JPWO2021085383A1 - 熱伝導性シート及びその製造方法 - Google Patents

熱伝導性シート及びその製造方法 Download PDF

Info

Publication number
JPWO2021085383A1
JPWO2021085383A1 JP2021507107A JP2021507107A JPWO2021085383A1 JP WO2021085383 A1 JPWO2021085383 A1 JP WO2021085383A1 JP 2021507107 A JP2021507107 A JP 2021507107A JP 2021507107 A JP2021507107 A JP 2021507107A JP WO2021085383 A1 JPWO2021085383 A1 JP WO2021085383A1
Authority
JP
Japan
Prior art keywords
filler
conductive sheet
scaly
heat conductive
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021507107A
Other languages
English (en)
Other versions
JP6892725B1 (ja
Inventor
大希 工藤
実歩 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Polymatech Co Ltd
Original Assignee
Sekisui Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=75715943&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPWO2021085383(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sekisui Polymatech Co Ltd filed Critical Sekisui Polymatech Co Ltd
Priority to JP2021086144A priority Critical patent/JP2021145134A/ja
Application granted granted Critical
Publication of JP6892725B1 publication Critical patent/JP6892725B1/ja
Publication of JPWO2021085383A1 publication Critical patent/JPWO2021085383A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/58Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
    • B29C70/62Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres the filler being oriented during moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/44Number of layers variable across the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/30Particles characterised by physical dimension
    • B32B2264/303Average diameter greater than 1µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/30Particles characterised by physical dimension
    • B32B2264/308Aspect ratio of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/30Fillers, e.g. particles, powders, beads, flakes, spheres, chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2313/00Elements other than metals
    • B32B2313/02Boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/05Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Abstract

シートの厚さ方向のみならず、シートの面方向に沿う一方向にも高い熱伝導性を有する熱伝導性シートを提供する。熱伝導性シートは、高分子マトリクス11中に鱗片状充填材12を含む熱伝導性シートであって、鱗片状充填材12が、鱗片面の長軸方向が、熱伝導性シートの厚さ方向である第1の方向及び前記第1の方向に垂直である第2の方向のいずれか一方に沿い、かつ上記鱗片面において長軸方向に垂直となる横軸方向が、第1の方向及び第2の方向の他方に沿うように配向する。

Description

本発明は、熱伝導性シート、及びその製造方法に関する。
コンピュータ、自動車部品、携帯電話等の電子機器では、半導体素子や機械部品等の発熱体から生じる熱を放熱するためにヒートシンクなどの放熱体が一般的に用いられる。放熱体への熱の伝熱効率を高める目的で、発熱体と放熱体の間には、熱伝導性シートが配置されることが知られている。
熱伝導性シートは、一般的には、高分子マトリクスと、高分子マトリクス中に分散された熱伝導性充填材とを含有する。また、熱伝導性シートは、特定の方向の熱伝導性を高めるために、形状に異方性を有する異方性充填材を一方向に配向することがある。
異方性充填材が一方向に配向された熱伝導性シートは、例えば、延伸等により、繊維状充填材などの異方性充填材をシート面方向に沿って配向させた1次シートを複数作製し、その1次シートを複数積層して一体化したものを垂直にスライスすることで製造される。この製造方法(以下、「流動配向法」ともいう)によれば、微小厚みの単位層が多数積層されて構成される熱伝導性シートが得られる。また、異方性充填材は、シートの厚さ方向に配向させることが可能になり、厚さ方向の熱伝導性が良好となる(例えば、特許文献1参照)。熱伝導性シートは、厚さ方向の熱伝導性が高いことで、電子機器内部において、発熱体で生じた熱を効率的に外部に放熱することが可能になる。
特開2014−27144号公報
ところで、電子機器内部では、温度が局所的に上がるヒートスポットが生じることがある。ヒートスポット解消のためには、面方向の熱伝導率に優れる熱拡散シートを使用することがある。また、一般に電子素子の耐熱性は、電子素子の種類によって異なることから、例えば基板上に耐熱性の低い素子が存在する場合には、その方向に伝熱しないようにする必要がある。その場合、面内の特定の方向への熱伝導率を高くする一方で、その方向とは別の方向への熱伝導率を低くすることが求められる。しかし、従来の熱拡散シートは厚み方向の熱伝導率に劣るため、発熱体で生じた熱を放熱体に伝える効率に劣っており、また等方的に熱を拡散するため、特定の方向への熱伝導を抑制することが難しい。
そうした一方で、従来の流動配向法などにより得られる、異方性充填材をシートの厚さ方向に配向した熱伝導シートは、発熱体で生じた熱を放熱体に伝える効率に優れるものの、シートの面方向に沿う方向に熱伝導性が高めることが難しい。
そこで、本発明は、シートの厚さ方向のみならず、シートの面方向に沿う一方向にも高い熱伝導性を有する熱伝導性シートを提供することを課題とする。
本発明者は、鋭意検討の結果、以下の構成を有することで上記課題を解決できることを見出し、本発明を完成させた。すなわち、本発明は、以下の[1]〜[12]を提供する。
[1]高分子マトリクス中に鱗片状充填材を含む熱伝導性シートであって、
前記鱗片状充填材が、鱗片面の長軸方向が、前記熱伝導性シートの厚さ方向である第1の方向及び前記第1の方向に垂直である第2の方向のいずれか一方に沿い、かつ前記鱗片面において長軸方向に垂直となる横軸方向が、前記第1の方向及び前記第2の方向の他方に沿うように配向する、熱伝導性シート。
[2]前記鱗片状充填材は、前記長軸方向が前記第1の方向に沿い、かつ前記横軸方向が前記第2の方向に沿うように配向する上記[1]に記載の熱伝導性シート。
[3]前記鱗片状充填材は、前記横軸方向が前記第1の方向に沿い、かつ前記長軸方向が前記第2の方向に沿うように配向する、上記[1]に記載の熱伝導性シート。
[4]前記鱗片状充填材の前記横軸方向の長さに対する、前記長軸方向の長さの比(長軸方向の長さ/横軸方向の長さ)で表される第1のアスペクト比が1.5以上である上記[1]〜[3]のいずれかに記載の熱伝導性シート。
[5]前記鱗片状充填材の平均粒径が20μm以上である上記[1]〜[4]のいずれかに記載の熱伝導性シート。
[6]前記鱗片状充填材が、鱗片状黒鉛粉末を含む上記[1]〜[5]のいずれかに記載の熱伝導性シート。
[7]前記鱗片状充填材が、鱗片状窒化ホウ素粉末を含む上記[1]〜[6]のいずれかに記載の熱伝導性シート。
[8]前記高分子マトリクス中にさらに繊維状充填材を含む上記[1]〜[7]のいずれかに記載の熱伝導性シート。
[9]前記繊維状充填材が、炭素繊維である上記[8]に記載の熱伝導性シート。
[10]複数の単位層を有し、かつ前記複数の単位層のうち、少なくとも1つが前記鱗片状充填材を含み、
複数の単位層が、前記第1及び第2の方向に垂直な第3の方向に沿って積層される上記[1]〜[9]のいずれかに記載の熱伝導性シート。
[11]前記高分子マトリクス中にさらに非異方性充填材を含有する上記[1]〜[10]のいずれかに記載の熱伝導性シート。
[12]上記[1]〜[11]のいずれか1項に記載の熱伝導性シートの製造方法であって、
前記高分子マトリクスの前駆体である樹脂と、前記鱗片状充填材とを含む混合物を調製する工程と、
前記混合物を流動配向処理して、前記鱗片状充填材を配向させつつ、1次シートを得る工程と、
前記1次シートを積層して積層ブロックを得る工程と、
前記積層ブロックを積層方向に沿って切断する工程と
を備える熱伝導性シートの製造方法。
本発明によれば、シートの厚さ方向のみならず、シートの面方向に沿う一方向にも高い熱伝導性を有する熱伝導性シートを提供できる。
熱伝導性シートの第1の実施形態を示す模式的な斜視図である。 鱗片状充填材を示す模式的な斜視図である。 熱伝導性シートの製造方法の一例を示す模式的な斜視図である。 熱伝導性シートの第2の実施形態を示す模式的な斜視図である。
以下、本発明の実施形態に係る熱伝導性シートについて詳しく説明する。
[第1の実施形態]
図1は、第1の実施形態の熱伝導性シート10の模式図、図2は、鱗片状充填材12の詳細を説明するための模式図である。第1の実施形態に係る熱伝導性シート10は、高分子マトリクス11と、高分子マトリクス11中に分散される鱗片状充填材12とを含む。図2に示すように、鱗片状充填材12は、鱗片面において長さ方向を長軸方向Yとし、鱗片面において長軸方向に垂直となる方向を横軸方向X、これら長軸方向Yと横軸方向Xに垂直で、鱗片状充填材12の厚さ方向を厚さ方向Zとする。鱗片状充填材12は、熱伝導性シート10の熱伝導性を高める熱伝導性充填材である。
熱伝導性シート10において鱗片状充填材12は、その長軸方向Yが、熱伝導性シート10の厚さ方向である第1の方向に沿い、かつ横軸方向Xが、第1の方向に垂直である第2の方向に沿うように配向する。ここで、第2の方向は、シートの面方向における一方向である。したがって、熱伝導性シート10は、厚さ方向に加えて、熱伝導性シート10の面方向における一方向にも熱伝導性が良好となる。なお、本明細書では、第1及び第2の方向のいずれにも垂直な方向を第3の方向とする。第3の方向は、熱伝導性シート10の面方向に沿う一方向である。
熱伝導性シート10は、厚さ方向に加えて、面方向における一方向にも熱伝導性が良好となることで、放熱効果を高めつつ、面方向にも熱を逃がしてヒートスポットを生じにくくする。さらに、面方向における一方向以外の方向には、熱伝導性がそれほど高められないので、例えば基板上に耐熱性の低い素子が存在する場合には、その方向に伝熱しないようにすることも可能になる。
熱伝導性シート10は、高分子マトリクス11中に分散される熱伝導性充填材として、鱗片状充填材12に加えて、鱗片状充填材12以外の異方性充填材を含有してもよく、具体的には、図1に示すように、繊維状充填材13を含有することが好ましい。熱伝導性シートは、鱗片状充填材12に加えて、繊維状充填材13を含有することで、例えば鱗片状充填材12と鱗片状充填材12との間に繊維状充填材13が存在することで熱伝導パスが良好に形成され、高い熱伝導性が得られる。
繊維状充填材13は、その繊維軸方向が、シートの厚さ方向である第1の方向に沿うように配向される。熱伝導性シート10は、繊維状充填材13を第1の方向に沿って配向させることで、シートの厚さ方向(第1の方向)の熱伝導率をより一層高くでき、第1の方向に沿う熱伝導率を、第2の方向に沿う熱伝導率よりも十分に高くしやすくなる。
熱伝導性シート10は、高分子マトリクス11中に分散される熱伝導性充填材として非異方性充填材(図示しない)を含有することも好ましい。熱伝導性シート10は、非異方性充填材を含有することで、鱗片状充填材12などの異方性充填材と異方性充填材の間に熱伝導性を有する充填材が適切に介在され、熱伝導性率がさらに良好となる。
なお、本明細書において、異方性充填材とは、形状に異方性を有する充填材であり、配向が可能な充填材である。異方性充填材は、通常は、いずれかのアスペクト比が2より大きくなる。また、非異方性充填材は、形状に異方性を実質的に有しない充填材であり、後述する剪断力作用下など、異方性充填材が所定の方向に配向する環境下においても、その所定の方向に配向しない充填材である。非異方性充填材は、後述する通り、例えば、そのアスペクト比が2以下となるものである。
本発明では、高分子マトリクス11に含有される熱伝導性充填材として、鱗片状充填材12を単独で使用してもよいし、鱗片状充填材12と繊維状充填材13の両方を使用してもよいし、鱗片状充填材12と非異方性充填材を併用してもよい。さらには、鱗片状充填材12と繊維状充填材13と非異方性充填材とを併用してもよい。
以下、本実施形態に係る熱伝導性シートを構成する各材料などについてより説明する。
(高分子マトリクス)
高分子マトリクス11は、鱗片状充填材12等の熱伝導性充填材を保持する部材であり、柔軟なゴム状弾性体でなることが好ましい。高分子マトリクスは、その前駆体である樹脂から形成される。なお、本明細書でいう前駆体とは、後述するように反応することで高分子マトリクス11となる物質のみならず、反応せず高分子マトリクス11と同一の物質も含む概念である。
鱗片状充填材12等の異方性充填材を配向した状態で高分子マトリクス11中に含有させるためには、配向させる工程の際に樹脂が流動性を有していることが要求される。例えば、高分子マトリクス11の前駆体である樹脂が熱可塑性樹脂であれば、加熱して可塑化した状態で異方性充填材を配向させることができる。また、反応性液状樹脂であれば、硬化前に異方性充填材を配向させて、その状態を維持したまま硬化すれば、異方性充填材が配向した硬化物を得ることができる。熱可塑性樹脂は比較的粘度が高く、また低粘度になるまで可塑化すると樹脂が熱劣化するおそれがあるため、反応性液状樹脂を採用することが好ましい。
反応性液状樹脂としては、反応前は液状であり、所定の条件で硬化して架橋構造を形成するゴムまたはゲルを用いることが好ましい。架橋構造とはポリマーの少なくとも一部が3次元的に架橋し、加熱によって溶融しない硬化体を形成しているものをいう。また、液状樹脂に異方性充填材を加えた混合組成物を作製し、流動性のある液状樹脂中でこれらを配向させるため、低粘度であることが好ましく、配向後には所定の条件で硬化可能な性質を備えるものが好ましい。
こうした反応性液状樹脂の硬化方法としては例えば、熱硬化性や光硬化性のものを例示できるが、光を遮蔽する鱗片状充填材などの充填材を多量に含むため、熱硬化性のゴムやゲルを用いることが好ましい。より具体的には、シリコーン樹脂、ポリオールとイソシアネートの反応を利用するウレタンゴム、アクリレートのラジカル反応やカチオン反応を利用するアクリルゴム等を例示することができるが、シリコーン樹脂を用いることが好ましい。
シリコーン樹脂は、オルガノポリシロキサンであれば特に限定されないが、硬化型シリコーン樹脂を使用することが好ましい。シリコーン樹脂は、硬化型である場合には、硬化性シリコーン組成物を硬化することで得られるものである。シリコーン樹脂は、付加反応型のものを使用してもよいし、それ以外のものを使用してもよい。付加反応型の場合、硬化性シリコーン組成物は、主剤となるシリコーン化合物と、主剤を硬化させる硬化剤とからなることが好ましい。
主剤として使用されるシリコーン化合物は、アルケニル基含有オルガノポリシロキサンが好ましく、具体的には、ビニル基含有ポリジメチルシロキサン、ビニル基含有ポリフェニルメチルシロキサン、ビニル基含有ジメチルシロキサン−ジフェニルシロキサンコポリマー、ビニル基含有ジメチルシロキサン−フェニルメチルシロキサンコポリマー、ビニル基含有ジメチルシロキサン−ジエチルシロキサンコポリマーなどのビニル基含有オルガノポリシロキサンなどが挙げられる。
硬化剤としては、上記した主剤であるシリコーン化合物を硬化できるものであれば、特に限定されないが、ヒドロシリル基(SiH)を2つ以上有するオルガノポリシロキサンである、オルガノハイドロジェンポリシロキサンが好ましい。
硬化剤は、ヒドロシリル基の数や分子量、主剤に対する配合量比を適宜調整することで、後述する1次シートの硬さを調整できる。具体的には、1分子中のヒドロシリル基が少ないか、分子量の大きい硬化剤を用いたり、主剤に対する硬化剤の配合量比を少なくしたりすることで、1次シートの硬さを低くできる。
熱伝導性シートにおける高分子マトリクスの含有量は、体積%(充填率)で表すと、熱伝導性シート全量に対して、好ましくは15〜50体積%、より好ましくは20〜45体積%である。
(鱗片状充填材)
鱗片状充填材12は、横軸方向Xの長さに対する、長軸方向Yの長さの比(長軸方向Yの長さ/横軸方向Xの長さ)で表される第1のアスペクト比が、1.5以上であることが好ましい。
上記第1のアスペクト比を1.5以上とすることで、第1の方向(厚さ方向)の熱伝導性を、第2の方向(面方向の一方向)の熱伝導性よりも有意に高くできる。これにより、面方向に必要以上に伝熱することを防止しつつ、厚さ方向の熱伝導性が高められ、放熱効果を高めやすくなる。また、第1の方向(厚さ方向)の熱伝導性を、面方向に沿う熱伝導性よりも十分に高くする観点からは、第1のアスペクト比は、1.7以上がより好ましい。
ただし、第1のアスペクト比は、1以上であればよく、第1のアスペクト比が例えば、1.5未満であると、第1の方向と第2の方向の熱伝導性に有意に差をつけることが難しくなるが、厚さ方向及び面方向の両方に高い熱伝熱性が要求される用途には好適である。
第1のアスペクト比は、第2の方向にも一定以上の熱伝導性を付与するために、例えば5以下、好ましくは3以下、より好ましくは2.5以下である。
鱗片状充填材12は、第1の方向(厚さ方向)に配向させやすくして熱伝導性を高める観点から、厚さ方向Zの長さに対する、長軸方向Yの長さの比(長軸方向Yの長さ/厚さ方向Zの長さ)で表される第2のアスペクト比が、3以上であることが好ましく、6〜300であることがより好ましい。また、各材料を配合した混合物の粘度を低くするためには第2のアスペクト比が8〜15であることがさらに好ましく、一方、硬化物からの鱗片状充填剤12の脱落防止および熱伝導性を高めるという観点からは第2のアスペクト比が15〜300であることがさらに好ましい。なお、第2のアスペクト比は、通常は第1のアスペクト比よりも大きくなる。
また、鱗片状充填材12の平均粒径は、20μm以上が好ましい。なお、平均粒径は長軸方向Yの長さの平均である。平均粒径を20μm以上とすると、第1の方向(厚さ方向)に沿って鱗片状充填材12を配向させやすくなり、また、充填材同士を接触させやすくなり、熱の伝達経路が確保され、熱伝導性、特に第1の方向の熱伝導性を高くしやすくなる。熱伝導性を向上させる観点から、鱗片状充填材12の平均粒径は、30μm以上がより好ましく、40μm以上がさらに好ましく、60μm以上がよりさらに好ましい。
また、鱗片状充填材12の嵩が低くなり、高分子マトリクス11に高充填としやすくする観点から、鱗片状充填材12の平均粒径は、400μm以下が好ましく、300μm以下がより好ましく、200μm以下がさらに好ましく、150μm以下がよりさらに好ましい。
鱗片状充填材12は、1種単独で使用してもよいし、2種以上を併用してもよい。例えば、鱗片状充填材12として、少なくとも2つの互いに異なる平均粒径を有するものを使用してもよい。
なお、鱗片状充填材12のアスペクト比(第1及び第2のアスペクト比)、及び平均粒径は、顕微鏡で観察して各長さを測定して求めることができる。例えば、熱伝導性シート10のマトリクス成分を溶かして分離した鱗片状充填材12について、電子顕微鏡や光学顕微鏡を用いて、任意の50個の鱗片状充填材12の長軸方向の長さを測定して、その平均値(相加平均値)を平均粒径とすることができる。この際、鱗片状充填材12を粉砕しないように大きなシェアがかからないようにする。また、熱伝導性シート10から鱗片状充填材12を分離することが難しい場合は、X線CT装置を用いて、鱗片状充填材12の長軸方向Yの長さを測定して、その平均値(相加平均値)を平均粒径とすることもできる。
同様に、任意の50個の鱗片状充填材12の長軸方向Yの長さ、横軸方向Xの長さ、及び厚さ方向Zの長さ(すなわち、厚さ)を測定して、平均値(相加平均値)の比により、第1及び第2のアスペクト比を求めるとよい。
なお、本明細書において、任意のものとは無作為に選んだものをいう。
鱗片状充填材12としては、鱗片状炭素粉末、鱗片状炭化ケイ素粉末、鱗片状窒化アルミニウム粉末、鱗片状窒化ホウ素粉末、鱗片状酸化アルミニウム粉末等が挙げられる。なかでも、熱伝導性の観点から、鱗片状黒鉛粉末及び鱗片状窒化ホウ素粉末から選択される少なくとも1種が好ましい。また、鱗片状充填材12は、熱伝導性、特に第1の方向における熱伝導性を向上させる観点から、鱗片状黒鉛粉末がより好ましい。
鱗片状黒鉛粉末は、グラファイトの結晶面が鱗片面の面内方向に連なっており、その面内方向に高い熱伝導率を備える。そのため、その鱗片面を所定の方向に揃えることで、特定方向の熱伝導率を高めることができる。鱗片黒鉛粉末は、高い黒鉛化度をもつものが好ましい。
熱伝導性シート10における鱗片状充填材12の含有量は、高分子マトリクス100質量部に対して8〜400質量部であることが好ましい。鱗片状充填材12の含有量を8質量部以上とすることで、第1及び第2の方向における熱伝導性を高めやすくなり、400質量部以下とすることで、後述する液状組成物の粘度が適切になりやすく、鱗片状充填材12の配向性が良好となる。これら観点から、熱伝導性シート10における鱗片状充填材12の含有量は、40〜300質量部であることがより好ましく、70〜200質量部であることがさらに好ましい。また、鱗片状充填材12の含有量は、体積基準の充填率(体積充填率)で表すと、熱伝導性シート全量に対して、好ましくは5〜50体積%、より好ましくは8〜40体積%、さらに好ましくは13〜30体積%である。
なお、熱伝導性シート10は、上記のとおり、繊維状充填材13などの他の異方性充填材と併用してもよいが、鱗片状充填材12を繊維状充填材13と併用する場合の鱗片状充填材12と繊維状充填材13の合計量の好適値は後述する通りである。
鱗片状充填材12は、上記のとおり、長軸方向Yが、熱伝導性シート10の第1の方向に沿い、かつ横軸方向Xが、熱伝導性シート10の第2の方向に沿うように配向する。
ここで、長軸方向Yが第1の方向に沿うとは、熱伝導性シート10の第1の方向に対して長軸方向Yのなす角度(配向角度)が30°未満の鱗片状充填材12の数の割合が、鱗片状充填材全量に対して、50%を超える状態にあることをいい、該割合は、好ましくは80%を超える。
また、横軸方向Xが第2の方向に沿うとは、熱伝導性シート10の第2の方向に対して横軸方向Xのなす角度が30°未満の鱗片状充填材12の数の割合が、鱗片状充填材全量に対して、50%を超える状態にあることをいい、該割合は、好ましくは80%を超える。
なお、第1の方向の熱伝導率を高める観点から、鱗片状充填材12の第1の方向に対する長軸方向Yのなす角度(配向角度)は、0°以上30°未満とすることが好ましく、該角度は、一定数(例えば、任意の鱗片状充填材12を50個)の鱗片状充填材12の配向角度の平均値である。
また、第2の方向における熱伝導率を高める観点から、鱗片状充填材12の第2の方向に対する横軸方向Xのなす角度は、0°以上30°未満とすることが好ましく、該角度は、一定数(例えば、任意の鱗片状充填材12を50個)の鱗片状充填材12がなす角度の平均値である。
(繊維状充填材)
熱伝導性シート10は、上記のとおり、高分子マトリクス11に分散される繊維状充填材13を含有することが好ましい。繊維状充填材13は、その繊維軸方向を第1の方向に配向させやすくして熱伝導性を高める観点から、アスペクト比が、4以上であることが好ましく、7〜100であることがより好ましく、15〜50であることがさらに好ましい。なお、アスペクト比は、繊維状充填材13の繊維軸方向の長さ(繊維長)/繊維の直径を意味する。
鱗片状充填材12の第1のアスペクト比、及び繊維状充填材13のアスペクト比は、本実施形態では、言い換えると、第2の方向における異方性充填材の長さに対する、第1の方向における異方性充填材の長さの比ともいえる。
したがって、鱗片状充填材12の第1のアスペクト比と、繊維状充填材13のアスペクト比の加重平均値(「第1の方向/第2の方向のアスペクト比」ともいう)は、異方性充填材が第2の方向に対して、第1の方向にどの程度配向しているかを示す比率ともいえる。
なお、アスペクト比の加重平均値とは、各異方性充填材のアスペクト比(鱗片状充填材12であれば第1のアスペクト比、繊維状充填材13であればアスペクト比)に配合量(体積比率)を加重させて平均した値である。
第1の方向/第2の方向のアスペクト比は、具体的には、1以上であればよいが、1.5以上が好ましく、1.7以上がより好ましく、3以上がさらに好ましい。このアスペクト比を1.5以上にすると、本実施形態では厚さ方向の熱伝導率が高くなり、電子機器などに使用した場合の放熱効果が高くなる。また、第1の方向/第2の方向のアスペクト比は、例えば8以下であることが好ましく、7以下がより好ましく、5以下がさらに好ましい。このアスペクト比を8以下とすると、本実施形態では面方向の熱伝導率が高くなり、ヒートスポットなどを防止しやすくなる。
繊維状充填材13の平均繊維長は、好ましくは20〜500μm、より好ましくは80〜400μmである。平均繊維長を20μm以上とすると、熱伝導性シートにおいて充填材同士が適切に接触して、熱の伝達経路が確保され、熱伝導性シート10の熱伝導性が良好になる。一方、平均繊維長を500μm以下とすると、繊維状充填材13の嵩が低くなり高充填できるようになる。また、繊維状充填材13に導電性を有するものを使用しても、熱伝導性シート10の導電性が必要以上に高くなることが防止される。
なお、上記の平均繊維長は、繊維状充填材13を顕微鏡で観察して算出することができる。例えば、熱伝導性シート10のマトリクス成分を溶かして分離した繊維状充填材13について、電子顕微鏡や光学顕微鏡を用いて、任意の50個の繊維状充填材13の繊維長を測定して、その平均値(相加平均値)を平均繊維長とすることができる。この際、繊維を粉砕しないように大きなシェアがかからないようにする。また、熱伝導性シート10から繊維状充填材13を分離することが難しい場合は、X線CT装置を用いて、繊維状充填材13の繊維長を測定して、平均繊維長を算出してもよい。
また、繊維状充填材13の直径についても同様に電子顕微鏡や光学顕微鏡、X線CT装置を用いて測定することができる。
繊維状充填材13としては、炭素繊維、金属繊維、セラミックス繊維、ポリパラフェニレンベンゾオキサゾール繊維等が挙げられる。なかでも炭素繊維が好ましい。
炭素繊維としては、黒鉛化炭素繊維が好ましい。黒鉛化炭素繊維は、グラファイトの結晶面が繊維軸方向に連なっており、その繊維軸方向に高い熱伝導率を備える。そのため、その繊維軸方向を所定の方向に揃えることで、特定方向の熱伝導率を高めることができる。黒鉛化炭素繊維は、高い黒鉛化度をもつものが好ましい。
上記した黒鉛化炭素繊維などの黒鉛化炭素材料としては、以下の原料を黒鉛化したものを用いることができる。例えば、ナフタレン等の縮合多環炭化水素化合物、PAN(ポリアクリロニトリル)、ピッチ等の縮合複素環化合物等が挙げられるが、特に黒鉛化度の高い黒鉛化メソフェーズピッチやポリイミド、ポリベンザゾールを用いることが好ましい。例えばメソフェーズピッチを用いることにより、後述する紡糸工程において、ピッチがその異方性により繊維軸方向に配向され、その繊維軸方向へ優れた熱伝導性を有する黒鉛化炭素繊維を得ることができる。
黒鉛化炭素繊維におけるメソフェーズピッチの使用態様は、紡糸可能ならば特に限定されず、メソフェーズピッチを単独で用いてもよいし、他の原料と組み合わせて用いてもよい。ただし、メソフェーズピッチを単独で用いること、すなわち、メソフェーズピッチ含有量100%の黒鉛化炭素繊維が、高熱伝導化、紡糸性及び品質の安定性の面から最も好ましい。
黒鉛化炭素繊維は、紡糸、不融化及び炭化の各処理を順次行い、所定の粒径に粉砕又は切断した後に黒鉛化したものや、炭化後に粉砕又は切断した後に黒鉛化したものを用いることができる。黒鉛化前に粉砕又は切断する場合には、粉砕で新たに表面に露出した表面において黒鉛化処理時に縮重合反応、環化反応が進みやすくなるため、黒鉛化度を高めて、より一層熱伝導性を向上させた黒鉛化炭素繊維を得ることができる。一方、紡糸した炭素繊維を黒鉛化した後に粉砕する場合は、黒鉛化後の炭素繊維が剛いため粉砕し易く、短時間の粉砕で比較的繊維長分布の狭い炭素繊維粉末を得ることができる。
繊維状充填材13は、1種単独で使用してもよいし、2種以上を併用してもよい。例えば、繊維状充填材13として、少なくとも2つの互いに異なる平均繊維長を有する充填材を使用してもよい。
上記の通り、繊維状充填材13は、その繊維軸方向が、第1の方向に沿うように配向されるものである。ここで、繊維軸方向が第1の方向に沿うとは、第1の方向に対して繊維状充填材13の長軸のなす角度が30°未満の繊維状充填材13の数の割合が、繊維状充填材全量に対して、50%を超える状態にあることをいい、該割合は、好ましくは80%を超える。
なお、繊維状充填材13の配向方向は、熱伝導率を高める観点から、第1の方向に対する繊維状充填材13の繊維軸方向のなす角度(配向角度)を0°以上5°未満とすることが好ましく、該角度は、一定数(例えば、任意の繊維状充填材13を50個)の繊維状充填材13の配向角度の平均値である。
鱗片状充填材12と繊維状充填材13を含有する場合、鱗片状充填材12と繊維状充填材13との質量割合(鱗片状充填材/繊維状充填材)は、好ましくは20/80〜95/5であり、より好ましくは30/70〜90/10、さらに好ましくは55/45〜80/20である。質量割合を20/80以上とすることで、鱗片状充填材12の量を一定以上にすることができるので、第1の方向のみならず、第2の方向の熱伝導性を向上させやすくなる。また、95/5以下とすることで、繊維状充填材13を含有させた効果を発揮しやすくなり、例えば第1の方向の熱伝導性を向上させやすい。
熱伝導性シート10における鱗片状充填材12と繊維状充填材13との合計含有量は、高分子マトリクス100質量部に対して10〜500質量部であることが好ましい。合計含有量を10質量部以上とすることで、熱伝導性を高めやすくなり、500質量部以下とすることで、後述する液状組成物の粘度が適切になりやすく、各充填材の配向性が良好となる。
これら観点から、熱伝導性シート10における鱗片状充填材12と繊維状充填材13との上記合計含有量は、50〜350質量部であることがより好ましく、80〜250質量部であることがより好ましい。また、上記の合計含有量は、体積基準の充填率(体積充填率)で表すと、熱伝導性シート全量に対して、好ましくは2〜50体積%、より好ましくは8〜40体積%であり、さらに好ましくは15〜30体積%である。
鱗片状充填材12及び繊維状充填材13は、特に限定されないが、異方性を有する方向(すなわち、長軸方向、繊維軸方向)に沿う熱伝導率が、一般的に30W/(m・K)以上であり、好ましくは100W/(m・K)以上である。当該熱伝導率は、その上限が特に限定されないが、例えば2000W/(m・K)以下である。熱伝導率の測定方法は、レーザーフラッシュ法である。
また、鱗片状充填材12及び繊維状充填材13は、導電性を有していてもよいし、絶縁性を有していてもよい。鱗片状充填材12及び繊維状充填材13が絶縁性を有すると、本実施形態では熱伝導性シート10の厚さ方向の絶縁性を高めることができるため、電気機器において好適に使用することが可能になる。なお、本発明において導電性を有するとは例えば体積抵抗率が1×10Ω・cm以下の場合をいうものとする。また、絶縁性を有するとは例えば体積抵抗率が1×10Ω・cmを超える場合をいうものとする。
(非異方性充填材)
熱伝導性シート10は、上記のとおり、高分子マトリクス11中に、非異方性充填材(図示しない)を含有することが好ましい。非異方性充填材は、鱗片状充填材12などの異方性充填材とともに熱伝導性シート10に熱伝導性を付与する材料である。非異方性充填材が含有されることで、配向した鱗片状充填材12などの異方性充填材の間に当該充填材が介在し、熱伝導率のより高い熱伝導性シートが得られる。
非異方性充填材は、形状に異方性を実質的に有しない充填材であり、後述する剪断力作用下など、鱗片状充填材12などの異方性充填材が所定の方向に配向する環境下においても、その所定の方向に配向しない充填材である。
非異方性充填材は、そのアスペクト比が2未満であり、1.5以下であることがより好ましい。アスペクト比を2未満とすることで、後述する液状組成物の粘度が上昇するのを防止して、高充填にすることが可能になる。
非異方性充填材は、導電性を有してもよいが、絶縁性を有することが好ましく、熱伝導性シート10においては、配合される充填材(すなわち、鱗片状充填材12、又は鱗片状充填材12及び繊維状充填材13、並びに非異方性充填材)が絶縁性を有することが好ましい。これらが絶縁性であると、本実施形態では熱伝導性シート10の厚さ方向の絶縁性を高めやすくなる。
非異方性充填材は、例えば、金属、金属酸化物、金属窒化物、金属水酸化物、炭素材料、金属以外の酸化物、窒化物、炭化物などが挙げられる。また、非異方性充填材の形状は、球状、不定形の粉末などが挙げられる。
非異方性充填材において、金属としては、アルミニウム、銅、ニッケルなど、金属酸化物としては、アルミナに代表される酸化アルミニウム、酸化マグネシウム、酸化亜鉛など、金属窒化物としては窒化アルミニウムなどを例示することができる。金属水酸化物としては、水酸化アルミニウムが挙げられる。さらに、炭素材料としては球状黒鉛などが挙げられる。金属以外の酸化物、窒化物、炭化物としては、石英、窒化ホウ素、炭化ケイ素などが挙げられる。上記した中では、絶縁性を有する非異方性充填材として、金属酸化物、金属窒化物、金属水酸化物、金属炭化物が挙げられる。
また、非異方性充填材は、上記した中でも、酸化アルミニウム及びアルミニウムは、熱伝導率が高く、球状のものが入手しやすい点で好ましく、水酸化アルミニウムは入手し易く熱伝導性シートの難燃性を高めることができる点で好ましい。これらのなかでは、酸化アルミニウムがより好ましい。
非異方性充填材の平均粒径は0.1〜50μmであることが好ましく、0.5〜35μmであることがより好ましい。また、1〜20μmであることが特に好ましい。平均粒径を50μm以下とすることで、鱗片状充填材などの異方性充填材の配向を乱すなどの不具合が生じにくくなる。また、平均粒径を0.1μm以上とすることで、非異方性充填材の比表面積が必要以上に大きくならず、多量に配合しても液状組成物の粘度は上昇しにくく、非異方性充填材を高充填しやすくなる。
なお、非異方性充填材の平均粒径は、電子顕微鏡等で観察して測定できる。より具体的には、鱗片状充填材12及び繊維状充填材13における測定と同様に電子顕微鏡や光学顕微鏡、X線CT装置を用いて、任意の非異方性充填材50個の粒径を測定して、その平均値(相加平均値)を平均粒径とすることができる。
非異方性充填材は、1種単独で使用してもよいし、2種以上を併用してもよい。なお、各充填材の平均粒径とは、各充填材を2種以上含むときはそれらを区別せずに算出した値とする。
熱伝導性シート10における非異方性充填材の含有量は、高分子マトリクス100質量部に対して、50〜1500質量部の範囲であることが好ましく、200〜800質量部の範囲であることがより好ましく、250〜550質量部の範囲内であることがさらに好ましい。50質量部以上とすることで、鱗片状充填材12などの異方性充填材の隙間に介在する非異方性充填材の量が一定量以上となり、熱伝導性が良好になる。一方、1500質量部以下とすることで、含有量に応じた熱伝導性を高める効果を得ることができ、また、非異方性充填材により鱗片状充填材12などの異方性充填材による熱伝導を阻害したりすることもない。また、200〜800質量部の範囲内にすることで、熱伝導性シート10の熱伝導性に優れ、液状組成物の粘度も好適となる。
なお、非異方性充填材の含有量は、体積%で表すと、熱伝導性シート全量に対して、10〜75体積%が好ましく、30〜60体積%がより好ましく、35〜50体積%がさらに好ましい。
(添加成分)
熱伝導性シート10において、高分子マトリクス11には、さらに熱伝導性シート10としての機能を損なわない範囲で種々の添加剤を配合させてもよい。添加剤としては、例えば、分散剤、カップリング剤、粘着剤、難燃剤、酸化防止剤、着色剤、沈降防止剤などから選択される少なくとも1種以上が挙げられる。また、上記したように硬化性シリコーン組成物を硬化させる場合には、添加剤として硬化を促進させる硬化触媒などが配合されてもよい。硬化触媒としては、白金系触媒が挙げられる。
[単位層]
熱伝導シート10は、特に限定されないが、後述の製造方法で製造されることで、複数の単位層14からなる。熱伝導シート10における各単位層14は鱗片状充填材12を含有する。複数の単位層14は、図1に示すように、第3の方向に沿って積層されており、隣接する単位層14同士が互いに接着されている。
各単位層14は、熱伝導性充填材として、鱗片状充填材12を単独で含有してもよいし、鱗片状充填材12と繊維状充填材13の両方を含有してもよいし、鱗片状充填材12と非異方性充填材(図1においては図示しない)とを含有してもよい。さらには、鱗片状充填材12と繊維状充填材13と非異方性充填材とを含有してもよい。
また、各単位層14は、実質的に同一の組成を有する。したがって、各単位層14における鱗片状充填材12、繊維状充填材13、非異方性充填材、及び高分子マトリクスの含有量は、熱伝導性シートにおける含有量と同様であり、各単位層14における鱗片状充填材12、繊維状充填材13、非異方性充填材、及び高分子マトリクス11の含有量及び充填率も、上記で述べたとおりとなる。
各単位層14において鱗片状充填材12は、上記の通り長軸方向Yが第1の方向に沿い、かつ横軸方向Xが第2の方向に沿うように配向される。また、熱伝導性シート10が繊維状充填材13を含有する場合、各単位層14において繊維状充填材13は、繊維軸方向が第1の方向に沿うように配向される。また、各単位層14において、高分子マトリクス11は上記した熱伝導性充填材を保持する成分となり、各単位層14において、高分子マトリクス11には、上記した各熱伝導性充填材が分散するように配合される。
(熱伝導率)
熱伝導性シート10の第1の方向の熱伝導率は、例えば5W/(m・K)以上であり、8W/(m・K)以上とすることが好ましく、11W/(m・K)以上がより好ましい。これら下限値以上とすることで、熱伝導性シート10の厚さ方向における熱伝導性を優れたものにできる。上限は特にないが、熱伝導性シート10の厚さ方向の熱伝導率は、例えば50W/(m・K)以下である。なお、熱伝導率はASTM D5470−06に準拠した方法で測定するものとする。
また、鱗片状充填材12は、その横軸方向Xが第2の方向に沿うように配向されている。そのため、第2の方向にも高い熱伝導性が示される。熱伝導性シート10の第2の方向の熱伝導率は、2.5W/(m・K)以上であることが好ましく、3W/(m・K)以上であることがより好ましく、4.5W/(m・K)以上であることがさらに好ましい。また、熱伝導性シート10の第2の方向の熱伝導率についても上限はないが、例えば50W/(m・K)以下である。
また熱伝導性シート10は、鱗片状充填材12が上記のように配向されることで、第3の方向(面方向に沿う第2方向と垂直な方向)の熱伝導率は、第1の方向および第2の方向の熱伝度率よりも低くなる。熱伝導性シート10の第3の方向の熱伝導率は、4.5W/(m・K)未満であることが好ましく、3W/(m・K)未満であることがより好ましく、2.5W/(m・K)未満であることがさらに好ましい。熱伝導性シート10の第3の方向の熱伝導率の下限は、特に限定されないが、例えば0.2W/(m・K)以上である。
また、以下の式で求められる第2の方向の熱特性レベルは、10%以上が好ましい。10%以上であることで、熱伝導性シート10は、面方向において熱伝導性の異方性を有することになり、面方向の一方向に伝熱させ、他の方向への伝熱を防止できる。このような観点から、第2の方向の熱特性レベルは、20%以上がより好ましく、50%以上がさらに好ましい。
また、第2の方向の熱特性レベルは、100%以下であってもよいが、厚さ方向の熱伝導性を面方向の熱伝導性よりも高めて放熱性を優れたものとする観点から、90%以下が好ましく、80%以下がより好ましい。
第2の方向の熱特性レベル(%)=(λ2−λ3)/(λ1−λ3)×100
λ1:第1の方向の熱伝導率
λ2:第2の方向の熱伝導率
λ3:第3の方向の熱伝導率
熱伝導性シート10のタイプE硬さは、例えば70以下である。熱伝導性シート10は、タイプE硬さが70以下となることで、柔軟性が担保され、例えば、発熱体と放熱体などに対する追従性が良好となり、放熱性が良好となりやすい。
また、凹凸の大きな被着体に用いる場合などは極めて柔軟なことが好ましく、熱伝導性シート10のタイプOO硬さは、62以下であることが好ましい。熱伝導性シート10は、タイプOO硬さが62以下となることで、極めて柔軟な熱伝導性シートとなり、発熱体と放熱体などに対する追従性が極めて良好となる。また、柔軟性を向上させて、追従性などを優れたものとする観点から、熱伝導性シート10のタイプOO硬さは、好ましくは50以下、より好ましくは45以下である。一方、熱伝導性シート10のタイプOO硬さは、特に限定されないが、例えば15以上、好ましくは18以上、より好ましくは25以上である。
また、熱伝導性シート10の取扱性を優先する場合は、熱伝導性シート10のタイプE硬さで15以上であることが好ましく、35以上であることが特に好ましい。熱伝導性シート10の硬さが柔らかいほど、圧縮したときに発熱体や放熱体またはそれらが配置される基板等への応力を小さくできるため好ましいが、硬さをタイプOO硬さで15以上とすることで、熱伝導性シート10が所定の取扱性を良くして、被着体へ貼着しやすいものとすることができる。特にタイプE硬さで35以上とすれば、取扱性と柔らかさのバランスに優れるものとすることができる。
なお、上記タイプE硬さおよびタイプOO硬さはASTM D2240−05に規定された方法に従って、所定のデュロメータを用いて測定される値である。
熱伝導性シート10及び後述する1次シートのタイプOO硬さは、ASTM D2240−05の規定に従って測定したものである。なお、タイプOO硬さは、試験片が10mmとなるように調整して、試験片の両面の硬さを測定してその平均値を算出する。ただし、厚みが10mm未満である場合には、複数枚のシートを重ねて、試験片の厚みが10mm、又は10mmより大きくかつ10mmに最も近い厚さとなるように調整する。
本実施形態では、熱伝導シート10の両表面10A、10Bのいずれかにおいて、鱗片状充填材12、又は鱗片状充填材12及び繊維状充填材13などの異方性充填材が露出するとよい。また、露出した鱗片状充填材12、又は鱗片状充填材12及び繊維状充填材13は、両表面10A,10Bそれぞれより突出していてもよい。熱伝導性シート10は、各表面10A,10Bに異方性充填材が露出することで、各表面10A、10Bが非粘着面となる。なお、熱伝導性シート10の両表面10A,10Bはそれぞれ、例えば、後述する刃物による切断により、切断面となり、それにより、両表面10A,10Bそれぞれにおいて、鱗片状充填材12、又は鱗片状充填材12及び繊維状充填材13が露出する。
ただし、両表面10A,10Bのいずれか一方又は両方は、異方性充填材が露出せずに粘着面となってもよい。
熱伝導性シート10の厚さは、熱伝導性シート10が搭載される電子機器の形状や用途に応じて、適宜変更される。熱伝導性シート10の厚さは、特に限定されないが、例えば0.1〜5mmの範囲で使用されるとよい。
また、各単位層14の厚さは、特に限定されないが、0.1〜10.0mmが好ましい。各単位層14の厚さを上記範囲内とすることで、後述する流動配向により、鱗片状充填材12の長軸方向Y及び横軸方向Xそれぞれを、第1及び第2の方向それぞれに沿わせて配向させることが可能になる。また、繊維状充填材13を使用する場合には、繊維状充填材13の長軸方向を第1の方向に沿うように配向させやすくなる。これら観点から、各単位層14の厚さは、0.3〜5.0mmがより好ましく、0.5〜3mmがさらに好ましい。なお、単位層14の厚さは、第3の方向に沿う長さ14Lである。
熱伝導性シート10は、0.276MPa(=40psi)で圧縮したときの圧縮率が例えば10〜65%であり、好ましくは20〜65%である。圧縮率をこれら下限値以上であると、柔軟性が高くなり、電子機器内部などにおいて、圧縮して使用することが容易となる。また、65%以下とすると、熱伝導性シート10の製造時、単位層14を積層する際の圧力で各単位層14が広がらず、適切に熱伝導性シート10を製造しやすくなる。柔軟性をより向上させる観点から、圧縮率は25%以上がより好ましい。また、製造時に各単位層14が広がることを防止して、生産効率を高める観点から、圧縮率は、60%以下が好ましく、55%以下がより好ましい。
熱伝導性シート10は、後述するように、VUV照射により、1次シート同士を接着させることで、上記圧縮率が高くなることを防止し、上記した所定の範囲内に調整できる。なお、本発明における圧縮率とは、複数の単位層14が互いに接着する接着面に対して垂直方向から圧縮したときに測定されるものであり、具体的には熱伝導性シート10の第1の方向(厚さ方向)に圧縮するとよい。また、圧縮率は、圧縮前の初期厚みがT1であり、所定圧力で圧縮したときの厚みがT2とすると、「(T1−T2)/T1」で示される初期厚みに対する圧縮量の割合を示すパラメータである。
なお、圧縮率は、例えば熱伝導性シートを、10mm×10mmのサイズでカットして、表面が平坦な台座と、平行に押圧する押圧子の間に試験片を挟んで測定するとよい。
熱伝導性シート10は、電子機器内部などにおいて使用される。具体的には、熱伝導性シート10は、発熱体と放熱体との間に介在させられ、発熱体で発した熱を熱伝導して放熱体に移動させ、放熱体から放熱させる。ここで、発熱体としては、電子機器内部で使用されるCPU、パワーアンプ、電源などの各種の電子部品が挙げられる。また、放熱体は、ヒートシンク、ヒートポンプ、電子機器の金属筐体などが挙げられる。熱伝導性シート10は、例えば両表面10A、10Bそれぞれが、発熱体及び放熱体それぞれに密着し、かつ圧縮して使用される。
本実施形態における熱伝導性シート10は、上記の通り、第1の方向(厚さ方向)に高い熱伝導性を有するので放熱性に優れ、かつ面方向に一定の熱伝導性を有するので、ヒートスポットなどが生じるのを防止しやすくなる。さらに、面方向における一方向以外の方向には、熱伝導性は高められないので、例えば電子機器内部に耐熱性の低い素子が存在する場合には、その方向に伝熱しないようにすることも可能になる。
<熱伝導性シートの製造方法>
次に、上記した熱伝導性シート10の製造方法の一例について説明する。
本製造方法は、高分子マトリクスの前駆体である樹脂と、熱伝導性充填材として少なくとも鱗片状充填材12とを含む混合物を調製する混合物調製工程と、上記した混合物を流動配向処理して、鱗片状充填材12などの異方性充填材を配向させつつ、1次シートを得る1次シート準備工程と、1次シートを積層して積層ブロックを得る積層工程と、積層ブロックを積層方向に沿って切断する切断工程とを備える。以下、各工程について詳細に説明する。
(混合物調製工程)
混合物調製工程では、高分子マトリクスの前駆体である樹脂(例えばシリコーン樹脂であれば、硬化性シリコーン組成物)と、鱗片状充填材12を含む混合物(液状組成物)を調製する。混合物には、さらに繊維状充填材13、非異方性充填材が適宜配合されてもよく、さらに添加成分が配合されてもよい。液状組成物は、通常スラリーとなる。液状組成物を構成する各成分の混合は、例えば公知のニーダー、混練ロール、ミキサーなどを使用するとよい。
ここで、液状組成物の粘度は100〜10000Pa・sであることが好ましい。粘度を100Pa・s以上とすると、配向処理工程において剪断力を付与して充填材を流動させながらシート状とすることにより、鱗片状充填材12の長軸方向Yを流動方向(シート面方向における一方向)に、横軸方向Xをシート面方向に沿う方向でかつ流動方向に垂直な方向(シート面方向における他の方向)に配向させやすくなる。また、10000Pa・s以下とすることで塗工性が良好となる。これら観点から、液状組成物の粘度は、300〜3000Pa・sであることがより好ましく、400〜2000Pa・sであることがさらに好ましい。
なお、粘度とは、回転粘度計(ブルックフィールド粘度計DV−E、スピンドルSC4−14)を用いて、回転速度1rpmで測定された粘度であり、測定温度は液状組成物の塗工時の温度である。
液状組成物の粘度は、上記した熱伝導性充填材の種類、量などにより調整できる。また、樹脂を構成する各成分によっても適宜調整できる。例えば、液状組成物が硬化性シリコーン組成物である場合には、硬化性シリコーン組成物を構成する各成分(アルケニル基含有オルガノポリシロキサン、オルガノハイドロジェンポリシロキサンなど)の分子量などを適宜調整することで、上記粘度としてもよい。また、液状組成物には、上記粘度に調製するために必要に応じて有機溶剤が配合されてもよいが、有機溶剤は配合されないほうが好ましい。
(1次シート準備工程)
1次シート準備工程では、液状組成物を、剪断力を付与しながらシート状に成形し、1次シートを得る。液状組成物は、例えば、バーコータ又はドクターブレード等の塗布用アプリケータ、もしくは、押出成形やノズルからの吐出等により、基材フィルム上に塗工するとよく、このような方法により、液状組成物の塗工方向(流動方向)に沿った剪断力を与えることができる。このように剪断力を付与しながらシート状に成形することで、鱗片状充填材12が、長軸方向Yが流動方向(シート面方向における一方向)に沿い、かつ横軸方向Xが流動方向に垂直である方向(シート面方向における他の方向)に沿うように配向する。また、液状組成物に繊維状充填材が配合される場合には、繊維状充填材13は、その繊維軸方向が流動方向に沿うように配向される。
次に、シート状に成形された液状組成物を必要に応じて硬化、乾燥などして、1次シートを得る。1次シートでは、上記のとおり、鱗片状充填材12の長軸方向Yが面方向の一方向に、横軸方向Xが面方向の他の方向に配向されている。
また、液状組成物の硬化は、液状組成物に例えば硬化性シリコーン組成物が含まれる場合には、硬化性シリコーン組成物を硬化することで行う。液状組成物の硬化は、加熱により行うとよいが、例えば、50〜150℃程度の温度で行うとよい。また、加熱時間は、例えば10分〜3時間程度である。なお、硬化性の液状組成物に溶剤が配合される場合には、溶剤は硬化時の加熱により揮発させるとよい。
硬化により得られた1次シートの厚さは、0.1〜10mmの範囲であることが好ましい。1次シートの厚さを上記範囲内とすることで、上記のとおり、異方性充填材、特に鱗片状充填材12を剪断力により面方向に沿って適切に配向できるようになる。また、1次シートの厚さを0.1mm以上とすることで、基材フィルムから容易に剥離することができる。さらに、1次シートの厚さを10mm以下とすることで、1次シートが自重により変形したりすることを防止する。これら観点から1次シートの厚さは、より好ましくは0.3〜5.0mm、さらに好ましくは0.5〜3.0mmである。
1次シートのタイプOO硬さは、6以上であることが好ましい。6以上とすることで、1次シートを積層する際に加圧しても1次シートがあまり広がらず、十分な厚さを有する積層ブロックを作製できる。そのような観点から、1次シートのタイプOO硬さは、10以上がより好ましく、15以上がさらに好ましい。
また、得られる熱伝導性シート10の柔軟性を確保する観点から、1次シートのタイプOO硬さは、55以下が好ましく、50以下がより好ましく、40以下がさらに好ましい。
また、得られる熱伝導性シート10の取扱性を高める観点からは、1次シートのタイプE硬さは、70以下が好ましく、40以下がより好ましい。また、1次シートのタイプE硬さは、10以上が好ましく、30以上がより好ましい。
(積層工程)
次に、1次シート準備工程で得られた複数の1次シート17を、異方性充填材の配向方向が同じになるように積層する(図3(a)及び(b)参照)。すなわち、上記した鱗片状充填材12の長軸方向Yが沿う一方向、横軸方向Xが沿う他の方向それぞれが、複数の1次シート17の間で互いに一致するように積層される。そして、積層された複数の1次シート17を互いに接着させ一体化させて積層ブロック18を得る。例えば、積層された複数の1次シート17は、樹脂が熱可塑性樹脂である場合、プレス成形により、1次シート17中の高分子マトリクス11を溶融固着させて積層ブロック18を形成するとよい。また、1次シート17、17間に公知の接着剤などを配置させて1次シート17、17間を接着させてもよい。
さらに、高分子マトリクスの前駆体が、硬化性である場合には、半硬化された複数の1次シート17を積層して、積層後に各1次シート17を全硬化して、その全硬化により1次シート17を互いに接着させ一体化させて積層ブロック18としてもよい。
さらに、高分子マトリクスがシリコーン樹脂などである場合には、得られた1次シート17の少なくとも一方の面に対してVUVを照射して、少なくとも一方の面を活性化させ、その面により、1次シート17、17の間を接着させてもよい。なお、VUVとは、真空紫外線であり、波長が10〜200nmの紫外線を意味する。VUVの光源としては、エキシマXeランプ、エキシマArFランプなどが挙げられる。
1次シート17は、上記したように例えばシリコーン樹脂(オルガノポリシロキサン)を含む場合、VUVを照射すると、VUVが照射された面は活性化される。1次シート17は、後述するように、その活性化された一方の面が重ね合わせ面となるように、他の1次シート17と重ね合わせることで、1次シート17、17間が強固に接着されることになる。なお、その原理は定かではないが、シリコーン樹脂は、VUVが照射されると、オルガノポリシロキサンのC−Si結合が、Si−OHなどのSi−O結合に変化し、そのSi−O結合により、1次シート17、17間が強固に接着されると推定される。すなわち、1次シート17と1次シート(単位層14、14)は、オルガノポリシロキサンの分子間で結合が生じることで接着される。また、VUV照射により1次シート17、17同士を接着することで、その積層方向に垂直な方向における柔軟性が大きく損なわれない。したがって、上記した圧縮率を所定の範囲内に調整しやすくなる。
VUV照射条件は、1次シート17の表面を活性化できる条件であれば特に限定されないが、例えば積算光量が5〜100mJ/cm、好ましくは積算光量が10〜50mJ/cmとなるようにVUVを照射するとよい。
ここで、各1次シート17は、互いに接触する重ね合わせ面のいずれか一方の面が、予めVUV照射されていればよい。一方の面がVUV照射されていることで、その活性化された一方の面により隣接する1次シート17、17同士が接着される。また、接着性をより向上させる観点から、重ね合わせ面の両方がVUV照射されていることが好ましい。
すなわち、図3(a)に示すように、1次シート17は、VUV照射された一方の面17Aを、他の1次シート17に接触するように重ね合わせるとよいが、この際、一方の面17Aに接触する、他の1次シート17の他方の面17BもVUV照射されることが好ましい。
VUV照射により、1次シート17は、上記のように重ね合わせるだけで接着可能であるが、より強固に接着させるために、1次シート17の積層方向に加圧してもよい。加圧は、1次シート17が大きく変形しない程度の圧力で行うとよく、例えばローラやプレスを用いて加圧することができる。一例として、ローラを用いるときは、圧力を0.3〜3kgf/50mmとすることが好ましい。
積層された1次シート17は、例えば加圧するときなどに適宜加熱されてもよいが、VUV照射により活性化された1次シート17は、加熱しなくても接着できるので、積層された1次シート17は、加熱しないことが好ましい。したがって、プレス時の温度は、例えば0〜50℃、好ましくは10〜40℃程度である。
(切断工程)
次に、図3(c)に示すように、刃物19によって、積層ブロック18を1次シート17の積層方向(第3の方向)に沿って切断し、熱伝導性シート10を得る。この際、積層ブロック18は、鱗片状充填材12の長軸方向が沿う一方向(第1の方向)に直交する方向に切断するとよい。刃物19としては、例えば、カミソリ刃やカッターナイフ等の両刃や片刃、丸刃、ワイヤー刃、鋸刃等を用いることができる。積層ブロック18は、刃物19を用いて、例えば、押切、剪断、回転、摺動等の方法により切断される。
[第2の実施形態]
次に、本発明の第1の実施形態について図4を用いて説明する。
第1の実施形態では、鱗片状充填材12の長軸方向Yに沿う方向がシートの厚さ方向(第1の方向)であったが、図4に示すように、本実施形態における熱伝導性シート20では、鱗片状充填材12の長軸方向Y(図2参照)に沿う方向が、シートの厚さ方向に垂直である一方向(第2の方向)となり、横軸方向Xに沿う方向が、シートの厚さ方向(第1の方向)となる点において相違する。
このような構成により、本実施形態でも、第1の実施形態と同様に、厚さ方向のみならず、厚さ方向に垂直な面方向に沿う一方向にも熱伝導性が良好となる。ただし、鱗片状充填材12の長軸方向Yに沿う方向が第2の方向であるので、面方向に沿う一方向(第2の方向)の熱伝導性が厚さ方向(第1の方向)の熱伝導性よりも高くなる。そのため、本実施形態の熱伝導性シート20は、面方向に沿って高い熱伝導性が必要とされる用途において好適に使用できる。
熱伝導率については、第1の方向における熱伝導率は、好ましくは2.5W/(m・K)以上、より好ましくは3W/(m・K)以上、さらに好ましくは4.5W/(m・K)以上であり、また、例えば50W/(m・K)以下である。
第2の方向における熱伝導率は、第1の方向における熱伝導率よりも高く、例えば5W/(m・K)以上、好ましくは8W/(m・K)以上、より好ましくは11W/(m・K)以上であり、また、例えば50W/(m・K)以下である。
第3の方向の熱伝導率は、第1の方向および第2の方向の熱伝度率よりも低くなり、好ましくは4.5W/(m・K)未満、より好ましくは3W/(m・K)未満であり、さらに好ましくは2.5W/(m・K)未満であり、また、例えば0.2W/(m・K)以上である。また、第2の方向における熱特性レベルは、上記のとおり、10%以上が好ましいが、通常は100%を超える。
さらに、鱗片状充填材12の第1のアスペクト比と、繊維状充填材13のアスペクト比の加重平均値は、本実施形態では、第2の方向/第1の方向のアスペクト比といえる。本実施形態における第2の方向/第1の方向のアスペクト比は、具体的には、1以上であればよいが、1.5以上が好ましく、1.7以上がより好ましく、3以上がさらに好ましく、8以下であることが好ましく、また、7以下がより好ましく、5以下がさらに好ましい。
本実施形態における熱伝導シート20は、第1の実施形態と同様に、繊維状充填材13、非異方性充填材などの他の充填材を含有していてもよい。繊維状充填材13が配合される場合には、繊維状充填材13は、繊維軸方向も第2の方向に沿って配向するとよい。
また、シートの厚さ、単位層の厚さ14L、熱伝導性シートのタイプE硬さ及び0.276MPaで厚さ方向に圧縮したときの圧縮率などの各物性、寸法などは上記の第1の実施形態で説明したとおりであり、その他の第2の実施形態における各構成も、上記第1の実施形態と同様であり、その詳細な説明は省略する。
なお、本実施形態における熱伝導シート20の製造方法は、切断工程において、鱗片状充填材12の横軸方向が沿う一方向に直交する方向に切断する点以外は、第1の実施と同様に行えばよい。
なお、以上の各実施形態の説明では、熱伝導性シート20における各単位層14は、上記のようにいずれも実質的に同一の組成を有する態様について説明したが、各単位層14の組成は互いに異なっていてもよい。
例えば、各単位層14は、鱗片状充填材12、又は鱗片状充填材12及び繊維状充填材13の含有量が互いに同一である必要はなく、一部の単位層14における鱗片状充填材12又は繊維状充填材13の含有量を、他の単位層14における鱗片状充填材12又は繊維状充填材13の含有量と異ならせてもよい。同様に、一部の単位層14における非異方充填材の含有量も、他の単位層14における非異方性充填材の含有量と異ならせてもよい。また、一部の単位層14における鱗片状充填材12、繊維状充填材13、及び非異方性充填材の少なくともいずれかの種類を、他の単位層14におけるこれらの種類と異ならせてもよい。
さらに、複数の単位層14は、すべての単位層14が鱗片状充填材12を含有する必要はなく、一部の単位層14が鱗片状充填材12を含有してもよく、例えば、複数の単位層14のうち少なくとも1つの単位層14が鱗片状充填材12を含有する態様であってもよい。すなわち、上記各実施形態では、熱伝導性シート20の全ての領域において、第1及び第2の方向の一方向に沿う鱗片状充填材12が含有される必要はなく、熱伝導性シート20の一部において第1及び第2の方向のいずれかに沿う鱗片状充填材12が含有されるとよい。
同様に、複数の単位層14のうち一部が、繊維状充填材13を含有し、その他が繊維状充填材13を含有しなくてもよい。また、複数の単位層14のうち一部が、非異方性充填材を含有し、その他が非異方性充填材を含有しなくてもよい。
以上のように、各単位層14において鱗片状充填材12や繊維状充填材13の含有量、種類などを適宜調整することで、一部の単位層14の熱伝導率が、他の単位層14の熱伝導率より高くなるようにしてもよい。このような場合、熱伝導率が高い単位層14と、熱伝導率が低い単位層14とは、交互に並べてもよいが、交互に並べる必要もない。
同様に、一部の単位層14の導電率が、他の単位層14の導電率より低くなるようにしてもよい。このような場合も、導電率が高い単位層と、導電率が低い単位層14とは、交互に並べてもよいが、交互に並べる必要もない。単位層14の一部の導電率を他の単位層14より低くすることで、導電率が低い一部の単位層14によって、第3の方向(図1参照)に沿う導電が妨げられる。そのため、熱伝導性シート20全体でも、第3の方向における導電率が低くなり、絶縁性を確保しやすくなる。なお、絶縁性をより確保しやすくするためには、導電率が低い単位層14には、導電性の熱伝導性充填材を含有させず、絶縁性の熱伝導性充填剤を含有させることが好ましい。
また、複数の単位層14のうち一部を相対的に熱伝導性の高い単位層14とし、他の一部を光透過性を有する単位層14としてもよい。熱伝導性を有する単位層14は、上記のように熱伝導性充填材、鱗片状充填材12などの熱伝導性充填材を含有する層である。一方で、光透過性を有する単位層14は、例えば、熱伝導性充填材を含有しない層とすればよい。このような構成によれば、熱伝導性シート20全体でも、厚さ方向に沿って一定の熱伝導性と光透過性を有することになる。熱伝導性を有する単位層14と、光透過性を有する単位層14とは交互に並べてもよいが、交互に並べる必要もない。
また、各単位層14の鱗片状充填剤12の長軸方向Yの配向方向は、全てが同じ方向(すなわち、第1及び第2の方向の一方向)に揃える必要はない。すなわち、本発明では、少なくとも一部の単位層14において長軸方向Yの配向方向が、第1の方向又は第2の方向の一方となり、かつ横軸方向Xの配向方向が、第1の方向又は第2の方向の他方となるとよい。例えば、各単位層14における第1の方向は、互いに90°となるように、又は任意の角度で変化させながら順次積層されていてもよい。
勿論、熱伝導性充填材以外の構成を、単位層14ごとに変更してもよい。例えば、一部の単位層14の高分子マトリクス11の種類を、他の単位層14の高分子マトリクス11の種類と変更してもよい。また、一部の単位層14における添加成分の含有の有無、添加成分の種類、量などを、他の単位層14と異ならせてもよい。
例えば、一部の単位層14のシリコーン樹脂の種類又は量、熱伝導性充填材の種類又は量の少なくとも一部を、他の単位層14と異ならせることで、一部の単位層14の硬さ(タイプE硬さまたはタイプOO硬さ)を他の単位層14の硬さと異ならせてもよい。
以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
本実施例における評価方法は以下のとおりである。
[液状組成物(混合物)の粘度の測定]
各例の液状組成物の粘度を、粘度計(BROOKFIELD製の回転粘度計DV−E)で、スピンドルSC4−14の回転子を用い、回転速度1rpm、測定温度25℃で測定した。結果を表1に示す。
[熱伝導率]
作製した熱伝導性シートの厚み方向(第1の方向)の熱伝導率をASTM D5470−06に準拠した方法で測定した。また第2の方向及び第3の方向の熱伝導率もASTM D5470−06に準拠した方法で測定した。結果を表1に示す。
なお、第2の方向の熱伝導率は、後述の各例の積層ブロックを、第2の方向が厚さ方向となるように切断した試験片(厚さ2mm)を測定した熱伝導率であり、第3の方向の熱伝導率は、各例の1次シート(厚さ2mm)を測定した熱伝導率である。
なお、第2の方向の熱特性のレベルを百分率で示した。具体的には、第1の方向と同等を“100%”、第3の方向と同等を“0%”となるように下記式で計算した。
第2の方向の熱特性レベル(%)=(λ2−λ3)/(λ1−λ3)×100
λ1:第1の方向の熱伝導率
λ2:第2の方向の熱伝導率
λ3:第3の方向の熱伝導率
[タイプE硬度]
タイプE硬さは、各実施例、比較例で得られた熱伝導性シート及び1次シートを5枚重ねて10mmの試験片として、ASTM D2240−05の規定に従って測定した。結果を表1に示す。
[圧縮率]
圧縮率は、各実施例、比較例で得られた熱伝導性シートを、外形が10mm×10mmのサンプルに調製して、明細書記載のとおりに0.276MPa(=40psi)で圧縮したときの圧縮率を測定した。結果を表1に示す。
[実施例1]
硬化性シリコーン組成物として、アルケニル基含有オルガノポリシロキサン(主剤)とハイドロジェンオルガノポリシロキサン(硬化剤)(合計で100質量部、体積充填率38体積%)と、鱗片状充填材として窒化ホウ素粉末(平均長軸長40μm、第1のアスペクト比=1、第2のアスペクト比=4〜8、熱伝導率100W/(m・K))180質量部(体積充填率30体積%)と、非異方性充填材としての酸化アルミニウム(球状、平均粒径3μm、アスペクト比1.0)340質量部(体積充填率32体積%)とを混合して、スラリー状の液状組成物(混合物)を得た。液状組成物の25℃における粘度は480Pa・sであった。
液状組成物を、ポリエチレンテレフタレート(PET)製の基材フィルム上に、25℃で塗布用アプリケータとしてバーコータを用いて一方向に塗布した。鱗片状充填材は、長軸方向Xが塗布方向に沿い、横軸方向Xがシート面方向の一方向であり、かつ塗布方向に垂直な方向に沿うように配向していた。次に、塗布した液状組成物を、120℃で0.5時間加熱することで、液状組成物を硬化させることで、厚さ2mmの1次シートを得た。
得られた1次シートそれぞれの両面に対して、VUV照射装置(商品名エキシマMINI、浜松ホトニクス社製)を用いて、室温(25℃)、大気中で1次シートの表面に積算光量20mJ/cmの条件でVUVを照射した。次に、VUVを照射した1次シートを、100枚積層して、25℃の環境下、ローラにより1.6kgf/50mmの圧力で加圧して、積層ブロックを得た。得られた積層ブロックをカッター刃により、積層方向に平行で、かつ鱗片状充填材の長軸方向が沿う方向に垂直にスライスして、各単位層の厚さが2mmで、シート厚さが2mmの熱伝導性シートを得た。
熱伝導シートにおいて、鱗片状充填材は、長軸方向が厚さ方向(第1の方向)に沿って、横軸方向がシート面方向における第1の方向に垂直な方向(第2の方向)に沿って配向していた。なお、以下の各実施例でも同様であった。
(実施例2)
液状組成物の調製において、鱗片状充填材として鱗片状黒鉛粉末(平均長軸長130μm、第1のアスペクト比=2、第2のアスペクト比=6〜13、熱伝導率400W/(m・K))を使用し、各充填材の配合部数を表1に記載のとおりに変更した点を除いて実施例1と同様に実施した。
なお、シリコーン樹脂の体積充填率が38体積%、鱗片状充填材の体積充填率が23体積%、非異方性充填材の体積充填率39体積%、液状組成物の25℃における粘度は600Pa・sであった。
(実施例3)
液状組成物の調製において、鱗片状充填材として鱗片状黒鉛粉末(平均長軸長80μm、第1のアスペクト比=1.85、第2のアスペクト比=4〜8、熱伝導率400W/(m・K))を使用し、各充填材の配合部数を表1に記載のとおりに変更した点を除いて実施例1と同様に実施した。シリコーン樹脂、及び各充填材の体積充填率は実施例2と同じであり、液状組成物の25℃における粘度は750Pa・sであった。
(実施例4)
液状組成物の調製において、鱗片状充填材として鱗片状黒鉛粉末(平均長軸長40μm、第1のアスペクト比=1.7、第2のアスペクト比=3〜6、熱伝導率400W/(m・K))を使用し、各充填材の配合部数を表1に記載のとおりに変更した点を除いて実施例1と同様に実施した。シリコーン樹脂、及び各充填材の体積充填率は実施例2と同じであり、液状組成物の25℃における粘度は940Pa・sであった。
(実施例5)
液状組成物の調製において、さらに繊維状充填材として黒鉛化炭素繊維(平均繊維長100μm、アスペクト比10、熱伝導率500W/(m・K))を配合し、かつ各充填材の配合部数を表1に記載のとおりに変更した点を除いて実施例4と同様に実施した。なお、繊維状充填材は繊維軸方向が厚さ方向(第1の方向)に沿うように配向しており、以下の実施例、比較例においても同様であった。
なお、シリコーン樹脂の体積充填率が38体積%、鱗片状充填材の体積充填率が9体積%、繊維状充填材の体積充填率14体積%、非異方性充填材の体積充填率39体積%、液状組成物の25℃における粘度は750Pa・sであった。
(実施例6)
液状組成物の調製において、各充填材の配合部数を表1に記載のとおりに変更した点を除いて実施例5と同様に実施した。なお、シリコーン樹脂の体積充填率が38体積%、鱗片状充填材の体積充填率が14体積%、繊維状充填材の体積充填率9体積%、非異方性充填材の体積充填率39体積%、液状組成物の25℃における粘度は540Pa・sであった。
(実施例7)
液状組成物の調製において、各充填材の配合部数を表1に記載のとおりに変更した点を除いて実施例4と同様に実施した。なお、シリコーン樹脂の体積充填率が38体積%、鱗片状充填材の体積充填率が22体積%、非異方性充填材の体積充填率40体積%、液状組成物の25℃における粘度は960Pa・sであった。
(比較例1)
液状組成物の調製において、鱗片状充填材を使用せず、各充填材の配合部数を表1に記載のとおりに変更した点を除いて実施例1と同様に実施した。なお、シリコーン樹脂の体積充填率が37体積%、繊維状充填材の体積充填率20体積%、非異方性充填材の体積充填率43体積%、液状組成物の25℃における粘度は360Pa・sであった。
(比較例2)
液状組成物の調製において、鱗片状充填材を使用せず、各充填材の配合部数を表1に記載のとおりに変更した点を除いて実施例1と同様に実施した。なお、シリコーン樹脂の体積充填率が38体積%、繊維状充填材の体積充填率22体積%、非異方性充填材の体積充填率40体積%、液状組成物の25℃における粘度は450Pa・sであった。
Figure 2021085383
以上の各実施例の熱伝導性シートでは、鱗片状充填材を含有させ、かつ鱗片状充填材を、長軸方向Yを第1の方向に、横軸方向Xを第2の方向に沿って配向させることで、厚さ方向(第1の方向)のみならず、面方向に沿う一方向(第2の方向)の熱伝導率が向上した。そのため、厚さ方向及び面方向に沿う一方向の熱伝導性が良好となって、これら方向における熱抵抗が低くなった。
それに対して、各比較例の熱伝導性シートでは、長軸方向Yを第1の方向に、横軸方向Xを第2の方向に沿って配向させた鱗片状充填材を含有させなかったので、厚さ方向及び面方向に沿う一方向の両方の熱伝導率が向上せず、そのため、厚さ方向及び面方向に沿う一方向の両方の熱抵抗値を低くできなった。
10,20 熱伝導性シート
10A 一方の面
10B 他方の面
11 高分子マトリクス
12 鱗片状充填材
13 繊維状充填材
14 単位層
17 1次シート
18 積層ブロック
19 刃物

Claims (12)

  1. 高分子マトリクス中に鱗片状充填材を含む熱伝導性シートであって、
    前記鱗片状充填材が、鱗片面の長軸方向が、前記熱伝導性シートの厚さ方向である第1の方向及び前記第1の方向に垂直である第2の方向のいずれか一方に沿い、かつ前記鱗片面において長軸方向に垂直となる横軸方向が、前記第1の方向及び前記第2の方向の他方に沿うように配向する、熱伝導性シート。
  2. 前記鱗片状充填材は、前記長軸方向が前記第1の方向に沿い、かつ前記横軸方向が前記第2の方向に沿うように配向する請求項1に記載の熱伝導性シート。
  3. 前記鱗片状充填材は、前記横軸方向が前記第1の方向に沿い、かつ前記長軸方向が前記第2の方向に沿うように配向する、請求項1に記載の熱伝導性シート。
  4. 前記鱗片状充填材の前記横軸方向の長さに対する、前記長軸方向の長さの比(長軸方向の長さ/横軸方向の長さ)で表される第1のアスペクト比が1.5以上である請求項1〜3のいずれか1項に記載の熱伝導性シート。
  5. 前記鱗片状充填材の平均粒径が20μm以上である請求項1〜4のいずれか1項に記載の熱伝導性シート。
  6. 前記鱗片状充填材が、鱗片状黒鉛粉末を含む請求項1〜5のいずれか1項に記載の熱伝導性シート。
  7. 前記鱗片状充填材が、鱗片状窒化ホウ素粉末を含む請求項1〜6のいずれか1項に記載の熱伝導性シート。
  8. 前記高分子マトリクス中にさらに繊維状充填材を含む請求項1〜7のいずれか1項に記載の熱伝導性シート。
  9. 前記繊維状充填材が、炭素繊維である請求項8に記載の熱伝導性シート。
  10. 複数の単位層を有し、かつ前記複数の単位層のうち、少なくとも1つが前記鱗片状充填材を含み、
    複数の単位層が、前記第1及び第2の方向に垂直な第3の方向に沿って積層される請求項1〜9のいずれか1項に記載の熱伝導性シート。
  11. 前記高分子マトリクス中にさらに非異方性充填材を含有する請求項1〜10のいずれか1項に記載の熱伝導性シート。
  12. 請求項1〜11のいずれか1項に記載の熱伝導性シートの製造方法であって、
    前記高分子マトリクスの前駆体である樹脂と、前記鱗片状充填材とを含む混合物を調製する工程と、
    前記混合物を流動配向処理して、前記鱗片状充填材を配向させつつ、1次シートを得る工程と、
    前記1次シートを積層して積層ブロックを得る工程と、
    前記積層ブロックを積層方向に沿って切断する工程と
    を備える熱伝導性シートの製造方法。
JP2021507107A 2019-11-01 2020-10-26 熱伝導性シート及びその製造方法 Active JP6892725B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021086144A JP2021145134A (ja) 2019-11-01 2021-05-21 熱伝導性シート及びその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019200095 2019-11-01
JP2019200095 2019-11-01
PCT/JP2020/040121 WO2021085383A1 (ja) 2019-11-01 2020-10-26 熱伝導性シート及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021086144A Division JP2021145134A (ja) 2019-11-01 2021-05-21 熱伝導性シート及びその製造方法

Publications (2)

Publication Number Publication Date
JP6892725B1 JP6892725B1 (ja) 2021-06-23
JPWO2021085383A1 true JPWO2021085383A1 (ja) 2021-11-25

Family

ID=75715943

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021507107A Active JP6892725B1 (ja) 2019-11-01 2020-10-26 熱伝導性シート及びその製造方法
JP2021086144A Pending JP2021145134A (ja) 2019-11-01 2021-05-21 熱伝導性シート及びその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021086144A Pending JP2021145134A (ja) 2019-11-01 2021-05-21 熱伝導性シート及びその製造方法

Country Status (7)

Country Link
US (1) US11618247B2 (ja)
JP (2) JP6892725B1 (ja)
KR (2) KR102452165B1 (ja)
CN (2) CN116355425A (ja)
DE (1) DE112020005404T5 (ja)
TW (1) TW202124585A (ja)
WO (1) WO2021085383A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067141A1 (ja) * 2018-09-26 2020-04-02 積水ポリマテック株式会社 熱伝導性シート
WO2021230047A1 (ja) * 2020-05-15 2021-11-18 デクセリアルズ株式会社 熱伝導性シート及び熱伝導性シートの製造方法
JP6980868B1 (ja) * 2020-08-25 2021-12-15 デクセリアルズ株式会社 熱伝導性シート及び熱伝導性シートの製造方法
JP6999003B1 (ja) 2020-09-09 2022-01-18 デクセリアルズ株式会社 熱伝導性シート及び熱伝導性シートの製造方法
WO2024018635A1 (ja) * 2022-07-22 2024-01-25 株式会社レゾナック 熱伝導シート、放熱装置及び熱伝導シートの製造方法
US11615999B1 (en) * 2022-07-22 2023-03-28 GuangDong Suqun New Material Co., Ltd Oriented heat conducting sheet and preparation method thereof, and semiconductor heat dissipating device
WO2024090364A1 (ja) * 2022-10-28 2024-05-02 帝人株式会社 積層体及びその製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283955A (ja) 1996-04-10 1997-10-31 Matsushita Electric Works Ltd 放熱シート
JP2001110961A (ja) 1999-10-08 2001-04-20 Fujikura Rubber Ltd 放熱シート
JP2002026202A (ja) 2000-06-29 2002-01-25 Three M Innovative Properties Co 熱伝導性シート及びその製造方法
JP2002121393A (ja) 2000-10-12 2002-04-23 Sekisui Chem Co Ltd 熱伝導性樹脂組成物及び熱伝導性シート
JP2004051852A (ja) 2002-07-22 2004-02-19 Polymatech Co Ltd 熱伝導性高分子成形体及びその製造方法
JP4629475B2 (ja) 2005-03-30 2011-02-09 株式会社カネカ 放熱シート用組成物およびそれを硬化させてなる放熱シート
JP2007012913A (ja) 2005-06-30 2007-01-18 Polymatech Co Ltd 放熱シート及び放熱構造
CN101535383B (zh) 2006-11-01 2012-02-22 日立化成工业株式会社 导热片、其制造方法以及使用了导热片的散热装置
JP2009094110A (ja) * 2007-10-03 2009-04-30 Denki Kagaku Kogyo Kk 放熱部材、及びそのシート、およびその製造方法
JP5882581B2 (ja) 2008-10-21 2016-03-09 日立化成株式会社 熱伝導シート、その製造方法及びこれを用いた放熱装置
JP2011184663A (ja) 2010-03-11 2011-09-22 Hitachi Chem Co Ltd 熱伝導シート、その製造方法及びこれを用いた放熱装置
JP5454300B2 (ja) 2010-03-30 2014-03-26 日立化成株式会社 熱伝導シート、その製造方法及びこれを用いた放熱装置
WO2013099089A1 (ja) 2011-12-27 2013-07-04 パナソニック株式会社 異方性熱伝導組成物およびその成形品
JP2014014809A (ja) * 2012-07-11 2014-01-30 Fujifilm Corp 二酸化炭素分離用複合体の製造方法、二酸化炭素分離用複合体、二酸化炭素分離モジュール、二酸化炭素分離装置、及び二酸化炭素分離システム
JP5953160B2 (ja) 2012-07-27 2016-07-20 ポリマテック・ジャパン株式会社 熱伝導性成形体の製造方法
JP6094119B2 (ja) * 2012-09-26 2017-03-15 住友ベークライト株式会社 熱伝導シートの製造方法
JP6123314B2 (ja) 2013-02-01 2017-05-10 住友ベークライト株式会社 熱伝導シートおよび熱伝導シートの製造方法
JP5798210B2 (ja) 2013-07-10 2015-10-21 デクセリアルズ株式会社 熱伝導性シート
JP6071935B2 (ja) 2013-09-06 2017-02-01 バンドー化学株式会社 樹脂成形品の製造方法
JP6532047B2 (ja) * 2016-04-11 2019-06-19 積水ポリマテック株式会社 熱伝導性シート
US20190176448A1 (en) * 2016-08-08 2019-06-13 Sekisui Chemical Co., Ltd. Heat transfer sheet and method for producing same
JP6876569B2 (ja) * 2017-07-28 2021-05-26 昭和電工株式会社 金属−炭素粒子複合材
JP7087372B2 (ja) 2017-12-19 2022-06-21 日本ゼオン株式会社 熱伝導シート及びその製造方法
WO2019160004A1 (ja) * 2018-02-14 2019-08-22 積水ポリマテック株式会社 熱伝導性シート
WO2021065522A1 (ja) * 2019-09-30 2021-04-08 積水ポリマテック株式会社 熱伝導性シート及びその製造方法

Also Published As

Publication number Publication date
KR20220054713A (ko) 2022-05-03
CN114555714B (zh) 2023-05-09
DE112020005404T5 (de) 2022-08-18
CN116355425A (zh) 2023-06-30
US11618247B2 (en) 2023-04-04
KR102452165B1 (ko) 2022-10-11
US20220347996A1 (en) 2022-11-03
CN114555714A (zh) 2022-05-27
JP6892725B1 (ja) 2021-06-23
WO2021085383A1 (ja) 2021-05-06
KR20220129092A (ko) 2022-09-22
TW202124585A (zh) 2021-07-01
JP2021145134A (ja) 2021-09-24

Similar Documents

Publication Publication Date Title
JP6844806B2 (ja) 熱伝導性シート及びその製造方法
JP6892725B1 (ja) 熱伝導性シート及びその製造方法
WO2021065522A1 (ja) 熱伝導性シート及びその製造方法
JP7221487B2 (ja) 熱伝導性シート
WO2020050334A1 (ja) 熱伝導性シート
JPWO2020067141A1 (ja) 熱伝導性シート
JP6978148B1 (ja) 熱伝導性シート及びその製造方法
WO2019244890A1 (ja) 熱伝導性シート
WO2022137762A1 (ja) 熱伝導性シート、その装着方法及び製造方法
JP7473103B2 (ja) 熱伝導性シート及びその製造方法
JP7248222B2 (ja) 熱伝導性部材の製造方法、及びディスペンサ装置
WO2022070568A1 (ja) 熱伝導性シート、その装着方法及び製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210209

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210209

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210521

R150 Certificate of patent or registration of utility model

Ref document number: 6892725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157