KR20060126110A - Manufacturing method for semiconductor device - Google Patents

Manufacturing method for semiconductor device Download PDF

Info

Publication number
KR20060126110A
KR20060126110A KR1020050047771A KR20050047771A KR20060126110A KR 20060126110 A KR20060126110 A KR 20060126110A KR 1020050047771 A KR1020050047771 A KR 1020050047771A KR 20050047771 A KR20050047771 A KR 20050047771A KR 20060126110 A KR20060126110 A KR 20060126110A
Authority
KR
South Korea
Prior art keywords
forming
layer
polysilicon layer
semiconductor substrate
selective epitaxial
Prior art date
Application number
KR1020050047771A
Other languages
Korean (ko)
Inventor
신기수
정성웅
박수영
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020050047771A priority Critical patent/KR20060126110A/en
Publication of KR20060126110A publication Critical patent/KR20060126110A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • H01L21/2652Through-implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28525Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising semiconducting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823475MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects

Abstract

A method for manufacturing a semiconductor device is provided to prevent degradation of device performance due to impurity diffusion by forming a polycrystalline silicon layer with a low doping concentration and, subsequently, a metal plug. A gate dielectric(32) is formed on a semiconductor substrate(30). A gate electrode(34) overlapped with a hard mask layer(36) pattern is formed on the gate dielectric. Insulating spacers(38) are formed on the hard mask layer pattern and a sidewall of the gate electrode. An interlayer dielectric(40) is formed on the whole surface of the structure. The interlayer dielectric on a portion that is expected as a contact on the semiconductor substrate is removed to form a landing plug contact hole. A selective epi growth polycrystalline silicon layer(42) is formed on the semiconductor substrate exposed through the contact hole by undoping or by lE14 to 1E18/cm^3 impurity doping concentration. Impurity ion is implanted into the selective epi growth polycrystalline silicon layer to form an ohmic contact layer(43). A metal plug is formed to be connected to the ohmic contact layer.

Description

반도체소자의 제조방법 {Manufacturing method for semiconductor device} Manufacturing method for semiconductor device

도 1은 종래 기술에 따른 반도체소자의 단면도. 1 is a cross-sectional view of a semiconductor device according to the prior art.

도 2a내지 도 2c는 본 발명에 따른 반도체소자의 제조공정도. 2a to 2c is a manufacturing process diagram of a semiconductor device according to the present invention.

<도면의 주요 부분에 대한 부호의 설명>         <Explanation of symbols for the main parts of the drawings>

10, 30 : 반도체기판 12, 32 : 게이트절연막 10, 30: semiconductor substrate 12, 32: gate insulating film

14, 34 : 게이트전극 16, 36 : 하드마스크층14, 34: gate electrode 16, 36: hard mask layer

18, 38 : 스페이서 20, 40 : 층간절연막 18, 38: spacer 20, 40: interlayer insulating film

22, 42 : 선택에피성장 다결정실리콘층 24, 44 : 도전층 22, 42: Selective epitaxial polysilicon layer 24, 44: Conductive layer

43 : 오옴믹 접촉층 43: ohmic contact layer

본 발명은 반도체소자의 제조방법에 관한 것으로서, 특히 랜딩플러그 형성시 선택에피성장 다결정실리콘층의 도핑 농도를 낮게 형성한 후, 금속 플러그를 형성 하되, 금속 플러그와 오음믹 접촉이 원활하게 되도록 형성하여 불순물 확산에 의한 소자의 성능 저하를 방지할 수 있는 반도체소자의 제조방법에 관한 것이다. The present invention relates to a method for manufacturing a semiconductor device, and in particular, when forming a landing plug to form a low doping concentration of the selective epitaxial polysilicon layer, and then forming a metal plug to form a smooth contact between the metal plug and the ohmic The present invention relates to a method for manufacturing a semiconductor device capable of preventing the deterioration of the device performance by impurity diffusion.

