JPWO2019131025A1 - 抵抗変化型不揮発性記憶装置 - Google Patents

抵抗変化型不揮発性記憶装置 Download PDF

Info

Publication number
JPWO2019131025A1
JPWO2019131025A1 JP2019562913A JP2019562913A JPWO2019131025A1 JP WO2019131025 A1 JPWO2019131025 A1 JP WO2019131025A1 JP 2019562913 A JP2019562913 A JP 2019562913A JP 2019562913 A JP2019562913 A JP 2019562913A JP WO2019131025 A1 JPWO2019131025 A1 JP WO2019131025A1
Authority
JP
Japan
Prior art keywords
transistor
source
source line
clamp
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019562913A
Other languages
English (en)
Other versions
JP6956204B2 (ja
Inventor
礼司 持田
礼司 持田
河野 和幸
和幸 河野
小野 貴史
貴史 小野
中山 雅義
雅義 中山
百合子 早田
百合子 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2019131025A1 publication Critical patent/JPWO2019131025A1/ja
Application granted granted Critical
Publication of JP6956204B2 publication Critical patent/JP6956204B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • G11C13/0026Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0038Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0078Write using current through the cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0092Write characterized by the shape, e.g. form, length, amplitude of the write pulse
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/82Array having, for accessing a cell, a word line, a bit line and a plate or source line receiving different potentials

Landscapes

  • Semiconductor Memories (AREA)
  • Read Only Memory (AREA)

Abstract

抵抗変化型不揮発性記憶装置は、複数のメモリセル(10)を有するメモリセルアレイと、メモリセル(10)への書込みを行う書込み回路と、制御回路とを有する。メモリセル(10)は、抵抗変化型の不揮発性の記憶素子(12)と、これに直列に接続されたセルトランジスタ(14)とを有する。書込み回路は、セルトランジスタ(14)に接続されたソース線駆動回路(20)と、記憶素子(12)に接続されたビット線駆動回路(40)とを有する。制御回路は、記憶素子(12)を低抵抗状態にする書込み動作を行う場合に、第1電流値の電流を記憶素子(12)に流すための制御を行い、その後、第2電流値の電流を記憶素子(12)に流すための制御を行う。第2電流値は、記憶素子(12)の低抵抗状態への変化が開始された後の記憶素子(12)の電流のオーバーシュートの最大値より大きい。

