JPWO2020115950A1 - 炭化珪素エピタキシャル基板の製造方法 - Google Patents

炭化珪素エピタキシャル基板の製造方法 Download PDF

Info

Publication number
JPWO2020115950A1
JPWO2020115950A1 JP2020559706A JP2020559706A JPWO2020115950A1 JP WO2020115950 A1 JPWO2020115950 A1 JP WO2020115950A1 JP 2020559706 A JP2020559706 A JP 2020559706A JP 2020559706 A JP2020559706 A JP 2020559706A JP WO2020115950 A1 JPWO2020115950 A1 JP WO2020115950A1
Authority
JP
Japan
Prior art keywords
silicon carbide
carbide layer
gas
flow rate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020559706A
Other languages
English (en)
Other versions
JP7251553B2 (ja
Inventor
洋典 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of JPWO2020115950A1 publication Critical patent/JPWO2020115950A1/ja
Application granted granted Critical
Publication of JP7251553B2 publication Critical patent/JP7251553B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

第1炭化珪素層をエピタキシャル成長により形成する工程における第1アンモニアガスの流量を第1流量とし、第1炭化珪素層をエピタキシャル成長により形成する工程における第1炭化珪素層の形成時間を第1形成時間とし、第1炭化珪素層の厚みを第1厚みとし、第1炭化珪素層のキャリア濃度を第1濃度とし、第2炭化珪素層の目標厚みを第2厚みとし、第2炭化珪素層の目標キャリア濃度を第2濃度とした場合、第2炭化珪素層の形成条件を算出する工程においては、第2炭化珪素層の形成時間は、第2厚みを第1厚みで除した値に第1形成時間を掛けた値として算出され、かつ、第2炭化珪素層をエピタキシャル成長により形成する工程における第2アンモニアガスの流量は、第2濃度を第1濃度で除した値に第1流量を掛けた値として算出される。

Description

本開示は、炭化珪素エピタキシャル基板の製造方法に関する。本出願は、2018年12月5日に出願した日本特許出願である特願2018−227913号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
国際公開2017/056691号(特許文献1)には、炭化珪素単結晶基板上に炭化珪素層をエピタキシャル成長させる方法が開示されている。
国際公開2017/056691号
本開示に係る炭化珪素エピタキシャル基板の製造方法は以下の工程を備えている。第1アンモニアガスをドーパントガスとして用いて第1炭化珪素基板上に第1炭化珪素層が形成される。第1炭化珪素層の厚みおよび第1炭化珪素層のキャリア濃度が測定される。第2炭化珪素層の形成条件が算出される。第2アンモニアガスをドーパントガスとして用いて第2炭化珪素基板上に第2炭化珪素層が形成される。第1炭化珪素層をエピタキシャル成長により形成する工程における第1アンモニアガスの流量を第1流量とし、第1炭化珪素層をエピタキシャル成長により形成する工程における第1炭化珪素層の形成時間を第1形成時間とし、第1炭化珪素層の厚みを第1厚みとし、第1炭化珪素層のキャリア濃度を第1濃度とし、第2炭化珪素層の目標厚みを第2厚みとし、第2炭化珪素層の目標キャリア濃度を第2濃度とした場合、第2炭化珪素層の形成条件を算出する工程においては、第2炭化珪素層の第2形成時間は、第2厚みを第1厚みで除した値に第1形成時間を掛けた値として算出され、かつ、第2炭化珪素層をエピタキシャル成長により形成する工程における第2アンモニアガスの第2流量は、第2濃度を第1濃度で除した値に第1流量を掛けた値として算出される。第2炭化珪素層をエピタキシャル成長により形成する工程においては、第2形成時間および第2流量を用いて、第2炭化珪素層が形成される。第1炭化珪素層をエピタキシャル成長により形成する工程と、第2炭化珪素層をエピタキシャル成長により形成する工程とは、同じ装置で行われる。
図1は、炭化珪素エピタキシャル基板の製造装置の構成を示す一部断面模式図である。 図2は、本実施形態に係る炭化珪素エピタキシャル基板の製造条件の算出方法を概略的に示すフローチャートである。 図3は、本実施形態に係る炭化珪素エピタキシャル基板の製造条件の算出方法の第1工程を示す平面模式図である。 図4は、図3のIV−IV線に沿った断面模式図である。 図5は、本実施形態に係る炭化珪素エピタキシャル基板の製造条件の算出方法の第2工程を示す断面模式図である。 図6は、第1実施形態に係る炭化珪素エピタキシャル基板の製造方法を概略的に示すフローチャートである。 図7は、第1実施形態に係る炭化珪素エピタキシャル基板の製造方法の第1工程を示す断面模式図である。 図8は、第1実施形態に係る炭化珪素エピタキシャル基板の製造方法の第2工程を示す断面模式図である。 図9は、第2実施形態に係る炭化珪素エピタキシャル基板の製造方法を概略的に示すフローチャートである。 図10は、第2実施形態に係る炭化珪素エピタキシャル基板の製造方法の第1工程を示す断面模式図である。 図11は、第2実施形態に係る炭化珪素エピタキシャル基板の製造方法の第2工程を示す断面模式図である。 図12は、第2実施形態に係る炭化珪素エピタキシャル基板の製造方法の第3工程を示す断面模式図である。 図13は、第2実施形態に係る炭化珪素エピタキシャル基板の製造方法の第4工程を示す断面模式図である。 図14は、第2実施形態に係る炭化珪素エピタキシャル基板の製造方法の第5工程を示す断面模式図である。 図15は、第3実施形態に係る炭化珪素エピタキシャル基板の製造方法により製造された炭化珪素エピタキシャル基板の構成を示す断面模式図である。 図16は、キャリア濃度とエピタキシャル成長時間との関係を示す図である。 図17は、キャリア濃度と窒素ガス流量との関係を示す図である。 図18は、キャリア濃度とアンモニアガス流量との関係を示す図である。
[本開示が解決しようとする課題]
本開示の目的は、条件出し工程を簡略化しつつ、炭化珪素層のキャリア濃度の精度を向上することである。
[本開示の効果]
本開示によれば、条件出し工程を簡略化しつつ、炭化珪素層のキャリア濃度の精度を向上することができる。
[本開示の実施形態の概要]
まず本開示の実施形態の概要について説明する。本明細書の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示す。結晶学上の指数が負であることは、通常、数字の上に”−”(バー)を付すことによって表現されるが、本明細書では数字の前に負の符号を付すことによって結晶学上の負の指数を表現する。
(1)本開示に係る炭化珪素エピタキシャル基板100の製造方法は以下の工程を備えている。第1アンモニアガスをドーパントガスとして用いて第1炭化珪素基板110上に第1炭化珪素層10が形成される。第1炭化珪素層10の厚みおよび第1炭化珪素層10のキャリア濃度が測定される。第2炭化珪素層20の形成条件が算出される。第2アンモニアガスをドーパントガスとして用いて第2炭化珪素基板120上に第2炭化珪素層20が形成される。第1炭化珪素層10を形成する工程における第1アンモニアガスの流量を第1流量とし、第1炭化珪素層10を形成する工程における第1炭化珪素層10の形成時間を第1形成時間とし、第1炭化珪素層10の厚みを第1厚みとし、第1炭化珪素層10のキャリア濃度を第1濃度とし、第2炭化珪素層20の目標厚みを第2厚みとし、第2炭化珪素層20の目標キャリア濃度を第2濃度とした場合、第2炭化珪素層20の形成条件を算出する工程においては、第2炭化珪素層20の第2形成時間は、第2厚みを第1厚みで除した値に第1形成時間を掛けた値として算出され、かつ、第2炭化珪素層20を形成する工程における第2アンモニアガスの第2流量は、第2濃度を第1濃度で除した値に第1流量を掛けた値として算出される。第2炭化珪素層20を形成する工程においては、第2形成時間および第2流量を用いて、第2炭化珪素層20が形成される。第1炭化珪素層10をエピタキシャル成長により形成する工程と、第2炭化珪素層20をエピタキシャル成長により形成する工程とは、同じ装置で行われる。
(2)上記(1)に係る炭化珪素エピタキシャル基板100の製造方法において、第2濃度を第1濃度で除した値は、0.1以上5以下であってもよい。
(3)上記(1)または(2)に係る炭化珪素エピタキシャル基板100の製造方法において、第1厚みを第1形成時間で除した値は、5μm/時間以上30μm/時間以下であってもよい。
(4)上記(1)〜(3)のいずれかに係る炭化珪素エピタキシャル基板100の製造方法において、第1炭化珪素基板110のキャリア濃度を第1基板濃度とした場合、第1濃度は、第1基板濃度の半分よりも小さくてもよい。
(5)上記(1)〜(4)のいずれかに係る炭化珪素エピタキシャル基板100の製造方法は、第3アンモニアガスをドーパントガスとして用いて第3炭化珪素基板130上に第3炭化珪素層30を形成する工程と、第3炭化珪素層30の厚みおよび第3炭化珪素層30のキャリア濃度を測定する工程と、第4炭化珪素層40の形成条件を算出する工程と、第2炭化珪素層20を形成する工程前に、第4アンモニアガスをドーパントガスとして用いて第2炭化珪素基板120上に第4炭化珪素層40を形成する工程とをさらに備えていてもよい。第2炭化珪素層20は、第4炭化珪素層40上に形成されてもよい。第3炭化珪素層30を形成する工程における第3アンモニアガスの流量を第3流量とし、第3炭化珪素層30を形成する工程における第3炭化珪素層30の形成時間を第3形成時間とし、第3炭化珪素層30の厚みを第3厚みとし、第3炭化珪素層30のキャリア濃度を第3濃度とし、第4炭化珪素層40の目標厚みを第4厚みとし、第4炭化珪素層40の目標キャリア濃度を第4濃度とした場合、第4炭化珪素層40の形成条件を算出する工程においては、第4炭化珪素層40の第4形成時間は、第4厚みを第3厚みで除した値に第3形成時間を掛けた値として算出され、かつ、第4炭化珪素層40を形成する工程における第4アンモニアガスの第4流量は、第4濃度を第3濃度で除した値に第3流量を掛けた値として算出されてもよい。第4炭化珪素層40を形成する工程においては、第4形成時間および第4流量を用いて、第4炭化珪素層40が形成されてもよい。第3炭化珪素層30をエピタキシャル成長により形成する工程と、第4炭化珪素層40をエピタキシャル成長により形成する工程とは、同じ装置で行われる。
(6)上記(5)に係る炭化珪素エピタキシャル基板100の製造方法において、第4濃度を第3濃度で除した値は、0.1以上5以下であってもよい。
(7)上記(5)または(6)に係る炭化珪素エピタキシャル基板100の製造方法において、第3厚みを第3形成時間で除した値は、5μm/時間以上30μm/時間以下であってもよい。
(8)上記(5)〜(7)のいずれかに係る炭化珪素エピタキシャル基板100の製造方法において、第3炭化珪素基板130のキャリア濃度を第3基板濃度とした場合、第3濃度は、第3基板濃度の半分よりも小さくてもよい。
[本開示の実施形態の詳細]
以下、本開示の一実施形態(以下「本実施形態」とも記す)について説明する。ただし本実施形態はこれらに限定されるものではない。以下の説明では、同一または対応する要素には同一の符号を付し、それらについて同じ説明は繰り返さない。
(炭化珪素エピタキシャル基板の製造装置)
まず、炭化珪素エピタキシャル基板100の製造装置200の構成について説明する。
図1に示されるように、炭化珪素エピタキシャル基板100の製造装置200は、たとえばホットウォール方式の横型CVD(Chemical Vapor Deposition)装置である。炭化珪素エピタキシャル基板100の製造装置200は、反応室201と、ガス供給部235と、制御部245と、発熱体203、石英管204、断熱材(図示せず)、誘導加熱コイル(図示せず)とを主に有している。
発熱体203は、たとえば筒状の形状を有しており、内部に反応室201を形成している。発熱体203は、たとえば黒鉛製である。発熱体203は、石英管204の内周面に接するように石英管204の内部に設けられている。断熱材は、発熱体203の外周を取り囲んでいる。誘導加熱コイルは、たとえば石英管204の外周面に沿って巻回されている。誘導加熱コイルは、外部電源(図示せず)により、交流電流が供給可能に構成されている。これにより、発熱体203が誘導加熱される。結果として、反応室201が発熱体203により加熱される。
反応室201は、発熱体203の内壁面205に取り囲まれて形成された空間である。反応室201内には、炭化珪素基板が配置される。反応室201は、炭化珪素基板を加熱可能に構成されている。反応室201には、炭化珪素基板を保持するサセプタ210が設けられる。炭化珪素基板は、サセプタ210に配置される。サセプタ210は、ステージ202上に配置される。ステージ202は、回転軸209によって自転可能に構成されている。ステージ202が回転することで、サセプタ210が回転する。
炭化珪素エピタキシャル基板100の製造装置200は、ガス導入口207およびガス排気口208をさらに有している。ガス排気口208は、図示しない排気ポンプに接続されている。図1中の矢印は、ガスの流れを示している。ガスは、ガス導入口207から反応室201に導入され、ガス排気口208から排気される。反応室201内の圧力は、ガスの供給量と、ガスの排気量とのバランスによって調整される。
ガス供給部235は、反応室201に、原料ガスとドーパントガスとキャリアガスとを含む混合ガスを供給可能に構成されている。具体的には、ガス供給部235は、たとえば第1ガス供給部231と、第2ガス供給部232と、第3ガス供給部233と、第4ガス供給部234とを含んでいる。
第1ガス供給部231は、炭素原子を含む第1ガスを供給可能に構成されている。第1ガス供給部231は、たとえば第1ガスが充填されたガスボンベである。第1ガスは、たとえばプロパン(C38)ガスである。第1ガスは、たとえばメタン(CH4)ガス、エタン(C26)ガス、アセチレン(C22)ガス等であってもよい。
第2ガス供給部232は、シランガスを含む第2ガスを供給可能に構成されている。第2ガス供給部232は、たとえば第2ガスが充填されたガスボンベである。第2ガスは、たとえばシラン(SiH4)ガスである。第2ガスは、シランガスと、シラン以外の他のガスとの混合ガスでもよい。
第3ガス供給部233は、アンモニアガスを含む第3ガスを供給可能に構成されている。第3ガス供給部233は、たとえば第3ガスが充填されたガスボンベである。第3ガスは、N(窒素原子)を含むドーピングガスである。アンモニアガスは、三重結合を有する窒素ガスに比べて熱分解されやすい。
第4ガス供給部234は、たとえば水素などの第4ガス(キャリアガス)を供給可能に構成されている。第4ガス供給部234は、たとえば水素が充填されたガスボンベである。
制御部245は、ガス供給部235から反応室201に供給される混合ガスの流量を制御可能に構成されている。具体的には、制御部245は、第1ガス流量制御部241と、第2ガス流量制御部242と、第3ガス流量制御部243と、第4ガス流量制御部244とを含んでいてもよい。各制御部は、たとえばMFC(Mass Flow Controller)であってもよい。制御部245は、ガス供給部235とガス導入口207との間に配置されている。言い換えれば、制御部245は、ガス供給部235とガス導入口207とを繋ぐ流路に配置されている。
反応室201の軸方向において、誘導加熱コイルの巻き密度を変化させてもよい。巻き密度[回/m]とは、装置の軸方向の単位長さあたりのコイルの周回数である。たとえば、上流側でアンモニアを効果的に熱分解させるために、上流側の誘導加熱コイルの巻き密度は、下流側の誘導加熱コイルの巻き密度よりも高くてもよい。
(炭化珪素エピタキシャル基板の製造条件の算出方法)
次に、本実施形態に係る炭化珪素エピタキシャル基板100の製造条件の算出方法について説明する。
まず、たとえば昇華法により、ポリタイプ4Hの炭化珪素単結晶が製造される。次に、たとえばワイヤーソーによって、炭化珪素単結晶をスライスすることにより、炭化珪素基板110が準備される(図3参照)。炭化珪素基板110を構成する炭化珪素のポリタイプは、たとえば4H−SiCである。4H−SiCは、電子移動度、絶縁破壊電界強度等において他のポリタイプより優れている。炭化珪素基板110は、n型不純物としての窒素を含んでいる。炭化珪素基板110の導電型は、n型である。
図3および図4に示されるように、炭化珪素基板110は、第1主面111と、第2主面112と、外縁部113とを有している。第1主面111は、第1方向101および第2方向102の各々の方向に沿って2次元的に広がっている。第2主面112は、第1主面111の反対側にある。第1主面111に対して垂直な方向から見て、外縁部113は、第1主面111を取り囲んでいる。外縁部113は、たとえばオリエンテーションフラット1と、円弧状部2とを有している。オリエンテーションフラット1は、第1方向101に沿って延在している。円弧状部2は、オリエンテーションフラット1に連なっている。
第2方向102は、たとえば<1−100>方向である。第2方向は、たとえば[1−100]方向であってもよい。第1方向101は、第1主面111に対して平行であり、かつ第2方向102に対して垂直な方向である。第1方向101は、たとえば<11−20>方向成分を含む方向である。別の観点から言えば、第1方向は、<11−20>方向を第1主面111に平行な平面に投影した方向である。第1方向101は、たとえば[11−20]方向成分を含む方向であってもよい。
図3に示されるように、炭化珪素基板110の第1主面111の直径3(最大径)は、100mm以上である。直径3は150mm以上でもよいし、200mm以上でもよいし、250mm以上でもよい。直径3の上限は特に限定されないが、直径3の上限はたとえば300mmであってもよい。
第1主面111は、{0001}面または{0001}面に対して8°以下の角度で傾斜した面である。具体的には、第1主面111は、たとえば(0001)面または(0001)面に対して8°以下の角度で傾斜した面である。第1主面111が{0001}面に対して傾斜している場合、傾斜方向(オフ方向)は、たとえば<11−20>方向である。{0001}面に対する傾斜角(オフ角)は、1°以上であってもよいし、2°以上であってもよい。オフ角は、7°以下であってもよいし、6°以下であってもよいし、4°以下であってもよい。第1主面111は、(000−1)面または(000−1)面に対して8°以下の角度で傾斜した面であってもよい。
次に、第1炭化珪素層を形成する工程(S10:図2)が実施される。具体的には、上述した製造装置200を用いて、炭化珪素基板110上に第1炭化珪素層10がエピタキシャル成長によって形成される。まず、炭化珪素基板110がサセプタ210に載置される。次に、反応室201の圧力が大気圧から1×10-6Pa程度に低減された後、炭化珪素基板110の昇温が開始される。昇温の途中において、第4ガス供給部234からキャリアガスである水素(H2)ガスが反応室201に導入される。水素ガスの流量は、第4ガス流量制御部244により調整される。
反応室の温度がたとえば1600℃程度になった後、反応室201に、原料ガス、ドーパントガスおよびキャリアガスが供給される。具体的には、シランとプロパンとアンモニア(第1アンモニアガス)と水素とを含む混合ガスが、反応室201に導入される。反応室201において、それぞれのガスが熱分解され、炭化珪素基板110上に第1炭化珪素層10が形成される。混合ガスのC/Si比が、たとえば1.0程度となるように、シランおよびプロパンとの流量が調整される。反応室201の圧力は、たとえば6kPaである。
第2ガス流量制御部242を用いて、反応室201に供給される第2ガス(シランガス)の流量は、たとえば115sccmとなるように調整される。第2ガス(シランガス)の流量は、たとえば80sccm以上150sccm以下であってもよい。
同様に、第1ガス流量制御部241を用いて、反応室201に供給される第1ガス(プロパンガス)の流量は、たとえば37.5sccmとなるように調整される。第1ガス(プロパンガス)の流量は、たとえば25sccm以上50sccm以下であってもよい。
同様に、第3ガス流量制御部243を用いて、反応室201に供給される第3ガス(アンモニアガス)の流量は、たとえば0.0033sccmとなるよう調整される。第3ガス(アンモニアガス)の流量は、たとえば0.001sccm以上0.1sccm以下であってもよい。
同様に、第4ガス流量制御部244を用いて、反応室201に供給される第4ガス(水素ガス)の流量は、たとえば120slmとなるように調整される。第4ガス(水素ガス)の流量は、たとえば100slm以上150slm以下であってもよい。
以上のように、第1アンモニアガスをドーパントガスとして用いて炭化珪素基板110上に第1炭化珪素層10が形成される(図5参照)。第1炭化珪素層10の厚み(第1厚みT1)は、たとえば3μm以上10μm以下である。第1厚みT1は、たとえば3.5μm以上であってもよいし、4μm以上であってもよい。第1厚みT1は、たとえば9.5μm以下であってもよいし、9μm以下であってもよい。
第1炭化珪素層10は、n型不純物としての窒素(N)を含んでいる。この場合、キャリアは電子である。第1炭化珪素層10のキャリア濃度は、たとえば1×1014cm-3以上1×1016cm-3以下である。図5に示されるように、第1炭化珪素層10は、第3主面11と、第4主面12とを有している。第4主面12は、第3主面11の反対側にある。第4主面12は、第1主面111に接している。
次に、第1炭化珪素層の厚みおよびキャリア濃度を測定する工程(S20:図2)が実施される。
まず、第1炭化珪素層10の厚みの測定方法について説明する。
第1炭化珪素層10の厚みは、たとえばFT−IR(Fourier Transform−InfraRed spectrometer)を用いて測定することができる。第1炭化珪素層10の厚みは、たとえば島津製作所製フーリエ変換赤外分光光度計(IRPrestige−21)および同社製の赤外顕微鏡(AIM−8800)を組み合わせて測定することができる。FT−IRによる第1炭化珪素層10の厚み測定は、第1炭化珪素層10と炭化珪素基板110とのキャリア濃度差により生じる光学定数差を利用して求められる。具体的には、赤外光を照射して、第1炭化珪素層10の第3主面11からの反射と、第1炭化珪素層10と炭化珪素基板110との界面からの反射による干渉を計測することにより、第1炭化珪素層10の厚みが計測される。測定波数範囲は、たとえば1500cm-1から3500cm-1までの範囲である。波数間隔は、たとえば4cm-1程度である。
第1炭化珪素層10の厚みは、第3主面11の複数の位置において測定される。面内方向の測定間隔は、たとえば10mmである。具体的には、第1方向101に平行な方向において、第3主面11の中心から±10mm、±20mm、±30mm、±40mm、±50mmおよび±60mm離れた点が厚みの測定位置とされる。同様に、第2方向102に平行な方向において、第3主面11の中心から±10mm、±20mm、±30mm、±40mm、±50mmおよび±60mm離れた点が厚みの測定位置とされる。第3主面11の中心も厚みの測定位置とされる。複数の測定位置において測定された第1炭化珪素層10の厚みの平均値が、第1炭化珪素層10の厚みとされる。
次に、第1炭化珪素層10のキャリア濃度の測定方法について説明する。
第1炭化珪素層10のキャリア濃度は、たとえば水銀プローブ方式のC(キャパシタンス)−V(電圧)測定装置により測定される。具体的には、第1炭化珪素層10の第3主面11側に一方のプローブが配置され、第1炭化珪素層10の第4主面12側に他方のプローブが配置される。一方のプローブの面積は、たとえば0.01cm2である。一方のプローブと他方のプローブとの間に電圧が印加され、一方のプローブと他方のプローブとの間のキャパシタンスが測定される。縦軸を1/C(キャパシタンスの二乗の逆数)とし、横軸をV(電圧)とし、測定データの直線の傾きから、キャリア濃度が求められる。測定電圧範囲は、典型的には−5V〜0Vの範囲である。なお、キャリア濃度は、たとえばSIMS(Secondary Ion Mass Spectrometry)により測定されてもよい。
第1炭化珪素層10のキャリア濃度は、第3主面11の複数の位置において測定される。面内方向の測定間隔は、たとえば10mmである。具体的には、第1方向101に平行な方向において、第3主面11の中心から±10mm、±20mm、±30mm、±40mm、±50mmおよび±60mm離れた点がキャリア濃度の測定位置とされる。同様に、第2方向102に平行な方向において、第3主面11の中心から±10mm、±20mm、±30mm、±40mm、±50mmおよび±60mm離れた点がキャリア濃度の測定位置とされる。第3主面11の中心もキャリア濃度の測定位置とされる。複数の測定位置において測定された第1炭化珪素層10のキャリア濃度の平均値が、第1炭化珪素層10のキャリア濃度とされる。以上のように、第1炭化珪素層10の厚みおよび第1炭化珪素層10のキャリア濃度が測定される。
次に、第2炭化珪素層の形成条件を算出する工程(S30:図2)が実施される。
具体的には、第2炭化珪素層20の形成時間が算出される。第1炭化珪素層10を形成する工程における第1炭化珪素層10の形成時間を第1形成時間とし、第1炭化珪素層10の厚みを第1厚みとし、第2炭化珪素層20の目標厚みを第2厚みとした場合、第2炭化珪素層20の形成条件を算出する工程においては、第2炭化珪素層20の形成時間は、第2厚みを第1厚みで除した値に第1形成時間を掛けた値として算出される。一例として、第1形成時間が6分であり、第1厚みが6μmであり、第2厚みが10μmである場合、第2炭化珪素層20の形成時間は、(10μm/6μm)×6分=10分として算出される。
第1厚みを第1形成時間で除した値は、第1炭化珪素層10の形成速度である。第1厚みを第1形成時間で除した値は、たとえば5μm/時間以上30μm/時間以下である。第1厚みを第1形成時間で除した値は、たとえば7μm/時間以上であってもよいし、10μm/時間以上であってもよい。第1厚みを第1形成時間で除した値は、たとえば25μm/時間以下であってよいし、20μm/時間以下であってもよい。
同様に、第2炭化珪素層20を形成する工程における第2アンモニアガスの流量が算出される。第1炭化珪素層10を形成する工程における第1アンモニアガスの流量を第1流量とし、第1炭化珪素層10のキャリア濃度を第1濃度とし、第2炭化珪素層20の目標キャリア濃度を第2濃度とした場合、第2炭化珪素層20の形成条件を算出する工程においては、第2炭化珪素層20を形成する工程における第2アンモニアガスの流量は、第2濃度を第1濃度で除した値に第1流量を掛けた値として算出される。一例として、第1流量が0.001sccmであり、第1濃度が1×1015cm-3であり、第2濃度が2×1015cm-3である場合、第2炭化珪素層20を形成する工程における第2アンモニアガスの流量は、(2×1015cm-3/1×1015cm-3)×0.001sccm=0.002sccmとして算出される。
第2濃度を第1濃度で除した値は、たとえば0.1以上5以下である。第2濃度を第1濃度で除した値は、たとえば0.2以上であってもよし、0.3以上であってもよい。第2濃度を第1濃度で除した値は、たとえば4以下であってもよし、3以下であってもよい。第1炭化珪素基板110のキャリア濃度を第1基板濃度とした場合、第1濃度は、たとえば第1基板濃度の半分よりも小さい。第1濃度は、たとえば第1基板濃度の1/3よりも小さくてもよいし、1/10よりも小さくてもよい。以上のように、第2炭化珪素層20の形成条件が算出される。
(炭化珪素エピタキシャル基板の製造方法)
(第1実施形態)
次に、第1実施形態に係る炭化珪素エピタキシャル基板100の製造方法について説明する。
図6に示されるように、第1実施形態に係る炭化珪素エピタキシャル基板100の製造方法は、第1炭化珪素層を形成する工程(S10:図6)と、第1炭化珪素層の厚みおよびキャリア濃度を測定する工程(S20:図6)と、第2炭化珪素層の形成条件を算出する工程(S30:図6)と、第2炭化珪素層を形成する工程(S40:図6)とを主に有している。
まず、第1炭化珪素層を形成する工程(S10:図6)が実施される。第1炭化珪素層を形成する工程(S10:図6)は、上述の第1炭化珪素層を形成する工程(S10:図2)と同様である。第1炭化珪素層を形成する工程(S10:図6)においては、第1アンモニアガスをドーパントガスとして用いて第1炭化珪素基板110上に第1炭化珪素層10が形成される。
次に、第1炭化珪素層の厚みおよびキャリア濃度を測定する工程(S20:図6)が実施される。第1炭化珪素層の厚みおよびキャリア濃度を測定する工程(S20:図6)は、上述の第1炭化珪素層の厚みおよびキャリア濃度を測定する工程(S20:図2)と同様である。第1炭化珪素層の厚みおよびキャリア濃度を測定する工程(S20:図6)においては、第1炭化珪素層10の厚みおよび第1炭化珪素層10のキャリア濃度が測定される。
次に、第2炭化珪素層の形成条件を算出する工程(S30:図6)が実施される。第2炭化珪素層の形成条件を算出する工程(S30:図6)は、上述の第2炭化珪素層の形成条件を算出する工程(S30:図2)と同様である。第2炭化珪素層の形成条件を算出する工程(S30:図6)においては、第2炭化珪素層20の形成条件が算出される。
次に、第2炭化珪素層を形成する工程(S40:図6)が実施される。具体的には、まず、第2炭化珪素基板120が準備される(図7参照)。第2炭化珪素基板120は、第1炭化珪素基板110とは異なる基板である。第2炭化珪素基板120は、第1炭化珪素基板110と実質的に同じ物理的および化学的特性を有している。図7に示されるように、第2炭化珪素基板120は、第5主面121と、第6主面122を有している。第6主面122は、第5主面121と反対側にある。第2炭化珪素基板120を構成する炭化珪素のポリタイプは、たとえば4H−SiCである。第2炭化珪素基板120の直径は、たとえば150mm以上である。
第5主面121は、{0001}面または{0001}面に対して8°以下の角度で傾斜した面である。具体的には、第5主面121は、たとえば(0001)面または(0001)面に対して8°以下の角度で傾斜した面である。第5主面121が{0001}面に対して傾斜している場合、傾斜方向(オフ方向)は、たとえば<11−20>方向である。{0001}面に対する傾斜角(オフ角)は、1°以上であってもよいし、2°以上であってもよい。オフ角は、7°以下であってもよいし、6°以下であってもよいし、4°以下であってもよい。第5主面121は、(000−1)面または(000−1)面に対して8°以下の角度で傾斜した面であってもよい。
次に、上述した製造装置200を用いて、第2炭化珪素基板120上に第2炭化珪素層20がエピタキシャル成長によって形成される。まず、第2炭化珪素基板120がサセプタ210に載置される。次に、反応室201の圧力が大気圧から1×10-6Pa程度に低減された後、第2炭化珪素基板120の昇温が開始される。昇温の途中において、第4ガス供給部234からキャリアガスである水素(H2)ガスが反応室201に導入される。水素ガスの流量は、第4ガス流量制御部244により調整される。
反応室201の温度がたとえば1600℃程度になった後、反応室201に、原料ガス、ドーパントガスおよびキャリアガスが供給される。具体的には、シランとプロパンとアンモニア(第2アンモニアガス)と水素とを含む混合ガスが、反応室201に導入される。反応室201において、それぞれのガスが熱分解され、第2炭化珪素基板120上に第2炭化珪素層20が形成される。混合ガスのC/Si比が、たとえば1.0程度となるように、シランおよびプロパンとの流量が調整される。反応室201の圧力は、たとえば6kPaである。
第2炭化珪素層を形成する工程(S40:図6)における反応室201の温度は、第1炭化珪素層を形成する工程(S10:図6)における反応室201の温度と実質的に同じになるように調整されている。具体的には、第2炭化珪素層を形成する工程(S40:図6)における反応室201の温度(℃)は、第1炭化珪素層を形成する工程(S10:図6)における反応室201の温度(℃)±0.2%以内である。
第2炭化珪素層を形成する工程(S40:図6)における反応室201の圧力は、第1炭化珪素層を形成する工程(S10:図6)における反応室201の圧力と実質的に同じになるように調整されている。具体的には、第2炭化珪素層を形成する工程(S40:図6)における反応室201の圧力(kPa)は、第1炭化珪素層を形成する工程(S10:図6)における反応室201の圧力(kPa)±2%以内である。
第2炭化珪素層を形成する工程(S40:図6)における第2ガス(シランガス)の流量は、第1炭化珪素層を形成する工程(S10:図6)における第2ガス(シランガス)の流量と実質的に同じになるように調整されている。具体的には、第2炭化珪素層を形成する工程(S40:図6)における第2ガス(シランガス)の流量(sccm)は、第1炭化珪素層を形成する工程(S10:図6)における第2ガス(シランガス)の流量(sccm)±0.5%以内である。
第2炭化珪素層を形成する工程(S40:図6)における第1ガス(プロパンガス)の流量は、第1炭化珪素層を形成する工程(S10:図6)における第1ガス(プロパンガス)の流量と実質的に同じになるように調整されている。具体的には、第2炭化珪素層を形成する工程(S40:図6)における第1ガス(プロパンガス)の流量(sccm)は、第1炭化珪素層を形成する工程(S10:図6)における第1ガス(プロパンガス)の流量(sccm)±0.5%以内である。
第2炭化珪素層を形成する工程(S40:図6)における第4ガス(水素ガス)の流量は、第1炭化珪素層を形成する工程(S10:図6)における第4ガス(水素ガス)の流量と実質的に同じになるように調整されている。具体的には、第2炭化珪素層を形成する工程(S40:図6)における第4ガス(水素ガス)の流量(slm)は、第1炭化珪素層を形成する工程(S10:図6)における第4ガス(水素ガス)の流量(slm)±0.5%以内である。
以上のように、第2アンモニアガスをドーパントガスとして用いて第2炭化珪素基板120上に第2炭化珪素層20が形成される(図8参照)。第2炭化珪素層20の厚み(第2厚みT2)は、たとえば5μm以上30μm以下である。第2厚みT2は、たとえば6μm以上であってもよいし、7μm以上であってもよい。第2厚みT2は、たとえば28μm以下であってもよいし、26μm以下であってもよい。第1炭化珪素層を形成する工程(S10:図6)と、第2炭化珪素層を形成する工程(S40:図6)とは、同じ装置で行われる。
第2炭化珪素層20は、n型不純物としての窒素(N)を含んでいる。この場合、キャリアは電子である。第2炭化珪素層20のキャリア濃度は、たとえば1×1014cm-3以上1×1016cm-3以下である。図8に示されるように、第2炭化珪素層20は、第7主面21と、第8主面22とを有している。第8主面22は、第7主面21の反対側にある。第8主面22は、第5主面121に接している。以上のように、第2炭化珪素基板120と、第2炭化珪素層20とを有する炭化珪素エピタキシャル基板100が製造される。
(第2実施形態)
次に、第2実施形態に係る炭化珪素エピタキシャル基板100の製造方法について説明する。
図9に示されるように、第2実施形態に係る炭化珪素エピタキシャル基板100の製造方法は、炭化珪素層の形成条件の決定工程(S3:図9)と、第4炭化珪素層を形成する工程(S80:図9)と、第2炭化珪素層を形成する工程(S90:図9)を主に有している。炭化珪素層の形成条件の決定工程(S3:図9)は、第2炭化珪素層20の形成条件の決定工程(S1:図9)と、第4炭化珪素層40の形成条件の決定工程(S2:図9)とを主に有している。
第2炭化珪素層20の形成条件の決定工程(S1:図9)は、第1炭化珪素層を形成する工程(S10:図9)と、第1炭化珪素層の厚みおよびキャリア濃度を測定する工程(S20:図9)と、第2炭化珪素層の形成条件を算出する工程(S30:図9)とを主に有している。第4炭化珪素層の形成条件の決定工程(S2:図9)は、第3炭化珪素層を形成する工程(S50:図9)と、第3炭化珪素層の厚みおよびキャリア濃度を測定する工程(S60:図9)と、第4炭化珪素層の形成条件を算出する工程(S70:図9)とを主に有している。
なお、第2実施形態に係る炭化珪素エピタキシャル基板100の製造方法において、第2炭化珪素層の形成条件の決定工程(S1:図9)と第4炭化珪素層の形成条件の決定工程(S2:図9)との順番は、特に限定されない。第2炭化珪素層の形成条件の決定工程(S1:図9)は、第4炭化珪素層の形成条件の決定工程(S2:図9)の前に行われてもよいし、第4炭化珪素層の形成条件の決定工程(S2:図9)の後に行われてもよい。
まず、第1炭化珪素層を形成する工程(S10:図9)が実施される。第1炭化珪素層を形成する工程(S10:図9)は、上述の第1炭化珪素層を形成する工程(S10:図2)と同様である。第1炭化珪素層を形成する工程(S10:図9)においては、第1アンモニアガスをドーパントガスとして用いて第1炭化珪素基板110上に第1炭化珪素層10が形成される。
次に、第1炭化珪素層の厚みおよびキャリア濃度を測定する工程(S20:図9)が実施される。第1炭化珪素層の厚みおよびキャリア濃度を測定する工程(S20:図9)は、上述の第1炭化珪素層の厚みおよびキャリア濃度を測定する工程(S20:図2)と同様である。第1炭化珪素層の厚みおよびキャリア濃度を測定する工程(S20:図9)においては、第1炭化珪素層10の厚みおよび第1炭化珪素層10のキャリア濃度が測定される。
次に、第2炭化珪素層の形成条件を算出する工程(S30:図9)が実施される。第2炭化珪素層の形成条件を算出する工程(S30:図9)は、上述の第2炭化珪素層の形成条件を算出する工程(S30:図2)と同様である。第2炭化珪素層の形成条件を算出する工程(S30:図9)においては、第2炭化珪素層20の形成条件が算出される。
次に、第3炭化珪素層を形成する工程(S50:図9)が実施される。具体的には、まず、第3炭化珪素基板130が準備される(図10参照)。第3炭化珪素基板130は、第1炭化珪素基板110および第2炭化珪素基板120の各々とは異なる基板である。第3炭化珪素基板130は、第1炭化珪素基板110と実質的に同じ物理的および化学的特性を有している。図10に示されるように、第3炭化珪素基板130は、第9主面131と、第10主面132を有している。第10主面132は、第9主面131の反対側にある。第3炭化珪素基板130を構成する炭化珪素単結晶のポリタイプは、たとえば4H−SiCである。第3炭化珪素基板130の直径は、たとえば150mm以上である。
第9主面131は、{0001}面または{0001}面に対して8°以下の角度で傾斜した面である。具体的には、第9主面131は、たとえば(0001)面または(0001)面に対して8°以下の角度で傾斜した面である。第9主面131が{0001}面に対して傾斜している場合、傾斜方向(オフ方向)は、たとえば<11−20>方向である。{0001}面に対する傾斜角(オフ角)は、1°以上であってもよいし、2°以上であってもよい。オフ角は、7°以下であってもよいし、6°以下であってもよいし、4°以下であってもよい。第9主面131は、(000−1)面または(000−1)面に対して8°以下の角度で傾斜した面であってもよい。
次に、上述した製造装置200を用いて、第3炭化珪素基板130上に第3炭化珪素層30がエピタキシャル成長によって形成される。まず、第3炭化珪素基板130がサセプタ210に載置される。次に、反応室201の圧力が大気圧から1×10-6Pa程度に低減された後、第3炭化珪素基板130の昇温が開始される。昇温の途中において、第4ガス供給部234からキャリアガスである水素(H2)ガスが反応室201に導入される。水素ガスの流量は、第4ガス流量制御部244により調整される。
反応室201の温度がたとえば1600℃程度になった後、反応室201に、原料ガス、ドーパントガスおよびキャリアガスが供給される。具体的には、シランとプロパンとアンモニア(第3アンモニアガス)と水素とを含む混合ガスが、反応室201に導入される。反応室201において、それぞれのガスが熱分解され、第3炭化珪素基板130上に第3炭化珪素層30が形成される。混合ガスのC/Si比が、たとえば0.9程度となるように、シランおよびプロパンとの流量が調整される。反応室201の圧力は、たとえば6kPaである。
第2ガス流量制御部242を用いて、反応室201に供給される第2ガス(シランガス)の流量は、たとえば46sccmとなるように調整される。第2ガス(シランガス)の流量は、たとえば30sccm以上60sccm以下であってもよい。
同様に、第4ガス流量制御部244を用いて、反応室201に供給される第1ガス(プロパンガス)の流量は、たとえば14sccmとなるように調整される。第1ガス(プロパンガス)の流量は、たとえば9sccm以上18sccm以下であってもよい。
同様に、第3ガス流量制御部243を用いて、反応室201に供給される第3ガス(アンモニアガス)の流量は、たとえば0.7sccmとなるよう調整される。第3ガス(アンモニアガス)の流量は、たとえば0.1sccm以上1.0sccm以下であってもよい。
同様に、第4ガス流量制御部244を用いて、反応室201に供給される第4ガス(水素ガス)の流量は、たとえば120slmとなるように調整される。第4ガス(水素ガス)の流量は、たとえば100slm以上150slm以下であってもよい。
以上のように、第3アンモニアガスをドーパントガスとして用いて第3炭化珪素基板130上に第3炭化珪素層30が形成される(図11参照)。第3炭化珪素層30の厚み(第3厚みT3)は、たとえば3μm以上10μm以下である。第3厚みT3は、第1厚みT1と同じであってもよい。
第3炭化珪素層30は、n型不純物としての窒素(N)を含んでいる。この場合、キャリアは電子である。第3炭化珪素層30のキャリア濃度は、たとえば1×1017cm-3以上1×1019cm-3以下である。第3炭化珪素層30のキャリア濃度は、第1炭化珪素層10のキャリア濃度よりも高くてもよい。図11に示されるように、第3炭化珪素層30は、第11主面31と、第12主面32とを有している。第12主面32は、第11主面31の反対側にある。第12主面32は、第9主面131に接している。
次に、第3炭化珪素層の厚みおよびキャリア濃度を測定する工程(S60:図9)が実施される。第3炭化珪素層の厚みおよびキャリア濃度を測定する工程(S60:図9)は、上述の第1炭化珪素層の厚みおよびキャリア濃度を測定する工程(S20:図2)と同様である。第3炭化珪素層の厚みおよびキャリア濃度を測定する工程(S60:図9)においては、第3炭化珪素層30の厚みおよび第3炭化珪素層30のキャリア濃度が測定される。
次に、第4炭化珪素層の形成条件を算出する工程(S70:図9)が実施される。
具体的には、第4炭化珪素層40の形成時間が算出される。第3炭化珪素層30を形成する工程における第3炭化珪素層30の形成時間を第3形成時間とし、第3炭化珪素層30の厚みを第3厚みとし、第4炭化珪素層40の目標厚みを第4厚みとした場合、第4炭化珪素層40の形成条件を算出する工程においては、第4炭化珪素層40の形成時間は、第4厚みを第3厚みで除した値に第3形成時間を掛けた値として算出される。一例として、第3形成時間が4分であり、第3厚みが4μmであり、第4厚みが1μmである場合、第2炭化珪素層20の形成時間は、(1μm/4μm)×4分=1分として算出される。
第3厚みを第3形成時間で除した値は、第3炭化珪素層30の形成速度である。第3厚みを第3形成時間で除した値は、たとえば5μm/時間以上30μm/時間以下である。第3厚みを第3形成時間で除した値は、たとえば7μm/時間以上であってもよいし、10μm/時間以上であってもよい。第3厚みを第3形成時間で除した値は、たとえば25μm/時間以下であってよいし、20μm/時間以下であってもよい。
同様に、第4炭化珪素層40を形成する工程における第4アンモニアガスの流量が算出される。第3炭化珪素層30を形成する工程における第3アンモニアガスの流量を第3流量とし、第3炭化珪素層30のキャリア濃度を第3濃度とし、第4炭化珪素層40の目標キャリア濃度を第4濃度とした場合、第4炭化珪素層40の形成条件を算出する工程においては、第4炭化珪素層40を形成する工程における第4アンモニアガスの流量は、第4濃度を第3濃度で除した値に第3流量を掛けた値として算出される。一例として、第3流量が0.4sccmであり、第3濃度が1×1018cm-3であり、第4濃度が2×1018cm-3である場合、第4炭化珪素層40を形成する工程における第4アンモニアガスの流量は、(2×1018cm-3/1×1018cm-3)×0.4sccm=0.8sccmとして算出される。
第4濃度を第3濃度で除した値は、たとえば0.1以上5以下である。第4濃度を第3濃度で除した値は、たとえば0.2以上であってもよし、0.3以上であってもよい。第4濃度を第3濃度で除した値は、たとえば4以下であってもよし、3以下であってもよい。第3炭化珪素基板130のキャリア濃度を第3基板濃度とした場合、第3濃度は、たとえば第3基板濃度の半分よりも小さい。第3濃度は、たとえば第3基板濃度の1/3よりも小さくてもよいし、1/10よりも小さくてもよい。以上のように、第4炭化珪素層40の形成条件が算出される。
以上のように、第3炭化珪素層30を形成する工程における第3アンモニアガスの流量を第3流量とし、第3炭化珪素層30を形成する工程における第3炭化珪素層30の形成時間を第3形成時間とし、第3炭化珪素層30の厚みを第3厚みとし、第3炭化珪素層30のキャリア濃度を第3濃度とし、第4炭化珪素層40の目標厚みを第4厚みとし、第4炭化珪素層40の目標キャリア濃度を第4濃度とした場合、第4炭化珪素層40の形成条件を算出する工程においては、第4炭化珪素層40の第4形成時間は、第4厚みを第3厚みで除した値に第3形成時間を掛けた値として算出され、かつ、第4炭化珪素層40を形成する工程における第4アンモニアガスの第4流量は、第4濃度を第3濃度で除した値に第3流量を掛けた値として算出される。
次に、第4炭化珪素層を形成する工程(S80:図9)が実施される。具体的には、まず、第2炭化珪素基板120が準備される(図12参照)。第2炭化珪素基板120は、第3炭化珪素基板130とは異なる基板である。第2炭化珪素基板120は、第3炭化珪素基板130と実質的に同じ物理的および化学的特性を有している。図12に示されるように、第2炭化珪素基板120は、第5主面121と、第6主面122を有している。第6主面122は、第5主面121の反対側にある。第2炭化珪素基板120を構成する炭化珪素単結晶のポリタイプは、たとえば4H−SiCである。第2炭化珪素基板120の直径は、たとえば150mm以上である。
次に、上述した製造装置200を用いて、第2炭化珪素基板120上に第4炭化珪素層40がエピタキシャル成長によって形成される。まず、第2炭化珪素基板120がサセプタ210に載置される。次に、反応室201の圧力が大気圧から1×10-6Pa程度に低減された後、第2炭化珪素基板120の昇温が開始される。昇温の途中において、第4ガス供給部234からキャリアガスである水素(H2)ガスが反応室201に導入される。水素ガスの流量は、第4ガス流量制御部244により調整される。
反応室201の温度がたとえば1600℃程度になった後、反応室201に、原料ガス、ドーパントガスおよびキャリアガスが供給される。具体的には、シランとプロパンとアンモニア(第4アンモニアガス)と水素とを含む混合ガスが、反応室201に導入される。反応室201において、それぞれのガスが熱分解され、第2炭化珪素基板120上に第4炭化珪素層40が形成される(図13参照)。混合ガスのC/Si比が、たとえば0.9程度となるように、シランおよびプロパンとの流量が調整される。反応室201の圧力は、たとえば6kPaである。
第4炭化珪素層を形成する工程(S80:図9)における反応室201の温度は、第3炭化珪素層を形成する工程(S50:図9)における反応室201の温度と実質的に同じになるように調整されている。具体的には、第4炭化珪素層を形成する工程(S80:図9)における反応室201の温度(℃)は、第3炭化珪素層を形成する工程(S50:図9)における反応室201の温度(℃)±0.2%以内である。
第4炭化珪素層を形成する工程(S80:図9)における反応室201の圧力は、第3炭化珪素層を形成する工程(S50:図9)における反応室201の圧力と実質的に同じになるように調整されている。具体的には、第4炭化珪素層を形成する工程(S80:図9)における反応室201の圧力(kPa)は、第3炭化珪素層を形成する工程(S50:図9)における反応室201の圧力(kPa)±2%以内である。
第4炭化珪素層を形成する工程(S80:図9)における第2ガス(シランガス)の流量は、第3炭化珪素層を形成する工程(S50:図9)における第2ガス(シランガス)の流量と実質的に同じになるように調整されている。具体的には、第4炭化珪素層を形成する工程(S80:図9)における第2ガス(シランガス)の流量(sccm)は、第3炭化珪素層を形成する工程(S50:図9)における第2ガス(シランガス)の流量(sccm)±0.5%以内である。
第4炭化珪素層を形成する工程(S80:図9)における第1ガス(プロパンガス)の流量は、第3炭化珪素層を形成する工程(S50:図9)における第1ガス(プロパンガス)の流量と実質的に同じになるように調整されている。具体的には、第4炭化珪素層を形成する工程(S80:図9)における第1ガス(プロパンガス)の流量(sccm)は、第3炭化珪素層を形成する工程(S50:図9)における第1ガス(プロパンガス)の流量(sccm)±0.5%以内である。
第4炭化珪素層を形成する工程(S80:図9)における第4ガス(水素ガス)の流量は、第3炭化珪素層を形成する工程(S50:図9)における第4ガス(水素ガス)の流量と実質的に同じになるように調整されている。具体的には、第4炭化珪素層を形成する工程(S80:図9)における第4ガス(水素ガス)の流量(slm)は、第3炭化珪素層を形成する工程(S50:図9)における第4ガス(水素ガス)の流量(slm)±0.5%以内である。
以上のように、第4アンモニアガスをドーパントガスとして用いて第2炭化珪素基板120上に第4炭化珪素層40が形成される(図13参照)。第4炭化珪素層40の厚み(第4厚みT4)は、たとえば0.5μm以上3μm以下である。第4厚みT4は、たとえば0.6μm以上であってもよいし、0.7μm以上であってもよい。第4厚みT4は、たとえば2.8μm以下であってもよいし、2.6μm以下であってもよい。第3炭化珪素層を形成する工程(S50:図9)と、第4炭化珪素層を形成する工程(S80:図9)とは、同じ装置で行われる。
第4炭化珪素層40は、n型不純物としての窒素(N)を含んでいる。この場合、キャリアは電子である。第4炭化珪素層40のキャリア濃度は、たとえば1×1017cm-3以上1×1019cm-3以下である。図13に示されるように、第4炭化珪素層40は、第13主面41と、第14主面42とを有している。第14主面42は、第13主面41の反対側にある。第14主面42は、第5主面121に接している。
次に、第2炭化珪素層を形成する工程(S90:図9)が実施される。第2炭化珪素層を形成する工程(S90:図9)においては、第4炭化珪素層40上に第2炭化珪素層20がエピタキシャル成長によって形成される(図14参照)。具体的には、反応室201に、原料ガス、ドーパントガスおよびキャリアガスが供給される。具体的には、シランとプロパンとアンモニア(第4アンモニアガス)と水素とを含む混合ガスが、反応室201に導入される。反応室201において、それぞれのガスが熱分解され、第4炭化珪素層40上に第2炭化珪素層20が形成される。反応室201の温度は、たとえば1600℃である。混合ガスのC/Si比が、たとえば1.0程度となるように、シランおよびプロパンとの流量が調整される。反応室201の圧力は、たとえば6kPaである。
第2炭化珪素層を形成する工程(S90:図9)における反応室201の温度は、第1炭化珪素層を形成する工程(S10:図9)における反応室201の温度と実質的に同じになるように調整されている。第2炭化珪素層を形成する工程(S90:図9)における反応室201の圧力は、第1炭化珪素層を形成する工程(S10:図9)における反応室201の圧力と実質的に同じになるように調整されている。
第2炭化珪素層を形成する工程(S90:図9)における第2ガス(シランガス)の流量は、第1炭化珪素層を形成する工程(S10:図9)における第2ガス(シランガス)の流量と実質的に同じになるように調整されている。第2炭化珪素層を形成する工程(S90:図9)における第1ガス(プロパンガス)の流量は、第1炭化珪素層を形成する工程(S10:図9)における第1ガス(プロパンガス)の流量と実質的に同じになるように調整されている。第2炭化珪素層を形成する工程(S90:図9)における第4ガス(水素ガス)の流量は、第1炭化珪素層を形成する工程(S10:図9)における第4ガス(水素ガス)の流量と実質的に同じになるように調整されている。
以上のように、第2炭化珪素層20は、第4炭化珪素層40上に形成される(図14参照)。第4炭化珪素層を形成する工程(S80:図9)は、第2炭化珪素層を形成する工程(S90:図9)の前に実施される。第2炭化珪素層20の厚み(第2厚みT2)は、たとえば10μmである。第2炭化珪素層20は、n型不純物としての窒素(N)を含んでいる。第2炭化珪素層20のキャリア濃度は、たとえば1×1014cm-3以上1×1016cm-3以下である。図14に示されるように、第2炭化珪素層20は、第7主面21と、第8主面22とを有している。第8主面22は、第7主面21の反対側にある。第8主面22は、第13主面41に接している。以上のように、第2炭化珪素基板120と、第4炭化珪素層40と、第2炭化珪素層20とを有する炭化珪素エピタキシャル基板100が製造される。
(第3実施形態)
次に、第3実施形態に係る炭化珪素エピタキシャル基板100の製造方法について説明する。
第1実施形態に係る炭化珪素エピタキシャル基板100の製造方法および第2実施形態に係る炭化珪素エピタキシャル基板100の製造方法で説明したように、炭化珪素層の形成条件を決定する工程に基づいて、炭化珪素層の形成条件を算出し、当該算出結果に基づいて、炭化珪素層を実際に形成することを繰り返すことによって、3層以上の炭化珪素層を有する炭化珪素エピタキシャル基板100を製造することができる。
図15に示されるように、第3実施形態に係る炭化珪素エピタキシャル基板100の製造方法によって製造された炭化珪素エピタキシャル基板100は、第2炭化珪素基板120と、第4炭化珪素層40と、第5炭化珪素層50と、第2炭化珪素層20とを有している。第4炭化珪素層40は、第2炭化珪素基板120上に設けられている。第5炭化珪素層50は、第4炭化珪素層40上に設けられている。第2炭化珪素層20は、第5炭化珪素層50上に設けられている。
第5炭化珪素層50は、n型不純物としての窒素(N)を含んでいる。この場合、キャリアは電子である。第5炭化珪素層50のキャリア濃度は、たとえば1×1018cm-3以上1×1020cm-3以下である。図15に示されるように、第5炭化珪素層50は、第15主面51と、第16主面52とを有している。第16主面52は、第15主面51の反対側にある。第15主面51は、第8主面22に接している。第16主面52は、第13主面41に接している。
次に、本実施形態に係る炭化珪素エピタキシャル基板100の製造条件の算出方法および炭化珪素エピタキシャル基板100の製造方法の作用効果について説明する。
炭化珪素層をエピタキシャル成長により形成する場合、一定積算膜厚ごとに成長炉のメンテナンスを行う必要がある。成長炉(製造装置200)のメンテナンスにおいては、炉内部材に堆積した炭化珪素が除去される。その際、炉内部材が解体される。炉内部材を清掃した後、炉内部材が組み立てられる。そのため、メンテナンスの前後において、炉内の環境が微妙に変動する可能性がある。
炭化珪素層の成長速度および炭化珪素層に対するドーパントガスの導入効率は、炉内の温度によって変化する。そのため、炉内の温度は、メンテナンスの前後において出来る限り同じにする。しかしながら、メンテナンス前後における炉内の温度をほぼ同じにしたとしても、メンテナンス後の炉内環境をメンテナンス前の炉内環境と全く同じにすることは困難である。そのため、メンテナンス後に、メンテナンス前と全く同じ設定条件を用いて炭化珪素層をエピタキシャル成長により形成した場合であっても、メンテナンス後における炭化珪素層の厚みおよび炭化珪素層のキャリア濃度は、メンテナンス前における炭化珪素層の厚みおよび炭化珪素層のキャリア濃度と異なる場合がある。従って、メンテナンス後にメンテナンス前と同様の炭化珪素層をエピタキシャル成長により形成するため、メンテナンス後には、炭化珪素層の形成条件の調整(条件出し)を行う必要がある。
一般的には、ドーパントガスとして窒素ガスを用いて炭化珪素層が形成される。成長炉に導入する窒素ガスの流量を増加させると、炭化珪素層のキャリア濃度は高くなる。しかしながら、窒素ガスの流量が増加すると、炭化珪素層に対する窒素ガスの導入効率は低下する。つまり、炭化珪素層のキャリア濃度は、窒素ガスの流量に完全に比例する訳ではない(線形性が低い)。そのため、窒素ガスの流量を変化させた場合においては、キャリア濃度を精度良く予測することが困難である。
また、窒素ガスは化学的に非常に安定であるため、熱によって分解されづらい。完全に分解されなかった窒素は、時間の経過に従って成長炉内に蓄積される。そのため、エピタキシャル成長初期におけるキャリア濃度よりも、エピタキシャル成長後期におけるキャリア濃度が高くなる傾向がある(メモリ効果)。よって、炭化珪素層の厚みを変化させた場合においては、キャリア濃度を精度良く予測することが困難である。以上のように、窒素ガスをドーパントガスとして用いて炭化珪素層をエピタキシャル成長により形成する場合には、キャリア濃度を精度良く予測することが困難である。
本開示に係る炭化珪素エピタキシャル基板100の製造条件の算出方法および炭化珪素エピタキシャル基板100の製造方法によれば、第1アンモニアガスをドーパントガスとして用いて炭化珪素基板110上に第1炭化珪素層10が形成される。第2炭化珪素層20を形成する工程における第2アンモニアガスの流量は、第2濃度を第1濃度で除した値に第1流量を掛けた値として算出される。
窒素ガスと比較して、アンモニアガスは、ドーパント流量とキャリア濃度との線形性が高い。そのため、アンモニアガスをドーパントガスとして用いて炭化珪素層をエピタキシャル成長により形成する場合には、キャリア濃度がドーパント流量に比例するという簡便な計算式に基づいて、キャリア濃度を精度良く調整することができる。従って、アンモニアガスをドーパントガスとして用いて炭化珪素層をエピタキシャル成長により形成する場合には、窒素ガスをドーパントガスとして用いて炭化珪素層をエピタキシャル成長により形成する場合と比較して、条件出し工程を大幅に簡略化しつつ、炭化珪素層のキャリア濃度の精度を向上することができる。
またアンモニアガスは、メモリ効果の影響がほとんど無視できる程小さい。そのため、アンモニアガスをドーパントガスとして用いて炭化珪素層をエピタキシャル成長により形成する場合には、エピタキシャル成長時間によらず、炭化珪素層のキャリア濃度は一定である。結果として、炭化珪素層のキャリア濃度の精度を向上することができる。
本実施形態に係る炭化珪素エピタキシャル基板100の製造条件の算出方法および炭化珪素エピタキシャル基板100の製造方法によれば、炭化珪素層のキャリア濃度は、炭化珪素基板のキャリア濃度の半分よりも小さい。FT−IRは、炭化珪素基板のキャリア濃度と炭化珪素層のキャリア濃度との差に起因する屈折率差によって生じる赤外光の干渉スペクトルを利用して、炭化珪素層の厚みを算出している。そのため、FT−IRを使用して炭化珪素層の厚みを測定する場合には、炭化珪素層のキャリア濃度は、炭化珪素基板のキャリア濃度の半分よりも小さいことが望ましい。
(サンプル準備)
まず、比較例として、窒素ガスを用いて炭化珪素基板上に炭化珪素層をエピタキシャル成長によって成長させた。具体的には、シランガスとプロパンガスと窒素ガスとを用いて、炭化珪素層をエピタキシャル成長により形成した。より具体的には、シランガスの流量は、120sccmとした。プロパンガスの流量は、40sccmとした。窒素ガスの流量は、27.0sccmとした。水素ガスの流量は、130slmとした。エピタキシャル成長時間が異なる3種類のサンプルを準備した。エピタキシャル成長時間は、10分、75分および100分とした。
次に、実施例として、アンモニアガスをドーパントガスとして用いて炭化珪素基板上に炭化珪素層をエピタキシャル成長によって成長させた。具体的には、シランガスとプロパンガスとアンモニアガスとを用いて、炭化珪素層をエピタキシャル成長により形成した。より具体的には、シランガスの流量は、120sccmとした。プロパンガスの流量は、40sccmとした。アンモニアガスの流量は、0.067sccmとした。水素ガスの流量は、130slmとした。エピタキシャル成長時間が異なる3種類のサンプルを準備した。エピタキシャル成長時間は、10分、75分および100分とした。
(キャリア濃度測定)
次に、炭化珪素層のキャリア濃度が水銀プローブ方式のC−V測定装置により測定された。炭化珪素層のキャリア濃度の測定条件は、上述の通りである。
(測定結果)
図16に示されるように、比較例のサンプルに係る炭化珪素層のキャリア濃度は、3.0×1015cm-3(エピタキシャル成長時間10分)、3.1×1015cm-3(エピタキシャル成長時間75分)および3.2×1015cm-3(エピタキシャル成長時間150分)であった。一方、実施例のサンプルに係る炭化珪素層のキャリア濃度は、3.0×1015cm-3(エピタキシャル成長時間10分)、3.0×1015cm-3(エピタキシャル成長時間75分)および3.0×1015cm-3(エピタキシャル成長時間150分)であった。
図16に示されるように、窒素ガスを使用して形成した炭化珪素層の場合には、エピタキシャル成長時間が長くなるに従って、炭化珪素層のキャリア濃度が高くなるという傾向がある(メモリ効果)。一方、アンモニアガスを使用して形成した炭化珪素層の場合には、エピタキシャル成長時間が長くなっても、炭化珪素層のキャリア濃度は一定であり、ほとんど変化しない。つまり、窒素ガスの場合とは異なり、アンモニアガスの場合には、炭化珪素層のキャリア濃度はエピタキシャル成長時間によらず一定である。そのため、炭化珪素層の厚みが変わった場合であっても、炭化珪素層のキャリア濃度を精度良く調整することができる。
(サンプル準備)
まず、比較例として、窒素ガスを用いて炭化珪素基板上に炭化珪素層をエピタキシャル成長によって成長させた。具体的には、シランガスとプロパンガスと窒素ガスとを用いて、炭化珪素層をエピタキシャル成長により形成した。より具体的には、シランガスの流量は、120sccmとした。プロパンガスの流量は、40sccmとした。水素ガスの流量は、130slmとした。窒素ガスの流量が異なる3種類のサンプルを準備した。窒素ガスの流量は、28.0sccm、50.0sccmおよび70.0sccmとした。
次に、実施例として、アンモニアガスをドーパントガスとして用いて炭化珪素基板110上に炭化珪素層をエピタキシャル成長によって成長させた。具体的には、シランガスとプロパンガスとアンモニアガスとを用いて、炭化珪素層をエピタキシャル成長により形成した。より具体的には、シランガスの流量は、120sccmとした。プロパンガスの流量は、40sccmとした。水素ガスの流量は、130slmとした。アンモニアガスの流量が異なる3種類のサンプルを準備した。アンモニアガスの流量は、0.065sccm、0.125sccmおよび0.184sccmとした。
(キャリア濃度測定)
次に、炭化珪素層のキャリア濃度が水銀プローブ方式のC−V測定装置により測定された。炭化珪素層のキャリア濃度の測定条件は、上述の通りである。
(測定結果)
図17に示されるように、比較例のサンプルに係る炭化珪素層のキャリア濃度は、3.1×1015cm-3(窒素ガス流量28.0sccm)、5.4×1015cm-3(窒素ガス流量50.0sccm)および7.5×1015cm-3(窒素ガス流量70.0sccm)であった。
図18に示されるように、実施例のサンプルに係る炭化珪素層のキャリア濃度は、2.9×1015cm-3(アンモニアガス流量0.065sccm)、5.6×1015cm-3(アンモニアガス流量0.125sccm)および8.2×1015cm-3(アンモニアガス流量0.184sccm)であった。
図17に示されるように、窒素ガスを使用して形成した炭化珪素層の場合には、ドーピングガスの流量に対する炭化珪素層のキャリア濃度は、線形近似から少しずれていることが確認された(線形性が低い)。具体的には、ドーピングガスの流量が多くなるに従って、線形近似直線から離れる傾向がある。そのため、窒素ガスを用いた場合には、炭化珪素層のキャリア濃度とドーピングガスの流量に比例するという単純な計算式に基づいて、炭化珪素層のキャリア濃度を調整することができない。
一方、図18に示されるように、アンモニアガスを使用して形成した炭化珪素層の場合には、ドーピングガスの流量に対する炭化珪素層のキャリア濃度は、線形近似にほぼ一致している(線形性が高い)。そのため、窒素ガスを用いた場合とは異なり、アンモニアガスを用いた場合には、炭化珪素層のキャリア濃度はドーピングガスの流量に比例するという単純な計算式に基づいて、炭化珪素層のキャリア濃度を精度良く調整することができる。
今回開示された実施形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1 オリエンテーションフラット、2 円弧状部、3 直径、10 第1炭化珪素層、11 第3主面、12 第4主面、20 第2炭化珪素層、21 第7主面、22 第8主面、30 第3炭化珪素層、31 第11主面、32 第12主面、40 第4炭化珪素層、41 第13主面、42 第14主面、50 第5炭化珪素層、51 第15主面、52 第16主面、100 炭化珪素エピタキシャル基板、101 第1方向、102 第2方向、110 炭化珪素基板(第1炭化珪素基板)、111 第1主面、112 第2主面、113 外縁部、120 第2炭化珪素基板、121 第5主面、122 第6主面、130 第3炭化珪素基板、131 第9主面、132 第10主面、200 製造装置、201 反応室、202 ステージ、203 発熱体、204 石英管、205 内壁面、207 ガス導入口、208 ガス排気口、209 回転軸、210 サセプタ、231 第1ガス供給部、232 第2ガス供給部、233 第3ガス供給部、234 第4ガス供給部、235 ガス供給部、241 第1ガス流量制御部、242 第2ガス流量制御部、243 第3ガス流量制御部、244 第4ガス流量制御部、245 制御部、T1 第1厚み、T2 第2厚み、T3 第3厚み、T4 第4厚み。

Claims (8)

  1. 第1アンモニアガスをドーパントガスとして用いて第1炭化珪素基板上に第1炭化珪素層をエピタキシャル成長により形成する工程と、
    前記第1炭化珪素層の厚みおよび前記第1炭化珪素層のキャリア濃度を測定する工程と、
    第2炭化珪素層の形成条件を算出する工程と、
    第2アンモニアガスをドーパントガスとして用いて第2炭化珪素基板上に前記第2炭化珪素層をエピタキシャル成長により形成する工程とを備え、
    前記第1炭化珪素層をエピタキシャル成長により形成する工程における前記第1アンモニアガスの流量を第1流量とし、前記第1炭化珪素層をエピタキシャル成長により形成する工程における前記第1炭化珪素層の形成時間を第1形成時間とし、前記第1炭化珪素層の厚みを第1厚みとし、前記第1炭化珪素層のキャリア濃度を第1濃度とし、前記第2炭化珪素層の目標厚みを第2厚みとし、前記第2炭化珪素層の目標キャリア濃度を第2濃度とした場合、
    前記第2炭化珪素層の形成条件を算出する工程においては、前記第2炭化珪素層の第2形成時間は、前記第2厚みを前記第1厚みで除した値に前記第1形成時間を掛けた値として算出され、かつ、前記第2炭化珪素層をエピタキシャル成長により形成する工程における前記第2アンモニアガスの第2流量は、前記第2濃度を前記第1濃度で除した値に前記第1流量を掛けた値として算出され、
    前記第2炭化珪素層をエピタキシャル成長により形成する工程においては、前記第2形成時間および前記第2流量を用いて、前記第2炭化珪素層が形成され、
    前記第1炭化珪素層をエピタキシャル成長により形成する工程と、前記第2炭化珪素層をエピタキシャル成長により形成する工程とは、同じ装置で行われる、炭化珪素エピタキシャル基板の製造方法。
  2. 前記第2濃度を前記第1濃度で除した値は、0.1以上5以下である、請求項1に記載の炭化珪素エピタキシャル基板の製造方法。
  3. 前記第1厚みを前記第1形成時間で除した値は、5μm/時間以上30μm/時間以下である、請求項1または請求項2に記載の炭化珪素エピタキシャル基板の製造方法。
  4. 前記第1炭化珪素基板のキャリア濃度を第1基板濃度とした場合、前記第1濃度は、前記第1基板濃度の半分よりも小さい、請求項1〜請求項3のいずれか1項に記載の炭化珪素エピタキシャル基板の製造方法。
  5. 第3アンモニアガスをドーパントガスとして用いて第3炭化珪素基板上に第3炭化珪素層をエピタキシャル成長により形成する工程と、
    前記第3炭化珪素層の厚みおよび前記第3炭化珪素層のキャリア濃度を測定する工程と、
    第4炭化珪素層の形成条件を算出する工程と、
    前記第2炭化珪素層をエピタキシャル成長により形成する工程前に、第4アンモニアガスをドーパントガスとして用いて前記第2炭化珪素基板上に前記第4炭化珪素層をエピタキシャル成長により形成する工程とを備え、
    前記第2炭化珪素層は、前記第4炭化珪素層上に形成され、
    前記第3炭化珪素層をエピタキシャル成長により形成する工程における前記第3アンモニアガスの流量を第3流量とし、前記第3炭化珪素層をエピタキシャル成長により形成する工程における前記第3炭化珪素層の形成時間を第3形成時間とし、前記第3炭化珪素層の厚みを第3厚みとし、前記第3炭化珪素層のキャリア濃度を第3濃度とし、前記第4炭化珪素層の目標厚みを第4厚みとし、前記第4炭化珪素層の目標キャリア濃度を第4濃度とした場合、
    前記第4炭化珪素層の形成条件を算出する工程においては、前記第4炭化珪素層の第4形成時間は、前記第4厚みを前記第3厚みで除した値に前記第3形成時間を掛けた値として算出され、かつ、前記第4炭化珪素層をエピタキシャル成長により形成する工程における前記第4アンモニアガスの第4流量は、前記第4濃度を前記第3濃度で除した値に前記第3流量を掛けた値として算出され、
    前記第4炭化珪素層をエピタキシャル成長により形成する工程においては、前記第4形成時間および前記第4流量を用いて、前記第4炭化珪素層が形成され、
    前記第3炭化珪素層をエピタキシャル成長により形成する工程と、前記第4炭化珪素層をエピタキシャル成長により形成する工程とは、同じ装置で行われる、請求項1〜請求項4のいずれか1項に記載の炭化珪素エピタキシャル基板の製造方法。
  6. 前記第4濃度を前記第3濃度で除した値は、0.1以上5以下である、請求項5に記載の炭化珪素エピタキシャル基板の製造方法。
  7. 前記第3厚みを前記第3形成時間で除した値は、5μm/時間以上30μm/時間以下である、請求項5または請求項6に記載の炭化珪素エピタキシャル基板の製造方法。
  8. 前記第3炭化珪素基板のキャリア濃度を第3基板濃度とした場合、前記第3濃度は、前記第3基板濃度の半分よりも小さい、請求項5〜請求項7のいずれか1項に記載の炭化珪素エピタキシャル基板の製造方法。
JP2020559706A 2018-12-05 2019-08-08 炭化珪素エピタキシャル基板の製造方法 Active JP7251553B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018227913 2018-12-05
JP2018227913 2018-12-05
PCT/JP2019/031349 WO2020115950A1 (ja) 2018-12-05 2019-08-08 炭化珪素エピタキシャル基板の製造方法

Publications (2)

Publication Number Publication Date
JPWO2020115950A1 true JPWO2020115950A1 (ja) 2021-10-28
JP7251553B2 JP7251553B2 (ja) 2023-04-04

Family

ID=70973477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020559706A Active JP7251553B2 (ja) 2018-12-05 2019-08-08 炭化珪素エピタキシャル基板の製造方法

Country Status (3)

Country Link
US (1) US11373868B2 (ja)
JP (1) JP7251553B2 (ja)
WO (1) WO2020115950A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037643A (ja) * 2008-08-08 2010-02-18 Canon Inc 堆積膜形成方法
JP2014103363A (ja) * 2012-11-22 2014-06-05 Sumitomo Electric Ind Ltd 炭化珪素半導体基板の製造方法
JP2014154666A (ja) * 2013-02-07 2014-08-25 Sumitomo Electric Ind Ltd 炭化珪素半導体基板の製造方法および炭化珪素半導体装置の製造方法
JP2015042602A (ja) * 2013-08-26 2015-03-05 住友電気工業株式会社 炭化珪素半導体基板の製造方法および炭化珪素半導体装置の製造方法
JP2017152487A (ja) * 2016-02-23 2017-08-31 株式会社デンソー 化合物半導体装置の製造方法
JP2018022853A (ja) * 2016-08-05 2018-02-08 富士電機株式会社 炭化珪素半導体基板および炭化珪素半導体基板の製造方法
WO2018078944A1 (ja) * 2016-10-28 2018-05-03 住友電気工業株式会社 炭化珪素エピタキシャル基板の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195934B2 (en) * 2005-07-11 2007-03-27 Applied Materials, Inc. Method and system for deposition tuning in an epitaxial film growth apparatus
WO2017056691A1 (ja) 2015-09-29 2017-04-06 住友電気工業株式会社 炭化珪素エピタキシャル基板の製造方法、炭化珪素半導体装置の製造方法および炭化珪素エピタキシャル基板の製造装置
US10707075B2 (en) * 2016-11-28 2020-07-07 Mitsubishi Electric Corporation Semiconductor wafer, semiconductor device, and method for producing semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037643A (ja) * 2008-08-08 2010-02-18 Canon Inc 堆積膜形成方法
JP2014103363A (ja) * 2012-11-22 2014-06-05 Sumitomo Electric Ind Ltd 炭化珪素半導体基板の製造方法
JP2014154666A (ja) * 2013-02-07 2014-08-25 Sumitomo Electric Ind Ltd 炭化珪素半導体基板の製造方法および炭化珪素半導体装置の製造方法
JP2015042602A (ja) * 2013-08-26 2015-03-05 住友電気工業株式会社 炭化珪素半導体基板の製造方法および炭化珪素半導体装置の製造方法
JP2017152487A (ja) * 2016-02-23 2017-08-31 株式会社デンソー 化合物半導体装置の製造方法
JP2018022853A (ja) * 2016-08-05 2018-02-08 富士電機株式会社 炭化珪素半導体基板および炭化珪素半導体基板の製造方法
WO2018078944A1 (ja) * 2016-10-28 2018-05-03 住友電気工業株式会社 炭化珪素エピタキシャル基板の製造方法

Also Published As

Publication number Publication date
US20220044934A1 (en) 2022-02-10
WO2020115950A1 (ja) 2020-06-11
JP7251553B2 (ja) 2023-04-04
US11373868B2 (en) 2022-06-28

Similar Documents

Publication Publication Date Title
JP4839646B2 (ja) 炭化珪素半導体の製造方法および炭化珪素半導体の製造装置
WO2015114961A1 (ja) 炭化珪素エピタキシャル基板および炭化珪素エピタキシャル基板の製造方法
US20180233562A1 (en) Silicon carbide epitaxial substrate
US10697086B2 (en) Method for manufacturing silicon carbide epitaxial substrate, method for manufacturing silicon carbide semiconductor device, and apparatus for manufacturing silicon carbide epitaxial substrate
KR20150114461A (ko) 탄화규소 반도체 기판의 제조 방법 및 탄화규소 반도체 장치의 제조 방법
JP2005109408A (ja) 縦型ホットウォールCVDエピタキシャル装置、SiCエピタキシャル成長方法及びSiCエピタキシャル成長膜
JP6915627B2 (ja) 炭化珪素エピタキシャル基板の製造方法
CN105008598B (zh) 碳化硅半导体装置的制造方法以及碳化硅半导体装置
JP2007191356A (ja) 窒素ドープダイヤモンド膜及びその製造方法
JP7251553B2 (ja) 炭化珪素エピタキシャル基板の製造方法
CN111029250B (zh) 一种实现SiC外延曲线形掺杂分布的方法
JP2018177616A (ja) 炭化珪素エピタキシャル基板の製造方法
JP2014232799A (ja) 炭化珪素半導体基板の製造方法
JP5648442B2 (ja) 炭化珪素半導体
KR102203025B1 (ko) 탄화규소 에피 웨이퍼 제조 방법
JP2014166957A5 (ja)
JP5896346B2 (ja) 炭化珪素半導体
JP2014166957A (ja) 炭化珪素半導体およびその製造方法と製造装置
JP2019216166A (ja) 炭化珪素エピタキシャル基板の製造方法
JP6671195B2 (ja) 炭化珪素のエピタキシャル成長方法
JP2015042602A (ja) 炭化珪素半導体基板の製造方法および炭化珪素半導体装置の製造方法
JP6090552B1 (ja) 炭化珪素エピタキシャル基板の製造方法、炭化珪素半導体装置の製造方法および炭化珪素エピタキシャル基板の製造装置
WO2024058044A1 (ja) 炭化珪素エピタキシャル基板、エピタキシャル基板の製造方法および炭化珪素半導体装置の製造方法
JP2015122540A5 (ja)
JP2017069239A (ja) 炭化珪素のエピタキシャル成長方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R150 Certificate of patent or registration of utility model

Ref document number: 7251553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150