최근의 반도체 장치의 고집적화 추세는 미세 패턴 형성 기술의 발전에 큰 영향을 받고 있으며, 반도체 장치의 제조 공정 중에서 식각 또는 이온주입 공정 등의 마스크로 매우 폭 넓게 사용되는 감광막 패턴의 미세화가 필수 요건이다. The recent trend of high integration of semiconductor devices has been greatly influenced by the development of fine pattern formation technology, and the miniaturization of photoresist patterns, which are widely used as masks such as etching or ion implantation processes, are essential in the manufacturing process of semiconductor devices.

이러한 감광막 패턴의 분해능(R)은 감광막 자체의 재질이나 기판과의 접착력 등과도 밀접한 연관이 있으나, 일차적으로는 사용되는 축소노광장치의 광원 파장(??) 및 공정 변수(k)에 비례하고, 노광 장치의 렌즈 구경(numerical aperture; NA, 개구수)에 반비례한다. The resolution (R) of the photoresist pattern is closely related to the material of the photoresist itself or the adhesion to the substrate, but is primarily proportional to the light source wavelength (??) and the process variable (k) of the reduction exposure apparatus used. It is inversely proportional to the lens aperture (NA, numerical aperture) of the exposure apparatus.

여기서 상기 축소노광장치의 광분해능을 향상시키기 위하여 광원의 파장을 감소시키게 되며, 예를들어 파장이 436 및 365㎚인 G-라인 및 i-라인 축소노광장치는 공정 분해능이 라인/스페이스 패턴의 경우 각각 약 0.7, 0.5㎛ 정도가 한계이고, 0.5㎛ 이하의 미세 패턴을 형성하기 위해서는 이보다 파장이 더 작은 원자외선(deep ultra violet; DUV), 예를들어 파장이 248㎚인 KrF 레이저나 193㎚인 ArF 레이저를 광원으로 사용하는 노광 장치를 이용하여야 한다. Here, the wavelength of the light source is reduced in order to improve the optical resolution of the reduced exposure apparatus. For example, the G-line and i-line reduced exposure apparatus having wavelengths of 436 and 365 nm have a process resolution of a line / space pattern. The limit is about 0.7 and 0.5 μm, respectively, and in order to form a fine pattern of 0.5 μm or less, deeper ultra violet (DUV), for example, KrF laser having a wavelength of 248 nm or 193 nm An exposure apparatus using an ArF laser as a light source should be used.

또한 축소노광장치와는 별도로 공정 상의 방법으로는 노광마스크(photo mask)로서 위상반전마스크(phase shift mask)를 사용하는 방법이나, 이미지 콘트라스트를 향상시킬 수 있는 별도의 박막을 웨이퍼 상에 형성하는 씨.이.엘(contrast enhancement layer; CEL) 방법이나, 두층의 감광막 사이에 에스.오.지(spin on glass; SOG)등의 중간층을 개재시킨 삼층레지스트(Tri layer resister; 이하 TLR이 라 칭함) 방법 또는 감광막의 상측에 선택적으로 실리콘을 주입시키는 실리레이션 방법 등이 개발되어 분해능 한계치를 낮추고 있다. In addition to the reduction exposure apparatus, the process method includes a method of using a phase shift mask as a photo mask, or forming a separate thin film on the wafer to improve image contrast. A tri layer resister (hereinafter referred to as a TLR) in which a contrast enhancement layer (CEL) method or an intermediate layer such as spin on glass (SOG) is interposed between two photoresist layers. A method or a silicide method for selectively injecting silicon on top of the photoresist film has been developed to lower the resolution limit.

또한 상하의 도전배선을 연결하는 콘택홀은 상기에서의 라인/스페이스 패턴에 비해 디자인 룰이 더 크게 나타나는데, 소자가 고집적화 되어감에 따라 자체의 크기와 주변배선과의 간격이 감소되고, 콘택홀의 지름과 깊이의 비인 에스팩트비(aspect ratio)가 증가한다. 따라서, 다층의 도전배선을 구비하는 고집적 반도체소자에서는 콘택 형성 공정에서의 마스크들간의 정확하고 엄격한 정렬이 요구되어 공정여유도가 감소되거나, 여유가 전혀 없이 공정을 진행하여야하는 어려움이 있다. In addition, the contact hole connecting the upper and lower conductive wirings has a larger design rule than the above line / space pattern. As the device becomes more integrated, the size of the contact hole and the distance between the peripheral wirings are reduced, and the diameter of the contact hole is reduced. The aspect ratio, which is the ratio of depths, increases. Therefore, in the highly integrated semiconductor device having the multilayer conductive wiring, accurate and strict alignment between the masks in the contact forming process is required, so that the process margin is reduced or the process must be performed without any margin.