Description

本開示は、抵抗変化型不揮発性記憶素子を含むメモリセルを備える抵抗変化型不揮発性記憶装置に関する。
抵抗変化型不揮発性記憶素子で構成されたメモリセルを有する抵抗変化型不揮発性記憶装置が知られている。このような記憶素子は、その抵抗値が電気的信号等によって可逆的に変化する性質を有し、その抵抗値に対応したデータを、不揮発的に記憶することが可能である。記憶素子への書込みの際には、記憶素子を低抵抗化又は高抵抗化する抵抗変化動作が行われる。
例えば特許文献1には、抵抗変化型の記憶素子を有するメモリセルのセット動作とリセット動作とを並行して行うことが記載されている。特許文献2には、記憶素子を低抵抗状態にする場合と高抵抗状態にする場合とで、書込みの方法を変えることが記載されている。特許文献3には、記憶素子に3値以上の情報を記録させる記憶装置が記載されている。
特開2012−027972号公報 特許第5287544号公報 特許第4670252号公報
しかしながら、近年、抵抗変化型の不揮発性記憶素子には、書換え可能回数を更に大きくすることが求められている。そのためには、記憶素子の過渡的な状態をも考慮して、抵抗変化動作を安定して行う必要がある。
本開示は、抵抗変化型の記憶素子の抵抗変化動作をより安定して継続できるようにすることを目的とする。
本開示の実施形態による抵抗変化型不揮発性記憶装置は、複数のメモリセルを有するメモリセルアレイと、前記メモリセルへの書込みを行う書込み回路と、制御回路とを有する。前記メモリセルは、低抵抗状態及び高抵抗状態に可逆的に変化する抵抗変化型の不揮発性の記憶素子と、前記記憶素子に直列に接続されたセルトランジスタとを有する。前記書込み回路は、ソース線を介して前記セルトランジスタに接続され、第1電圧源又は基準電位と前記メモリセルとの間で電流を流すソース線駆動回路と、ビット線を介して前記記憶素子に接続され、第2電圧源又は前記基準電位と前記メモリセルとの間で電流を流すビット線駆動回路とを有する。前記制御回路は、前記記憶素子を低抵抗状態にする書込み動作を行う場合に、前記ソース線駆動回路に対して、大きさが第1電流値であり前記ソース線から前記ビット線に向かう向きの書込み電流を前記記憶素子に流すための第1制御を行って前記記憶素子の低抵抗状態への変化を開始させ、その後、大きさが第2電流値であり前記第1制御における前記書込み電流と同じ向きの書込み電流を前記記憶素子に流すための第2制御を行う。前記第2電流値は、前記記憶素子の低抵抗状態への変化が開始された後の前記記憶素子の電流のオーバーシュートの最大値より大きい。
これによると、抵抗変化型の記憶素子に流れる電流が、記憶素子の抵抗値を決める第2電流値を越えないので、記憶素子に意図しない過電流が流れることを防ぐことができる。記憶素子の特性のばらつきを抑えることができるので、記憶素子の抵抗変化動作をより安定して継続できるようにすることができる。
本開示によれば、抵抗変化型の記憶素子の抵抗変化動作をより安定して継続できるようにすることができる。したがって、抵抗変化型の記憶素子及びこれを用いた記憶装置の長寿命化を図ることができる。
図1は、本開示の実施形態に係る抵抗変化型不揮発性記憶装置の全体の構成例を示すブロック図である。 図2は、図1のメモリセルアレイに含まれるメモリセルの1つを示す回路図である。 図3は、図2のメモリセルの断面図である。 図4は、図2のメモリセルと、これへの書込みを行う書込み回路との例を示す回路図である。 図5は、図4の回路によってメモリセルが低抵抗化される場合における、記憶素子の電圧及び電流の波形の例を示すグラフである。 図6は、従来の回路によってメモリセルが低抵抗化される場合における、記憶素子の電圧及び電流の波形の例を示すグラフである。 図7は、本開示の実施形態に係る低抵抗化されたメモリセルの、読出し時のセル電流の正規確率プロットを示すグラフである。 図8は、図2のメモリセルと、これへの書込みを行う書込み回路との他の例を示す回路図である。 図9は、図2のメモリセルと、これへの書込みを行う書込み回路との更に他の例を示す回路図である。
以下、本開示の実施の形態について、図面を参照しながら説明する。図面において同じ参照番号で示された構成要素は、同一の又は類似の構成要素である。
図1は、本開示の実施形態に係る抵抗変化型不揮発性記憶装置の全体の構成例を示すブロック図である。図1の記憶装置100は、メモリセルアレイ120と、ワード線選択回路130と、カラムゲート140と、判定回路150と、書込み回路160と、制御回路170とを有する。
メモリセルアレイ120は、複数のメモリセルを有する。これらのメモリセルは、例えばマトリクス状に配置されている。メモリセルアレイ120は、n+1本(nは正の整数)のワード線WL0〜WLnと、m+1本(mは正の整数)のビット線BL0〜BLmと、m+1本のソース線SL0〜SLmとを有する。制御回路170は、ワード線選択回路130、カラムゲート140、判定回路150、及び書込み回路160を、これらの回路に制御信号を供給することによって制御する。制御回路170は、これらの回路を制御することによって、メモリセルアレイ120の各メモリセルに対する読出し動作、及び書込み動作の制御を行う。
ワード線選択回路130は、制御回路170の制御信号に従って、メモリセルアレイ120のワード線WL0〜WLnから1本を選択して駆動する。カラムゲート140は、ビット線BL0〜BLm、及びソース線SL0〜SLmに接続されている。カラムゲート140は、制御回路170の制御信号に従って、これらの複数のビット線、及び複数のソース線から、1本のビット線及びこのビット線に対応する1本のソース線を選択する。
判定回路150には、カラムゲート140で選択されたビット線及びソース線が接続される。選択されたビット線又はソース線には、ワード線選択回路130で選択されたワード線に接続されたメモリセルによって電流が流れる。判定回路150は、この電流を検出し、その検出結果に応じた出力データを出力する。書込み回路160には、カラムゲート140で選択されたビット線及びソース線が接続される。書込み回路160は、制御回路170の制御信号に従って、選択されたビット線及びソース線に接続された、メモリセルアレイ120のメモリセルに、書換え電圧、及び書換え電流を供給する。
図2は、図1のメモリセルアレイに含まれるメモリセルの1つを示す回路図である。図2のメモリセル10は、1つの抵抗変化型不揮発性記憶素子12と、記憶素子12に直列に接続された1つのセルトランジスタ14とを有する、「1T1R」型のメモリセルである。セルトランジスタ14は、NMOS(n-channel metal oxide semiconductor)トランジスタである。
記憶素子12は、抵抗変化素子であって、抵抗変化型メモリとも呼ばれる。ワード線WLは、図1のワード線WL0〜WLnのうちメモリセル10に対応するものであり、セルトランジスタ14のゲートに接続される。ビット線BLは、ビット線BL0〜BLmのうちメモリセル10に対応するものであり、記憶素子12に接続される。ソース線SLは、ソース線SL0〜SLmのうちメモリセル10に対応するものであり、セルトランジスタ14のソースに接続される。
図3は、図2のメモリセル10の断面図である。半導体基板80上に拡散領域81A及び81Bが形成されている。拡散領域81Aはセルトランジスタ14のソースを、拡散領域81Bはセルトランジスタ14のドレインを構成する。拡散領域81Aと81Bとの間は、セルトランジスタ14のチャネル領域を構成する。このチャネル領域上に、酸化膜82と、例えばポリシリコンで構成されるゲート電極83とが形成される。
拡散領域81Aは、ビア84Aを介して第1配線層の配線85Aに接続される。配線85Aはソース線SLである。拡散領域81Bは、ビア84Bを介して第1配線層の配線85Bに接続される。配線85Bは、ビア86を介して第2配線層の配線87に接続され、配線87はビア88を介して記憶素子12に接続される。
記憶素子12は、下部電極89と、抵抗変化層90と、上部電極91とを有する。記憶素子12は、ビア92を介して第3配線層の配線93に接続される。配線93は、ビット線BLである。
記憶素子12は、低抵抗状態及び高抵抗状態に可逆的に変化する抵抗変化型の不揮発性の素子である。メモリセル10に、ソース線からビット線に向かう向きに電流を流すことにより、記憶素子12が低抵抗状態になる。すなわち、記憶素子12及びメモリセル10は低抵抗化(LR化)される。メモリセル10に、ビット線からソース線に向かう向きに電流を流すことにより、記憶素子12が高抵抗状態になる。すなわち、記憶素子12及びメモリセル10は高抵抗化(HR化)される。記憶素子12が低抵抗状態又は高抵抗状態を維持することにより、メモリセル10は1ビットを記憶することができる。より詳しくは、記憶素子12は、その両端に抵抗変化開始電圧が与えられると、LR化が開始される。記憶素子12の電圧が抵抗変化終了電圧に達すると、そのときに記憶素子12に流れている電流の大きさで、LR化後の記憶素子12の抵抗値が決定される。
図4は、図2のメモリセル10と、これへの書込みを行う書込み回路160との例を示す回路図である。図1の書込み回路160は、ソース線駆動回路20と、ビット線駆動回路40と、クランプ電圧発生回路50とを有する。図4では、カラムゲート140で選択されたビット線BL及びソース線SL、並びにワード線選択回路130で選択されたワード線WLが示されている。メモリセルアレイ120の複数のメモリセルが、ソース線駆動回路20及びビット線駆動回路40を共通して使用する。図4のメモリセル10は、メモリセルアレイ120の複数のメモリセルのうち、書込み対象として選択されたメモリセルである。
ソース線駆動回路20は、ソース線スイッチ26と、電流制限回路30とを有する。ソース線駆動回路20は、LR化用電圧源VDL又は基準電位VGとメモリセル10との間で電流を流す。ソース線スイッチ26は、基準電位VGとソース線SLとの間に接続されている。
電流制限回路30は、電流制限素子としてのクランプトランジスタ32A及び32Bと、ソース線スイッチ34A及び34Bとを有する。クランプトランジスタ32A及び32Bは、PMOS(p-channel metal oxide semiconductor)トランジスタである。クランプトランジスタ32Aとソース線スイッチ34Aとは、LR化用電圧源VDLとソース線SLとの間に直列に接続されている。クランプトランジスタ32Bとソース線スイッチ34Bとは、電圧源VDLとソース線SLとの間に直列に接続されている。
より具体的には、クランプトランジスタ32Aのドレインはソース線スイッチ34Aを介してソース線SLに接続され、クランプトランジスタ32Aのソースは電圧源VDLに接続されている。クランプトランジスタ32Bのドレインはソース線スイッチ34Bを介してソース線SLに接続され、クランプトランジスタ32Bのソースは電圧源VDLに接続されている。
なお、クランプトランジスタ32Aのドレインがソース線SLと接続され、クランプトランジスタ32Aのソースがソース線スイッチ34Aを介して電圧源VDLに接続されてもよい。また、クランプトランジスタ32Bのドレインがソース線SLに接続され、クランプトランジスタ32Bのソースがソース線スイッチ34Bを介して電圧源VDLに接続されてもよい。
ビット線駆動回路40は、ビット線スイッチ42及び46を有する。ビット線駆動回路40は、HR化用電圧源VDH又は基準電位VGとメモリセル10との間で電流を流す。ビット線スイッチ42は、ビット線BLと基準電位VGとの間に接続されている。ビット線スイッチ46は、ビット線BLとHR化用電圧源VDHとの間に接続されている。
クランプ電圧発生回路50は、ミラートランジスタ52と、ミラースイッチ54と、電流源56とを有する。ミラートランジスタ52は、PMOSトランジスタである。ミラートランジスタ52とミラースイッチ54とは、直列に接続されている。より具体的には、ミラートランジスタ52のソースは電圧源VDLに接続され、ミラートランジスタ52のドレインはミラースイッチ54を介して電流源56の一端に接続されている。電流源56の他端は基準電位に接続されている。ミラートランジスタ52のゲートは、ミラースイッチ54を介してミラートランジスタ52のドレインに接続されている。ミラートランジスタ52のゲートは、電流制限回路30のクランプトランジスタ32A及び32Bのゲートに接続されている。クランプ電圧発生回路50は、ミラートランジスタ52のゲートの電圧を、クランプ電圧VC1として、クランプトランジスタ32A及び32Bのゲートに供給する。電流源56は、例えば10μAの定電流を流す。
なお、ミラートランジスタ52のソースがミラースイッチ54を介して電圧源VDLに接続され、ミラートランジスタ52のドレインがこのトランジスタのゲートに接続されてもよい。また、クランプ電圧発生回路50は、ミラースイッチ54を有しなくてもよい。この場合には、ミラースイッチ54をオンにするときと同様に、ミラートランジスタ52のドレインとゲートとの間、及び、ミラートランジスタ52のソースと電圧源VDLとの間を短絡する。
ミラートランジスタ52とクランプトランジスタ32Aとは、カレントミラーを構成している。また、ミラートランジスタ52とクランプトランジスタ32Bとは、カレントミラーを構成している。ここでは、例えば、クランプトランジスタ32Aのサイズは、ミラートランジスタ52のサイズの5倍、クランプトランジスタ32Bのサイズは、ミラートランジスタ52のサイズの15倍である。
ソース線スイッチ26,34A及び34B、ビット線スイッチ42及び46、並びにミラースイッチ54は、例えばトランジスタで構成される一般的なスイッチである。これらのスイッチで生じる電圧降下を極力小さくし、これらのスイッチを流れる電流が受ける影響を小さくするように、それらのトランジスタのサイズ、構成、及びゲート電圧が設定されている。
メモリセル10をHR化する場合には、制御回路170は、ミラースイッチ54、ソース線スイッチ34A及び34B、並びにビット線スイッチ42をオフにし、ソース線スイッチ26及びビット線スイッチ46をオンにする。すると、電流がビット線BLからソース線SLに向かって流れ、メモリセル10がHR化される。
図5は、図4の回路によってメモリセル10がLR化される際の、記憶素子12の電圧及び電流の波形の例を示すグラフである。メモリセル10をLR化する場合、すなわち、記憶素子12を低抵抗状態にする書込み動作を行う場合には、制御回路170は、ソース線駆動回路20に対して次のような制御を行う。すなわち、大きさが第1電流値CL1でありソース線SLからビット線BLに向かう向きの書込み電流CLを記憶素子12に流すための第1制御を行って記憶素子12の低抵抗状態への変化を開始させ、その後、大きさが第2電流値CL2であり第1制御における書込み電流CLと同じ向きの書込み電流CLを記憶素子12に流すための第2制御を行う。ここで、第2電流値CL2は、記憶素子12の低抵抗状態への変化が開始された後の、記憶素子12の書込み電流CLのオーバーシュートSHの最大値CP1より大きい。
まず、制御回路170は、ソース線スイッチ34Aをオンにすることによって前述の第1制御を行う。より具体的には、制御回路170は、書込みパルスPS1に従って、時刻T1において、ミラースイッチ54、ソース線スイッチ34A、及びビット線スイッチ42をオンにする。このとき、ソース線スイッチ26及びビット線スイッチ46はオフである。すると、クランプトランジスタ32Aのサイズとミラートランジスタ52のサイズとの比で決まる第1電流値CL1(ここでは例えば50μA)の大きさを有する書込み電流CLが、ソース線SLからビット線BLに向かって、記憶素子12を経由して流れるようになる。
図5を参照して説明すると、時刻T1から、記憶素子12の電圧VR及び書込み電流CLが増加し、この記憶素子電圧VRが記憶素子12の抵抗変化開始電圧VR1に達すると、記憶素子12のLR化が始まり、記憶素子12の抵抗値が減少する。すると、書込み電流CLは、オーバーシュートし始め、オーバーシュートSHのピーク値CP1に達した後、減少して第1電流値CL1になる。記憶素子電圧VRは、抵抗変化開始電圧VR1に達した後、低下してほぼ一定の電圧VR2になる。ここで、書込み電流CLがオーバーシュートするのは、ソース線SLの電荷が、記憶素子12のLR化が始まったときに記憶素子12に流れ込むからである。オーバーシュートSHのピーク値CP1は、ソース線等の静電容量、各部の電位等から、予め求めておくことが可能である。
次に、制御回路170は、ソース線スイッチ34Bをオンにすることによって前述の第2制御を行う。より具体的には、制御回路170は、書込みパルスPS2に従って、時刻T2において、ソース線スイッチ34Bをオンにする。すると、クランプトランジスタ32Bのサイズとミラートランジスタ52のサイズとの比で決まる電流(ここでは例えば150μA)が、ソース線SLからビット線BLに向かって更に流れるようになる。つまり、クランプトランジスタ32Aを流れる電流にクランプトランジスタ32Bを流れる電流が追加された、第2電流値CL2(ここでは例えば200μA)の大きさを有する書込み電流CLが、ソース線SLからビット線BLに向かって、記憶素子12を経由して流れる。
図5を参照して説明すると、書込み電流CLは、時刻T2の後、増加し、第2電流値CL2に達する。記憶素子電圧VRは、電圧VR2のまま、ほぼ変わらない。既に記憶素子12がLR化されているので、時刻T2以降においては、書込み電流CLはオーバーシュートしない。電圧VR2は、抵抗変化終了電圧であるので、記憶素子12の抵抗値は、第2電流値CL2で決まる抵抗値に変化する。
なお、制御回路170は、ソース線スイッチ34Bをオンにするときに、ソース線スイッチ34Aをオフにしてもよい。この場合には、クランプトランジスタ32Bを流れる、第2電流値CL2(ここでは例えば150μA)の大きさを有する書込み電流CLが、記憶素子12を流れる。
次に、制御回路170は、書込みパルスPS1及びPS2が終了する時刻T3において、ミラースイッチ54、ソース線スイッチ34A及び34B、並びにビット線スイッチ42をオフにする。これにより、LR化の制御が終了する。
ここで、第1電流値CL1は、記憶素子12のLR化開始後の書込み電流CLのオーバーシュートのピーク値CP1が、第2電流値CL2を越えないように、設定される。すなわち、第2電流値CL2はピーク値CP1より大きく設定される。書込み電流CLが、記憶素子12の抵抗値を決める第2電流値CL2を越えないので、記憶素子12に意図しない過電流が流れることを防ぐことができる。また、第1電流値CL1の大きさを有する電流が流れるように制御される時刻T1からT2までは、書込み電流CLが比較的小さく抑えられるので、記憶素子電圧VRの上昇が緩やかになり、抵抗変化開始電圧を越える過電圧が記憶素子12に与えられることを抑制することができる。
図6は、従来の回路によってメモリセル10がLR化される場合における、記憶素子12の電圧及び電流の波形の例を示すグラフである。書込みパルスPS0に従って、記憶素子12に電流値CL0の書込み電流CLを流すように制御すると、LR化が始まったときに、電流値CL0を越える過電流が流れてしまう。上述のように、ソース線SLの電荷が、記憶素子12のLR化が始まったときに記憶素子12に流れ込むためである。また、記憶素子電圧VRが急激に上昇するので、記憶素子電圧VRが抵抗変化開始電圧VR1を大きく越えてしまい、記憶素子12に過電圧がかかる。このような過電流及び過電圧によって、記憶素子12及びメモリセル10の特性のばらつきが大きくなってしまう。
図7は、本開示の実施形態に係るLR化されたメモリセル10の、読出し時のセル電流の正規確率プロットを示すグラフである。従来の回路で書込みを行った場合のセル電流分布CC0(白丸)は、傾きが小さく、電流ばらつきが大きい。これに対し、本実施形態の回路で書込みを行った場合のセル電流分布CC(黒丸)は、傾きが大きく、電流ばらつきが小さいことが分かる。従来の回路で書込みを行った場合には、記憶素子12に過電流が流れ、記憶素子12に過電圧も与えられるので、記憶素子12及びメモリセルの特性に悪影響を与え、読出し時のセル電流のばらつきが大きくなり、このような結果が得られたと考えられる。これに対し、本実施形態の回路で書込みを行った場合には、記憶素子12に過電流が流れず、記憶素子12に大きな過電圧が与えられることもないので、セル電流のばらつきが小さくなる。したがって、本実施形態に係る抵抗変化型不揮発性記憶装置100によると、LR化又はHR化を行う抵抗変化動作を、安定して継続することができ、記憶装置100の長寿命化を図ることができる。
図8は、図2のメモリセル10と、これへの書込みを行う書込み回路160との他の例を示す回路図である。図1の書込み回路160は、図4のソース線駆動回路20及びクランプ電圧発生回路50に代えて、図8に示されているようにソース線駆動回路220及びクランプ電圧発生回路250を有してもよい。
ソース線駆動回路220は、ソース線スイッチ26と、電流制限回路230とを有する。ソース線駆動回路220は、LR化用電圧源VDL又は基準電位VGとメモリセル10との間で電流を流す。電流制限回路230は、クランプトランジスタ32A及び32Bに代えて、電流制限素子としてのクランプトランジスタ232A及び232Bを有し、クランプトランジスタ232A及び232Bへの入力信号が異なる点の他は、図4の電流制限回路30と同様に構成されている。
なお、クランプトランジスタ232Aのドレインがソース線SLと接続され、クランプトランジスタ232Aのソースがソース線スイッチ34Aを介して電圧源VDLに接続されてもよい。また、クランプトランジスタ232Bのドレインがソース線SLに接続され、クランプトランジスタ232Bのソースがソース線スイッチ34Bを介して電圧源VDLに接続されてもよい。
クランプ電圧発生回路250は、ミラートランジスタ52A及び52Bと、ミラースイッチ54A及び54Bと、電流源56A及び56Bとを有する。ミラートランジスタ52A及び52Bは、PMOSトランジスタである。
ミラートランジスタ52Aとミラースイッチ54Aとは、直列に接続されている。より具体的には、ミラートランジスタ52Aのソースは電圧源VDLに接続され、ミラートランジスタ52Aのドレインはミラースイッチ54Aを介して電流源56Aの一端に接続されている。電流源56Aの他端は基準電位に接続されている。ミラートランジスタ52Aのゲートは、ミラースイッチ54Aを介してミラートランジスタ52Aのドレインに接続されている。ミラートランジスタ52Aのゲートは、電流制限回路230のクランプトランジスタ232Aのゲートに接続されている。クランプ電圧発生回路250は、ミラートランジスタ52Aのゲートの電圧を、クランプ電圧VC2Aとして、クランプトランジスタ232Aのゲートに供給する。電流源56Aは、例えば10μAの定電流を流す。
ミラートランジスタ52Bとミラースイッチ54Bとは、直列に接続されている。より具体的には、ミラートランジスタ52Bのソースは電圧源VDLに接続され、ミラートランジスタ52Bのドレインはミラースイッチ54Bを介して電流源56Bの一端に接続されている。電流源56Bの他端は基準電位に接続されている。ミラートランジスタ52Bのゲートは、ミラースイッチ54Bを介してミラートランジスタ52Bのドレインに接続されている。ミラートランジスタ52Bのゲートは、電流制限回路230のクランプトランジスタ232Bのゲートに接続されている。クランプ電圧発生回路250は、ミラートランジスタ52Bのゲートの電圧を、クランプ電圧VC2Bとして、クランプトランジスタ232Bのゲートに供給する。電流源56Bは、例えば30μAの定電流を流す。
なお、ミラートランジスタ52Aのソースがミラースイッチ54Aを介して電圧源VDLに接続され、ミラートランジスタ52Aのドレインがそのゲートに接続されてもよい。また、クランプ電圧発生回路250は、ミラースイッチ54Aを有しなくてもよい。この場合には、ミラースイッチ54Aをオンにするときと同様に、ミラートランジスタ52Aのドレインとゲートとの間、及び、ミラートランジスタ52Aのソースと電圧源VDLとの間を短絡する。
なお、ミラートランジスタ52Bのソースがミラースイッチ54Bを介して電圧源VDLに接続され、ミラートランジスタ52Bのドレインがそのゲートに接続されてもよい。また、クランプ電圧発生回路250は、ミラースイッチ54Bを有しなくてもよい。この場合には、ミラースイッチ54Bをオンにするときと同様に、ミラートランジスタ52Bのドレインとゲートとの間、及び、ミラートランジスタ52Bのソースと電圧源VDLとの間を短絡する。
ミラートランジスタ52Aとクランプトランジスタ232Aとは、カレントミラーを構成している。また、ミラートランジスタ52Bとクランプトランジスタ232Bとは、カレントミラーを構成している。ここでは、例えば、クランプトランジスタ232Aのサイズは、ミラートランジスタ52Aのサイズの5倍、クランプトランジスタ232Bのサイズは、ミラートランジスタ52Bのサイズの5倍である。
ミラースイッチ54A及び54Bは、例えばトランジスタで構成される一般的なスイッチである。これらのスイッチで生じる電圧降下を極力小さくし、これらのスイッチを流れる電流が受ける影響を小さくするように、それらのトランジスタのサイズ、構成、及びゲート電圧が設定されている。
まず、制御回路170は、ソース線スイッチ34Aをオンにすることによって前述の第1制御を行う。より具体的には、制御回路170は、書込みパルスPS1に従って、時刻T1において、ミラースイッチ54A、ソース線スイッチ34A、及びビット線スイッチ42をオンにする。このとき、ソース線スイッチ26及びビット線スイッチ46はオフである。すると、クランプトランジスタ232Aのサイズとミラートランジスタ52Aのサイズとの比で決まる第1電流値CL1(ここでは例えば50μA)の大きさを有する書込み電流CLが、ソース線SLからビット線BLに向かって、記憶素子12を経由して流れるようになる。
次に、制御回路170は、ソース線スイッチ34Bをオンにすることによって前述の第2制御を行う。より具体的には、制御回路170は、書込みパルスPS2に従って、時刻T2において、ミラースイッチ54B及びソース線スイッチ34Bをオンにする。すると、クランプトランジスタ232Bのサイズとミラートランジスタ52Bのサイズとの比で決まる電流(ここでは例えば150μA)が、ソース線SLからビット線BLに向かって更に流れるようになる。つまり、クランプトランジスタ232Aを流れる電流にクランプトランジスタ232Bを流れる電流が追加された、第2電流値CL2(ここでは例えば200μA)の大きさを有する書込み電流CLが、ソース線SLからビット線BLに向かって、記憶素子12を経由して流れる。
なお、制御回路170は、ソース線スイッチ34Bをオンにするときに、ソース線スイッチ34Aをオフにしてもよい。この場合には、クランプトランジスタ232Bを流れる、第2電流値CL2(ここでは例えば150μA)の大きさを有する書込み電流CLが、記憶素子12を流れる。
次に、制御回路170は、書込みパルスPS1及びPS2が終了する時刻T3において、ミラースイッチ54A及び54B、ソース線スイッチ34A及び34B、並びにビット線スイッチ42をオフにする。これにより、LR化の制御が終了する。図8の回路を用いた場合における記憶素子12の電圧VR及び書込み電流CLは、図5と同様に変化する。
図8の回路によると、比較的大きな書込み電流CLを流すためのクランプトランジスタ232Bのサイズを、クランプトランジスタ232Aのサイズとは独立して決めることができる。このため、クランプトランジスタ232Bのサイズを抑えることができ、回路面積を抑えることができる。
図9は、図2のメモリセル10と、これへの書込みを行う書込み回路160との更に他の例を示す回路図である。図1の書込み回路160は、図4のソース線駆動回路20及びクランプ電圧発生回路50に代えて、図9に示されているようにソース線駆動回路320及びクランプ電圧発生回路350を有してもよい。
ソース線駆動回路320は、ソース線スイッチ26と、電流制限回路330とを有する。ソース線駆動回路320は、LR化用電圧源VDL又は基準電位VGとメモリセル10との間で電流を流す。電流制限回路330は、電流制限素子としてのクランプトランジスタ32と、ソース線スイッチ34とを有する。クランプトランジスタ32は、PMOSトランジスタである。クランプトランジスタ32とソース線スイッチ34とは、LR化用電圧源VDLとソース線SLとの間に直列に接続されている。より具体的には、クランプトランジスタ32のドレインはソース線スイッチ34を介してソース線SLに接続され、クランプトランジスタ32のソースは電圧源VDLに接続されている。
なお、クランプトランジスタ32のドレインがソース線SLと接続され、クランプトランジスタ32のソースがソース線スイッチ34を介して電圧源VDLに接続されてもよい。
クランプ電圧発生回路350は、ミラートランジスタ52と、ミラースイッチ54,58A及び58Bと、電流源56A及び56Bとを有する。ミラートランジスタ52は、PMOSトランジスタである。
ミラートランジスタ52とミラースイッチ54とは、直列に接続されている。より具体的には、ミラートランジスタ52のソースは電圧源VDLに接続され、ミラートランジスタ52のドレインはミラースイッチ54を介して電流源56A及び56Bの一端に接続されている。電流源56A及び56Bの他端は基準電位に接続されている。ミラートランジスタ52のゲートは、ミラースイッチ54を介してミラートランジスタ52のドレインに接続されている。ミラートランジスタ52のゲートは、電流制限回路330のクランプトランジスタ32のゲートに接続されている。クランプ電圧発生回路350は、ミラートランジスタ52のゲートの電圧を、クランプ電圧VC3として、クランプトランジスタ32のゲートに供給する。電流源56Aは、例えば10μAの定電流を流す。電流源56Bは、例えば30μAの定電流を流す。
なお、ミラートランジスタ52のソースがミラースイッチ54を介して電圧源VDLに接続され、ミラートランジスタ52のドレインがそのゲートに接続されてもよい。また、クランプ電圧発生回路350は、ミラースイッチ54を有しなくてもよい。この場合には、ミラースイッチ54をオンにするときと同様に、ミラートランジスタ52のドレインとゲートとの間、及び、ミラートランジスタ52のソースと電圧源VDLとの間を短絡する。
ミラートランジスタ52とクランプトランジスタ32とは、カレントミラーを構成している。ここでは、例えば、クランプトランジスタ32のサイズは、ミラートランジスタ52のサイズの5倍である。
ソース線スイッチ34、並びにミラースイッチ58A及び58Bは、例えばトランジスタで構成される一般的なスイッチである。これらのスイッチで生じる電圧降下を極力小さくし、これらのスイッチを流れる電流が受ける影響を小さくするように、それらのトランジスタのサイズ、構成、及びゲート電圧が設定されている。
まず、制御回路170は、ソース線スイッチ34及びミラースイッチ58Aをオンにすることによって前述の第1制御を行う。より具体的には、制御回路170は、書込みパルスPS1に従って、時刻T1において、ミラースイッチ54及び58A、ソース線スイッチ34、並びにビット線スイッチ42をオンにする。このとき、ソース線スイッチ26及びビット線スイッチ46はオフである。すると、電流源56Aの電流値、及びクランプトランジスタ32のサイズとミラートランジスタ52のサイズとの比で決まる第1電流値CL1(ここでは例えば50μA)の大きさを有する書込み電流CLが、ソース線SLからビット線BLに向かって、記憶素子12を経由して流れるようになる。このとき、クランプ電圧発生回路350は、クランプトランジスタ32に第1電流値CL1の大きさを有する書込み電流CLが流れるような電圧を、クランプ電圧VC3として出力している。
次に、制御回路170は、ミラースイッチ58Bをオンにすることによって前述の第2制御を行う。より具体的には、制御回路170は、書込みパルスPS2に従って、時刻T2において、ミラースイッチ58Bをオンにする。すると、電流源56Bの電流値、及びクランプトランジスタ32のサイズとミラートランジスタ52のサイズとの比で決まる電流(ここでは例えば150μA)が、ソース線SLからビット線BLに向かって更に流れるようになる。つまり、電流源56Aに基づく電流に、電流源56Bに基づく電流が追加された、第2電流値CL2(ここでは例えば200μA)の大きさを有する書込み電流CLが、ソース線SLからビット線BLに向かって、記憶素子12を経由して流れる。クランプ電圧発生回路350は、第2制御を行う際にクランプ電圧VC3を変更している。変更後のクランプ電圧VC3の値は、クランプトランジスタ32に第2電流値CL2の大きさを有する書込み電流CLが流れるような値である。
なお、制御回路170は、ミラースイッチ58Bをオンにするときに、ミラースイッチ58Aをオフにしてもよい。この場合には、電流源56Bに基づく、第2電流値CL2(ここでは例えば150μA)の大きさを有する書込み電流CLが、記憶素子12を流れる。
次に、制御回路170は、書込みパルスPS1及びPS2が終了する時刻T3において、ミラースイッチ54,58A及び58B、ソース線スイッチ34、並びにビット線スイッチ42をオフにする。これにより、LR化の制御が終了する。図9の回路を用いた場合における記憶素子12の電圧VR及び書込み電流CLは、図5と同様に変化する。
図9の回路によると、クランプトランジスタの数が1つでよいので、回路面積を抑えることができる。
なお、クランプ電圧VC1を供給するクランプ電圧発生回路50、クランプ電圧VC2A及びVC2Bを供給するクランプ電圧発生回路250、並びに、クランプ電圧VC3を供給するクランプ電圧発生回路350を、例として説明したが、クランプ電圧を供給する回路は、これらには限らず、適切なクランプ電圧を出力する回路であればよい。例えば、電圧レギュレータを有し、その出力をクランプ電圧として出力する回路、直列に接続された複数の抵抗を有し、これらの抵抗で分圧された電圧をクランプ電圧として出力する回路、又は、トランジスタを有し、その閾値電圧に応じた電圧をクランプ電圧として出力する回路等を、クランプ電圧発生回路50,250又は350に代えて用いてもよい。また、記憶装置100は、クランプ電圧発生回路50,250又は350を有さなくてもよい。この場合、クランプ電圧VC1,VC2A及びVC2B,又はVC3は、記憶装置100の外部から供給される。
本発明の多くの特徴及び優位性は、記載された説明から明らかであり、よって添付の請求の範囲によって、本発明のそのような特徴及び優位性の全てをカバーすることが意図される。更に、多くの変更及び改変が当業者には容易に可能であるので、本発明は、図示され記載されたものと全く同じ構成及び動作に限定されるべきではない。したがって、全ての適切な改変物及び等価物は本発明の範囲に入るものとされる。
以上説明したように、本開示は、抵抗変化型不揮発性記憶装置等について有用である。
10 メモリセル
12 記憶素子
14 セルトランジスタ
20,220,320 ソース線駆動回路
32,32A,32B,232A,232B クランプトランジスタ
34,34A,34B ソース線スイッチ
40 ビット線駆動回路
50,250,350 クランプ電圧発生回路
52,52A,52B ミラートランジスタ
56,56A,56B 電流源
58A,58B ミラースイッチ
100 抵抗変化型不揮発性記憶装置
120 メモリセルアレイ
130 ワード線選択回路
140 カラムゲート
150 判定回路
160 書込み回路
170 制御回路
VC1,VC2A,VC2B,VC3 クランプ電圧
VDL LR化用電圧源(第1電圧源)
VDH HR化用電圧源(第2電圧源)

Claims (9)

  1. 複数のメモリセルを有するメモリセルアレイと、
    前記メモリセルへの書込みを行う書込み回路と、
    制御回路とを備え、
    前記メモリセルは、
    低抵抗状態及び高抵抗状態に可逆的に変化する抵抗変化型の不揮発性の記憶素子と、
    前記記憶素子に直列に接続されたセルトランジスタとを有し、
    前記書込み回路は、
    ソース線を介して前記セルトランジスタに接続され、第1電圧源又は基準電位と前記メモリセルとの間で電流を流すソース線駆動回路と、
    ビット線を介して前記記憶素子に接続され、第2電圧源又は前記基準電位と前記メモリセルとの間で電流を流すビット線駆動回路とを有し、
    前記制御回路は、前記記憶素子を低抵抗状態にする書込み動作を行う場合に、前記ソース線駆動回路に対して、大きさが第1電流値であり前記ソース線から前記ビット線に向かう向きの書込み電流を前記記憶素子に流すための第1制御を行って前記記憶素子の低抵抗状態への変化を開始させ、その後、大きさが第2電流値であり前記第1制御における前記書込み電流と同じ向きの書込み電流を前記記憶素子に流すための第2制御を行い、
    前記第2電流値は、前記記憶素子の低抵抗状態への変化が開始された後の前記記憶素子の電流のオーバーシュートの最大値より大きい
    抵抗変化型不揮発性記憶装置。
  2. 請求項1の抵抗変化型不揮発性記憶装置において、
    前記ソース線駆動回路は、
    第1クランプトランジスタと、
    第2クランプトランジスタと、
    第1ソース線スイッチと、
    第2ソース線スイッチとを有し、
    前記第1クランプトランジスタ及び前記第1ソース線スイッチは、前記第1電圧源と前記ソース線との間に直列に接続され、
    前記第2クランプトランジスタ及び前記第2ソース線スイッチは、前記第1電圧源と前記ソース線との間に直列に接続され、
    前記第1クランプトランジスタのゲート、及び前記第2クランプトランジスタのゲートには、クランプ電圧が供給され、
    前記制御回路は、前記第1ソース線スイッチをオンにすることによって前記第1制御を行い、前記第2ソース線スイッチをオンにすることによって前記第2制御を行う、
    抵抗変化型不揮発性記憶装置。
  3. 請求項2の抵抗変化型不揮発性記憶装置において、
    前記制御回路は、前記第2ソース線スイッチをオンにするときに、前記第1ソース線スイッチをオフにする、
    抵抗変化型不揮発性記憶装置。
  4. 請求項2の抵抗変化型不揮発性記憶装置において、
    前記書込み回路は、クランプ電圧発生回路を更に有し、
    前記クランプ電圧発生回路は、
    ソースが前記第1電圧源に接続されたミラートランジスタと、
    前記ミラートランジスタのドレインと前記基準電位との間に接続された電流源とを有し、
    前記ミラートランジスタのゲートは、前記ミラートランジスタのドレインに接続され、
    前記クランプ電圧発生回路は、前記ミラートランジスタのゲートの電圧を前記クランプ電圧として供給する
    抵抗変化型不揮発性記憶装置。
  5. 請求項1の抵抗変化型不揮発性記憶装置において、
    前記ソース線駆動回路は、
    第1クランプトランジスタと、
    第2クランプトランジスタと、
    第1ソース線スイッチと、
    第2ソース線スイッチとを有し、
    前記第1クランプトランジスタ及び前記第1ソース線スイッチは、前記第1電圧源と前記ソース線との間に直列に接続され、
    前記第2クランプトランジスタ及び前記第2ソース線スイッチは、前記第1電圧源と前記ソース線との間に直列に接続され、
    前記第1クランプトランジスタのゲートには第1クランプ電圧が供給され、
    前記第2クランプトランジスタのゲートには第2クランプ電圧が供給され、
    前記制御回路は、前記第1ソース線スイッチをオンにすることによって前記第1制御を行い、前記第2ソース線スイッチをオンにすることによって前記第2制御を行う、
    抵抗変化型不揮発性記憶装置。
  6. 請求項5の抵抗変化型不揮発性記憶装置において、
    前記制御回路は、前記第2ソース線スイッチをオンにするときに、前記第1ソース線スイッチをオフにする、
    抵抗変化型不揮発性記憶装置。
  7. 請求項5の抵抗変化型不揮発性記憶装置において、
    前記書込み回路は、クランプ電圧発生回路を更に有し、
    前記クランプ電圧発生回路は、
    ソースが前記第1電圧源に接続された第1ミラートランジスタと、
    前記第1ミラートランジスタのドレインと前記基準電位との間に接続された第1電流源と、
    ソースが前記第1電圧源に接続された第2ミラートランジスタと、
    前記第2ミラートランジスタのドレインと前記基準電位との間に接続された第2電流源とを有し、
    前記第1ミラートランジスタのゲートは、前記第1ミラートランジスタのドレインに接続され、
    前記第2ミラートランジスタのゲートは、前記第2ミラートランジスタのドレインに接続され、
    前記クランプ電圧発生回路は、
    前記第1ミラートランジスタのゲートの電圧を前記第1クランプ電圧として供給し、
    前記第2ミラートランジスタのゲートの電圧を前記第2クランプ電圧として供給する
    抵抗変化型不揮発性記憶装置。
  8. 請求項1の抵抗変化型不揮発性記憶装置において、
    前記書込み回路は、クランプ電圧発生回路を更に有し、
    前記ソース線駆動回路は、
    クランプトランジスタと、
    ソース線スイッチとを有し、
    前記クランプトランジスタ及び前記ソース線スイッチは、前記第1電圧源と前記ソース線との間に直列に接続され、
    前記クランプ電圧発生回路は、
    ソースが前記第1電圧源に接続されたミラートランジスタと、
    第1電流源と、
    第2電流源と、
    第1ミラースイッチと、
    第2ミラースイッチとを有し、
    前記第1電流源及び前記第1ミラースイッチは、前記ミラートランジスタのドレインと前記基準電位との間に直列に接続され、
    前記第2電流源及び前記第2ミラースイッチは、前記ミラートランジスタのドレインと前記基準電位との間に直列に接続され、
    前記ミラートランジスタのゲートは、前記ミラートランジスタのドレイン、及び前記クランプトランジスタのゲートに接続され、
    前記制御回路は、前記ソース線スイッチ及び前記第1ミラースイッチをオンにすることによって前記第1制御を行い、前記第2ミラースイッチをオンにすることによって前記第2制御を行う、
    抵抗変化型不揮発性記憶装置。
  9. 請求項8の抵抗変化型不揮発性記憶装置において、
    前記制御回路は、前記第2ミラースイッチをオンにするときに、前記第1ミラースイッチをオフにする、
    抵抗変化型不揮発性記憶装置。
JP2019562913A 2017-12-29 2018-12-05 抵抗変化型不揮発性記憶装置 Active JP6956204B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017255138 2017-12-29
JP2017255138 2017-12-29
PCT/JP2018/044775 WO2019131025A1 (ja) 2017-12-29 2018-12-05 抵抗変化型不揮発性記憶装置

Publications (2)

Publication Number Publication Date
JPWO2019131025A1 true JPWO2019131025A1 (ja) 2020-11-19
JP6956204B2 JP6956204B2 (ja) 2021-11-02

Family

ID=67063063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019562913A Active JP6956204B2 (ja) 2017-12-29 2018-12-05 抵抗変化型不揮発性記憶装置

Country Status (4)

Country Link
US (1) US11062772B2 (ja)
JP (1) JP6956204B2 (ja)
CN (1) CN111542882B (ja)
WO (1) WO2019131025A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111986721A (zh) * 2019-05-21 2020-11-24 华为技术有限公司 存储设备与写数据的方法
WO2022009618A1 (ja) * 2020-07-09 2022-01-13 ヌヴォトンテクノロジージャパン株式会社 抵抗変化型不揮発性記憶装置およびその書き込み方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040227166A1 (en) * 2003-05-13 2004-11-18 Lionel Portmann Reference current generator, and method of programming, adjusting and/or operating same
US20110286260A1 (en) * 2010-05-20 2011-11-24 Kabushiki Kaisha Toshiba Nonvolatile memory device and method for driving same
WO2016072173A1 (ja) * 2014-11-06 2016-05-12 ソニー株式会社 不揮発性メモリ装置、および不揮発性メモリ装置の制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4670252B2 (ja) 2004-01-20 2011-04-13 ソニー株式会社 記憶装置
JP4148210B2 (ja) 2004-09-30 2008-09-10 ソニー株式会社 記憶装置及び半導体装置
KR101308048B1 (ko) * 2007-10-10 2013-09-12 삼성전자주식회사 반도체 메모리 장치
CN101933096A (zh) * 2008-10-21 2010-12-29 松下电器产业株式会社 非易失性存储装置及向其存储单元的写入方法
JP5287544B2 (ja) 2009-06-25 2013-09-11 ソニー株式会社 不揮発性メモリの記録方法及び不揮発性メモリ
JP5521850B2 (ja) 2010-07-21 2014-06-18 ソニー株式会社 抵抗変化型メモリデバイスおよびその駆動方法
WO2012058324A2 (en) * 2010-10-29 2012-05-03 Rambus Inc. Resistance change memory cell circuits and methods
JP5877338B2 (ja) * 2011-08-31 2016-03-08 パナソニックIpマネジメント株式会社 読み出し回路およびこれを用いた不揮発性メモリ
US9336881B2 (en) 2014-06-16 2016-05-10 Panasonic Intellectual Property Management Co., Ltd. Variable resistance nonvolatile memory device including a variable resistance layer that changes reversibly between a low resistance state and a high resistance state according to an applied electrical signal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040227166A1 (en) * 2003-05-13 2004-11-18 Lionel Portmann Reference current generator, and method of programming, adjusting and/or operating same
WO2004102631A2 (en) * 2003-05-13 2004-11-25 Ecole Polytechnique Federale De Lausanne Reference current generator, and method of programming, adjusting and/or operating same
US20110286260A1 (en) * 2010-05-20 2011-11-24 Kabushiki Kaisha Toshiba Nonvolatile memory device and method for driving same
JP2011243265A (ja) * 2010-05-20 2011-12-01 Toshiba Corp 不揮発性記憶装置及びその駆動方法
WO2016072173A1 (ja) * 2014-11-06 2016-05-12 ソニー株式会社 不揮発性メモリ装置、および不揮発性メモリ装置の制御方法
TW201621914A (zh) * 2014-11-06 2016-06-16 Sony Corp 非揮發性記憶體裝置、及非揮發性記憶體裝置之控制方法
KR20170082518A (ko) * 2014-11-06 2017-07-14 소니 세미컨덕터 솔루션즈 가부시키가이샤 불휘발성 메모리 장치, 및 불휘발성 메모리 장치의 제어 방법
CN107148651A (zh) * 2014-11-06 2017-09-08 索尼半导体解决方案公司 非易失性存储装置及非易失性存储装置的控制方法
US20170309335A1 (en) * 2014-11-06 2017-10-26 Sony Semiconductor Solutions Corporation Non-volatile memory device and method of controlling non-volatile memory device

Also Published As

Publication number Publication date
JP6956204B2 (ja) 2021-11-02
CN111542882B (zh) 2023-04-04
US20210065795A1 (en) 2021-03-04
WO2019131025A1 (ja) 2019-07-04
CN111542882A (zh) 2020-08-14
US11062772B2 (en) 2021-07-13

Similar Documents

Publication Publication Date Title
US8422269B2 (en) Semiconductor memory device
JP4410272B2 (ja) 不揮発性メモリ装置及びそのデータ書き込み方法
JP4718134B2 (ja) 相変化メモリ装置におけるライトドライバ回路及びライト電流の印加方法
JP5214208B2 (ja) 半導体装置及びその制御方法
US8625328B2 (en) Variable resistance nonvolatile storage device
JP6433854B2 (ja) 半導体記憶装置
US8817515B2 (en) Nonvolatile semiconductor memory device
JPWO2008129774A1 (ja) 抵抗変化型記憶装置
WO2006134732A1 (ja) 半導体記憶装置
US8331177B2 (en) Resistance semiconductor memory device having a bit line supplied with a compensating current based on a leak current detected during a forming operation
JP5748877B1 (ja) 抵抗変化型メモリ
JP5209013B2 (ja) 不揮発性半導体記憶装置
JP6956204B2 (ja) 抵抗変化型不揮発性記憶装置
KR102471567B1 (ko) 메모리 장치 및 메모리 장치의 제어 방법
JP2016062627A (ja) 半導体集積回路
JP2013084341A (ja) 半導体装置及びその制御方法
WO2016133661A1 (en) Resistive switching memory with cell access by analog signal controlled transmission gate
US20230282277A1 (en) Semiconductor device and method of controlling the same
US9070860B2 (en) Resistance memory cell and operation method thereof
JP5774154B1 (ja) 抵抗変化型メモリ
TWI620180B (zh) 半導體記憶裝置
JP5236343B2 (ja) 半導体装置及びその制御方法
JP2014049175A (ja) 不揮発性半導体記憶装置、及びそのフォーミング方法
US8958230B2 (en) Nonvolatile semiconductor memory device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211004

R151 Written notification of patent or utility model registration

Ref document number: 6956204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151