JPWO2018025649A1 - 全固体リチウム電池 - Google Patents

全固体リチウム電池 Download PDF

Info

Publication number
JPWO2018025649A1
JPWO2018025649A1 JP2018531828A JP2018531828A JPWO2018025649A1 JP WO2018025649 A1 JPWO2018025649 A1 JP WO2018025649A1 JP 2018531828 A JP2018531828 A JP 2018531828A JP 2018531828 A JP2018531828 A JP 2018531828A JP WO2018025649 A1 JPWO2018025649 A1 JP WO2018025649A1
Authority
JP
Japan
Prior art keywords
positive electrode
oriented
solid
lithium
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018531828A
Other languages
English (en)
Other versions
JP6906524B2 (ja
Inventor
雄樹 藤田
雄樹 藤田
小林 伸行
伸行 小林
幸信 由良
幸信 由良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPWO2018025649A1 publication Critical patent/JPWO2018025649A1/ja
Application granted granted Critical
Publication of JP6906524B2 publication Critical patent/JP6906524B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

焼結体からなる厚い正極板を採用しながらも、繰り返し使用時の抵抗増加率を有意に低減でき、それ故、長期的な信頼性が大幅に改善された良好な電池特性の全固体リチウム電池が提供される。本発明の全固体リチウム電池は、配向焼結体からなる厚さ20μm以上の自立した配向正極板と、リチウムイオン伝導材料で構成される固体電解質層と、リチウムを含む負極層と、配向正極板の固体電解質層と反対側の面に、接着剤を含まない非接着状態で全面的に接触されている、厚さ5μm以上30μm以下の金属箔である正極集電体とを備える。この配向正極板は、配向焼結体が層状岩塩構造を有するリチウム複合酸化物で構成される複数の結晶粒を含み、複数の結晶粒は(003)面が配向正極板の板面に対して平行に配向しているものである。

Description

本発明は、全固体リチウム電池に関するものである。
正極としてセラミックス焼結体を用いて電池を作製する試みが提案されている。例えば、特許文献1(特許第3427570号公報)には、炭素質材料、リチウム金属又はリチウム合金からなる負極と、リチウム複合酸化物の焼結体からなる正極と、非水電解質とを有する、非水電解質二次電池が開示されている。また、特許文献2(特許第5775444号公報)には、シート状の導電性芯材と、カーボン層と、活物質層と、被覆層と有する非水電解質電池用電極が開示されており、活物質層が、リチウムを吸蔵及び/又は放出可能な遷移金属酸化物の焼結体で構成される厚さ20〜120μmのセラミックス膜を含むことが開示されている。
ところで、パーソナルコンピュータ、携帯電話等のポータブル機器といったような用途に用いられる電池においては、イオンを移動させる媒体として、リチウム塩を可燃性の有機溶媒へ溶解させた、液体の電解質(電解液)が従来使用されている。このような電解液を用いた電池においては、電解液の漏液や、発火、爆発等の問題を生ずる可能性がある。このような問題を解消すべく、本質的な安全性確保のために、液体の電解質に代えて固体電解質を使用するとともに、その他の要素の全てを固体で構成した全固体リチウム電池の開発が進められている。このような全固体リチウム電池は、電解質が固体であることから、発火の心配が少なく、漏液せず、また、腐食による電池性能の劣化等の問題も生じ難い。例えば、特許文献3(特開2013−105708号公報)には、コバルト酸リチウム(LiCoO)からなる正極層と、金属リチウムからなる負極層と、リン酸リチウムオキシナイトライドガラス電解質(LiPON)で形成されうる固体電解質層とを備えた薄膜リチウム二次電池が開示されており、正極層がスパッタリングにより形成され、その厚さは1〜15μmの範囲であることが記載されている。この文献において、薄膜リチウム二次電池の製造は、基板上に、コバルト酸リチウムからなる正極層を形成し、当該正極層上に固体電解質層を形成し、当該固体電解質層上に金属リチウムからなる負極層を形成することにより行われている。
一方、層状岩塩構造を有するリチウム複合酸化物からなる正極活物質においては、その内部でのリチウムイオン(Li)の拡散が(003)面の面内方向(すなわち(003)面と平行な平面内の任意の方向)で行われる一方、(003)面以外の結晶面(例えば(101)面や(104)面)でリチウムイオンの出入りが生じることが知られている。そこで、この種の正極活物質において、リチウムイオンの出入りが良好に行われる結晶面((003)面以外の面、例えば(101)面や(104)面))をより多く電解質と接触する表面に露出させることで、リチウム二次電池の電池特性を向上させる試みがなされている。例えば、特許文献4(国際公開第2010/074304号)には、Coを含むグリーンシートを焼成して(h00)面がシート面と平行に配向したCo粒子を含むシートを形成し、その後Liを導入することにより、(104)面がシート面と平行に配向したLiCoOセラミックスシート(正極活物質膜)を製造することが開示されている。特許文献1の手法によれば、板面に露出する各一次粒子の配向方位を、[101]方向や[104]方向にすることができる。一次粒子の配向方位が[101]方向であれば、一次粒子の(003)面は板面に対して約75度傾いた状態となる。一次粒子の配向方位が[104]方向であれば、一次粒子の(003)面は板面に対して約48度傾いた状態となる。
特許第3427570号公報 特許第5775444号公報 特開2013−105708号公報 国際公開第2010/074304号
ところで、層状岩塩構造のリチウム複合酸化物は、リチウムイオンが抜けるのに伴い、層間距離が広がる性質があることから、そのセラミックス焼結体からなる正極板は、充放電に伴うLiイオンの脱挿入に伴い寸法変化する。このため、固体電解質層に対して引張応力が発生し、固体電解質層の破損や剥がれ、クラック発生等による電気的なショートや抵抗増加を引き起こすことがあった。 また、正極板内で構成する結晶粒子の方位がバラバラである場合、充放電に伴い粒子間で応力が発生し、充放電性能の低下を招くことがあった。さらに、不均一な寸法変化に伴う応力の発生を低減すべく、正極板全体を均一に充放電させることが望まれる。また、全固体リチウム電池の場合、固体電解質内のLiイオンの板面平行方向の移動が期待できないことから、正極板の充放電が面内で不均一であると、負極側も正極と同様に不均一に充放電することになるため、充放電性能の低下を招く。この点、電解液を用いた液系電池の場合には、電解液中でLiイオンが全方位的に濃度拡散できるため、正極板表面に起こりうるLiイオンの濃度ムラが容易に緩和し、負極は均一に充放電できる。これは特に正極板表面の電解液中における、Liイオンの板面平行方向への移動によるものである。そこで、全固体電池において、正極板の板面方向で均一な充放電を可能とすべく、集電層として、面内方向の抵抗が十分に低い導電剤を正極板の裏面に均一に形成することが考えられる。緻密度が高く、厚く、しかも高エネルギー密度な設計の正極板においては、例えば、正極板の表面に厚さ10μm以上の金属膜を焼付け等により形成する、或いは正極板の表面に厚さ5μm以上の金属箔(集電箔)を導電性接着剤を介して接合させる等の特段の構成が必要となる。いずれの構成も、正極板が充放電で膨張収縮することに起因し、深い充放電深度で使用したり、或いは長期間使用したりする中で、界面剥離等の劣化要因により接触抵抗の増大を招き、それ故、信頼性に問題があった。このように、全固体リチウム電池の正極として、緻密で厚いセラミックス焼結体からなる正極板を用いる場合、長期的な信頼性における更なる改善が望まれる。
本発明者らは、今般、層状岩塩構造を有するリチウム複合酸化物の焼結体からなる厚い正極板を採用した全固体リチウム電池において、(003)面が板面に対して平行に配向した配向正極板を採用し、なおかつ、その配向正極板を接着剤を伴わない非接着状態で薄い正極集電体に全面的に接触させることにより、繰り返し使用時の抵抗増加率を有意に低減でき、その結果、長期的な信頼性を大幅に改善できるとの知見を得た。また、かかる構成によりレート特性及びサイクル特性といった電池特性も良好であるとの知見も得た。
したがって、本発明の目的は、焼結体からなる厚い正極板を採用しながらも、繰り返し使用時の抵抗増加率を有意に低減でき、それ故、長期的な信頼性が大幅に改善された良好な電池特性の全固体リチウム電池を提供することにある。
本発明の一態様によれば、配向焼結体からなる厚さ20μm以上の自立した配向正極板であって、前記配向焼結体が層状岩塩構造を有するリチウム複合酸化物で構成される複数の結晶粒を含み、前記複数の結晶粒は(003)面が前記配向正極板の板面に対して平行に配向している、配向正極板と、
前記配向正極板上に設けられ、リチウムイオン伝導材料で構成される固体電解質層と、
前記固体電解質層上に設けられる、リチウムを含む負極層と、
前記配向正極板の前記固体電解質層と反対側の面に、接着剤を含まない非接着状態で全面的に接触されている、厚さ5μm以上30μm以下の金属箔である正極集電体と、
を備えた、全固体リチウム電池が提供される。
本発明の全固体リチウム電池の一例を示す模式断面図である。 図1に示される全固体リチウム電池の模式上面図である。 本発明の全固体リチウム電池の他の一例を示す模式断面図である。 本発明の全固体リチウム電池の更に他の一例を示す模式断面図である。 本発明の配向正極板に含まれるリチウム複合酸化物結晶粒のリチウムイオン伝導方向と膨張収縮方法とを概念的に説明するための模式断面図である。 従来の配向正極板の一例におけるリチウムイオン伝導方向と膨張収縮方法とを概念的に説明するための模式断面図である。 本発明に用いられる配向正極板の板面に垂直な破断面の一例を示す破断面SEM画像である。 図7に示されるような本発明に用いられる配向正極板におけるリチウムイオン伝導方向と膨張収縮方法とを概念的に説明するための模式断面図である。 本発明の配向正極板の板面に垂直な断面の一例を示すSEM像である。 図9Aにおいて四角形の枠で特定される測定領域における、配向正極板の断面のEBSD像である。
全固体リチウム電池
図1及び2に本発明による全固体リチウム電池の一例を模式的に示す。図1及び2に示される全固体リチウム電池10は、配向正極板12、固体電解質層14、負極層16、及び正極集電体20を備える。図1に示される全固体リチウム電池10は、配向正極板12、固体電解質層14、負極層16、及び正極集電体20で構成される2個の単位電池を負極集電体24を介して上下対称に並列積層した構成を有している。もっとも、これに限らず、図3に模式的に示されるように1つの単位電池10’からなる構成であってもよいし、2つ以上の単位電池を並列又は直列に積層した構成であってもよい。配向正極板12は、配向焼結体からなる厚さ20μm以上の自立した板であって、配向焼結体は層状岩塩構造を有するリチウム複合酸化物で構成される複数の結晶粒を含む。これらの複数の結晶粒は(003)面が配向正極板12の板面に対して平行に配向している。固体電解質層14は、配向正極板12上に設けられ、リチウムイオン伝導材料で構成される。負極層16は、固体電解質層14上に設けられ、リチウムを含む層である。正極集電体20は、厚さ5μm以上30μm以下の金属箔であり、配向正極板12の固体電解質層14と反対側の面に、接着剤を含まない非接着状態で全面的に接触されている。このように、焼結体からなる厚い配向正極板を採用した全固体リチウム電池において、配向正極板を、接着剤を伴わない非接着状態で薄い正極集電体に全面的に接触させることにより、繰り返し使用時の抵抗増加率を有意に低減でき、その結果、長期的な信頼性を大幅に改善することができる。すなわち、厚さ5μm以上30μm以下の金属箔である正極集電体20は柔軟性のある薄い導電性材料であるため、配向正極板12の表面に全面的に均一に密着することができる。もっとも、金属箔である正極集電体20と配向正極板12とは、微視的には互いに点接触となるため、面内で集電ムラが生じうる。しかしながら、接触点の間隔は配向正極板12の厚さ(20μm以上)に対して有意に小さいことから、接触点から位置ずれによる集電ムラを配向正極板12の厚さ方向へのLiイオン拡散で相殺できるため、板面内での充放電ムラを無くすことができる。しかも、配向正極板12が正極集電体20に接着剤フリーの非接着状態で集電が行われるため、配向正極板12の膨張収縮によっても、正極集電体20は基本的に追随されない。また、仮にそうではなかったとしても正極集電体20は薄い金属箔であるためそれ自体の延性により膨張収縮にある程度は追随することができる。いずれにしても、配向正極板12は膨張収縮に応じて、正極集電体20との接触を確保しながら、正極集電体20に対して相対的に動くことができる。このため、配向正極板12と正極集電体20の間での界面応力が発生せず、それ故界面剥離等の劣化要因を排除することができる。こうして長期的な信頼性が大幅に改善されるものと考えられる。すなわち、配向正極板12が充放電で膨張収縮することに起因する界面剥離及びそれによる接触抵抗の増大を有意に抑制することができ、長期的な信頼性を改善することができる。しかも、後述するように、(003)面が配向正極板の板面に対して平行に配向した配向正極板の採用により、レート特性及びサイクル特性といった電池特性も良好となる。
正極集電体
正極集電体20は金属箔である。金属箔の厚さは5〜30μmであり、好ましくは5〜25μm、より好ましくは10〜25μm、さらに好ましくは10〜20μmである。このように厚くすることで十分な集電機能を確保することができる。正極集電体20は、配向正極板12の固体電解質層14と反対側の面に、接着剤を含まない非接着状態で全面的に接触されている。このため、上記のように極めて薄い金属箔であると柔軟性に富むため、配向正極板12の表面に全面的に均一に密着させやすくなる。正極集電体20を構成する金属は、配向正極板12と反応しないものであれば特に限定されず、合金であってもよい。そのような金属の好ましい例としては、ステンレス、アルミニウム、銅、白金、ニッケルが挙げられ、より好ましくはステンレス及びニッケルが挙げられる。
正極集電体20は、配向正極板12の外側を被覆する正極外装材を兼ねているのが好ましい。例えば、図1に示されるように2個の単位電池を1枚の負極集電体24を介して上下対称に並列積層して正極集電体20を全固体リチウム電池10の外側に露出させた構成としてもよい。このような並列積層型電池に構成される場合、負極集電体24を隣り合う2個の単位電池に共通の集電体として機能させることができる。
正極集電体20は、配向正極板12に対して押圧されているのが好ましい。正極集電体20である金属箔は柔軟性のある薄い導電性材料であるため、押圧により正極集電体20と配向正極板12との接触点を多く確保することができ、配向正極板12の表面に全面的により均一に密着させることができる。それによって、接着剤フリーの非接着状態でありながらも望ましい集電効果を得ることができる。押圧する手法は特に限定されず、例えば、正極集電体20を損傷しないような柔軟な押圧部材(例えば発泡金属)を用いて正極集電体20の外側から配向正極板12に向かって押し当てる手法、正極集電体20の内外気圧差を用いる手法等が採用可能である。特に、正極集電体20の配向正極板12に対する押圧が、正極集電体20の内外気圧差によってもたらされているのが好ましい。すなわち、正極集電体20の配向正極板12側が減圧されているか、又は正極集電体20の配向正極板12と反対側が加圧されていればよい。いずれにしても、正極集電体20の内外気圧差を用いた押圧によれば、正極集電体20である金属箔は柔軟性のある薄い導電性材料であるため、配向正極板12の表面により一層多くの接触点で密着させることができ、集電効果を更に高めることができる。正極集電体20と配向正極板12が非接着状態ということは、正極集電体20と配向正極板12が部分的に(例えば配向正極板12の外周部の一部)、粘着性の樹脂等で固定されていることを排除するものではない。このような樹脂は、電池を組み立てる際、配向正極板の位置ズレを防止する仮接着の目的で使用される。
本発明の特に好ましい態様によれば、配向正極板12、固体電解質層14及び負極層16を含む積層体が外装材で包装又は封止される。この態様において、正極集電体20が外装材の一部を構成し、かかる外装材で包装又は封止される積層体の収容空間が減圧されているのが好ましい。収容空間の減圧は、例えば、減圧下にて外装材での包装又は封止を行う、又は外装材の包装又は封止を行った後に収容空間を脱気することにより行うことができる。上述のとおり、正極集電体20である金属箔は柔軟性のある薄い導電性材料であるため、収容空間の減圧により、正極集電体20を配向正極板12の表面により一層多くの接触点で密着させることができる。しかも、外装材で気密に包装又は封止していれば、積層体の収容空間の減圧を長期間にわたって維持することができるので、高度な密着性及びそれによるい良好な集電効果を長期間にわたって発揮させることができる。減圧度は、金属の柔軟性と、積層体の強度等から適宜設定すればよい。
所望により、正極集電体20は、固体電解質層14側の面にカーボン膜を備えていてもよい。こうすることで、正極集電体20と配向正極板12との電子伝導性を高め、界面における接触抵抗をより一層低減することができる。カーボン膜の厚さは、好ましくは0.01μm以上5μm以下、より好ましくは0.01μm以上1μm以下、さらに好ましくは0.05μm以上0.5μm以下である。
配向正極板
配向正極板12は配向焼結体からなる厚さ20μm以上の自立した板である。配向焼結体は層状岩塩構造を有するリチウム複合酸化物で構成される複数の結晶粒を含む。リチウム複合酸化物は、LiMO(0.05<x<1.10であり、Mは少なくとも1種類の遷移金属であり、Mは典型的にはCo、Ni及びMnから選択される1種以上を含む)で表される酸化物である。リチウム複合酸化物は、典型的には層状岩塩構造を有する。層状岩塩構造とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造、すなわち、酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的には、α−NaFeO型構造、すなわち立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。リチウム複合酸化物の例としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、ニッケル・マンガン酸リチウム、ニッケル・コバルト酸リチウム、コバルト・ニッケル・マンガン酸リチウム、コバルト・マンガン酸リチウムなどが挙げられる。リチウム複合酸化物には、Mg,Al,Si,Ca,Ti,V,Cr,Fe,Cu,Zn,Ga,Ge,Sr,Y,Zr,Nb,Mo,Ag,Sn,Sb,Te,Ba,Bi、W等から選択される一種以上の元素が含まれていてもよい。特に好ましいリチウム複合酸化物はコバルト酸リチウムである。すなわち、結晶粒がコバルト酸リチウム結晶粒であるのが特に好ましい。
配向焼結体に含まれる複数の結晶粒は、(003)面が配向正極板の板面に対して平行に配向している。配向焼結体に含まれる結晶粒の全て平行である必要はないが、それらの大部分が平行であるのが好ましい。ここで、本明細書において「平行」とは完全な平行(すなわち0度)に限られるものではなく、略平行ともいうべき平行に準ずる角度も包含するものであり、典型的には板面と(003)面がなす角度が30度以内、より典型的には25度以内、さらに典型的には20度以内、特に典型的には15度以内、特に典型的には10度以内、最も典型的には5度以内を意味するものとする。層状岩塩構造のリチウム複合酸化物は、リチウムイオンが抜けるのに伴い、層間距離が広がる性質がある。すなわち、図5に概念的に示されるように一次粒子としてのリチウム複合酸化物結晶粒11は(003)面と平行にリチウムイオン移動方向LiDを有するとともに、(003)面と垂直に膨張収縮方向ECDを有している。したがって、図6に示されるように、(003)面が板面に対して非平行に(すなわち斜め又は垂直に)配向した従来の配向正極板12’においては、複数個のリチウム複合酸化物結晶粒11の膨張収縮が、全体として配向正極板12’の板面と平行方向の膨張収縮をもたらす、すなわち膨張収縮方向ECDが板面と平行となる。これに対し、本発明で採用される配向正極板12は、図7の破断面SEM画像に例示され且つ図8に概念的に描かれるように、(003)面が板面と平行となることで、リチウムイオンが抜けることに伴う配向正極板12の面方向の膨張が小さくなる。このため、充放電時における配向正極板12の膨張収縮による固体電解質層14への引張応力が低減され、固体電解質層14の破損や剥がれ、クラック発生等による電気的なショートや抵抗増加を防止することができ、サイクル特性の向上につながる。なお、図8は、リチウムイオン移動方向LiDを簡潔に描くため、図7に示されるものよりも結晶粒11の角度を大きめに描いてあるが、結晶粒11が図7と同程度の平行を意味するものとして理解されるべきである。いずれにしても、図8に示されるリチウム移動方向LiDから理解されるように、本発明で採用される配向正極板12においてはリチウムイオン移動距離が、図6に示される従来の配向正極板12’のリチウムイオン移動距離よりも格段に長くなる。それにもかかわらずレート特性及びサイクル特性といった電池特性は良好であり、このことは全く予想外ともいうべき驚くべき知見に他ならない。
配向焼結体に含まれる個々の結晶粒の配向方位は電子線後方散乱回折(EBSD)により解析することができる。図9Aに配向正極板の板面に垂直な断面の一例を示すSEM像を、図9Bに図9Aにおいて四角形の枠で特定される測定領域における、配向正極板の断面のEBSD像を示す。図9Bに示されるEBSD像では、結晶方位の不連続性を観測することができる。図9Bでは、各結晶粒(一次粒子)の配向角度が色の濃淡で表されており、色が濃いほど配向角度が小さいことを示している。配向角度とは、各結晶粒の(003)面が板面方向に対して成す傾斜角度である。なお、図9A及び9Bにおいて、配向正極板の内部で黒く表示されている箇所は気孔である。
図9A及び9Bに示されように、結晶粒(一次粒子)の配向角度の平均値(以下、「平均配向角度」という)は、0°超30°以下である。結晶粒ないし一次粒子の平均配向角度は、図9Bに示されるような、配向正極板の断面におけるEBSD像において、後述の方法で選択した30個程度の一次粒子の配向角度を算術平均することによって得られる。一次粒子の平均配向角度は、レート特性をより向上させることを考慮すると、30°以下が好ましく、25°以下がより好ましい。一次粒子の平均配向角度は、同様にレート特性を考慮すると、2°以上が好ましく、5°以上がより好ましい。ここで、平均配向度の算出に用いる一次粒子は、正極板断面におけるEBSD像において、像内に30個程度の一次粒子が含まれるような観察倍率を設定したときに、像内に一次粒子の外周が完全に含まれる、全ての粒子とする。なお、最大フェレー径が0.5μm未満の一次粒子は算入しないものとする。
好ましくは、配向焼結体12の断面を電子線後方散乱回折法(EBSD)により解析した場合に、解析された断面に含まれる結晶粒のうち板面に対する(003)面の角度が0°超30°以下である結晶粒の合計面積が、断面に含まれる結晶粒の総面積に対して70%以上である。すなわち、図9Bに示されるようなEBSD像において、配向角度が0°超30°以下である一次粒子(以下、「低角一次粒子」という。)の合計面積は、平均配向角度の算出に用いた一次粒子の総面積に対して70%以上であることが好ましい。これによって、相互密着性の高い一次粒子の割合を増加させることができるため、レート特性をより向上させることができる。低角一次粒子の合計面積は、レート特性をより向上させることを考慮すると、平均配向角度の算出に用いた30個程度の一次粒子の総面積に対して、70%超がより好ましく、80%以上がより好ましい。また、低角一次粒子のうち配向角度が20°以下であるものの合計面積は、平均配向角度の算出に用いた30個程度の一次粒子の総面積に対して50%以上であることがより好ましい。さらに、低角一次粒子のうち配向角度が10°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子の総面積に対して15%以上であることがより好ましい。
配向正極板12の厚さは、単位面積当りの活物質容量を高くし、かつ、基材フリーの自立した形態を確保する観点から、好ましくは20μm以上であり、より好ましくは30μm以上であり、さらに好ましくは40μm以上、特に好ましくは50μm以上、最も好ましくは55μm以上である。厚さの上限値は、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を低減する観点から、好ましくは100μm以下、より好ましくは90μm以下、さらに好ましくは80μm以下、特に好ましくは70μm以下である。また、配向正極板のサイズは、好ましくは5mm×5mm平方以上、より好ましくは10mm×10mm〜100mm×100mm平方であり、さらに好ましくは20mm×20mm〜200mm×200mm平方であり、別の表現をすれば、好ましくは25mm以上、より好ましくは100〜10000mmであり、さらに好ましくは400〜40000mmである。
前述のとおり、結晶粒はコバルト酸リチウム結晶粒であるのが好ましい。コバルト酸リチウム結晶粒を構成するLiCoOは層状岩塩構造を有するものであるが、本発明に用いる配向焼結板は、典型的には、コバルト酸リチウムの(003)面が配向正極板の板面と平行に配向しているものである。このことは、板面のXRDプロファイルをとったときの、(003)面による回折ピーク強度の、(104)面による回折ピーク強度に対する比が、粉砕粉のXRDプロファイルのそれに対し、大きくなっていることで判断できる。もっとも、コバルト酸リチウム配向焼結板は、本発明の趣旨を逸脱しない範囲内において、Mg,Al,Si,Ca,Ti,V,Cr,Fe,Cu,Zn,Ga,Ge,Sr,Y,Zr,Nb,Mo,Ag,Sn,Sb,Te,Ba,Bi等の元素が1種以上更にドーピング又はそれに準ずる形態(例えば結晶粒子の表層への部分的な固溶、偏析、コーティング、又は付着)で微量含んでいてもよい。
配向正極板12を構成する焼結体の緻密度は90%以上であるのが好ましく、より好ましくは90〜98%、さらに好ましくは92〜98%、特に好ましくは92〜95%である。緻密度は、焼結体の嵩密度をアルキメデス法で測定し、嵩密度を真密度で除することにより、算出することができる。あるいは、上記緻密度は、配向正極板12の断面をCP研磨した後に1000倍率でSEM観察して、得られたSEM画像を2値化することで算出してもよい。容量及びエネルギー密度の観点から緻密度は基本的には高い方が望ましいが、上記範囲内であると充放電の繰り返しによっても抵抗値が上昇しにくい。これは上記緻密度であるとリチウムの脱挿入に伴い配向正極板12が適度に膨張収縮でき、それにより応力を緩和できるためではないかと考えられる。
配向正極板12は、固体電解質層14と反対側の面(正極集電体20側の面)に、厚さ0.01μm以上5μm未満の導電膜12aを備えるのが好ましい。こうすることで、正極集電体20と配向正極板12との電子伝導性を高め、界面における接触抵抗をより一層低減することができる。導電膜12aは金属及び/又はカーボンで構成されるのが好ましい。導電膜12aは、金属で構成される場合、正極集電体20及び配向正極板12との電子伝導抵抗が低く、しかも配向正極板12の特性への悪影響の無い金属からなる層であれば特に限定されないが、好ましい例としてはAuスパッタ層及びSiスパッタ層が挙げられる。また、Auスパッタ層等の金属製導電膜の代わりにカーボン層を用いてもよい。導電膜12aの厚さは0.01μm以上5μm未満であり、好ましくは0.02μm以上2μm以下、より好ましくは0.02μm以上1μm以下、さらに好ましくは0.04μm以上1μm以下である。
固体電解質層
固体電解質層14を構成するリチウムイオン伝導材料は、ガーネット系セラミックス材料、窒化物系セラミックス材料、ペロブスカイト系セラミックス材料、リン酸系セラミックス材料、硫化物系セラミックス材料、又は高分子系材料で構成されるのが好ましく、より好ましくは、ガーネット系セラミックス材料、窒化物系セラミックス材料、ペロブスカイト系セラミックス材料、及びリン酸系セラミックス材料からなる群から選択される少なくとも一種である。ガーネット系セラミックス材料の例としては、Li−La−Zr−O系材料(具体的には、LiLaZr12など)、Li−La−Ta−O系材料(具体的には、LiLaTa12など)が挙げられる。窒化物系セラミックス材料の例としては、LiN。ペロブスカイト系セラミックス材料の例としては、Li−La−Zr−O系材料(具体的には、LiLa1−xTi(0.04≦x≦0.14)など)が挙げられる。リン酸系セラミックス材料の例としては、リン酸リチウム、窒素置換リン酸リチウム(LiPON)、Li−Al−Ti−P−O,Li−Al−Ge−P−O、及びLi−Al−Ti−Si−P−O(具体的には、Li1+x+yAlTi2−xSi3−y12(0≦x≦0.4、0<y≦0.6)など)が挙げられる。
固体電解質層14を構成するリチウムイオン伝導材料が、Li−La−Zr−O系セラミックス材料及び/又はリン酸リチウムオキシナイトライド(LiPON)系セラミックス材料で構成されるのが特に好ましい。Li−La−Zr−O系材料は、Li、La、Zr及びOを含んで構成されるガーネット型又はガーネット型類似の結晶構造を有する酸化物焼結体であり、具体的には、LiLaZr12などのガーネット系セラミックス材料である。ガーネット系セラミックス材料は、負極リチウムと直接接触しても反応が起きないリチウムイオン伝導材料であるが、とりわけ、Li、La、Zr及びOを含んで構成されるガーネット型又はガーネット型類似の結晶構造を有する酸化物焼結体が、焼結性に優れて緻密化しやすく、かつ、イオン伝導率も高い。この種の組成のガーネット型又はガーネット型類似の結晶構造はLLZ結晶構造と呼ばれ、CSD(Cambridge Structural Database)のX線回折ファイルNo.422259(LiLaZr12)に類似のXRDパターンを有する。なお、No.422259と比較すると構成元素が異なり、またセラミックス中のLi濃度などが異なる可能性があるため、回折角度や回折強度比が異なる場合もある。Laに対するLiのモル数の比Li/Laは2.0以上2.5以下であることが好ましく、Laに対するZrのモル比Zr/Laは0.5以上0.67以下であるのが好ましい。このガーネット型又はガーネット型類似の結晶構造はNb及び/又はTaをさらに含んで構成されるものであってもよい。すなわち、LLZのZrの一部がNb及びTaのいずれか一方又は双方で置換されることにより、置換前に比べて伝導率を向上させることができる。ZrのNb及び/又はTaによる置換量(モル比)は、(Nb+Ta)/Laのモル比が0.03以上0.20以下となる量にすることが好ましい。また、このガーネット系酸化物焼結体はAlをさらに含んでいるのが好ましく、これらの元素は結晶格子に存在してもよいし、結晶格子以外に存在していてもよい。Alの添加量は焼結体の0.01〜1質量%とするのが好ましく、Laに対するAlのモル比Al/Laは、0.008〜0.12であるのが好ましい。このようなLLZ系セラミックスの製造は、公知の手法に従って又はそれを適宜修正することにより行うことができる。また、リン酸リチウムオキシナイトライド(LiPON)系セラミックス材料も好ましい。LiPONは、Li2.9PO3.30.46の組成によって代表されるような化合物群であり、例えばLiPO(式中、aは2〜4、bは3〜5、cは0.1〜0.9である)で表される化合物群である。
固体電解質層14の寸法は特に限定されないが、厚さは充放電レート特性と機械的強度の観点から、0.0005mm〜0.1mmが好ましく、より好ましくは0.001mm〜0.05mm、さらに好ましくは0.002〜0.02mm、特に好ましくは0.003〜0.01mmである。
固体電解質層14の形成方法としては、各種パーティクルジェットコーティング法、固相法、溶液法、気相法を用いることができる。パーティクルジェットコーティング法の例としては、エアロゾルデポジション(AD)法、ガスデポジション(GD)法、パウダージェットデポジション(PJD)法、コールドスプレー(CS)法、溶射法等がある。中でも、エアロゾルデポジション(AD)法は、常温成膜が可能であることから、プロセス中の組成ズレや、配向正極板との反応による高抵抗層の形成がなく特に好ましい。固相法の例としては、テープ積層法、印刷法等がある。中でも、テープ積層法は固体電解質層14を薄く形成することが可能であり、また、厚さの制御が容易であることから好ましい。溶液法の例としては、ソルボサーマル法、水熱合成法、ゾルゲル法、沈殿法、マイクロエマルション法、溶媒蒸発法等がある。これらの方法の中でも、水熱合成法は、低温で結晶性の高い結晶粒を得やすい点で特に好ましい。また、これらの方法を用いて合成した微結晶を、正極上に堆積させてもよいし、正極上に直接析出させてもよい。気相法の例としては、レーザー堆積(PLD)法、スパッタリング法、蒸発凝縮(PVD)法、気相反応法(CVD)法、真空蒸着法、分子線エピタキシ(MBE)法等がある。この中でも、スパッタリング法は組成ズレが少なく、比較的密着性の高い膜を得られやすく特に好ましい。
配向正極板12と固体電解質層14の間の界面には界面抵抗を下げるための処理が施されていてもよい。例えば、そのような処理は、ニオブ酸化物、チタン酸化物、タングステン酸化物、タンタル酸化物、リチウム・ニッケル複合酸化物、リチウム・チタン複合酸化物、リチウム・ニオブ化合物、リチウム・タンタル化合物、リチウム・タングステン化合物、リチウム・チタン化合物、及びこれらの任意の組み合わせ若しくは複合酸化物で配向正極板12の表面及び/又は固体電解質層14の表面を被覆することにより行うことができる。このような処理によって配向正極板12と固体電解質層14の間の界面には被膜が存在しうることになるが、その被膜の厚さは例えば20nm以下といったような極めて薄いものである。
負極層
負極層16はリチウムを含む層であり、典型的にはリチウム金属により構成される。負極層16は、固体電解質層14又は負極集電体24上に箔形態のリチウム金属を載置することにより作製してもよいし、あるいは固体電解質層14または負極集電体24上にリチウム金属の薄膜を真空蒸着法、スパッタリング法、CVD法等で形成してリチウム金属の層を形成することにより作製することができる。
負極層16の寸法は特に限定されないが、厚さは、厚い配向正極板12の採用に伴い全固体リチウム電池10におけるリチウム総量を多く確保する観点から、10μm以上が好ましく、より好ましくは50〜10μm、さらに好ましくは40〜10μm、特に好ましくは20〜10μmである。
中間層
所望により、負極層16と固体電解質層14の間に中間層を介在させてもよい。すなわち、全固体リチウム電池10は、固体電解質層14の負極層16側の面にリチウムと合金化可能な金属を含む中間層をさらに含むことができる。中間層の構成材料としては、リチウムと合金化する金属、酸化物系材料等を用いることができる。こうすることで、リフローはんだ付けプロセス等の加熱を伴うプロセス(例えば200℃以上の温度で行われるプロセス)に付されても、リチウム金属の融け出し等が有意に抑制され、それ故、内部短絡や負極層の剥離を効果的に防止することができる。また、充放電サイクル特性を向上させることができる。リチウムと合金化可能な金属は、Al(アルミニウム)、Si(シリコン)、Zn(亜鉛)、Ga(ガリウム)、Ge(ゲルマニウム)、Ag(銀)、Au(金)、Pt(白金)、Cd(カドミウム)、In(インジウム)、Sn(スズ)、Sb(アンチモン)、Pb(鉛)、及びBi(ビスマス)からなる群から選択される少なくとも1種を含むのが好ましく、より好ましくはAu(金)、In(インジウム)、Si(シリコン)、Sn(スズ)、Zn(亜鉛)、及びAl(アルミニウム)からなる群から選択される少なくとも1種を含む。例えば、好ましいリチウムと合金化可能な金属は、Au(金)及びIn(インジウム)から選択される少なくとも1種を含むものでありうる。リチウムと合金化可能な金属は、MgSiやMgSn等の2種類以上の元素により構成された合金であってもよい。酸化物系材料の例としては、LiTi12、TiO、SiO等が挙げられる。中間層の形成は、エアロゾルデポジション(AD)法、パルスレーザー堆積(PLD)法、スパッタリング法、蒸着法等の公知の方法により行えばよい。中間層の寸法は特に限定されないが、厚さは加熱時の合金化促進の観点から、厚さ0.05〜1μmが好ましく、より好ましくは0.05〜0.5μm、さらに好ましくは0.08〜0.2μm、特に好ましくは0.1〜0.15μmである。なお、ここで中間層として例示した材料はそれ自体で負極として充放電に寄与するため、これらの材料から選択される少なくとも1種の材料で負極を構成してもよい。
端部絶縁部
所望により、端部絶縁部18が固体電解質層14の端部を絶縁被覆するように設けられてもよい。端部絶縁部18は、固体電解質層14と接着又は密着可能な有機高分子材料を含むのが好ましい。端部絶縁部18がそのような有機高分子材料を含むことで、配向正極板12と負極層16との短絡防止をより効果的に実現することができる。有機高分子材料は、バインダー、熱溶融樹脂及び接着剤からなる群から選択される少なくとも1種であるのが好ましい。バインダーの好ましい例としては、セルロース系樹脂、アクリル系樹脂、及びその組合せが挙げられる。熱融着樹脂の好ましい例としては、フッ素系樹脂、ポリオレフィン系樹脂、及びそれらの任意の組合せが挙げられる。熱溶融樹脂は後述するように熱融着フィルムの形態で供されるのが好ましい。接着剤の好ましい例としてはエポキシ系樹脂等の熱硬化性樹脂を用いた熱硬化型接着剤が挙げられる。したがって、有機高分子材料は、セルロース系樹脂、アクリル系樹脂、フッ素系樹脂、ポリオレフィン系樹脂及びエポキシ系樹脂からなる群から選択される少なくとも1種が好ましいといえる。セルロース系樹脂の例としては、カルボキシメチルセルロース、カルボキシエチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、酪酸セルロース、酢酸酪酸セルロース、及び上記のアルカリ金属塩、及びアンモニウム塩が挙げられる。アクリル系樹脂の例としては、ポリアクリル酸エステル、ポリアクリル酸塩、並びにこれらの無水マレイン酸変性物、マレイン酸変性物及びフマル酸変性物が挙げられる。フッ素系樹脂の例としては、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン・フッ化ビニリデン系共重合体、ヘキサフルオロプロピレン・フッ化ビニリデン系共重合体、並びにこれらの無水マレイン酸変性物、マレイン酸変性物及びフマル酸変性物が挙げられる。ポリオレフィン系樹脂の例としては、ポリエチレン、ポリプロピレン、シクロオレフィンポリマー、並びにこれらの無水マレイン酸変性物、マレイン酸変性物及びフマル酸変性物が挙げられる。
端部絶縁部18の形成は、有機高分子材料(好ましくはバインダー)及び所望によりフィラー等を含む液体又はスラリーの塗布により行うのが好ましい。液体又はスラリーの塗布方法の好ましい例としては、ディスペンス法、スクリーン印刷法、スプレー法、スタンピング法等が挙げられる。
負極集電体
負極層16の外側には負極集電体24が設けられるのが好ましい。負極集電体24は負極の外側を被覆する負極外装材を兼ねていてもよい。例えば、図4に示されるように、図1に示される構成とは逆に、2個の単位電池を1枚の正極集電体20を介して上下対称に並列積層して負極集電体24を全固体リチウム電池の外側に露出させた構成としてもよい。このような並列積層型電池に構成される場合、正極集電体20を隣り合う2個の単位電池に共通の集電体として機能させることができる。
負極集電体24は正極集電体20と同種又は異種の材料で構成されてよいが、好ましくは同種の材料で構成される。負極集電体24を構成する金属は、負極層16と反応しないものであれば特に限定されず、合金であってもよい。そのような金属の好ましい例としては、ステンレス、アルミニウム、銅、白金、ニッケルが挙げられ、より好ましくはステンレスである。負極集電体24は金属板又は金属箔であるのが好ましく、より好ましくは金属箔である。したがって、最も好ましい集電体はステンレス箔であるといえる。金属箔の好ましい厚さは1〜30μmであり、より好ましくは5〜25μm、さらに好ましくは10〜20μmである。
端部封止部
全固体リチウム電池10には、正極集電体20及び負極集電体24で被覆されていない、配向正極板12、固体電解質層14、負極層16及び(存在する場合には)端部絶縁部18の露出部分を封止する、封着材で構成される端部封止部26がさらに設けられるのが好ましい。端部封止部26を設けて、正極集電体20及び負極集電体24で被覆されていない、配向正極板12、固体電解質層14、負極層16及び端部絶縁部18の露出部分を封止することで、優れた耐湿性(望ましくは高温における耐湿性)を確保することができる。それにより、全固体リチウム電池10内への望ましくない水分の侵入を効果的に阻止して電池特性を向上できる。端部封止部26は封着材で構成される。封着材は、正極集電体20、負極集電体24及び端部絶縁部18で被覆されていない上記露出部分を封止して優れた耐湿性(望ましくは高温における耐湿性)を確保可能なものであれば特に限定されない。もっとも、封着材は正極集電体20と負極集電体24の間の電気的絶縁性を確保することが望まれるのはいうまでもない。その意味で、封着材は1×10Ωcm以上の抵抗率を有するのが好ましく、より好ましくは1×10Ωcm以上であり、さらに好ましくは1×10Ωcm以上である。このような抵抗率であれば自己放電を有意に小さくすることができる。
端部封止部26の厚さは好ましくは10〜300μmであり、より好ましくは15〜200μm、さらに好ましくは20〜150μmである。特に、金属製の正極集電体及び負極集電体で電池が被覆される構成の場合、電池内への水分の侵入は端部封止部26を透過することによってのみ起こりうることになる。これは、正極集電体及び負極集電体が金属製であると水分を透過させないからである。そのため、端部封止部26の厚さが薄い(すなわち水分侵入の入り口が狭い)程、また端部封止部の幅が大きい(すなわち水分侵入の経路が長い)程、電池内へ侵入する水分の量は少なくなる、すなわち耐湿性が向上する。そのような観点からも上記範囲内の厚さは好ましいといえる。
端部封止部26の幅(固体電解質層14の層面方向の厚さともいえる)は好ましくは0.5〜3mmであり、より好ましくは0.7〜2mmであり、さらに好ましくは1〜2mmである。上記範囲内の幅であると、端部封止部26が大きくなり過ぎることがないので、電池の体積エネルギー密度を高く確保することができる。
封着材は、樹脂を含む樹脂系封着材であるのが好ましい。この場合、端部封止部26の形成を比較的低温(例えば400℃以下)で行うことができ、その結果、加熱を伴った封着に起因する電池の破壊や変質を効果的に防止することができる。樹脂は7×10−6/℃以上の熱膨張係数を有するのが好ましく、より好ましくは9×10−6〜20×10−6/℃、さらに好ましくは10×10−6〜19×10−6/℃、特に好ましくは12×10−6〜18×10−6/℃、最も好ましくは15×10−6〜18×10−6/℃である。また、樹脂は絶縁性樹脂であるのが好ましい。絶縁性樹脂は、絶縁性を保持しつつ接合することが可能な樹脂(熱や接着剤等で接着可能な接着性樹脂)であるのが好ましい。好ましい絶縁性樹脂の例としては、オレフィン系樹脂、フッ素系樹脂、アクリル系樹脂、エポキシ系樹脂、ウレタン系樹脂、及びシリコン系樹脂等が挙げられる。特に好ましい樹脂の例としては、低透湿樹脂封止材料として、ポリプロピレン(PP)、ポリエチレン(PE)、シクロオレフィンポリマー、及びポリクロロトリフルオロエチレン(PCTFE)、並びにこれらの無水マレイン酸変性物、マレイン酸変性物及びフマル酸変性物に代表される熱融着型で水分透過率の低い接着性樹脂が挙げられる。絶縁性樹脂は、少なくとも1種又は複数種の積層体で構成されることができる。また、絶縁性樹脂の少なくとも1種として熱可塑性樹脂成形シートや、反応性の接着成分を有する樹脂を用いてもよい。樹脂系封着材は、樹脂(好ましくは絶縁性樹脂)と無機材料の混合物からなるものであってもよい。そのような無機材料の好ましい例としては、シリカ、アルミナ、酸化亜鉛、マグネシア、炭酸カルシウム、水酸化カルシウム、硫酸バリウム、マイカ、タルクが挙げられ、より好ましくはシリカである。例えば、エポキシ樹脂とシリカの混合物からなる樹脂系封着材が好ましく例示される。
端部封止部26の形成は、正極集電体に対する樹脂フィルムの積層(熱融着もしくは接着剤を介しての貼り合せ)や、液状樹脂のディスペンス等により行えばよい。配向正極板12、固体電解質層14及び負極層16の端部側面と、端部封止部26との間に形成されうる隙間は端部絶縁部18で十分に埋められるのが好ましい。
あるいは、封着材は、ガラスを含むガラス系封着材であってもよい。ガラス系封着材は、V、Sn、Te、P、Bi、B、Zn及びPbからなる群から選択される少なくとも1種を含むのが、望ましい軟化温度及び熱膨張係数を得やすい点で好ましい、これらの元素はV、SnO、TeO、P、Bi、B、ZnO、及びPbOの形でガラス中に存在しうるのはいうまでもない。もっとも、ガラス系封着材は有害物質となりうるPbないしPbOを含まないのがより好ましい。ガラス系封着材は400℃以下の軟化温度を有するのが好ましく、より好ましくは370℃以下、さらに好ましくは350℃以下である。軟化温度は、下限値に関して特に限定されないが、例えば300℃以上、310℃以上又は320℃以上でありうる。いずれにしても、このように比較的低い軟化温度のガラス系封着材を用いることで、端部封止部26の形成を比較的低温で行うことができ、その結果、加熱を伴った封着に起因する電池の破壊や変質を効果的に防止することができる。また、ガラス系封着材は7×10−6/℃以上の熱膨張係数を有するのが好ましく、より好ましくは9×10−6〜20×10−6/℃、さらに好ましくは10×10−6〜19×10−6/℃、特に好ましくは12×10−6〜18×10−6/℃、最も好ましくは15×10−6〜18×10−6/℃である。これらの範囲内の熱膨張係数は金属の熱膨張係数に近いため、金属製の集電体(すなわち正極集電体20及び/又は負極集電体24)と端部封止部26の接合部における熱衝撃による破損を効果的に抑制することができる。上述した諸特性を満たすガラス系封着材は市販されている。例えば、AGCエレクトロニクス株式会社社から「POWDER GLASS」(AGCガラスフリット)及び「GLASS PASTE」(AGCガラスペースト)と称されて市販されている製品群、セントラル硝子株式会社から低融点ガラスペーストと称されて市販されているもの製品群、及び日立化成株式会社から「バニーテクト」と称されて市販されているバナジウム系低融点ガラスの製品群に上述した諸特性を満たすガラス系封着材を見つけることができる。
電池厚さ
全固体リチウム電池は、単位電池1個を備えた構成の場合、60〜5000μmの厚さを有するのが好ましく、より好ましくは、70〜4000μm、さらに好ましくは、80〜3000μm、特に好ましくは、90〜2000μm、最も好ましくは、100〜1000μmである。本発明によれば、配向正極板を比較的厚くできる一方、集電体で外装材を兼用するため電池全体の厚さを比較的薄く構成することができる。
コバルト酸リチウム配向焼結板の製造方法
本発明の全固体リチウム電池に用いられる配向正極板ないし配向焼結板は、いかなる製法によって製造されてもよいが、好ましくは、以下に例示されるように、(1)LiCoOテンプレート粒子の作製、(2)マトリックス粒子の作製、(3)グリーンシートの作製、及び(4)配向焼結板の作製を経て製造される。
(1)LiCoOテンプレート粒子の作製
Co原料粉末とLiCO原料粉末とを混合して焼成(500〜900℃、1〜20時間)することによって、LiCoO粉末を合成する。得られたLiCoO粉末をポットミルにて体積基準D50粒径0.2μm〜10μmに粉砕することによって、板面と平行にリチウムイオンを伝導可能な板状のLiCoO粒子が得られる。このようなLiCoO粒子は、LiCoO粉末スラリーを用いたグリーンシートを粒成長させた後に解砕する手法や、フラックス法や水熱合成、融液を用いた単結晶育成、ゾルゲル法など板状結晶を合成する手法によっても得ることができる。得られたLiCoO粒子は、劈開面に沿って劈開しやすい状態となっている。LiCoO粒子を解砕によって劈開させることで、LiCoOテンプレート粒子を作製する。
(2)マトリックス粒子の作製
Co原料粉末をマトリックス粒子として用いる。Co原料粉末の体積基準D50粒径は特に制限されず、例えば0.1〜1.0μmとすることができるが、LiCoOテンプレート粒子の体積基準D50粒径より小さいことが好ましい。このマトリックス粒子は、Co(OH)原料を500℃〜800℃で1〜10時間熱処理を行なうことによっても得ることができる。また、マトリックス粒子には、Coのほか、Co(OH)粒子を用いてもよいし、LiCoO粒子を用いてもよい。
(3)グリーンシートの作製
LiCoOテンプレート粒子とマトリックス粒子を100:3〜3:97に混合した粉末と分散媒とバインダーと可塑剤と分散剤とを混合しながら、減圧下で撹拌して脱泡するとともに所望の粘度に調整することによってスラリーを調製する。次に、LiCoOテンプレート粒子にせん断力を印加可能な成形手法を用いて、調製したスラリーを成形することによって、成形体を形成する。これによって、各一次粒子の平均配向角度を0°超30°以下とすることができる。LiCoOテンプレート粒子にせん断力を印加可能な成形手法としては、ドクターブレード法が好適である。ドクターブレード法を用いる場合には、調製したスラリーをPETフィルムの上に成形することによって、成形体としてのグリーンシートが形成される。
(4)配向焼結板の作製
スラリーの成形体をジルコニア製セッターに載置して加熱処理(500℃〜900℃、1〜10時間)することによって、中間体としての焼結板を得る。次に、合成したリチウムシートをLi/Co比が1.0になるように、焼結板をリチウムシートで上下挟み込み、ジルコニアセッター上に載せる。次に、セッターをアルミナ鞘に入れ、大気中にて焼成(700〜850℃、1〜20時間)した後、焼結板をリチウムシートで上下挟み、さらに焼成(750〜900℃、1〜40時間)することによって、LiCoO焼結板を得る。この焼成工程は、2度に分けて行ってもよいし、1度に行なってもよい。2度に分けて焼成する場合には、1度目の焼成温度が2度目の焼成温度より低いことが好ましい。
本発明を以下の例によってさらに具体的に説明する。
例A1〜A8
(1)LCOテンプレート粒子の作製
Co原料粉末(体積基準D50粒径0.8μm、正同化学工業株式会社製)とLiCO原料粉末(体積基準D50粒径2.5μm、本荘ケミカル製)を混合し、800℃〜900℃で5時間焼成することでLiCoO原料粉末を合成した。この際、熱処理温度とLi/Co比を調整することによって、LiCoO原料粉末の体積基準D50粒径を表1に示すように調整した。
得られたLiCoO粉末を粉砕することによって板状LiCoO粒子(LCOテンプレート粒子)を得た。例A1〜A2,A4〜A8ではポットミルを用い、例A3では湿式ジェットミルを用いた。この際、粉砕時間を調整することによって、LCOテンプレート粒子の体積基準D50粒径を表1に示すように調整した。また、LiCoOテンプレート粒子のアスペクト比は、表1に示すとおりであった。LiCoOテンプレート粒子のアスペクト比は、粒子をSEM観察することで測定した。
(2)CoOマトリックス粒子の作製
Co原料粉末(正同化学工業株式会社製)をマトリックス粒子とした。マトリックス粒子の体積基準D50粒径は、表1に示すとおりとした。ただし、例A4ではマトリックス粒子を用いなかった。
(3)グリーンシートの作製
LCOテンプレート粒子とCoOマトリックス粒子を混合した。LCOテンプレート粒子とCoOマトリックス粒子の重量比は、表1に示すとおりとした。ただし、例A4ではマトリックス粒子を用いなかったため、重量比は、100:0である。
この混合粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM−2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2−ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP−O30、花王株式会社製)2重量部とを混合した。この混合物を、減圧下で撹拌することで脱泡するとともに粘度を400010000cPに調整することによってスラリーを調製した。なお、粘度は、ブルックフィールド社製LVT型粘度計で測定した。
調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが40μmとなるように、成形速度100m/hでシート状に成形してグリーンシートを得た。
(4)配向焼結板の作製
PETフィルムから剥がしたグリーンシートをジルコニア製セッターに載置して一次焼成することによってCo焼結板を得た。表1に示すとおり、例A1〜A6,A8では焼成条件を900℃、5時間とし、例A7では焼成条件を800℃、5時間とした。
そして、合成したリチウムシートをLi/Co比が表1に示す比になるように、Co焼結板をリチウムシートで上下挟み込んだ状態で、ジルコニアセッター上に載せて二次焼成することによってLiCoO焼結板を得た。具体的には、ジルコニアセッターを90mm角のアルミナ鞘に入れ、大気中にて800℃で5時間保持した後、さらにリチウムシートで上下挟んで900℃で20時間焼成した。
(5)固体電解質層の作製
直径4インチ(約10cm)のリン酸リチウム焼結体ターゲットを準備し、スパッタリング装置(キャノンアネルバ社製 SPF−430H)を用いてRFマグネトロン方式にてガス種Nを0.2Pa、出力0.2kWにて膜厚2μmとなるようにスパッタリングを行なった。こうして、厚さ2μmのLiPON系固体電解質スパッタ膜をLiCoO焼結板上に形成した。
(6)リチウムイオン電池の作製
イオンスパッタリング装置(日本電子社製 JFC−1500)を用いたスパッタリングにより、固体電解質層上に厚さ500ÅのAu膜を形成した。
リチウム金属を載せたタングステンボートを準備した。真空蒸着装置(サンユー電子製、カーボンコーターSVC−700)を用いて、抵抗加熱によりLiを蒸発させて上記中間層の表面に薄膜を設ける蒸着を行った。このとき、マスクを用いて負極層のサイズを9.5mm角として、負極層が10mm角の正極領域内に収まるようにした。こうして、固体電解質層上に膜厚10μmのLi蒸着膜を負極層として形成した単電池を作製した。
厚さ20μmのステンレス箔を13mm角に切り出して正極集電板とした。また、外縁形状が13mm角で、その内側に11mm角の孔が打ち抜かれた、1mm幅の枠状の変性ポリプロピレン樹脂フィルム(厚さ100μm)を用意した。この枠状の樹脂フィルムを正極集電板上の外周部に積層し、加熱圧着して端部封止部を形成した。正極集電板上の端部封止部で囲まれた領域内に上記単電池を載置した。載置した単電池の負極側にも上記同様に厚さ20μmのステンレス箔を載置し、端部封止部に対して荷重を加えながら、減圧下、200℃で加熱した。こうして外周全体にわたって端部封止部と上下2枚のステンレス箔とを貼り合せて単電池を封止した。こうして、封止形態の全固体リチウム電池を得た。
(正極を構成する一次粒子の観察)
後方散乱電子回折像システム付の走査型電子顕微鏡(日立ハイテクノロジーズ製FE−SEM、SU5000及びオックスフォード・インストゥルメンツ製EBSD検出器、NordlyNano)を用いて、正極の板面に垂直な断面におけるEBSD像を取得した。そして、EBSD像上において、前述の条件で選択した30個程度の一次粒子の配向角度を算術平均することによって、一次粒子の平均配向角度を算出した。算出結果は表2に示すとおりであった。いずれの例においても、板面と(003)面がなす角度が30度以内、より典型的には25度以内、さらに典型的には20度以内、特に典型的には15度以内、特に典型的には10度以内、最も典型的には5度以内である複数の結晶粒(一次粒子)を含んでおり、(003)面が配向正極板の板面に対して平行に配向している複数の結晶粒が含まれていることが確認された。
また、EBSD像において、平均配向角度の算出に用いた30個程度の一次粒子の総面積に対する、配向角度が0°超30°以下である一次粒子の合計面積の割合(%)を算出した。算出結果は表2に示すとおりであった。
(正極の緻密度)
CP研磨した正極の断面における1000倍率のSEM画像を2値化した。そして、2値化画像上において、固相と気相の合計面積に対する固相の面積割合を緻密度として算出した。算出結果は表2に示すとおりであった。
(レート性能)
リチウムイオン電池を0.1[mA]定電流で4.2[V]まで充電した後、定電圧で電流が0.05[mA]になるまで充電した。そして、0.2[mA]定電流で3.0[V]まで放電し、放電容量W0を測定した。また0.1[mA]定電流で4.2[V]まで充電した後、定電圧で電流が0.05[mA]になるまで充電し、そして、2.0[mA]定電流で3.0[V]まで放電し、放電容量W1を測定した。W1をW0で除することでレート性能を評価した。
(サイクル容量維持率)
リチウムイオン電池を0.1[mA]定電流で4.2[V]まで充電した後、定電圧で電流が0.05[mA]になるまで充電した。そして、0.2[mA]定電流で3.0[V]まで放電し、放電容量W0を測定した。この測定を30回繰り返し、30回目の放電容量W30を測定した。W30をW0で除することでサイクル容量維持率を評価した。
表2に示すように、板状のLCOテンプレート粒子にせん断力を印加する成形手法で正極の成形体を形成した例A1〜A8では、一次粒子の(003)面の傾斜角度を25°以下にすることができたため、サイクル容量維持率だけでなくレート性能をも向上させることができた。
例B1(比較)
本例は、(104)面が板面に対して平行に配向した(すなわち(003)面が板面と平行に配向していない)配向正極板が集電板へ接着された状態の全固体リチウム電池を作製及び評価した比較例である。
(1)配向正極板の作製
(1a)グリーンシートの作製
Co原料粉末(体積基準D50粒径0.3μm、正同化学工業株式会社製)に5wt%の割合でBi(体積基準D50粒径0.3μm、太陽鉱工株式会社製)を添加して混合粉末を得た。この混合粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM−2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:ジ(2−エチルヘキシル)フタレート、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP−O30、花王株式会社製)2重量部とを混合した。この混合物を、減圧下で撹拌することで脱泡するとともに、4000cPの粘度に調整した。なお、粘度は、ブルックフィールド社製LVT型粘度計で測定した。上記のようにして調製されたスラリーを、ドクターブレード法によって、PET(ポリエチレンテレフタレート)フィルムの上に、乾燥後の厚さが40μmとなるように、シート状に成形してグリーンシートを得た。
(1b)配向焼結板の作製
PETフィルムから剥がしたグリーンシートを、カッターで40mm角に切り出し、突起の高さが300μmのエンボス加工を施したジルコニア製セッター(寸法90mm角、高さ1mm)の中央に載置し、1300℃で5時間焼成後、降温速度50℃/hにて降温し、セッターに溶着していない部分をCo配向焼結板として取り出した。
(1c)リチウムの導入
LiOH・HO粉末(和光純薬工業株式会社製)をジェットミルで1μm以下に粉砕し、エタノールに分散したスラリーを作製した。このスラリーを上記Co配向焼結板にLi/Co=1.3になるように塗布し、乾燥した。その後、ジルコニアセッター上に載せ、大気中にて840℃で20時間加熱処理して厚さ45μmからなるLiCoO配向焼結板を配向正極板として得た。得られた焼結板の嵩密度をアルキメデス法で測定し、嵩密度をコバルト酸リチウムの真密度5.05g/cmで除することにより、緻密度を算出した。その結果、焼結板の緻密度は97%であった。
(2)全固体リチウム電池の作製
(2a)導電膜の作製
イオンスパッタリング装置(日本電子製、JFC−1500)を用いたスパッタリングにより、コバルト酸リチウム配向正極板の片面に厚さ1000ÅのAu膜を導電膜として形成した。
(2b)配向正極板の固定
上記コバルト酸リチウム配向焼結板を10mm角に切出し、配向焼結板の導電膜面を、導電性カーボンを分散させたエポキシ樹脂系の導電性接着剤で、ステンレス集電板(正極外装材、13mm角、厚さ100μm)上に固定することによって、平板状の配向正極板/導電性接着剤/正極外装材の積層板を得た。
(2c)固体電解質層の形成
直径4インチ(約10cm)のリン酸リチウム焼結体ターゲットを準備した。このターゲットに対して、スパッタリング装置(キャノンアネルバ製、SPF−430H)を用いてRFマグネトロン方式にてガス種Nを0.2Pa、出力0.2kWの条件にて衝突させて上記配向正極板の板表面に薄膜を設けるスパッタリングを行なった。こうして、配向正極板上に、膜厚3.5μmのLiPON(リン酸リチウムオキシナイトライドガラス電解質)系の固体電解質スパッタ膜を固体電解質層として形成した。
(2d)負極層の形成
リチウム金属を載せたタングステンボートを準備した。真空蒸着装置(サンユー電子製、カーボンコーターSVC−700)を用いて、抵抗加熱によりLiを蒸発させて上記固体電解質層の表面に薄膜を設ける蒸着を行った。このとき、マスクを用いて負極層のサイズを9.5mm角として、負極層が10mm角の正極領域内に収まるようにした。こうして、固体電解質層上に膜厚10μmのLi蒸着膜を負極層として形成した単電池を作製した。
(2e)端部封止部の作製
上記単電池の端部(正極集電板の外周部)に、変性ポリプロピレン樹脂フィルム(厚さ100μm)を積層することにより、端部封止部を作製した。
(2f)負極集電体(負極外装材)の積層
上記単電池の負極層上に、負極集電体(負極外装材)として厚さ20μmのステンレス集電板を積層し、減圧下、200℃のホットプレートを使用して加熱圧着した。こうして全固体リチウム電池を得た。
(3)電池評価
全固体リチウム電池を0.1mA定電流で4.1Vまで充電し、その後定電圧で電流が0.02mAになるまで充電して、充電容量を得た。その後、0.1mA定電流で3.0Vまで放電した。この操作を50回繰り返した。放電開始から10秒後のIRドロップから電池の内部抵抗Rを算出し、5回目の放電時の内部抵抗をR、50回目の放電時の内部抵抗R50とした。R50をRで除した値を抵抗変化率とした。5つの電池を作製及び評価し、その平均を取ったところ、抵抗変化率は220%であった。
例B2(比較)
本例は、(104)面が板面に対して平行に配向した(すなわち(003)面が板面と平行に配向していない)配向正極板が集電板へ接着されていない状態の全固体リチウム電池を作製及び評価した比較例である。
(1)配向正極板の作製
(1a)グリーンシートの作製
Co原料粉末(体積基準D50粒径0.3μm、正同化学工業株式会社製)に5wt%の割合でBi(体積基準D50粒径0.3μm、太陽鉱工株式会社製)を添加して混合粉末を得た。この混合粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM−2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:ジ(2−エチルヘキシル)フタレート、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP−O30、花王株式会社製)2重量部とを混合した。この混合物を、減圧下で撹拌することで脱泡するとともに、4000cPの粘度に調整した。なお、粘度は、ブルックフィールド社製LVT型粘度計で測定した。上記のようにして調製されたスラリーを、ドクターブレード法によって、PET(ポリエチレンテレフタレート)フィルムの上に、乾燥後の厚さが40μmとなるように、シート状に成形してグリーンシートを得た。
(1b)配向焼結板の作製
例B1と同様の手順により、厚さ45μmからなるLiCoO配向焼結板を配向正極板として得た。
(2)全固体リチウム電池の作製
(2a)導電膜の作製及び配向正極板の切り出し
イオンスパッタリング装置(日本電子製、JFC−1500)を用いたスパッタリングにより、コバルト酸リチウム配向正極板の片面に厚さ1000ÅのAu膜を導電膜として形成した。さらに、配向正極板を10mm角に切り出した。
(2b)固体電解質層の形成
直径4インチ(約10cm)のリン酸リチウム焼結体ターゲットを準備した。このターゲットに対して、スパッタリング装置(キャノンアネルバ製、SPF−430H)を用いてRFマグネトロン方式にてガス種Nを0.2Pa、出力0.2kWの条件にて衝突させて上記配向正極板の板表面に薄膜を設けるスパッタリングを行なった。こうして、配向正極板上に、膜厚3.5μmのLiPON(リン酸リチウムオキシナイトライドガラス電解質)系の固体電解質スパッタ膜を固体電解質層として形成した。
(2c)負極層の形成
リチウム金属を載せたタングステンボートを準備した。真空蒸着装置(サンユー電子製、カーボンコーターSVC−700)を用いて、抵抗加熱によりLiを蒸発させて上記中間層の表面に薄膜を設ける蒸着を行った。このとき、マスクを用いて負極層のサイズを9.5mm角として、負極層が10mm角の正極領域内に収まるようにした。こうして、固体電解質層上に膜厚10μmのLi蒸着膜を負極層として形成した単電池を作製した。
(2d)外装封止
厚さ20μmのステンレス箔を13mm角に切り出して正極集電板とした。また、外縁形状が13mm角で、その内側に11mm角の孔が打ち抜かれた、1mm幅の枠状の変性ポリプロピレン樹脂フィルム(厚さ100μm)を用意した。この枠状の樹脂フィルムを正極集電板上の外周部に積層し、加熱圧着して端部封止部を形成した。正極集電板上の端部封止部で囲まれた領域内に上記単電池を載置した。載置した単電池の負極側にも上記同様に厚さ20μmのステンレス箔を載置し、端部封止部に対して荷重を加えながら、減圧下、200℃で加熱した。こうして外周全体にわたって端部封止部と上下2枚のステンレス箔とを貼り合せて単電池を封止した。こうして、封止形態の全固体リチウム電池を得た。こうして得られた電池は、配向正極板が集電板へ接着されていない状態のものである。すなわち、得られた電池は、正極集電体が、配向正極板の固体電解質層と反対側の面に、接着剤を含まない非接着状態で全面的に接触されているものである。
(3)電池評価
上記のようにして得られた全固体リチウム電池5個を例B1と同様にして評価したところ、すべてサイクル途中で漏れ電流が発生したため、不良品と判定した。
例B3
本例は、(003)面が板面と平行に配向した配向正極板が集電板へ接着されていない状態の全固体リチウム電池を作製及び評価した実施例である。
(1)配向正極板の作製
例A2と同様にして、表1に示される条件に従い、(003)面が板面と平行に配向した配向正極板を作製した。得られた配向正極板の特性は表2に示されるとおりである。
(2)全固体リチウム電池の作製
上記(1)で得られたコバルト酸リチウム配向正極板を用いたこと以外は、例B2と同様にして、封止形態の全固体リチウム電池を得た。こうして得られた電池は、配向正極板が集電板へ接着されていない状態のものである。すなわち、得られた電池は、正極集電体が、配向正極板の固体電解質層と反対側の面に、接着剤を含まない非接着状態で全面的に接触されているものである。
(3)電池評価
上記のようにして得られた全固体リチウム電池5個を例B1と同様にして評価したところ、抵抗増加率は120%であった。

Claims (14)

  1. 配向焼結体からなる厚さ20μm以上の自立した配向正極板であって、前記配向焼結体が層状岩塩構造を有するリチウム複合酸化物で構成される複数の結晶粒を含み、前記複数の結晶粒は(003)面が前記配向正極板の板面に対して平行に配向している、配向正極板と、
    前記配向正極板上に設けられ、リチウムイオン伝導材料で構成される固体電解質層と、
    前記固体電解質層上に設けられる、リチウムを含む負極層と、
    前記配向正極板の前記固体電解質層と反対側の面に、接着剤を含まない非接着状態で全面的に接触されている、厚さ5μm以上30μm以下の金属箔である正極集電体と、
    を備えた、全固体リチウム電池。
  2. 前記配向正極板の厚さが20〜100μmである、請求項1に記載の全固体リチウム電池。
  3. 前記配向焼結体の断面を電子線後方散乱回折法(EBSD)により解析した場合に、解析された前記断面に含まれる結晶粒のうち前記板面に対する(003)面の角度が0°超30°以下である結晶粒の合計面積が、前記断面に含まれる結晶粒の総面積に対して70%以上である、請求項1又は2に記載の全固体リチウム電池。
  4. 前記リチウム複合酸化物がコバルト酸リチウムである、請求項1〜3のいずれか一項に記載の全固体リチウム電池。
  5. 前記焼結体の緻密度が90%以上である、請求項1〜4のいずれか一項に記載の全固体リチウム電池。
  6. 前記配向正極板が、前記固体電解質層と反対側の面に、厚さ0.01μm以上5μm未満の導電膜をさらに備える、請求項1〜5のいずれか一項に記載の全固体リチウム電池。
  7. 前記導電膜が金属及び/又はカーボンで構成される、請求項6に記載の全固体リチウム電池。
  8. 前記正極集電体が、前記固体電解質層側の面にカーボン膜をさらに備える、請求項1〜7のいずれか一項に記載の全固体リチウム電池。
  9. 前記正極集電体が、前記配向正極板に対して押圧されている、請求項1〜8のいずれか一項に記載の全固体リチウム電池。
  10. 前記正極集電体の前記配向正極板に対する押圧は、前記正極集電体の内外気圧差によってもたらされている、請求項9に記載の全固体リチウム電池。
  11. 前記配向正極板、前記固体電解質層及び前記負極層を含む積層体が外装材で包装又は封止されており、前記正極集電体が前記外装材の一部を構成し、前記外装材で包装又は封止される前記積層体の収容空間が減圧されている、請求項1〜10のいずれか一項に記載の全固体リチウム電池。
  12. 前記固体電解質層を構成する前記リチウムイオン伝導材料が、ガーネット系セラミックス材料、窒化物系セラミックス材料、ペロブスカイト系セラミックス材料、リン酸系セラミックス材料、硫化物系セラミックス材料、又は高分子系材料で構成されている、請求項1〜11のいずれか一項に記載の全固体リチウム電池。
  13. 前記固体電解質層を構成する前記リチウムイオン伝導材料が、Li−La−Zr−O系セラミックス材料及び/又はリン酸リチウムオキシナイトライド(LiPON)系セラミックス材料で構成される、請求項1〜12のいずれか一項に記載の全固体リチウム電池。
  14. 前記固体電解質層の前記負極側の面にリチウムと合金化可能な金属を含む中間層をさらに含む、請求項1〜13のいずれか一項に記載の全固体リチウム電池。

JP2018531828A 2016-08-02 2017-07-20 全固体リチウム電池 Active JP6906524B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016152278 2016-08-02
JP2016152278 2016-08-02
PCT/JP2017/026286 WO2018025649A1 (ja) 2016-08-02 2017-07-20 全固体リチウム電池

Publications (2)

Publication Number Publication Date
JPWO2018025649A1 true JPWO2018025649A1 (ja) 2019-05-30
JP6906524B2 JP6906524B2 (ja) 2021-07-21

Family

ID=61072711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018531828A Active JP6906524B2 (ja) 2016-08-02 2017-07-20 全固体リチウム電池

Country Status (2)

Country Link
JP (1) JP6906524B2 (ja)
WO (1) WO2018025649A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478690B (zh) 2016-05-13 2022-08-23 艾诺维克斯公司 三维电池的尺寸约束
JP2019192609A (ja) * 2018-04-27 2019-10-31 日本碍子株式会社 全固体リチウム電池及びその製造方法
JP7357275B2 (ja) * 2018-10-10 2023-10-06 パナソニックIpマネジメント株式会社 電池および積層電池
JP7206978B2 (ja) * 2019-02-06 2023-01-18 トヨタ自動車株式会社 全固体電池およびその製造方法
CN114127984A (zh) * 2019-07-18 2022-03-01 株式会社村田制作所 固态电池
JP2021097012A (ja) * 2019-12-19 2021-06-24 日本電気硝子株式会社 蓄電デバイス用部材及び蓄電デバイス
GB2601794A (en) * 2020-12-10 2022-06-15 Dyson Technology Ltd Electrode structure and method of making an electrode structure
EP4318632A1 (en) * 2021-03-31 2024-02-07 Panasonic Intellectual Property Management Co., Ltd. Electrode for secondary battery, secondary battery, and method for manufacturing electrode for secondary battery
WO2023080216A1 (ja) * 2021-11-04 2023-05-11 大日本印刷株式会社 絶縁性フィルム、全固体電池、全固体電池の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132887A (ja) * 2001-10-29 2003-05-09 Matsushita Electric Ind Co Ltd 固体リチウム二次電池およびその製造方法
JP2005243371A (ja) * 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd 正極とそれを用いた捲回型電気化学素子
JP2009181871A (ja) * 2008-01-31 2009-08-13 Toyota Motor Corp 全固体リチウム二次電池
JP2010212161A (ja) * 2009-03-11 2010-09-24 Sumitomo Electric Ind Ltd 非水電解質電池、およびその製造方法
JP2011009103A (ja) * 2009-06-26 2011-01-13 Toyota Motor Corp 全固体リチウム二次電池
WO2014162532A1 (ja) * 2013-04-03 2014-10-09 株式会社 日立製作所 全固体電池、および全固体電池の製造方法
WO2015029289A1 (ja) * 2013-08-29 2015-03-05 パナソニックIpマネジメント株式会社 全固体リチウム二次電池
JP2016033880A (ja) * 2014-07-31 2016-03-10 日本碍子株式会社 全固体リチウム電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132887A (ja) * 2001-10-29 2003-05-09 Matsushita Electric Ind Co Ltd 固体リチウム二次電池およびその製造方法
JP2005243371A (ja) * 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd 正極とそれを用いた捲回型電気化学素子
JP2009181871A (ja) * 2008-01-31 2009-08-13 Toyota Motor Corp 全固体リチウム二次電池
JP2010212161A (ja) * 2009-03-11 2010-09-24 Sumitomo Electric Ind Ltd 非水電解質電池、およびその製造方法
JP2011009103A (ja) * 2009-06-26 2011-01-13 Toyota Motor Corp 全固体リチウム二次電池
WO2014162532A1 (ja) * 2013-04-03 2014-10-09 株式会社 日立製作所 全固体電池、および全固体電池の製造方法
WO2015029289A1 (ja) * 2013-08-29 2015-03-05 パナソニックIpマネジメント株式会社 全固体リチウム二次電池
JP2016033880A (ja) * 2014-07-31 2016-03-10 日本碍子株式会社 全固体リチウム電池

Also Published As

Publication number Publication date
WO2018025649A1 (ja) 2018-02-08
JP6906524B2 (ja) 2021-07-21

Similar Documents

Publication Publication Date Title
JP6779221B2 (ja) 全固体リチウム電池
JP6906524B2 (ja) 全固体リチウム電池
JP6646666B2 (ja) 全固体リチウム電池
KR102643570B1 (ko) 판형 리튬 복합 산화물
US20170373300A1 (en) All solid state lithium battery
JP6906522B2 (ja) 全固体リチウム電池
WO2018088522A1 (ja) 二次電池
JP6483918B2 (ja) 正極
KR102325924B1 (ko) 전고체 리튬 전지 및 그 제조 방법
JP6906523B2 (ja) 全固体リチウム電池の使用方法
JP2017054792A (ja) リチウム電池
JP6820960B2 (ja) リチウムイオン電池
US20210036305A1 (en) Lithium secondary battery
WO2017065034A1 (ja) 全固体リチウム電池の製造方法
JP2017054761A (ja) 全固体リチウム電池の検査方法及び全固体リチウム電池の製造方法
US20210043965A1 (en) Lithium secondary battery
JP2017135100A (ja) リチウムイオン電池
US20210066744A1 (en) Lithium secondary battery
WO2022044409A1 (ja) リチウムイオン二次電池
US20220238870A1 (en) Lithium secondary battery and method for measuring state of charge of same
US20210391598A1 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6906524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150