이러한 콘택홀은 홀간의 간격 유지를 위하여 마스크 정렬시의 오배열 여유(misalignment tolerance), 노광공정시의 렌즈 왜곡(lens distortion), 마스크 제작 및 사진식각 공정시의 임계크기 변화(critical dimension variation), 마스크간의 정합(registration)등과 같은 요인들을 고려하여 마스크를 형성한다. These contact holes can be used for misalignment tolerance during mask alignment, lens distortion during exposure, critical dimension variation during mask fabrication and photolithography, The mask is formed by considering factors such as registration between the masks.

상기와 같은 콘택홀의 형성 방법으로는 직접 식각 방법과, 측벽 스페이서를 사용하는 방법 및 SAC 방법 등이 있다. As a method of forming the contact hole as described above, there are a direct etching method, a method using a sidewall spacer, a SAC method, and the like.

상기에서 직접 식각방법과 측벽 스페이서 형성 방법은 현재의 제반 기술 수준에서 0.3㎛ 이하의 디자인 룰을 갖는 소자 제조에는 사용할 수 없어 소자의 고집적화에 한계가 있다. Since the direct etching method and the sidewall spacer forming method cannot be used for manufacturing a device having a design rule of 0.3 μm or less in the current state of the art, there is a limit to high integration of the device.

또한 콘택홀 형성시 리소그래피(Lithography) 공정의 한계를 극복하기 위하여 고안된 SAC 방법은 식각장벽층으로 사용하는 물질에 따라 다결정실리콘층이나 질화막 또는 산화질화막등을 사용하는 것으로 나눌 수 있으며, 가장 유망한 것으로 질화막을 식각 방어막으로 사용하는 방법이 있다. In addition, the SAC method, which is designed to overcome the limitations of the lithography process in forming contact holes, can be divided into polysilicon layer, nitride film, or oxynitride film, depending on the material used as the etch barrier layer. Can be used as an etch shield.

도 1을 참조하여 종래 기술에 따른 금속 랜딩플러그를 구비하는 반도체소자의 단면도이다. 1 is a cross-sectional view of a semiconductor device having a metal landing plug according to the prior art.

먼저, 반도체기판(10)상에 게이트절연막(12)을 형성한 후, 상기 게이트절연막(12)상에 하드마스크층(16) 패턴과 중첩되어 있는 게이트전극(18) 및 절연 스페이서(20)를 형성하고, 상기 구조의 전표면에 층간절연막(20)을 형성한다. First, the gate insulating film 12 is formed on the semiconductor substrate 10, and then the gate electrode 18 and the insulating spacer 20 overlapping the hard mask layer 16 pattern are formed on the gate insulating film 12. The interlayer insulating film 20 is formed on the entire surface of the structure.

그후, 상기 층간절연막(20)을 랜딩플러그 마스크를 사용하여 사진식각하여 랜딩플러그 콘택홀을 형성하여 반도체기판(10)을 노출시킨다. Thereafter, the interlayer insulating layer 20 is etched using a landing plug mask to form a landing plug contact hole to expose the semiconductor substrate 10.

그다음 상기 콘택홀에 의해 노출되어 있는 반도체기판(10)상에 선택에피성장 다결정실리콘층(22)을 형성하되, 금속과의 오옴믹 접촉을 위하여 도핑 불순물이 1E20/㎤ 이상의 농도를 가지도록 형성하고, 상기 구조의 전표면에 랜딩플러그용 금속층(24)을 도포하여 콘택홀을 메운 후, 금속층(24)의 상부를 CMP 등의 방법으로 식각하여 선택에피성장 다결정실리콘층(22)과 독립된 금속층(24) 패턴으로된 랜딩플러그를 형성한다. Next, a selective epitaxial polysilicon layer 22 is formed on the semiconductor substrate 10 exposed by the contact hole, and the doping impurities are formed to have a concentration of 1E20 / cm 3 or more for ohmic contact with the metal. After filling the contact hole by applying the landing plug metal layer 24 to the entire surface of the structure, the upper part of the metal layer 24 is etched by CMP or the like method to separate the metal layer independent of the epitaxially grown polycrystalline silicon layer 22 ( 24) Form a landing plug in a pattern.

그후 도시되어 있지는 않으나, 상기 구조상에 비트라인과 캐패시터 및 금속배선 등을 형성하여 소자를 구성한다. After that, although not shown, the device is configured by forming bit lines, capacitors, metal wires, and the like on the structure.

상기와 같은 종래 기술에 따른 반도체소자의 제조방법은 비트라인이나 캐패시터 콘택 등에 사용되는 랜딩플러그를 다결정실리콘층보다 비저항이 낮은 금속 재질의 랜딩플러그를 사용하게 되는데, 이때 금속 랜딩플러그와 기판과의 오옴믹 접촉과 접촉저항 감소를 위하여 기판 상에 불순물 도핑된 선택에피성장 다결정실리콘 층을 형성하게되며, 불순물 농도를 1E20/㎤ 정도로 높게 형성하게 된다. In the method of manufacturing a semiconductor device according to the prior art as described above, a landing plug used for a bit line, a capacitor contact, or the like uses a landing plug made of a metal material having a lower resistivity than a polysilicon layer, wherein an error between the metal landing plug and the substrate is used. In order to reduce the MIC contact and contact resistance, an impurity doped select epitaxial polysilicon layer is formed on the substrate, and an impurity concentration of about 1E20 / cm 3 is formed.

따라서 후속 열처리 공정시 선택에피성장 다결정실리콘층의 불순물이 기판으로 확산되어 셀 트랜지스터의 펀치 특성을 악화시키고, 셀의 Vt가 낮아지는 등의 문제점이 있다. As a result, impurities in the selective epitaxial polysilicon layer diffuse into the substrate during the subsequent heat treatment process, thereby deteriorating the punch characteristics of the cell transistors and lowering the Vt of the cell.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 금속 랜딩플러그를 구비하는 반도체소자에서 기판과 금속 플러그 사이에 개재되는 선택에피성장 다결정실리콘층을 언도핑이나 저농도 도핑으로 형성하고, 후속 이온주입으로 오옴믹 접촉할 수 있도록 하여 불순물의 기판 확산에 의한 셀 트랜지스터의 펀치 특성 악화나, Vt 감소를 방지하여 공정 수율 및 소자 동작의 신뢰성을 향상시킬 수 있는 반도체소자의 제조방법을 제공함에 있다. The present invention is to solve the above problems, an object of the present invention is to form a selective epitaxial polysilicon layer interposed between the substrate and the metal plug in a semiconductor device having a metal landing plug by undoping or low concentration doping and A method of manufacturing a semiconductor device capable of improving ohmic contact with subsequent ion implantation to prevent deterioration of punch characteristics of a cell transistor due to diffusion of an impurity substrate or to reduce Vt, thereby improving process yield and device operation reliability. Is in.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 반도체소자 제조방법의 특징은, Features of the semiconductor device manufacturing method according to the present invention for achieving the above object,

반도체기판상에 게이트절연막을 형성하는 공정과, Forming a gate insulating film on the semiconductor substrate;

상기 게이트절연막상에 하드마스크층 패턴과 중첩되어 있는 게이트전극을 형성하는 공정과, Forming a gate electrode overlapping the hard mask layer pattern on the gate insulating film;

상기 하드마스크층 패턴과 게이트전극의 측벽에 절연 스페이서를 형성하는 공정과, Forming an insulating spacer on sidewalls of the hard mask layer pattern and the gate electrode;

상기 구조의 전표면에 층간절연막을 형성하는 공정과, Forming an interlayer insulating film on the entire surface of the structure;

상기 반도체기판에서 콘택으로 예정되어 있는 부분상의 층간절연막을 제거하여 랜딩플러그용 콘택홀을 형성하는 공정과, Forming a contact hole for a landing plug by removing an interlayer insulating film on a portion of the semiconductor substrate, which is intended to be a contact;

상기 콘택홀을 통하여 노출되어 있는 반도체기판상에 선택에피성장 다결정실리콘층을 형성하되, 언도핑으로 형성하거나, 1E14 내지 1E18/㎤ 불순물 도핑 농도로 형성하는 공정과, Forming an epitaxially grown polysilicon layer on the semiconductor substrate exposed through the contact hole, and forming the selective epitaxial polysilicon layer by undoping or forming a doped concentration of 1E14 to 1E18 / cm 3;

상기 선택에피성장 다결정실리콘층상에 불순물 이온을 주입하여 오옴믹 접촉층을 형성하는 공정과, 상기 오옴믹 접촉층과 접촉되는 금속 재질의 금속 플러그를 형성하는 공정을 구비함에 있다. And forming an ohmic contact layer by implanting impurity ions on the selective epitaxial polysilicon layer, and forming a metal plug made of a metal material in contact with the ohmic contact layer.

또한 본발명의 다른 특징은, 상기 선택에피성장 다결정실리콘층에 대한 이온주입은 P 또는 As로 실시하고, 상기 선택에피성장 다결정실리콘층이 1E14 내지 1E18/㎤ 불순물 도핑 농도로 형성되는 경우, 후속 이온주입은 1E15 내지 1E21/㎤ 농도로 실시하고, 상기 선택에피성장 다결정실리콘층이 언도핑으로 형성되면, 불순물 이온을 최소 두차례 이온주입하되, 두차례의 이온주입은 P 또는 As를 각각 일,이차 이온주입시 각각 1E13 내지 1E18/㎤ 및 1E14 내지 1E18/㎤ 의 농도로 실시하는 것을 특징으로 한다. Further, another feature of the present invention is that ion implantation into the selective epitaxial polysilicon layer is carried out at P or As, and when the selective epitaxial polysilicon layer is formed at 1E14 to 1E18 / cm3 impurity doping concentration, subsequent ions When the implantation is performed at a concentration of 1E15 to 1E21 / cm 3 and the selective epitaxial polysilicon layer is formed by undoping, implantation of impurity ions is carried out at least twice, but the second implantation is P or As, respectively. The ion implantation is performed at concentrations of 1E13 to 1E18 / cm 3 and 1E14 to 1E18 / cm 3, respectively.

이하, 첨부된 도면을 참조하여 본 발명에 따른 반도체소자의 제조방법에 대하여 상세히 설명을 하기로 한다. Hereinafter, a method of manufacturing a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings.

도 2a내지 도 2c는 본 발명에 따른 반도체소자의 제조 공정도로서, 랜딩플러 그로 금속 플러그를 사용하는 경우의 예이다. 2A to 2C are manufacturing process diagrams of a semiconductor device according to the present invention, which is an example of using a metal plug as a landing plug.

먼저, 반도체기판(30)의 일측에 소자분리 산화막(도시되지 않음)을 형성하여 활성영역을 정의하고, 상기 구조의 전표면에 산화막이나 질화막등 절연 재질의 게이트절연막(32)을 형성한 후, 상기 게이트절연막(32)상에 게이트전극(34)을 형성하되, 하드마스크층(36) 패턴과 중첩되도록 형성하고, 상기 하드마스크층(36) 패턴과 게이트전극(34)의 측벽에 절연 스페이서(38)를 형성한다. 여기서 상기 게이트전극(34)은 다결정실리콘층과 W 실리사이드 재질로 상기 하드마스크층(36)은 질화막 재질로 형성하고, 상기 스페이서(38)는 질화막을 전면 도포하고, 전면식각하여 식각장벽층이 되도록 형성한다. First, an isolation region (not shown) is formed on one side of the semiconductor substrate 30 to define an active region, and a gate insulating film 32 made of an insulating material such as an oxide film or a nitride film is formed on the entire surface of the structure. A gate electrode 34 is formed on the gate insulating layer 32, and overlaps the pattern of the hard mask layer 36. An insulating spacer is formed on sidewalls of the pattern of the hard mask layer 36 and the gate electrode 34. 38). The gate electrode 34 may be formed of a polysilicon layer and a W silicide material, and the hard mask layer 36 may be formed of a nitride film, and the spacer 38 may be coated on the entire surface of the nitride film, and then etched to form an etch barrier layer. Form.

그다음 상기 구조의 전표면에 BPSG 등 산화막 재질의 층간절연막(40)을 형성하고, 습식 열처리 등을 실시하여 갭필이 원활하게 되도록 하고, 화학 기계적 연마 방법으로 상부를 식각하여 평탄화시킨 후, 랜딩플러그 마스크를 이용하여 상기 반도체기판(30)에서 콘택으로 예정되어 있는 부분상의 층간절연막(40)을 제거하여 랜딩플러그용 콘택홀(41)을 형성한다. (도 2a 참조). Then, an interlayer insulating film 40 made of an oxide film such as BPSG is formed on the entire surface of the structure, wet heat treatment is performed to smooth gap fill, and the upper part is etched and planarized by a chemical mechanical polishing method, followed by a landing plug mask. The contact hole 41 for the landing plug is formed by removing the interlayer insulating film 40 on the portion of the semiconductor substrate 30, which is intended to be a contact, on the semiconductor substrate 30 by using a. (See FIG. 2A).

그 후, 상기 콘택홀(41)에 의해 노출되어 있는 반도체기판(30)상에 선택에피성장 다결정실리콘층(42)을 형성하되, 언도핑으로 형성하거나, 1E14 내지 1E18/㎤ 이하의 불순물 농도를 가지도록 형성한 후, 상기 선택에피성장 다결정실리콘층(42)의 상부에 오옴믹 접촉을 위하여 불순물 이온을 이온주입하여 오옴믹 접촉층(43)을 형성한다. 여기서 상기 이온주입되는 불순물은 As 또는 P를 사용하고, 도핑 농도 및 도핑 방법은 상기 선택에피성장 다결정실리콘층(42)의 도핑정도에 따라 여러 가 지를 사용할 수 있다. Thereafter, a selective epitaxially grown polysilicon layer 42 is formed on the semiconductor substrate 30 exposed by the contact hole 41, but is formed by undoping, or an impurity concentration of 1E14 to 1E18 / cm 3 or less is formed. After forming to form, the ohmic contact layer 43 is formed by implanting impurity ions into the upper portion of the selective epitaxial polysilicon layer 42 for ohmic contact. As the impurity implanted herein, As or P may be used, and a doping concentration and a doping method may be variously used depending on the degree of doping of the selective epitaxial polysilicon layer 42.

즉 (1). 상기 선택에피성장 다결정실리콘층(42)이 1E14 내지 1E18/㎤ 정도의 도핑 농도를 가지거나, 상기 반도체기판(30)과 같은 정도의 도핑 농도를 가지면, 후속 이온주입은 1E15 내지 1E21/㎤ 정도로 실시하고, (2). 상기 선택에피성장 다결정실리콘층(42)이 언도핑으로 형성되면, 불순물 이온을 최소 두차례 이온주입하여 하부의 반도체기판(30)으로의 불순물 확산 정도를 낮추고, 상부의 금속 플러그와 오옴믹 접촉 되게 할 수 있다. 여기서 두차례의 이온주입은 P 또는 As를 각각 일,이차 이온주입시 각각 1E13 내지 1E18/㎤ 및 1E14 내지 1E18/㎤ 의 농도로 실시한다. (도 2b 참조). Ie (1). If the selective epitaxial polysilicon layer 42 has a doping concentration of about 1E14 to 1E18 / cm 3 or a doping concentration of about the same as the semiconductor substrate 30, subsequent ion implantation is performed at about 1E15 to 1E21 / cm 3. And (2). When the selective epitaxial polysilicon layer 42 is formed by undoping, implanting impurity ions at least twice to reduce the diffusion of impurities into the lower semiconductor substrate 30 and to make ohmic contact with the upper metal plug. can do. In this case, two ion implantations are performed at concentrations of 1E13 to 1E18 / cm 3 and 1E14 to 1E18 / cm 3 at the time of one or the second ion implantation, respectively. (See FIG. 2B).

그다음 상기 구조의 전표면에 금속 플러그가 되는 금속 재질의 도전층(44)을 전면에 도포하여 상기 콘택홀(41)을 메우고, 상기 하드마스크층(36) 패턴 상부의 도전층(44)을 CMP나 전면식각등의 방법으로 제거하여 상기 콘택홀을 메우는 랜딩플러그를 선택에피성장 다결정실리콘층(43)과 도전층(44) 패턴으로 형성한다. (도 2c 참조). Next, a conductive layer 44 made of metal, which is a metal plug, is applied to the entire surface of the structure to fill the contact hole 41, and the conductive layer 44 on the hard mask layer 36 pattern is CMP. Or a landing plug that fills the contact hole by a method such as a front etch, and the like to form a selective epitaxial polysilicon layer 43 and a conductive layer 44 pattern. (See FIG. 2C).

그후 도시되어 있지는 않으나, 상기 구조의 반도체기판을 열처리하고, 비트라인과 캐패시터 및 금속배선등을 형성하여 소자를 완성한다. Thereafter, although not shown, the semiconductor substrate having the above structure is heat treated, and bit lines, capacitors, metal wirings, and the like are formed to complete the device.

이상에서 설명한 바와 같이 본 발명에 따른 반도체소자의 제조방법은 랜딩플러그를 선택에피성장 다결정실리콘층과 금속 플러그로 구성하는 반도체소자에서 선 택에피성장 다결정실리콘층을 저농도 불순물 도핑으로 형성하고, 그 상부에 불순물 이온을 이온주입하여 오옴믹 접촉층을 형성한 후, 후속 공정을 진행하였으므로, 선택에피성장 다결정실리콘층에서 반도체기판으로의 불순물 확산에 의한 소자의 특성 열화가 방지되고, 접촉저항이 감소되어 공정 수율 및 소자 동작의 신뢰성을 향상시킬 수 있는 이점이 있다. As described above, in the method of manufacturing a semiconductor device according to the present invention, in a semiconductor device in which the landing plug includes a selective epitaxial polysilicon layer and a metal plug, the selective epitaxial polysilicon layer is formed by low concentration impurity doping, and the upper portion thereof. After implanting impurity ions into the ohmic contact layer to form an ohmic contact layer, the subsequent process was performed, thereby preventing deterioration of the device characteristics due to diffusion of impurities from the selective epitaxial polysilicon layer to the semiconductor substrate and reducing contact resistance. There is an advantage that can improve the process yield and the reliability of device operation.

Claims (4)

반도체기판상에 게이트절연막을 형성하는 공정과, Forming a gate insulating film on the semiconductor substrate; 상기 게이트절연막상에 하드마스크층 패턴과 중첩되어 있는 게이트전극을 형성하는 공정과, Forming a gate electrode overlapping the hard mask layer pattern on the gate insulating film; 상기 하드마스크층 패턴과 게이트전극의 측벽에 절연 스페이서를 형성하는 공정과, Forming an insulating spacer on sidewalls of the hard mask layer pattern and the gate electrode; 상기 구조의 전표면에 층간절연막을 형성하는 공정과, Forming an interlayer insulating film on the entire surface of the structure; 상기 반도체기판에서 콘택으로 예정되어 있는 부분상의 층간절연막을 제거하여 랜딩플러그용 콘택홀을 형성하는 공정과, Forming a contact hole for a landing plug by removing an interlayer insulating film on a portion of the semiconductor substrate, which is intended to be a contact; 상기 콘택홀을 통하여 노출되어 있는 반도체기판상에 선택에피성장 다결정실리콘층을 형성하되, 언도핑으로 형성하거나, 1E14 내지 1E18/㎤ 불순물 도핑 농도로 형성하는 공정과, Forming an epitaxially grown polysilicon layer on the semiconductor substrate exposed through the contact hole, and forming the selective epitaxial polysilicon layer by undoping or forming a doped concentration of 1E14 to 1E18 / cm 3; 상기 선택에피성장 다결정실리콘층상에 불순물 이온을 주입하여 오옴믹 접촉층을 형성하는 공정과, Forming an ohmic contact layer by implanting impurity ions on the selective epitaxial polysilicon layer; 상기 오옴믹 접촉층과 접촉되는 금속 재질의 금속 플러그를 형성하는 공정을 구비하는 반도체소자의 제조방법. And forming a metal plug made of a metal material in contact with the ohmic contact layer. 제1항에 있어서, 상기 선택에피성장 다결정실리콘층에 대한 이온주입은 P 또 는 As로 실시하는 것을 특징으로 하는 반도체소자의 제조방법. The method of manufacturing a semiconductor device according to claim 1, wherein ion implantation into the selective epitaxial polysilicon layer is performed at P or As. 제1항에 있어서, 상기 선택에피성장 다결정실리콘층이 1E14 내지 1E18/㎤ 불순물 도핑 농도로 형성되는 경우, 후속 이온주입은 1E15 내지 1E21/㎤ 농도로 실시하는 것을 특징으로 하는 반도체소자의 제조방법. The method of claim 1, wherein when the selective epitaxial polysilicon layer is formed at a concentration of 1E14 to 1E18 / cm 3 impurity, subsequent ion implantation is performed at a concentration of 1E15 to 1E21 / cm 3. 제1항에 있어서, 상기 선택에피성장 다결정실리콘층이 언도핑으로 형성되면, 불순물 이온을 최소 두차례 이온주입하되, 두차례의 이온주입은 P 또는 As를 각각 일,이차 이온주입시 각각 1E13 내지 1E18/㎤ 및 1E14 내지 1E18/㎤ 의 농도로 실시하는 것을 특징으로 하는 반도체소자의 제조방법. The method of claim 1, wherein when the selective epitaxial polysilicon layer is formed by undoping, at least two ion implantations are performed, and the second ion implantation is performed at 1E13 to 1 or 2, respectively, for P or As. A method for manufacturing a semiconductor device, characterized by performing at concentrations of 1E18 / cm 3 and 1E14 to 1E18 / cm 3.
KR1020050047771A 2005-06-03 2005-06-03 Manufacturing method for semiconductor device KR20060126110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050047771A KR20060126110A (en) 2005-06-03 2005-06-03 Manufacturing method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050047771A KR20060126110A (en) 2005-06-03 2005-06-03 Manufacturing method for semiconductor device

Publications (1)

Publication Number Publication Date
KR20060126110A true KR20060126110A (en) 2006-12-07

Family

ID=37730110

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050047771A KR20060126110A (en) 2005-06-03 2005-06-03 Manufacturing method for semiconductor device

Country Status (1)

Country Link
KR (1) KR20060126110A (en)

Similar Documents

Publication Publication Date Title
KR100726148B1 (en) Manufacturing method for semiconductor device
KR100546144B1 (en) Manufacturing method of semiconductor device
KR100307556B1 (en) Manufacturing method of semiconductor device
KR20050034292A (en) Manufacturing method for semiconductor device
KR100346449B1 (en) Manufacturing method for semiconductor device
KR20060126110A (en) Manufacturing method for semiconductor device
KR100307560B1 (en) Manufacturing method of semiconductor device
KR100333550B1 (en) Fabricating method for semiconductor device
KR100944344B1 (en) Manufacturing method for semiconductor device
KR100434961B1 (en) Method of forming contact hole of semiconductor device using nitride pattern formed on only gate electrode as etch stop layer
KR100304440B1 (en) Manufacturing method of semiconductor device
KR100527568B1 (en) Manufacturing method for semiconductor device
KR20000027639A (en) Method for manufacturing contact plug of semiconductor devices
KR20050014156A (en) Manufacturing method for semiconductor device
KR100304284B1 (en) Contact formation method of semiconductor device
KR100527531B1 (en) Manufacturing method for semiconductor device
KR20000045365A (en) Method for forming transistor
KR20010005296A (en) Fabricating method for semiconductor device
KR20050052104A (en) Manufacturing method for semiconductor device
KR19990080854A (en) Method for manufacturing contact hole of semiconductor device
KR20000043205A (en) Method for forming contact hole of semiconductor device
KR20040102720A (en) Manufacturing method for semiconductor device
KR20010059453A (en) Manufacturing method of semiconductor device
KR20050014173A (en) Manufacturing method for semiconductor device
KR20020002013A (en) Manufacturing method for semiconductor device

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination