로 형성되는 것을 특징으로 하는 반도체소자의 콘택홀 제조방법.The third insulating layer pattern may be formed by an etching process using a hydrogen-containing gas and a gas in which an inert gas is mixed with C 2 F 6 , C 3 F 8 , and C 4 F 8 gases. Way. 제 9 항에 있어서,The method of claim 9, 상기 다결정실리콘층은 CF4, NF3, SF6가스를 이용한 등방성 식각방법으로 제거하는 것을 특징으로 하는 반도체소자의 콘택홀 제조방법.The polysilicon layer is removed by the isotropic etching method using CF 4 , NF 3 , SF 6 gas contact hole manufacturing method of a semiconductor device. 제 13 항에 있어서,The method of claim 13, 상기 다결정실리콘층을 제거하는 공정은 상기 가스에 O2, He, Ne, Ar, N2가스를 혼합하여 실시하는 것을 특징으로 하는 반도체소자의 콘택홀 제조방법.The removing of the polysilicon layer is performed by mixing O 2 , He, Ne, Ar, and N 2 gas with the gas. 제 9 항에 있어서,The method of claim 9, 상기 제2절연막은 습식 또는 건식식각방법으로 제거하는 것을 특징으로 하는 반도체소자의 콘택홀 제조방법.The method of claim 1, wherein the second insulating layer is removed by a wet or dry etching method. 제 9 항에 있어서,The method of claim 9, 상기 제3절연막 패턴을 리플로우시키는 공정은 800∼900℃에서 실시하는 것을 특징으로 하는 반도체소자의 콘택홀 제조방법.And reflowing the third insulating film pattern at 800 to 900 占 폚.
KR1019980014393A 1998-04-22 1998-04-22 Method for fabricating contact hole of semiconductor device KR100324015B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980014393A KR100324015B1 (en) 1998-04-22 1998-04-22 Method for fabricating contact hole of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980014393A KR100324015B1 (en) 1998-04-22 1998-04-22 Method for fabricating contact hole of semiconductor device

Publications (2)

Publication Number Publication Date
KR19990080854A KR19990080854A (en) 1999-11-15
KR100324015B1 true KR100324015B1 (en) 2002-09-19

Family

ID=37460860

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980014393A KR100324015B1 (en) 1998-04-22 1998-04-22 Method for fabricating contact hole of semiconductor device

Country Status (1)

Country Link
KR (1) KR100324015B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470164B1 (en) * 1998-06-29 2005-04-06 주식회사 하이닉스반도체 Contact manufacturing method of semiconductor device
US10847416B2 (en) 2018-03-22 2020-11-24 Samsung Electronics Co., Ltd. Semiconductor device including self-aligned contact and method of fabricating the semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470164B1 (en) * 1998-06-29 2005-04-06 주식회사 하이닉스반도체 Contact manufacturing method of semiconductor device
US10847416B2 (en) 2018-03-22 2020-11-24 Samsung Electronics Co., Ltd. Semiconductor device including self-aligned contact and method of fabricating the semiconductor device

Also Published As

Publication number Publication date
KR19990080854A (en) 1999-11-15

Similar Documents

Publication Publication Date Title
KR100474546B1 (en) Fabricating method for semiconductor device
KR100535030B1 (en) Fabricating method for semiconductor device
US6528418B1 (en) Manufacturing method for semiconductor device
KR100726148B1 (en) Manufacturing method for semiconductor device
KR100527577B1 (en) Fabricating method for semiconductor device
KR100324015B1 (en) Method for fabricating contact hole of semiconductor device
KR100420413B1 (en) Manufacturing method for semiconductor device
KR100546144B1 (en) Manufacturing method of semiconductor device
KR100307556B1 (en) Manufacturing method of semiconductor device
KR100324023B1 (en) Manufacturing method of semiconductor device
KR100434961B1 (en) Method of forming contact hole of semiconductor device using nitride pattern formed on only gate electrode as etch stop layer
KR100861188B1 (en) Manufacturing method for semiconductor device
KR100465604B1 (en) Manufacturing method of semiconductor device
KR20000045358A (en) Fabrication method of semiconductor device
KR20000045365A (en) Method for forming transistor
KR20000027639A (en) Method for manufacturing contact plug of semiconductor devices
KR20010057490A (en) Manufacturing method for semiconductor device
KR20000045357A (en) Method for fabricating semiconductor device
KR20010003254A (en) Fabricating method for semiconductor device
KR20010059453A (en) Manufacturing method of semiconductor device
KR20030059416A (en) Manufacturing method for semiconductor device
KR20010005156A (en) Fabricating method for semiconductor device
KR20010059016A (en) Manufacturing method of semiconductor device
KR20060126110A (en) Manufacturing method for semiconductor device
KR20020002642A (en) Manufacturing method for semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101224

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee