KR100333550B1 - Fabricating method for semiconductor device - Google Patents

Fabricating method for semiconductor device Download PDF

Info

Publication number
KR100333550B1
KR100333550B1 KR1019990025918A KR19990025918A KR100333550B1 KR 100333550 B1 KR100333550 B1 KR 100333550B1 KR 1019990025918 A KR1019990025918 A KR 1019990025918A KR 19990025918 A KR19990025918 A KR 19990025918A KR 100333550 B1 KR100333550 B1 KR 100333550B1
Authority
KR
South Korea
Prior art keywords
etching
photoresist pattern
mask
polymer
reflection film
Prior art date
Application number
KR1019990025918A
Other languages
Korean (ko)
Other versions
KR20010005121A (en
Inventor
조준연
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1019990025918A priority Critical patent/KR100333550B1/en
Publication of KR20010005121A publication Critical patent/KR20010005121A/en
Application granted granted Critical
Publication of KR100333550B1 publication Critical patent/KR100333550B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures

Abstract

본 발명은 반도체소자의 제조방법에 관한 것으로, 주변회로영역의 NMOS와 PMOS 트랜지스터의 게이트전극을 형성하는 공정에서 폴리머를 유발시켜 1차식각공정을 실시하고, 고농도의 불순물을 이온주입한 다음, 상기 폴리머를 제거한 후 2차식각공정을 실시하여 게이트전극을 형성한 후, 셀영역의 게이트전극을 형성하고 저농도불순물을 전면적으로 이온주입하여 트랜지스터를 형성함으로써 후속공정에서 콘택으로 예정되는 부분의 공정마진을 확보하고 그에 따른 층간절연막의 층덮힘 특성을 향상시켜 반도체소자의 고집적화를 가능하게 하고, 정션 프로파일을 안정시키며, 폴리머의 CD(critical dimension)를 조절하여 주변회로영역에서의 각각의 트랜지스터의 특성을 조절할 수 있다.The present invention relates to a method of fabricating a semiconductor device, wherein the first etching process is performed by inducing a polymer in the process of forming the gate electrodes of the NMOS and PMOS transistors in the peripheral circuit region, and ion implantation of a high concentration of impurities is performed. After removing the polymer, a second etching process is performed to form a gate electrode, and then a gate electrode of the cell region is formed, and a low concentration impurity is ion-implanted to form a transistor to form a process margin of a portion scheduled for contact in a subsequent process. It is possible to ensure high integration of semiconductor devices, to stabilize the junction profile, and to control the characteristics of each transistor in the peripheral circuit area by controlling the CD (critical dimension) by improving the layer covering characteristics of the interlayer insulating film. Can be.

Description

반도체소자의 제조방법{Fabricating method for semiconductor device}Fabrication method for semiconductor device

본 발명은 반도체소자의 제조방법에 관한 것으로서, 특히 PMOS 트랜지스터, NMOS트랜지스터 및 셀 트랜지스터의 게이트전극을 별도로 형성하되, 상기 PMOS 트랜지스터와 NMOS트랜지스터의 게이트전극은 2차례의 식각공정으로 형성하여 트랜지스터 각각의 특성을 조절할 수 있는 반도체소자의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device. In particular, gate electrodes of a PMOS transistor, an NMOS transistor, and a cell transistor are separately formed, and the gate electrodes of the PMOS transistor and the NMOS transistor are formed by two etching processes, respectively. It relates to a method for manufacturing a semiconductor device that can adjust the characteristics.

최근의 반도체 장치의 고집적화 추세는 미세 패턴 형성 기술의 발전에 큰 영향을 받고 있으며, 반도체 장치의 제조 공정 중에서 식각 또는 이온주입공정 등의 마스크로 매우 폭 넓게 사용되는 감광막 패턴의 미세화가 필수 요건이다.The recent trend toward higher integration of semiconductor devices has been greatly influenced by the development of fine pattern formation technology, and the miniaturization of photoresist patterns, which are widely used as masks such as etching or ion implantation processes, is essential in the manufacturing process of semiconductor devices.

상기 감광막 패턴의 분해능(R)은 축소노광장치의 광원의 파장(λ) 및 공정 변수(k)에 비례하고, 노광장치의 렌즈 구경(numerical aperture : NA, 개구수) 에 반비례한다.The resolution R of the photoresist pattern is proportional to the wavelength? And the process variable k of the light source of the reduced exposure apparatus, and inversely proportional to the lens aperture (NA, numerical aperture) of the exposure apparatus.

[ R = k * λ / NA , R = 해상도, λ = 광원의 파장, NA = 개구수 ][R = k * λ / NA, R = resolution, λ = wavelength of light source, NA = numerical aperture]

여기서, 상기 축소노광장치의 광분해능을 향상시키기 위하여 광원의 파장을 감소시키게 되며, 예를 들어 파장이 436 및 365 ㎚ 인 G-라인 및 i-라인 축소노광장치는 공정 분해능이 각각 약 0.7, 0.5 ㎛ 정도가 한계이다. 그리고, 0.5 ㎛ 이하의 미세 패턴을 형성하기 위해 파장이 작은 원자외선(deep ultra violet, DUV), 예를 들어 파장이 248 ㎚ 인 KrF 레이저나 193 ㎚ 인 ArF 레이저를 광원으로 사용하는 노광장치를 이용하는 방법과, 이미지 콘트라스트를 향상시킬 수 있는 별도의 박막을 웨이퍼 상에 형성하는 씨.이.엘.(contrast enhancement layer: 이하 CEL 이라 함)방법이나 두층의 감광막 사이에 에스.오.지.(spin on glass : SOG) 등의 중간층을 개재시킨 삼층레지스트(Tri layer resister : 이하 TLR 이라 함) 방법 또는 감광막의 상측에 선택적으로 실리콘을 주입시키는 실리레이션 방법 등이 개발되어 분해능 한계치를 낮추고 있다.Here, the wavelength of the light source is reduced to improve the optical resolution of the reduced exposure apparatus. For example, the G-line and i-line reduced exposure apparatus having wavelengths of 436 and 365 nm have a process resolution of about 0.7 and 0.5, respectively. About μm is the limit. In order to form a fine pattern of 0.5 µm or less, an exposure apparatus using a deep ultra violet (DUV), for example, a KrF laser having a wavelength of 248 nm or an ArF laser having 193 nm as a light source, is used. The method and the contrast enhancement layer (hereinafter referred to as CEL) method for forming a separate thin film on the wafer which can improve the image contrast or the S.O. Tri-layer resister (hereinafter referred to as TLR) method with an intermediate layer such as on glass (SOG) or a silicide method for selectively injecting silicon into the upper side of the photosensitive film has been developed to lower the resolution limit.

또한, 상하의 도전배선을 연결하는 콘택홀은 소자가 고집적화 되어감에 따라 자체의 크기와 주요 배선과의 간격이 감소되고, 콘택홀의 지름과 깊이의 비인 에스팩트비(aspect ratio)가 증가한다. 따라서, 다층의 도전배선을 구비하는 고집적 반도체소자에서는 콘택을 형성하기 위하여 제조 공정에서의 마스크들 간의 정확하고 엄격한 정렬이 요구되어 공정 여유도가 감소된다.In addition, the contact hole connecting the upper and lower conductive wirings is reduced in size and spacing between the main wiring as the device is highly integrated, and the aspect ratio, which is a ratio of the diameter and the depth of the contact hole, increases. Therefore, in a highly integrated semiconductor device having multiple conductive wirings, accurate and tight alignment between masks in a manufacturing process is required to form a contact, thereby reducing process margin.

이러한 콘택홀은 간격 유지를 위하여 마스크 정렬시의 오배열 여유(misalignment tolerance), 노광공정시의 렌즈 왜곡(lensdistortion), 마스크 제작 및 사진식각 공정시의 임계크기 변화(critical dimension variation), 마스크간의 정합(registration) 등과 같은 요인들을 고려하여 마스크를 형성한다.These contact holes provide misalignment tolerance during mask alignment, lens distortion during exposure, critical dimension variation during mask fabrication and photolithography, and matching between masks to maintain spacing. The mask is formed by considering factors such as registration.

이하, 종래의 기술에 따른 반도체소자의 제조방법에 대해 설명하기로 한다.Hereinafter, a method of manufacturing a semiconductor device according to the related art will be described.

먼저, 반도체기판에 소자분리막을 형성하고, 노출된 반도체기판의 상부에 게이트 산화막과 도전층 및 마스크절연막의 적층구조를 형성한 다음, 패턴닝 공정으로 상기 적층구조를 식각하여 게이트 전극을 형성한다.First, a device isolation film is formed on a semiconductor substrate, a stacked structure of a gate oxide film, a conductive layer, and a mask insulating film is formed on the exposed semiconductor substrate, and then the stacked structure is etched by a patterning process to form a gate electrode.

다음, 상기 게이트 전극의 양쪽 반도체기판에 저농도불순물을 이온주입하여 저농도불순물영역을 형성한다.Next, a low concentration impurity region is formed by ion implanting low concentration impurities into both semiconductor substrates of the gate electrode.

그 다음, 상기 게이트 전극의 양측벽에 졀연막 스페이서를 형성하고, 상기 절연막 스페이서의 양쪽 반도체기판에 고농도의 불순물을 이온주입하여 소오스/드레인영역을 형성한다.Next, a spacer film is formed on both sidewalls of the gate electrode, and a high concentration of impurities are ion implanted into both semiconductor substrates of the insulating film spacer to form a source / drain region.

다음, 전체표면 상부에 층간절연막을 형성하여 평탄화시킨다.Next, an interlayer insulating film is formed over the entire surface to planarize.

그리고, 반도체기판에서 콘택으로 예정된 부분 상의 층간절연막을 제거하여 콘택홀을 형성하고, 상기 반도체기판과 접속되는 콘택을 형성한다.Then, a contact hole is formed by removing the interlayer insulating film on the portion of the semiconductor substrate, which is supposed to be a contact, to form a contact connected to the semiconductor substrate.

그러나, 상기와 같은 종래기술에 따른 반도체소자의 제조방법은, 게이트전극의 측벽에 형성하는 절연막 스페이서는 워드라인 사이의 폭을 감소시키기 때문에후속 비트라인 콘택 및 저장전극 콘택이 들어갈 활성영역의 공정마진이 줄어들고, 이로 인하여 층덮힘 특성이 저하된다. 또한 증착 및 산화공정과 같은 비교적 고온의 공정이 사용되므로 접합영역 부위의 도펀트가 확산되어 접합영역의 프로파일에 변화를 가져온다. 그리고, 특성이 서로 다른 PMOS트랜지스터와 NMOS트랜지스터의 접합영역을 동일한 두께의 절연막 스페이서를 사용하기 때문에 상기 트랜지스터들의 특성을 조절하기 어렵고, 공정시간이 긴 증착공정 및 산화공정 등으로 인하여 생산성이 저하되는 문제점이 있다.However, in the method of manufacturing a semiconductor device according to the related art as described above, since the insulating layer spacer formed on the sidewall of the gate electrode reduces the width between word lines, the process margin of the active region into which subsequent bit line contacts and storage electrode contacts enter. This decreases, thereby lowering the layer covering properties. In addition, since relatively high temperature processes such as deposition and oxidation processes are used, the dopant in the junction region is diffused, resulting in a change in the profile of the junction region. In addition, since the insulating region spacers having the same thickness are used for the junction regions of the PMOS transistors and the NMOS transistors having different characteristics, it is difficult to control the characteristics of the transistors, and the productivity is degraded due to a long process time deposition process and an oxidation process. There is this.

본 발명은 상기한 종래기술의 문제점을 해결하기 위하여, PMOS 트랜지스터와 NMOS 트랜지스터의 게이트전극 형성시 폴리머를 유발시키면서 1차식각공정을 실시하여 반사방지막 패턴을 형성하고, 게이트전극을 형성한 다음, 고농도불순물을 이온주입하여 소오스/드레인영역을 형성하고, 상기 폴리머를 제거한 다음, 2차식각공정으로 게이트전극을 형성하고, 셀 트랜지스터의 게이트전극을 형성한 다음, 저농도의 불순물을 전반적으로 이온주입하여 각각의 특성에 맞는 접합영역을 갖는 트랜지스터를 형성함으로써 소자의 특성 및 신뢰성을 향상시키는 반도체소자의 제조방법을 제공하는데 그 목적이 있다.In order to solve the above problems of the prior art, the first etching process is performed by inducing a polymer during the formation of the gate electrode of the PMOS transistor and the NMOS transistor to form an anti-reflection film pattern, and then the gate electrode is formed to have a high concentration. Impurities are ion-implanted to form source / drain regions, the polymer is removed, a gate electrode is formed by a secondary etching process, a gate electrode of a cell transistor is formed, and a low concentration of impurities are generally implanted, respectively. It is an object of the present invention to provide a method for manufacturing a semiconductor device which improves the characteristics and reliability of the device by forming a transistor having a junction region suitable for the characteristics of the device.

도 1 내지 도 14 는 본 발명에 따른 반도체소자의 제조방법을 도시한 단면도.1 to 14 are cross-sectional views showing a method for manufacturing a semiconductor device according to the present invention.

<도면의 주요부분에 대한 부호 설명><Description of Signs of Major Parts of Drawings>

11 : 반도체기판 13 : 게이트 절연막11 semiconductor substrate 13 gate insulating film

15 : 게이트 전극용 도전층 17 : 마스크절연막15 conductive layer for gate electrode 17 mask insulating film

19 : 반사방지막 21 : 제1감광막 패턴19: antireflection film 21: first photosensitive film pattern

23 : 폴리머 25 : 제2감광막 패턴23 polymer 25 second photosensitive film pattern

27 : 산화막 29 : 질화막 스페이서27 oxide film 29 nitride film spacer

이상의 목적을 달성하기 위하여 본 발명에 따른 반도체소자의 제조방법은,In order to achieve the above object, a method of manufacturing a semiconductor device according to the present invention,

반도체기판의 셀영역 및 주변회로영역 상부에 게이트절연막, 도전층, 마스크절연막 및 반사방지막을 형성하는 공정과,Forming a gate insulating film, a conductive layer, a mask insulating film, and an anti-reflection film over the cell region and the peripheral circuit region of the semiconductor substrate;

상기 주변회로영역의 반사방지막 상부에 제1도전형MOS 트랜지스터영역의 접합영역으로 예정되는 부분을 노출시키는 제1감광막 패턴을 형성하는 공정과,Forming a first photoresist pattern on the anti-reflection film in the peripheral circuit region to expose a portion intended to be a junction region of the first conductive MOS transistor region;

상기 제1감광막 패턴을 식각마스크로 상기 반사방지막을 식각하되, 상기 제1감광막 패턴과 반사방지막의 측벽에 폴리머를 형성시키는 공정과,Etching the anti-reflection film using the first photoresist pattern as an etching mask, and forming a polymer on sidewalls of the first photoresist pattern and the anti-reflection film;

상기 제1감광막 패턴과 폴리머를 식각마스크로 사용하여 상기 마스크절연막과 도전층을 식각한 다음,제1도전형 고농도불순물을 이온주입하고 상기 폴리머를 제거하는 공정과,Etching the mask insulating layer and the conductive layer using the first photoresist pattern and the polymer as an etch mask, followed by ion implantation of a first conductive high concentration impurity and removing the polymer;

상기 제1감광막 패턴을 식각마스크로 사용하고, 상기 게이트절연막을 식각장벽으로 사용하여 상기 마스크절연막과 도전층을 식각하는 공정과,Etching the mask insulating layer and the conductive layer using the first photoresist pattern as an etching mask and using the gate insulating layer as an etching barrier;

상기 제1감광막 패턴을 제거하는 공정과,Removing the first photoresist pattern;

전체표면 상부에 주변회로영역에서 제2도전형MOS 트랜지스터영역의 접합영역으로 예정되는 부분을 노출시키는 제2감광막 패턴을 형성하는 공정과,Forming a second photoresist pattern on the entire surface, the second photoresist pattern exposing a portion intended to be a junction region of the second conductive MOS transistor region in the peripheral circuit region;

상기 제2감광막 패턴을 식각마스크로 상기 반사방지막을 식각하되, 상기 제1감광막 패턴과 반사방지막의 측벽에 폴리머를 형성시키는 공정과,Etching the anti-reflection film using the second photoresist pattern as an etching mask, and forming a polymer on sidewalls of the first photoresist pattern and the anti-reflection film;

상기 제2감광막 패턴과 폴리머를 식각마스크로 사용하여 상기 마스크절연막과 도전층을 식각한 다음,제2도전형 고농도불순물을 이온주입하고 상기 폴리머를 제거하는 공정과,Etching the mask insulating layer and the conductive layer using the second photoresist pattern and the polymer as an etch mask, followed by ion implantation of a second conductive high concentration impurity and removing the polymer;

상기 제2감광막 패턴을 식각마스크로 사용하고, 상기 게이트절연막을 식각장벽으로 사용하여 상기 마스크절연막과 도전층을 식각하는 공정과,Etching the mask insulating layer and the conductive layer using the second photoresist pattern as an etch mask and using the gate insulating layer as an etch barrier;

상기 제2감광막 패턴을 제거하는 공정과,Removing the second photoresist pattern;

전체표면 상부에 셀영역에서 접합영역으로 예정되는 부분을 노출시키는 제3감광막 패턴을 형성하고, 상기 제3감광막 패턴을 식각마스크로 사용하여 상기 반사방지막과 마스크절연막을 식각하는 공정과,Forming a third photoresist pattern on the entire surface of the cell region to expose a portion of the cell region to be a junction region, and etching the anti-reflection film and the mask insulating film by using the third photoresist pattern as an etching mask;

상기 제3감광막 패턴을 제거한 다음, 상기 반사방지막을 식각마스크로 사용하여 상기 도전층을 식각하는 동시에 상기 반사방지막을 제거하는 공정과,Removing the third photoresist pattern, and then etching the conductive layer using the anti-reflection film as an etching mask and simultaneously removing the anti-reflection film;

상기 구조를 산화시킨 후 저농도불순물을 전면적으로 이온주입하는 공정과,Oxidizing the structure and ion implanting the low concentration impurity entirely;

상기 도전층과 마스크절연막의 식각면에 절연막 스페이서를 형성하는 공정을 포함하는 것을 특징으로 한다.And forming an insulating film spacer on an etching surface of the conductive layer and the mask insulating film.

이하, 첨부된 도면을 참고로 하여 본 발명에 따른 상세한 설명을 하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail according to the present invention.

도 1 내지 도 14 는 본 발명에 따른 반도체소자의 제조방법을 도시한 단면도이다.1 to 14 are cross-sectional views showing a method of manufacturing a semiconductor device according to the present invention.

먼저, 반도체기판(11)의 원하는 부분에 원하는 불순물의 종류를 이온주입하여 웰과 트랜지스터의 채널 부분 및 소자분리 영역의 아래 부분에 원하는 형태로 불순물이 존재하도록한 후, 상기 반도체기판(11)에서 소자분리 영역으로 예정되어 있는 부분상에 소자분리막(도시안됨)을 형성한다.First, a desired type of impurity is ion-implanted into a desired portion of the semiconductor substrate 11 so that impurities exist in a desired shape in the channel portion of the well and the transistor and the lower portion of the device isolation region. An element isolation film (not shown) is formed on the portion intended as the element isolation region.

다음, 상기 구조 전표면에 게이트 절연막(13)을 형성하고, 상기 게이트 절연막(13) 상부에 게이트전극용 도전층(15)과 마스크절연막(17)의 적층구조를 형성한 다음, 반사방지막(19)을 형성한다. (도 1참조)Next, a gate insulating film 13 is formed on the entire surface of the structure, and a stacked structure of a gate electrode conductive layer 15 and a mask insulating film 17 is formed on the gate insulating film 13, and then an antireflection film 19 ). (See Fig. 1)

그 다음, 상기 반사방지막(19) 상부에 NMOS 트렌지스터의 접합영역으로 예정되는 부분을 노출시키는 제1감광막 패턴(21)을 형성한다. (도 2참조)Next, a first photoresist pattern 21 is formed on the anti-reflection film 19 to expose a portion of the NMOS transistor to be a junction region. (See Fig. 2)

다음, 상기 제1감광막 패턴(21)을 식각마스크로 사용하여 상기 반사방지막(19)을 식각하되, 상기 제1감광막 패턴(21)과 반사방지막(19)의 측벽에 폴리머(23)를 생성시키면서 식각공정을 실시한다. 이때, 후속공정을 용이하게 하기 위하여 상기 마스크절연막(17)까지 식각할 수도 있다. (도 3참조)Next, the anti-reflection film 19 is etched using the first photoresist pattern 21 as an etching mask, while the polymer 23 is formed on sidewalls of the first photoresist pattern 21 and the anti-reflection film 19. Carry out an etching process. In this case, the mask insulating layer 17 may be etched to facilitate the subsequent process. (See Fig. 3)

그 다음, 상기 제1감광막 패턴(21)과 폴리머(23)를 식각마스크로 사용하여 상기 적층구조를 식각한다. 상기 식각공정시 상기 폴리머(23)가 최대한 제거되게 한다. (도 4참조)Next, the laminate structure is etched using the first photoresist pattern 21 and the polymer 23 as an etching mask. The polymer 23 is removed as much as possible during the etching process. (See Fig. 4)

다음, 상기 제1감광막 패턴(21)과 폴리머(23)를 이온주입마스크로 n+불순물을 이온주입하여 고농도의 소오스/드레인영역을 형성한다. (도 5참조)Next, n + impurities are ion implanted into the first photoresist pattern 21 and the polymer 23 to form a high concentration source / drain region. (See Fig. 5)

그 다음, 세정공정을 실시하여 상기 폴리머(23)를 제거한다. 상기 폴리머(23)는 상기 이온주입공정 전에 제거할 수도 있다. (도 6 참조)Next, a washing process is performed to remove the polymer 23. The polymer 23 may be removed before the ion implantation process. (See Figure 6)

다음, 상기 제1감광막 패턴(21)을 식각마스크로 상기 적층구조를 식각하여 게이트전극을 형성한다. 이때, 상기 식각공정은 상기 게이트절연막(13)을 식각장벽으로 이용하여 실시한다. (도 7참조)Next, the stack structure is etched using the first photoresist pattern 21 as an etch mask to form a gate electrode. In this case, the etching process is performed using the gate insulating layer 13 as an etching barrier. (See Fig. 7)

그 다음, 상기 제1감광막 패턴(21)을 제거한다. (도 8참조)Next, the first photoresist pattern 21 is removed. (See FIG. 8)

그 후, 상기와 같은 방법으로 PMOS 트랜지스터영역에 게이트전극 및 고농도의 소오스/드레인영역을 형성한다. (도 9참조)Thereafter, a gate electrode and a high concentration source / drain region are formed in the PMOS transistor region in the same manner as described above. (See FIG. 9)

다음, 전체표면 상부에 셀영역에서 MOS 트랜지스터의 접합영역으로 예정되는 부분을 노출시키는 제2감광막 패턴(25)을 형성한다. (도 10참조)Next, a second photoresist pattern 25 is formed on the entire surface of the cell region to expose a portion of the cell region to be a junction region of the MOS transistor. (See FIG. 10)

그 다음, 상기 제2감광막 패턴(25)을 식각마스크로 사용하여 상기 반사방지막(19)과 마스크절연막(17)을 식각하고, 상기 제2감광막 패턴(25)을 제거한다. (도 11참조)Next, the anti-reflection film 19 and the mask insulating film 17 are etched using the second photoresist pattern 25 as an etch mask, and the second photoresist pattern 25 is removed. (See FIG. 11)

다음, 상기 제2감광막 패턴(25)이 제거된 후 노출된 PMOS, NMOS 및 셀영역 상의 반사방지막(19)을 제거한다.Next, after the second photoresist pattern 25 is removed, the anti-reflection film 19 on the exposed PMOS, NMOS and cell regions is removed.

그 다음, 상기 마스크절연막(17) 패턴을 식각마스크로 사용하여 상기 셀영역 상의 게이트전극용 도전층(15)을 식각한다. 상기 식각공정은 상기 게이트절연막(13)을 식각장벽으로 사용하여 실시한다.Next, the gate insulating layer 15 on the cell region is etched using the mask insulating layer 17 pattern as an etch mask. The etching process is performed by using the gate insulating film 13 as an etching barrier.

그 후, 희생산화공정을 실시하여 전공정에서 손상된 부분을 보상하고, 다시 전체적으로 산화공정을 실시하여 전표면에 산화막(27)을 형성한다.Thereafter, the sacrificial oxidation process is performed to compensate for the damages in the previous process, and the oxidation process is carried out as a whole to form the oxide film 27 on the entire surface.

다음, 상기 산화막(27)을 이온주입베리어로 사용하여 PMOS, NMOS 및 셀영역에 전체적으로 저농도의 불순물을 이온주입한다. (도 13참조)Next, by using the oxide film 27 as an ion implantation barrier, impurities of low concentration are implanted into the PMOS, NMOS, and cell regions as a whole. (See FIG. 13)

그 후, 전체표면 상부에 질화막을 형성한 다음, 상기 질화막을 전면식각하여 상기 게이트전극 및 마스크절연막의 측벽에 질화막 스페이서(29)를 형성한다. 이때, 상기 질화막의 두께는 10 ∼ 40㎚로 형성하여 후속공정에서 콘택공정을 용이하게 실시할 수 있다. (도 14참조)Thereafter, a nitride film is formed over the entire surface, and the nitride film is etched entirely to form a nitride film spacer 29 on sidewalls of the gate electrode and the mask insulating film. In this case, the nitride film may have a thickness of 10 to 40 nm to facilitate the contact process in a subsequent step. (See FIG. 14)

한편, 상기 반사방지막(19)은 상기 질화막의 전면식각공정시 과도식각공정을 실시하여 제거할 수도 있다.On the other hand, the anti-reflection film 19 may be removed by performing a transient etching process during the entire surface etching process of the nitride film.

본 발명에 따른 반도체소자의 제조방법은, 주변회로영역의 NMOS와 PMOS 트랜지스터의 게이트전극을 형성하는 공정에서 폴리머를 유발시켜 1차식각공정을 실시한 다음, 고농도의 불순물을 이온주입하고 상기 폴리머를 제거한 다음, 2차식각공정을 실시하여 게이트전극을 형성한 후, 셀영역의 게이트전극을 형성하고 저농도불순물을 전면적으로 이온주입하여 트랜지스터를 형성함으로써 후속공정에서 콘택으로 예정되는 부분의 공정마진을 확보하고 그에 따른 층간절연막의 층덮힘 특성을 향상시켜 반도체소자의 고집적화를 가능하게 하고, 정션 프로파일을 안정시키며, 폴리머의 CD를 조절하여 주변회로영역에서의 각각의 트랜지스터의 특성을 조절할 수 있는 동시에 공정시간을 단축할 수 있으며, 게이트전극을 2회에 걸친 식각공정으로 형성하여 주변회로영역과 셀영역 간에 게이트전극의 CD 바이어스를 0.01㎛이하로 감소시켜 트랜지스터의 특성을 정확하게 조절할 수 있는 이점이 있다.In the method of manufacturing a semiconductor device according to the present invention, in the process of forming the gate electrodes of the NMOS and PMOS transistors in the peripheral circuit region, the polymer is first subjected to the etching process, and then ion implanted with a high concentration of impurities to remove the polymer. Next, after forming the gate electrode by performing the secondary etching process, the gate electrode of the cell region is formed, and the transistor is formed by ion implanting the low concentration impurity in the entire area to secure the process margin of the portion scheduled for contact in the subsequent process. As a result, the layer covering property of the interlayer insulating film is improved to enable high integration of semiconductor devices, to stabilize the junction profile, and to control the characteristics of each transistor in the peripheral circuit area by controlling the CD of the polymer and at the same time, the process time. It can be shortened and the gate electrode is formed by two etching processes. Reduction in the area and a CD bias of the gate electrode between the cell region below 0.01㎛ to such an advantage can be accurately adjusted to the characteristics of the transistors.

Claims (5)

반도체기판의 셀영역 및 주변회로영역 상부에 게이트절연막, 도전층, 마스크절연막 및 반사방지막을 형성하는 공정과,Forming a gate insulating film, a conductive layer, a mask insulating film, and an anti-reflection film over the cell region and the peripheral circuit region of the semiconductor substrate; 상기 주변회로영역의 반사방지막 상부에 제1도전형MOS 트랜지스터영역의 접합영역으로 예정되는 부분을 노출시키는 제1감광막 패턴을 형성하는 공정과,Forming a first photoresist pattern on the anti-reflection film in the peripheral circuit region to expose a portion intended to be a junction region of the first conductive MOS transistor region; 상기 제1감광막 패턴을 식각마스크로 상기 반사방지막을 식각하되, 상기 제1감광막 패턴과 반사방지막의 측벽에 폴리머를 형성시키는 공정과,Etching the anti-reflection film using the first photoresist pattern as an etching mask, and forming a polymer on sidewalls of the first photoresist pattern and the anti-reflection film; 상기 제1감광막 패턴과 폴리머를 식각마스크로 사용하여 상기 마스크절연막과 도전층을 식각한 다음,제1도전형 고농도불순물을 이온주입하고 상기 폴리머를 제거하는 공정과,Etching the mask insulating layer and the conductive layer using the first photoresist pattern and the polymer as an etch mask, followed by ion implantation of a first conductive high concentration impurity and removing the polymer; 상기 제1감광막 패턴을 식각마스크로 사용하고, 상기 게이트절연막을 식각장벽으로 사용하여 상기 마스크절연막과 도전층을 식각하는 공정과,Etching the mask insulating layer and the conductive layer using the first photoresist pattern as an etching mask and using the gate insulating layer as an etching barrier; 상기 제1감광막 패턴을 제거하는 공정과,Removing the first photoresist pattern; 전체표면 상부에 주변회로영역에서 제2도전형MOS 트랜지스터영역의 접합영역으로 예정되는 부분을 노출시키는 제2감광막 패턴을 형성하는 공정과,Forming a second photoresist pattern on the entire surface, the second photoresist pattern exposing a portion intended to be a junction region of the second conductive MOS transistor region in the peripheral circuit region; 상기 제2감광막 패턴을 식각마스크로 상기 반사방지막을 식각하되, 상기 제1감광막 패턴과 반사방지막의 측벽에 폴리머를 형성시키는 공정과,Etching the anti-reflection film using the second photoresist pattern as an etching mask, and forming a polymer on sidewalls of the first photoresist pattern and the anti-reflection film; 상기 제2감광막 패턴과 폴리머를 식각마스크로 사용하여 상기 마스크절연막과 도전층을 식각한 다음,제2도전형 고농도불순물을 이온주입하고 상기 폴리머를제거하는 공정과,Etching the mask insulating layer and the conductive layer using the second photoresist pattern and the polymer as an etch mask, followed by ion implantation of a second conductive high concentration impurity and removing the polymer; 상기 제2감광막 패턴을 식각마스크로 사용하고, 상기 게이트절연막을 식각장벽으로 사용하여 상기 마스크절연막과 도전층을 식각하는 공정과,Etching the mask insulating layer and the conductive layer using the second photoresist pattern as an etch mask and using the gate insulating layer as an etch barrier; 상기 제2감광막 패턴을 제거하는 공정과,Removing the second photoresist pattern; 전체표면 상부에 셀영역에서 접합영역으로 예정되는 부분을 노출시키는 제3감광막 패턴을 형성하고, 상기 제3감광막 패턴을 식각마스크로 사용하여 상기 반사방지막과 마스크절연막을 식각하는 공정과,Forming a third photoresist pattern on the entire surface of the cell region to expose a portion of the cell region to be a junction region, and etching the anti-reflection film and the mask insulating film by using the third photoresist pattern as an etching mask; 상기 제3감광막 패턴을 제거한 다음, 상기 반사방지막을 식각마스크로 사용하여 상기 도전층을 식각하는 동시에 상기 반사방지막을 제거하는 공정과,Removing the third photoresist pattern, and then etching the conductive layer using the anti-reflection film as an etching mask and simultaneously removing the anti-reflection film; 상기 구조를 산화시킨 후 저농도불순물을 전면적으로 이온주입하는 공정과,Oxidizing the structure and ion implanting the low concentration impurity entirely; 상기 도전층과 마스크절연막의 식각면에 절연막 스페이서를 형성하는 공정을 포함하는 것을 특징으로 하는 반도체소자의 제조방법.And forming an insulating film spacer on an etching surface of the conductive layer and the mask insulating film. 제 1 항에 있어서,The method of claim 1, 상기 반도체소자의 제조방법으로 게이트전극의 CD 바이어스를 0.01㎛로 감소시키는 것을 특징으로 하는 반도체소자의 제조방법.The method of manufacturing a semiconductor device, characterized in that for reducing the CD bias of the gate electrode to 0.01㎛. 제 1 항에 있어서,The method of claim 1, 상기 폴리머는 고농도불순물을 이온주입하기 전에 제거하는 것을 특징으로 하는 반도체소자의 제조방법.The polymer is a manufacturing method of a semiconductor device, characterized in that to remove the high concentration impurities before implantation. 제 1 항에 있어서,The method of claim 1, 상기 질화막 스페이서는 질화막을 10 ∼ 40㎚ 두께로 증착한 다음 전면식각공정으로 식각하여 형성하는 것을 특징으로 하는 반도체소자의 제조방법.The nitride film spacer is a method of manufacturing a semiconductor device, characterized in that the nitride film is deposited by a thickness of 10 to 40nm and then etched by a front etching process. 제 1 항 또는 제 4 항에 있어서,The method according to claim 1 or 4, 상기 반사방지막은 상기 질화막 스페이서를 형성하기 위한 전면식각공정시 과도식각공정을 실시하여 제거하는 것을 특징으로 하는 반도체소자의 제조방법.The anti-reflection film is a method of manufacturing a semiconductor device, characterized in that to remove the over-etching process during the entire surface etching process for forming the nitride film spacer.
KR1019990025918A 1999-06-30 1999-06-30 Fabricating method for semiconductor device KR100333550B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990025918A KR100333550B1 (en) 1999-06-30 1999-06-30 Fabricating method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990025918A KR100333550B1 (en) 1999-06-30 1999-06-30 Fabricating method for semiconductor device

Publications (2)

Publication Number Publication Date
KR20010005121A KR20010005121A (en) 2001-01-15
KR100333550B1 true KR100333550B1 (en) 2002-04-24

Family

ID=19597945

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990025918A KR100333550B1 (en) 1999-06-30 1999-06-30 Fabricating method for semiconductor device

Country Status (1)

Country Link
KR (1) KR100333550B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388464B1 (en) * 2001-06-30 2003-06-25 주식회사 하이닉스반도체 Method of fabricating semiconductor memory device
KR100720257B1 (en) * 2005-12-30 2007-05-23 주식회사 하이닉스반도체 Method for forming transistors of semiconductor devices

Also Published As

Publication number Publication date
KR20010005121A (en) 2001-01-15

Similar Documents

Publication Publication Date Title
KR100350764B1 (en) Manufacturing method of semiconductor device
KR100333550B1 (en) Fabricating method for semiconductor device
KR100546144B1 (en) Manufacturing method of semiconductor device
KR100261682B1 (en) Method for fabricating semiconductor device
KR100346449B1 (en) Manufacturing method for semiconductor device
KR100345367B1 (en) Fabricating method for semiconductor device
KR100307560B1 (en) Manufacturing method of semiconductor device
KR20050034292A (en) Manufacturing method for semiconductor device
KR100434961B1 (en) Method of forming contact hole of semiconductor device using nitride pattern formed on only gate electrode as etch stop layer
KR100465604B1 (en) Manufacturing method of semiconductor device
KR100333542B1 (en) Contact plug formation method of semiconductor device
KR100359160B1 (en) A method for fabricating transistor of a semiconductor device
KR100439106B1 (en) Method for fabricating semiconductor device to improve refresh characteristic and reliability
KR20020002009A (en) Manufacturing method for semiconductor device
KR20000045365A (en) Method for forming transistor
KR20000027639A (en) Method for manufacturing contact plug of semiconductor devices
KR20000003596A (en) Method for manufacturing contact of semiconductor device
KR19990061110A (en) Contact formation method of semiconductor device
KR20020002013A (en) Manufacturing method for semiconductor device
KR20020002642A (en) Manufacturing method for semiconductor device
KR20020002024A (en) Manufacturing method for semiconductor device
KR19990004610A (en) Contact manufacturing method of semiconductor device
KR20000027790A (en) Method of manufacturing a semiconductor device
KR20030058635A (en) Manufacturing method for semiconductor device
KR20000003614A (en) Semiconductor device production method

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100325

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee