JPWO2017110651A1 - 光学反射フィルム - Google Patents

光学反射フィルム Download PDF

Info

Publication number
JPWO2017110651A1
JPWO2017110651A1 JP2017558074A JP2017558074A JPWO2017110651A1 JP WO2017110651 A1 JPWO2017110651 A1 JP WO2017110651A1 JP 2017558074 A JP2017558074 A JP 2017558074A JP 2017558074 A JP2017558074 A JP 2017558074A JP WO2017110651 A1 JPWO2017110651 A1 JP WO2017110651A1
Authority
JP
Japan
Prior art keywords
refractive index
index layer
low refractive
layer
coating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017558074A
Other languages
English (en)
Other versions
JP6834984B2 (ja
Inventor
晃純 木村
晃純 木村
洋一 斎藤
洋一 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2017110651A1 publication Critical patent/JPWO2017110651A1/ja
Application granted granted Critical
Publication of JP6834984B2 publication Critical patent/JP6834984B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • G02B5/282Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/283Interference filters designed for the ultraviolet

Abstract

【課題】ヘイズが低減され、クラックの発生が生じにくい光学反射フィルムを提供することを目的とする。光学反射フィルムを提供する。【解決手段】基材上に、低屈折率層と高屈折率層とを積層したユニットを少なくとも1つ含む光学反射フィルムであって、前記高屈折率層が、酸化ジルコニウム粒子を含み、前記低屈折率層が、酸化ケイ素粒子と、2種以上のカチオンポリマーとを含有することを特徴とする、光学反射フィルムである。【選択図】なし

Description

本発明は、光学反射フィルムに関する。
近年、省エネルギー対策への関心が高まり、建築用ガラスや車両用ガラスにおいて、室内あるいは車内に入る太陽輻射エネルギーを遮蔽し、温度上昇、冷房負荷を低減する目的で、赤外線の遮蔽性を有する断熱ガラスが採用されている。一方、従来より屈折率の異なる層を積層して形成した赤外遮蔽フィルムが知られており、この赤外遮蔽フィルムをガラスに貼付することにより、太陽光の中、熱線の透過を遮断する方法が、より簡便な方法として注目されている。
赤外遮蔽フィルムとしては、高屈折率層と低屈折率層とを交互に積層させた積層膜を蒸着法、スパッタなどの気相成膜法で作製する方法がある。しかしながら、気相成膜法は製造コストが高く、大面積化が困難であり、耐熱性素材に限定される等の課題がある。
したがって、赤外遮蔽フィルムの製造の際には、製造コストが安く、大面積化が可能であり、基材の選択幅が広いといった観点から液相成膜法(ウェット)を用いるほうが有利である。液相成膜法を用いた技術として、たとえば、特開2012−93482号公報には、水溶性高分子および金属酸化物微粒子の混合物を含む塗布液を、湿式塗布方式により塗布して積層することにより製造される光学反射フィルム(近赤外反射フィルム)が開示されている。特開2012−93482号公報には、高屈折率層塗布液として酸化ジルコニウムを含む塗布液を、低屈折率層塗布液として酸化ケイ素等の低屈折率酸化物を含む塗布液をそれぞれ準備し、これらを重層塗布して積層膜を調製することが記載されており、これによって安価に高性能の光学反射フィルムを作製することができる。
しかしながら、本発明者らが鋭意検討の結果、特開2012−93482号公報に記載の光学反射フィルムにおいては、高屈折率層塗布液と低屈折率層塗布液とを重層塗布する際に、層間混合によって各層の界面が乱れ、得られた光学反射フィルムにおいてヘイズが生じてしまうことが判明した。また、光学反射フィルムにクラックが生じやすいことが分かった。
したがって本発明は、上記事情を鑑みてなされたものであり、ヘイズが低減され、クラックの発生が生じにくい光学反射フィルムを提供することを目的とする。
本発明者らは、上記課題に鑑み鋭意検討を行った。その結果、低屈折率層および高屈折率層を積層したユニットを少なくとも1つ含み、低屈折率層の金属酸化物として酸化ケイ素を、高屈折率層の金属酸化物として酸化ジルコニウムを含む光学反射フィルムにおいて、低屈折率層に2種以上のカチオンポリマーを併用することによって上記課題が解決されることを見出し、本発明を完成させるに至った。
すなわち、上記課題は以下の手段により達成される。
1.基材上に、低屈折率層と高屈折率層とを積層したユニットを少なくとも1つ含む光学反射フィルムであって、
前記高屈折率層が、酸化ジルコニウム粒子を含み、
前記低屈折率層が、酸化ケイ素粒子と、2種以上のカチオンポリマーとを含有することを特徴とする、光学反射フィルム。
2.前記2種以上のカチオンポリマーは、カチオン性基として3級アミノ基またはそのカチオン(塩)を含むカチオンポリマーと、4級アンモニウム基を含むカチオンポリマーとを含む、前記1に記載の光学反射フィルム。
3.前記2種以上のカチオンポリマーは、いずれも20,000〜30,000の重量平均分子量を有する、前記1または2に記載の光学反射フィルム。
4.同時重層塗布法により前記高屈折率層と前記低屈折率層とを積層することを含む、前記1〜3のいずれか1項に記載の光学反射フィルムの製造方法。
本発明は、基材上に、低屈折率層と高屈折率層とを積層したユニットを少なくとも1つ含む光学反射フィルムであって、前記高屈折率層が、酸化ジルコニウム粒子を含み、前記低屈折率層が、酸化ケイ素粒子と、2種以上のカチオンポリマーとを含有することを特徴とする、光学反射フィルムである。
本発明の光学反射フィルムにおいては、酸化ケイ素とともに2種以上のカチオンポリマーを低屈折率層中に含むことにより、当該フィルムのヘイズの上昇が抑制される。さらに、上記構成を採ることによりクラックの発生が抑制される。
本発明に係る光学反射フィルムは、酸化ケイ素粒子を含む低屈折率層と酸化ジルコニウム粒子を含む高屈折率層とが積層された構造を有する。ここで、特開2012−93482号公報のように、高屈折率層と低屈折率層とを重層塗布によって作製すると、層間混合によって各層の界面が乱れ、得られた光学反射フィルムにおいてヘイズが生じてしまう。
これに対し、本発明の光学反射フィルムは、2種以上のカチオンポリマーを酸化ケイ素を含む低屈折率層に添加することで、重層塗布時の低屈折率層と高屈折率層との層間混合を抑制できる。理由は明らかではないが2種以上のカチオンポリマーを併用することにより、カチオンポリマーが不均化して酸化ケイ素に吸着し、微凝集を起こすことでバインダーである樹脂と凝集粒子との相互作用が増大する。これにより酸化ケイ素の拡散による重層塗布時の高屈折率層との混合が抑えられるものと考えられる。また、高屈折率層に含まれる酸化ジルコニウムの高いカチオン性ゼータ電位との反発により、重層塗布時の混合が劇的に抑えられるものと考えられる。その結果、得られる光学反射フィルムのヘイズを大幅に低減できるものと推測される。
また、2種以上のカチオンポリマーを添加することで、重層塗布時の界面の乱れが抑制されるため、温度変化で膜厚の変化が生じたときに応力の集中が生じにくいことから、光学反射フィルムのクラック耐性が向上するものと考えられる。本発明の効果は光学反射フィルムを低屈折率層と高屈折率層との同時重層塗布によって作製したときに特に顕著に得られうるが、逐次塗布の場合においても、塗布乾燥時に各屈折率層が隣接する屈折率層や基材と微混合することを抑制できるため、優れた効果が得られうる。
以下、本発明の光学反射フィルムの構成要素について、詳細に説明する。なお、以下では、低屈折率層および高屈折率層を区別しない場合は、両者を含む概念として「屈折率層」と称する。
また、本明細書において、範囲を示す「X〜Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20〜25℃)/相対湿度40〜50%の条件で行う。
〔光学反射フィルム〕
本発明に係る光学反射フィルムは、基材上に、低屈折率層と高屈折率層とを積層したユニットを少なくとも1つ含む。なお、本明細書において、「高屈折率層」および「低屈折率層」なる用語は、隣接した2層の屈折率差を比較した場合に、屈折率が高い方の屈折率層を高屈折率層とし、低い方の屈折率層を低屈折率層とすることを意味する。したがって、「高屈折率層」および「低屈折率層」なる用語は、光学反射フィルムを構成する各屈折率層において、隣接する2つの屈折率層に着目した場合に、各屈折率層が同じ屈折率を有する形態以外のあらゆる形態を含むものである。また、本明細書中、低屈折率層と高屈折率層とを積層したユニットが複数積層された部分を単に「光学反射層」または「反射層」と称することがある。
光学反射フィルムは、基材、光学反射層をこの順に有し、光学反射層は、基材の光が入射する面に配置されると好ましい。さらに、光学反射層は、基材と隣接して配置されてもよいし、基材と光学反射層との間に他の層が介在していてもよい。
本発明の光学反射フィルムは、反射層を構成する高屈折率層が、酸化ジルコニウム粒子を含み、低屈折率層が、酸化ケイ素粒子と、2種以上のカチオンポリマーとを含有する。以下では、各屈折率層に含まれる各成分について詳述する。
(カチオンポリマー)
本発明に係る光学反射フィルムにおいて、低屈折率層は、酸化ケイ素粒子とともに、2種以上のカチオンポリマーを含む。
本明細書中、カチオンポリマーはカチオンまたはカチオン性基を有するポリマーを意味する。
カチオンポリマーは、無機ポリマーであってもよいし、有機ポリマーであってもよい。
無機ポリマーとしては、加水分解重縮合が可能な金属塩化合物を、所謂ゾル・ゲル法によって、加水分解重縮合することで形成される金属酸化物からなる無機ポリマーが挙げられるが、特に、ジルコニウム原子を含む化合物、またはアルミニウム原子を含む化合物等を用いて、これを、加水分解重縮合することで形成される無機ポリマーが好ましい。
これらの無機ポリマーは、加水分解の過程で生じるOH基が、重縮合反応後にも残るため、OHの水素結合のネットワークを形成するため柔軟性が向上すると考えられる。
ジルコニウム原子を含む無機ポリマーの具体例としては、塩化ジルコニル、硝酸ジルコニル等が挙げられる。上記化合物の具体的商品名としては、第一稀元素化学工業製のジルコゾールZC−2(塩化ジルコニル)、第一稀元素化学工業製のジルコゾールZN(硝酸ジルコニル)等が挙げられる。
アルミニウム原子を含む無機ポリマーの具体例としては、塩基性塩化アルミニウム、塩基性硫酸アルミニウム、塩基性硫酸珪酸アルミニウム等が挙げられる。これらの中でも、塩基性塩化アルミニウム、塩基性硫酸アルミニウムが好ましい。上記化合物の具体的商品名としては、多木化学株式会社製のタキバイン#1500等が挙げられる。
前記タキバイン#1500の構造式を下記に示す。
ただし、s、t、uは1以上の整数を表す。
本発明におけるカチオンポリマーは、有機ポリマーであることが好ましい。これは、無機ポリマーに比べ有機ポリマーは伸縮性に優れるため、屈折率を維持するために酸化ケイ素粒子を高充填した場合であっても、温度変化による層の膨張、収縮に追随しやすく、クラックが生じにくいためである。
有機ポリマーであるカチオンポリマーとしては、特に制限されないが、ビニルピロリドン・N,N−ジメチルアミノエチルメタクリル酸共重合体硫酸塩重合体、デンプン糖ヒドロキシプロピルトリメチルアンモニウムクロリドエーテル、ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、ポリビニルピリジン、ポリエチレンイミン−エピクロルヒドリン反応物、ポリアミド−ポリアミン樹脂、ポリアミド−エピクロルヒドリン樹脂、キトサン類、カチオン化デンプン、ポリアミンスルフォン、ポリビニルイミダゾール、ポリアミジン、ジシアンアミドポリアルキレンポリアミン縮合物、ポリアルキレンポリアミンジシアンジアミドアンモニウム塩縮合物、ジシアンジアミドホルマリン縮合物、ジアリルジメチルアンモニウムクロライド重合物及び共重合物、ビニルピロリドン・ビニルイミダゾール共重合体、ビニルベンジルトリメチルアンモニウムクロライド重合物及び共重合物、ジメチルアミノエチル(メタ)アクリレート重合物及び共重合物、(メタ)アクリロイルオキシアルキルトリアルキルアンモニウムクロライド重合物及び共重合物、(メタ)アクリロイルオキシアルキルジアルキルベンジルアンモニウムクロライド重合物などが挙げられる。
また、例えば、特開昭61−10483号公報に記載されているような、1〜3級アミノ基や4級アンモニウム基をポリビニルアルコールの主鎖または側鎖中に有するカチオン変性ポリビニルアルコールを用いることもできる。カチオン変性ポリビニルアルコールは、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体を鹸化することにより得られる。
カチオン性基を有するエチレン性不飽和単量体としては、例えば、トリメチル−(2−アクリルアミド−2,2−ジメチルエチル)アンモニウムクロライド、トリメチル−(3−アクリルアミド−3,3−ジメチルプロピル)アンモニウムクロライド、N−ビニルイミダゾール、N−ビニル−2−メチルイミダゾール、N−(3−ジメチルアミノプロピル)メタクリルアミド、ヒドロキシルエチルトリメチルアンモニウムクロライド、トリメチル−(2−メタクリルアミドプロピル)アンモニウムクロライド、N−(1,1−ジメチル−3−ジメチルアミノプロピル)アクリルアミド等が挙げられる。カチオン変性ポリビニルアルコールのカチオン変性基含有単量体の比率は、例えば、酢酸ビニルに対して0.1〜10モル%、好ましくは0.2〜5モル%である。
本発明におけるカチオンポリマーは、カチオン性基として、1級から3級アミノ基またはそのカチオン(塩)、または4級アンモニウム基を有する有機アミン系ポリマーを少なくとも1種用いることが、酸化ケイ素粒子の表面の水酸基とアミノ基やアンモニウム基が比較的強く結合するため好ましい。
例えば、ポリアリルアミン及びその4級化物、ポリアリルアミン塩酸塩(PAH)、ポリジアリルジメチルアンモニウムクロリド(PDDA)、ポリビニルピリジン(PVP)、ポリリジン、ポリアクリルアミド、ポリピロール、ポリアニリン、ポリパラフェニレン(+)、ポリパラフェニレンビニレン、ポリエチレンイミンおよびそれらを少なくとも1種以上を含む共重合体や塩の種類を変えたものなどを用いることができる。
より具体的には、ポリアリルアミンアミド硫酸塩、アリルアミン塩酸塩とジアリルアミン塩酸塩との共重合体、アリルアミン塩酸塩とジメチルアリルアミン塩酸塩との共重合体、アリルアミン塩酸塩とその他の共重合体、部分メトキシカルボニル化アリルアミン重合体、部分メチルカルボニル化アリルアミン酢酸塩重合体、ジアリルアミン塩酸塩重合体、メチルジアリルアミン塩酸塩重合体、メチルジアリルアミンアミド硫酸塩重合体、メチルジアリルアミン酢酸塩重合体、ジアリルアミン塩酸塩と二酸化イオウの共重合体、ジアリルアミン酢酸塩と二酸化イオウとの共重合体、ジアリルメチルエチルアンモニウムエチルサルフェイトと二酸化イオウとの共重合体、メチルジアリルアミン塩酸塩と二酸化イオウとの共重合体、ジアリルジメチルアンモニウムクロリドと二酸化イオウとの共重合体、ジアリルジメチルアンモニウムクロリドとアクリルアミドとの共重合体、ジアリルジメチルアンモニウムクロリドとジアリルアミン塩酸塩誘導体との共重合体、ジメチルアミンとエピクロロヒドリンとの共重合体、ジメチルアミンとエチレンジアミンとエピクロロヒドリンとの共重合体、ポリアミドポリアミンとエピクロロヒドリンとの共重合体等が挙げられる。
本発明においては、低屈折率層に2種以上のカチオンポリマーを用いることで、カチオンポリマーを用いない場合や1種類のカチオンポリマーだけを用いる場合と比較して、酸化ケイ素粒子を微凝集させつつ、沈降させずに低屈折率層中に分散させることが可能になり、その結果、ヘイズの少ない光学反射フィルムが得られうる。したがって、酸化ケイ素粒子の分散安定性を保つ効果の高いカチオンポリマーと、凝集性の高いカチオンポリマーとの2種類のカチオンポリマーを併用すると、本発明の効果がより顕著に得られうる。例えば、カチオン性基として、3級アミノ基、1級アミノ基、2級アミノ基またはこれらのカチオン(塩)を有するカチオンポリマー、特に3級アミノ基、またはそのカチオン(塩)を有するカチオンポリマーは酸化ケイ素粒子の表面を効果的にカチオン化し、低屈折率層を形成する塗布液中の酸化ケイ素粒子の分散安定性を保つことに寄与する。そのため、低屈折率層中のカチオンポリマーは、カチオン性基として3級アミノ基またはそのカチオン(塩)を有するカチオンポリマーを含むことが好ましい。一方、カチオン性基として、4級アンモニウム基、1級アミノ基、2級アミノ基及びこれらのカチオン(塩)を有するカチオンポリマー、特に4級アンモニウム基を有するカチオンポリマーは、酸化ケイ素粒子の微凝集を発生させ、酸化ケイ素粒子を保護する効果を有する。そのため、4級アンモニウム基を有するカチオンポリマーをさらに用いることで、酸化ケイ素粒子を沈降させずに微凝集を起こすことが容易となり、本発明の効果がさらに顕著に得られうる。したがって、本発明においては、低屈折率層に含まれる2種以上のカチオンポリマーとして、カチオン性基として3級アミノ基またはそのカチオン(塩)を含むカチオンポリマーと、4級アンモニウム基を含むカチオンポリマーとを有することが好ましい。
特に、メチルジアリルアミン塩酸塩重合体、メチルジアリルアミンアミド硫酸塩重合体、メチルジアリルアミン酢酸塩重合体などが3級アミノ基またはそのカチオン(塩)を含むカチオンポリマーとして好適に用いられ、ジアリルジメチルアンモニウムクロリド重合体などが4級アンモニウム基を含むカチオンポリマーとして好適に用いられうる。
上記カチオンポリマーの含有量は、本発明の効果が発揮される限り特に制限されないが、それぞれのカチオンポリマーの含有量が、低屈折率層中に含まれる酸化ケイ素粒子を含む金属酸化物粒子の総量に対して、0.5〜20質量%であることが好ましく、1〜10質量%であることがより好ましく、2〜5質量%であることがさらに好ましい。2種類以上のカチオンポリマーの合計の含有量は、特に制限されないが、低屈折率層中に含まれる酸化ケイ素粒子を含む金属酸化物粒子の総量に対して、その合計が上記範囲内であると好ましい。0.5質量%以上であれば、本発明の効果が顕著に得られ好ましい。また、20質量%以下であれば、カチオン性ポリマー由来の耐光性劣化がなく好適である。
上記カチオンポリマーの重量平均分子量は、特に制限されないが、2種以上のカチオンポリマーのうち少なくとも1種の重量平均分子量が20,000〜30,000であることが好ましく、2種以上のカチオンポリマーのいずれもの重量平均分子量が20,000〜30,000であることがより好ましい。上記範囲であると、本発明の効果が特に顕著に得られうる。なお、本明細書において、「重量平均分子量」の値は、ゲルパーミエーションクロマトグラフィ(GPC)によって測定した値を採用するものとする。
(樹脂)
本発明の光学反射フィルムにおいて、高屈折率層は、酸化ジルコニウム粒子と共に、バインダーとしての樹脂を含みうる。また、低屈折率層においても、樹脂を含むと好ましい。以下、高屈折率層および低屈折率層に含まれる樹脂について説明する。なお、高屈折率層に含まれる樹脂は、低屈折率層に含まれる樹脂と同じであっても、互いに異なるものであってもよい。
高屈折率層および低屈折率層で用いられる樹脂としては、特に制限はないが、具体的には水溶性樹脂、シリコーン系樹脂、オレフィン系樹脂、塩化ビニル系樹脂、含フッ素ポリマーなどが挙げられる。なかでも、高屈折率層及び低屈折率層を構成する樹脂としては、水溶性樹脂を用いることが好ましい。また、水溶性樹脂の溶剤は水であるから、後述の基材に対して腐食、溶解、浸透を起こさないという利点もある。さらに、水溶性樹脂は、柔軟性が高いため、屈曲時の光学反射層の耐久性が向上するため好ましい。以下、本発明の光学反射フィルムにおいて好適に用いられる水溶性樹脂について説明する。
本発明において、高屈折率層および低屈折率層で用いられる水溶性樹脂としては、特に制限されないが、ポリビニルアルコール類、ポリビニルピロリドン類などの合成水溶性樹脂;ゼラチン、増粘多糖類などの天然水溶性樹脂などが挙げられる。これらの中でも、酸素透過性が低いという観点から、ポリビニルアルコール類を用いると好ましい。また、高屈折率層および低屈折率層は、エマルジョン樹脂を含んでもよい。
ポリビニルアルコール類には、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他に、カルボキシル基のようなアニオン性基を有するアニオン変性ポリビニルアルコール、ノニオン性基を有するノニオン変性ポリビニルアルコール、シリル基を有するシリル変性ポリビニルアルコール等の変性ポリビニルアルコールも含まれる。
ポリ酢酸ビニルを加水分解して得られるポリビニルアルコールは、平均重合度が200以上のものが好ましく用いられ、さらに、1,000以上のものが好ましく、平均重合度が1,500〜5,000のものがより好ましく、2,000〜5,000のものが特に好ましく用いられる。ポリビニルアルコールの重合度が200以上であると塗布膜のひび割れがなく、5,000以下であると塗布液が安定するからである。なお、塗布液が安定するとは塗布液が経時的に安定することを意味する。以下、同様である。
また、鹸化度は、70〜100モル%のものが好ましく、80〜99.5モル%のものが水への溶解性の点でより好ましい。
アニオン変性ポリビニルアルコールは、例えば、特開平1−206088号公報に記載されているようなアニオン性基を有するポリビニルアルコール、特開昭61−237681号公報および同63−307979号公報に記載されているような、ビニルアルコールと水溶性基を有するビニル化合物との共重合体および特開平7−285265号公報に記載されているような水溶性基を有する変性ポリビニルアルコールが挙げられる。
また、ノニオン変性ポリビニルアルコールとしては、例えば、特開平7−9758号公報に記載されているようなポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8−25795号公報に記載されている疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体、シラノール基を有するシラノール変性ポリビニルアルコール、アセトアセチル基やカルボニル基、カルボキシル基などの反応性基を有する反応性基変性ポリビニルアルコール等が挙げられる。
これらポリビニルアルコール類は、単独でも、または重合度や変性の種類違いなどの2種以上を併用してもよい。また、ポリビニルアルコール類は、市販品を用いてもよいし合成品を用いてもよい。市販品の例としては、例えば、PVA−102、PVA−103、PVA−105、PVA−110、PVA−117、PVA−120、PVA−124、PVA−135、PVA−203、PVA−205、PVA−210、PVA−217、PVA−220、PVA−224、PVA−235等のポバール(登録商標、株式会社クラレ製)、エクセバール(登録商標、株式会社クラレ製)、ニチゴーGポリマー(登録商標、日本合成化学工業株式会社製)等が挙げられる。
屈折率層におけるポリビニルアルコールの含有量は、屈折率層の全固形分に対して、好ましくは3〜70質量%、より好ましくは5〜60質量%、さらに好ましくは10〜50質量%、特に好ましくは13〜45質量%である。
(硬化剤)
本発明において、屈折率層には、硬化剤を用いることが好ましい。樹脂としてポリビニルアルコールを用いた場合、その効果は特に発揮されうる。
ポリビニルアルコールと共に用いることのできる硬化剤としては、ポリビニルアルコールと硬化反応を起こすものであれば特に制限はないが、ホウ酸およびその塩が好ましい。ホウ酸またはその塩とは、硼素原子を中心原子とする酸素酸およびその塩のことをいい、具体的には、オルトホウ酸、二ホウ酸、メタホウ酸、四ホウ酸、五ホウ酸および八ホウ酸およびそれらの塩が挙げられる。硬化剤としてのホウ酸およびホウ酸塩は、単独の水溶液でも、また、2種以上を混合して使用してもよい。本発明において、ホウ酸および/またはその塩を用いた場合には、酸化ジルコニウム粒子等の金属酸化物粒子とポリビニルアルコールのOH基と水素結合ネットワークを形成し、その結果として高屈折率層と低屈折率層との層間混合が抑制され、好ましい光学反射特性が達成されると考えられる。特に、高屈折率層と低屈折率層との多層重層をコーターで塗布後、一旦塗膜の膜面温度を15℃程度に冷やした後、膜面を乾燥させるセット系塗布プロセスを用いた場合には、より好ましく効果を発現することができる。
硬化剤としては、上記ホウ酸及びその塩以外にも、公知のものを使用することができ、一般的にはポリビニルアルコールと反応し得る基を有する化合物あるいはポリビニルアルコールが有する異なる基同士の反応を促進するような化合物であり、適宜選択して用いられる。硬化剤の具体例としては、例えば、エポキシ系硬化剤(ジグリシジルエチルエーテル、エチレングリコールジグリシジルエーテル、1,4−ブタンジオールジグリシジルエーテル、1,6−ジグリシジルシクロヘキサン、N,N−ジグリシジル−4−グリシジルオキシアニリン、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル等)、アルデヒド系硬化剤(ホルムアルデヒド、グリオキザール等)、活性ハロゲン系硬化剤(2,4−ジクロロ−4−ヒドロキシ−1,3,5,−s−トリアジン等)、活性ビニル系化合物(1,3,5−トリスアクリロイル−ヘキサヒドロ−s−トリアジン、ビスビニルスルホニルメチルエーテル等)、アルミニウム明礬等が挙げられる。
上記硬化剤の総使用量は、ポリビニルアルコール(複数のポリビニルアルコールを用いる場合には、その合計量)1g当たり10〜600mgが好ましく、20〜500mgがより好ましい。
(界面活性剤)
本発明に係る高屈折率層および低屈折率層には、塗布性の観点から界面活性剤を含有することが好ましい。
塗布時の表面張力調整のため用いられる界面活性剤としてアニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤などを用いることができるが、両性界面活性剤がより好ましい。
本発明に好ましく用いられる両性界面活性剤としては、アミドスルホベタイン型、カルボキシベタイン型、スルホベタイン型、イミダゾリウム型などがある。本発明に好ましく用いられる両性界面活性剤の具体例を以下に示す。本発明ではスルホベタイン型、カルボキシベタイン型が塗布ムラの観点から好ましく、製品としてはLSB−R、LSB、LMEB−R(川研ファインケミカル株式会社製)、アンヒトール20HD(花王株式会社製)等が挙げられる。
本発明に係る屈折率層における界面活性剤の含有量は、屈折率層の全固形分に対して、0.001〜1質量%であることが好ましく、0.005〜0.50質量%であることがより好ましい。
(エマルジョン樹脂)
本発明において、屈折率層は、エマルジョン樹脂を含んでもよい。金属酸化物粒子、水溶性樹脂、および必要に応じて界面活性剤を水系溶媒に分散させた塗布液において、エマルジョン樹脂を用いることで、塗布液の構造粘性が安定化し、分散状態が良好になって粘度の上昇が抑制されるものと考えられる。その結果、塗膜故障が改善され、製品の収率が大幅に向上しうる。
エマルジョン樹脂としては、アニオン性エマルジョン樹脂、上記カチオンポリマー以外のカチオン性エマルジョン樹脂、ノニオン性エマルジョン樹脂のいずれも用いられうる。
エマルジョン樹脂としては、市販されているものを用いてもよく、例えば、モビニール718A、710A、731A、LDM7582、5450、6960(日本合成化学工業株式会社製)、スーパーフレックス(登録商標)150、170、300、500M、620、650(第一工業製薬株式会社製)、アデカボンタイターHUX−232、HUX−380、HUX−386、HUX−830、HUX−895(株式会社ADEKA製)、AE−116、AE−120A、AE−200A、AE−336B、AE−981A、AE−986B(株式会社イーテック製)、ETERNACOLL UW−1005E、UW−5002、UW−5034E、UE−5502(宇部興産株式会社製)、およびアクリットUW−309、UW−319SX、UW−520(大成ファインケミカル株式会社製)などが挙げられる。
エマルジョン樹脂の粒子径は特に制限されないが、平均粒子径が1〜100nmであることが好ましく、5〜60nmであることがより好ましい。エマルジョン樹脂が上記平均粒子径を有することにより、得られる光学反射フィルムのヘイズが低減され、透明性が向上しうる。エマルジョン樹脂の平均粒子径は、動的光散乱法によって測定することができる。
エマルジョン樹脂の屈折率も特に制限されないが、1.3〜1.7であることが好ましく、1.4〜1.6であることがより好ましい。上記範囲であれば、水溶性樹脂の屈折率に近くなるため、得られる光学反射フィルムのヘイズが低減されうる。
上述したエマルジョン樹脂は、柔軟性を高める観点から、ガラス転移温度(Tg)が20℃以下であることが好ましく、−30〜10℃であることがより好ましい。
エマルジョン樹脂の含有量は、エマルジョン樹脂を含む屈折率層の全質量(固形分質量)に対して1〜50質量%(固形分質量)であることが好ましく、1〜25質量%(固形分質量)であることがより好ましい。
(その他の添加剤)
本発明に係る高屈折率層または低屈折率層には、例えば、特開昭57−74193号公報、同57−87988号公報及び同62−261476号公報に記載の紫外線吸収剤、特開昭57−74192号公報、同57−87989号公報、同60−72785号公報、同61−146591号公報、特開平1−95091号公報および同3−13376号公報等に記載されている退色防止剤、特開昭59−42993号公報、同59−52689号公報、同62−280069号公報、同61−242871号公報および特開平4−219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、帯電防止剤、マット剤等の公知の各種添加剤を含有していてもよい。
(高屈折率層に使用される酸化ジルコニウム粒子)
本発明の光学反射フィルムにおいて、高屈折率層は、酸化ジルコニウム粒子を含有する。酸化ジルコニウム粒子を含む高屈折率層は、透明でより高い屈折率を発現することができる。また、光触媒活性が低いことから、高屈折率層や隣接した低屈折率層の耐光性、耐候性が高くなる。なお、本発明において、酸化ジルコニウムとは二酸化ジルコニウム(ZrO)を意味する。
上記酸化ジルコニウム粒子は、立方晶でも正方晶であってもよく、また、それらの混合物であってもよい。
高屈折率層に含まれる酸化ジルコニウム粒子の大きさは、特に制限されるものではないが、体積平均粒径または一次平均粒径により求めることができる。高屈折率層で用いられる酸化ジルコニウム粒子の体積平均粒径は、100nm以下であると好ましく、1〜100nmであるとより好ましく、2〜50nmであるとさらに好ましい。また、高屈折率層で用いられる酸化ジルコニウム粒子の一次平均粒径は、100nm以下であることが好ましく、1〜100nmであることがより好ましく、2〜50nmであることがさらに好ましい。体積平均粒径または一次平均粒径が1nm以上100nm以下であれば、ヘイズが少なく可視光透過性に優れる観点で好ましい。
なお、本明細書でいう体積平均粒径とは、粒子そのものをレーザー回折散乱法、動的光散乱法、あるいは電子顕微鏡を用いて観察する方法や、屈折率層の断面や表面に現れた粒子像を電子顕微鏡で観察する方法により、1,000個の任意の粒子の粒径を測定し、それぞれd1、d2・・・di・・・dkの粒径を持つ粒子がそれぞれn1、n2・・・ni・・・nk個存在する粒子の集団において、粒子1個当りの体積をviとした場合に、体積平均粒径mv={Σ(vi・di)}/{Σ(vi)}で表される体積で重み付けされた平均粒径を算出する。
また、本明細書において一次平均粒径は、透過型電子顕微鏡(TEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。
透過型電子顕微鏡から求める場合、粒子の一次平均粒径は、粒子そのものあるいは屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。
また、酸化ジルコニウム粒子としては、水系の酸化ジルコニウムゾルの表面を変性して有機溶剤等に分散可能な状態にしたものを用いてもよい。
酸化ジルコニウム粒子またはその分散液の調製方法としては、従来公知のいずれの方法も用いることができる。例えば、特開2014−80361号公報に記載されるように、ジルコニウム塩を水中にてアルカリと反応させて、酸化ジルコニウム粒子のスラリーを調製し、有機酸を加えて水熱処理する方法が用いられうる。
酸化ジルコニウム粒子は、市販のものを使用してもよく、例えば、SZR−W、SZR−CW、SZR−M、およびSZR−K等(以上、堺化学工業株式会社製)を好適に使用することができる。
さらに、本発明で用いられる酸化ジルコニウム粒子は、単分散であることが好ましい。ここでいう単分散とは、下記式で求められる単分散度が40%以下であることをいう。この単分散度は、さらに好ましくは30%以下であり、特に好ましくは0.1〜20%である。
高屈折率層における酸化ジルコニウム粒子の含有量としては、特に制限されないが、高屈折率層の全固形分に対して、15〜95質量%であると好ましく、20〜90質量%であるとより好ましく、30〜90質量%であるとさらにより好ましい。上記範囲とすることで、光学反射特性の良好なものとできる。
(高屈折率層に使用される金属酸化物粒子)
本発明に係る光学反射フィルムにおいて、さらに、屈折率の高い高屈折率層を形成するために、高屈折率層には、酸化ジルコニウム粒子以外にも、酸化チタン、酸化スズ、酸化亜鉛、アルミナ、コロイダルアルミナ、酸化ニオブ、酸化ユーロピウム等の金属酸化物粒子(高屈折率金属酸化物微粒子)を含有していてもよい。なお、上記酸化ジルコニウム以外の高屈折率金属酸化物微粒子は、屈折率を調整するために、1種であっても2種以上を併用してもよい。なお、上記酸化ジルコニウム以外の高屈折率金属酸化物微粒子の大きさは、特に制限されないが、体積平均粒径が1〜100nm以下であると好ましく、3〜50nmであるとより好ましい。一次平均粒径が1〜100nm以下であると好ましく、3〜50nmであるとより好ましい。また、高屈折率層における上記高屈折率金属酸化物微粒子の含有量としては、特に制限されないが、酸化ジルコニウム粒子の含有量と高屈折率金属酸化物微粒子の含有量との和が、高屈折率層の全固形分に対して、15〜95質量%となるように調整されると好ましく、20〜80質量%であるとより好ましく、30〜80質量%であるとさらにより好ましい。
なお、高屈折率層に用いられる金属酸化物粒子の総量(酸化ジルコニウム粒子と上記酸化ジルコニウム以外の高屈折率金属酸化物微粒子との合計量)に対して、酸化ジルコニウム粒子の含有量は80〜100質量%であることが好ましく、90〜100質量%であることが好ましく、100質量%であることがさらに好ましい。
上記高屈折率層の酸化ジルコニウム粒子は、複数存在する高屈折率層の少なくとも1層に含まれていればよい。
(低屈折率層中の金属酸化物粒子)
本発明の光学反射フィルムにおいて、低屈折率層には、金属酸化物粒子として酸化ケイ素(二酸化ケイ素)を用いる。具体的な例としては、合成非晶質シリカ、コロイダルシリカ、酸化亜鉛、アルミナ、コロイダルアルミナ等が挙げられる。これらのうち、コロイダルシリカゾル、特に酸性のコロイダルシリカゾルを用いることがより好ましく、有機溶媒に分散させたコロイダルシリカを用いることが特に好ましい。また、屈折率をより低減させるために、低屈折率層の金属酸化物粒子として、粒子の内部に空孔を有する中空微粒子を用いてもよく、特に酸化ケイ素(二酸化ケイ素)の中空微粒子が好ましい。また、酸化ケイ素以外の公知の金属酸化物粒子(無機酸化物粒子)も使用することができる。屈折率を調整するために、低屈折率層に含まれる金属酸化物粒子としては、1種単独で用いてもよいし、2種以上を併用してもよい。
低屈折率層に含まれる酸化ケイ素粒子は、その平均粒径(個数平均;直径)が3〜100nmであることが好ましい。一次粒子の状態で分散された二酸化ケイ素の一次粒子の平均粒径(塗布前の分散液状態での粒径)は、3〜50nmであることがより好ましく、1〜40nmであることがさらに好ましく、3〜20nmであることが特に好ましく、4〜10nmであることが最も好ましい。また、二次粒子の平均粒径としては、30nm以下であることが、ヘイズが少なく可視光透過性に優れる観点で好ましい。
また、低屈折率層に含まれる酸化ケイ素粒子の粒径は、一次平均粒径の他に、体積平均粒径により求めることもできる。
本発明で用いられるコロイダルシリカは、珪酸ナトリウムの酸等による複分解やイオン交換樹脂層を通過させて得られるシリカゾルを加熱熟成して得られるものであり、例えば、特開昭57−14091号公報、特開昭60−219083号公報、特開昭60−219084号公報、特開昭61−20792号公報、特開昭61−188183号公報、特開昭63−17807号公報、特開平4−93284号公報、特開平5−278324号公報、特開平6−92011号公報、特開平6−183134号公報、特開平6−297830号公報、特開平7−81214号公報、特開平7−101142号公報、特開平7−179029号公報、特開平7−137431号公報、および国際公開第94/26530号などに記載されているものである。
このようなコロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。市販品としては、日産化学工業株式会社から販売されているスノーテックスシリーズ(スノーテックスOS、OXS、S、OS、20、30、40、O、N、C等)が挙げられる。
コロイダルシリカは、その表面をカチオン変性されたものであってもよく、また、Al、Ca、MgまたはBa等で処理されたものであってもよい。
また、低屈折率層の酸化ケイ素粒子としては、上述のように、中空粒子を用いることもできる。中空微粒子を用いる場合には、平均粒子空孔径が、3〜70nmであると好ましく、5〜50nmであるとより好ましく、5〜45nmであるとさらに好ましい。なお、中空微粒子の平均粒子空孔径とは、中空微粒子の内径の平均値である。中空微粒子の平均粒子空孔径は、上記範囲であれば、十分に低屈折率層の屈折率が低屈折率化される。平均粒子空孔径は、電子顕微鏡観察で、円形、楕円形または実質的に円形は楕円形として観察できる空孔径を、ランダムに50個以上観察し、各粒子の空孔径を求め、その数平均値を求めることにより得られる。なお、平均粒子空孔径は、円形、楕円形または実質的に円形もしくは楕円形として観察できる空孔径の外縁を、2本の平行線で挟んだ距離のうち、最小の距離を意味する。
低屈折率層における酸化ケイ素粒子の含有量は、低屈折率層の全固形分に対して、20〜90質量%であることが好ましく、30〜85質量%であることがより好ましく、40〜80質量%であることがさらに好ましい。20質量%以上であると、所望の屈折率が得られ90質量%以下であると塗布性が良好となり好ましい。
上記低屈折率層の酸化ケイ素粒子および2種以上のカチオンポリマーは、複数存在する低屈折率層の少なくとも1層に含まれていればよい。
(基材)
本発明に係る光学反射フィルムは、上記高屈折率層および低屈折率層を支持するための基材を含む。光学反射フィルムの基材としては、種々の樹脂フィルムを用いることができ、ポリオレフィンフィルム(ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等)、ポリ塩化ビニル、3酢酸セルロース等を用いることができ、好ましくはポリエステルフィルムである。ポリエステルフィルム(以降ポリエステルと称す)としては、特に限定されるものではないが、ジカルボン酸成分とジオール成分を主要な構成成分とするフィルム形成性を有するポリエステルであることが好ましい。
主要な構成成分のジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルエタンジカルボン酸、シクロヘキサンジカルボン酸、ジフェニルジカルボン酸、ジフェニルチオエーテルジカルボン酸、ジフェニルケトンジカルボン酸、フェニルインダンジカルボン酸などを挙げることができる。また、ジオール成分としては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、シクロヘキサンジメタノール、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシエトキシフェニル)プロパン、ビス(4−ヒドロキシフェニル)スルホン、ビスフェノールフルオレンジヒドロキシエチルエーテル、ジエチレングリコール、ネオペンチルグリコール、ハイドロキノン、シクロヘキサンジオールなどを挙げることができる。これらを主要な構成成分とするポリエステルの中でも透明性、機械的強度、寸法安定性などの点から、ジカルボン酸成分として、テレフタル酸や2,6−ナフタレンジカルボン酸、ジオール成分として、エチレングリコールや1,4−シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。中でも、ポリエチレンテレフタレートやポリエチレンナフタレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6−ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、およびこれらのポリエステルの2種以上の混合物を主要な構成成分とするポリエステルが好ましい。
本発明に用いられる基材の厚みは、10〜300μm、特に20〜150μmであることが好ましい。また、基材は、2枚重ねたものであっても良く、この場合、その種類が同じでも異なってもよい。
基材は、JIS R3106(1998)で示される可視光領域の透過率が85%以上であることが好ましく、特に90%以上であることが好ましい。基材が上記透過率以上であることにより、赤外遮蔽フィルムとしたときのJIS R3106(1998)で示される可視光領域の透過率を50%以上(上限:100%)にするという点で有利であり、好ましい。
また、上記樹脂等を用いた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。
基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2〜10倍が好ましい。
また、基材は、寸法安定性の点で弛緩処理、オフライン熱処理を行ってもよい。弛緩処理は前記ポリエステルフィルムの延伸製膜工程中の熱固定した後、横延伸のテンター内、またはテンターを出た後の巻き取りまでの工程で行われるのが好ましい。弛緩処理は処理温度が80〜200℃で行われることが好ましく、より好ましくは処理温度が100〜180℃である。また長手方向、幅手方向ともに、弛緩率が0.1〜10%の範囲で行われることが好ましく、より好ましくは弛緩率が2〜6%で処理されることである。弛緩処理された基材は、下記のオフライン熱処理を施すことにより耐熱性が向上し、さらに、寸法安定性が良好になる。
基材は、製膜過程で片面または両面にインラインで下引層塗布液を塗布することが好ましい。なお、製膜工程中での下引塗布をインライン下引という。下引層塗布液に使用する樹脂としては、ポリエステル樹脂、アクリル変性ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ビニル樹脂、塩化ビニリデン樹脂、ポリエチレンイミンビニリデン樹脂、ポリエチレンイミン樹脂、ポリビニルアルコール樹脂(ポリビニルアルコール)、変性ポリビニルアルコール樹脂(変性ポリビニルアルコール)およびゼラチン等が挙げられ、いずれも好ましく用いることができる。これらの下引層には、従来公知の添加剤を加えることもできる。そして、上記の下引層は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法によりコーティングすることができる。上記の下引層の塗布量としては、0.01〜2g/m(乾燥状態)程度が好ましい。
なお、上記の基材には、添加剤として、例えば安定剤、界面活性剤、赤外線吸収剤、紫外線吸収剤、難燃剤、帯電防止剤、抗酸化剤、熱安定剤、滑剤、充填剤、着色剤、色素、接着調整剤等を含有させることもできる。
〔光学反射フィルムの製造方法〕
本発明の光学反射フィルムの製造方法は、基材上に、上記高屈折率層と低屈折率層とから構成されるユニットを少なくとも1つ形成することができるものであれば、いかなる方法でも用いられうる。
本発明の光学反射フィルムの製造方法では、基材上に高屈折率層と低屈折率層とから構成されるユニットを積層して形成される。
具体的には高屈折率層と低屈折率層とを交互に塗布、乾燥して積層体を形成することが好ましい。具体的には以下の形態が挙げられる;(1)基材上に、高屈折率層塗布液を塗布し乾燥して高屈折率層を形成した後、低屈折率層塗布液を塗布し乾燥して低屈折率層を形成し、光学反射フィルムを形成する方法;(2)基材上に、低屈折率層塗布液を塗布し乾燥して低屈折率層を形成した後、高屈折率層塗布液を塗布し乾燥して高屈折率層を形成し、光学反射フィルムを形成する方法;(3)基材上に、高屈折率層塗布液と、低屈折率層塗布液とを交互に逐次重層塗布した後乾燥して、高屈折率層、および低屈折率層を含む光学反射フィルムを形成する方法;(4)基材上に、高屈折率層塗布液と、低屈折率層塗布液とを同時重層塗布し、乾燥して、高屈折率層、および低屈折率層を含む光学反射フィルムを形成する方法;などが挙げられる。なかでも、より簡便な製造プロセスとなる上記(4)の方法が好ましい。すなわち、本発明の光学反射フィルムの製造方法は、水系同時重層塗布法により前記高屈折率層と前記低屈折率層とを積層することを含むことが好ましい。
塗布方式としては、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、カーテン塗布方法、あるいは米国特許第2,761,419号、同第2,761,791号公報に記載のホッパーを使用するスライドビード塗布方法、エクストルージョンコート法等が好ましく用いられる。
高屈折率層塗布液および低屈折率層塗布液を調製するための溶媒は、特に制限されないが、水、有機溶媒、またはその混合溶媒が好ましい。本発明においては、樹脂としてポリビニルアルコールを主として用いることが好ましいが、このように、ポリビニルアルコールを用いることにより、水系溶媒による塗布が可能となる。さらに、本発明では、ヘイズの低減やクラックの抑制のため、2種以上のカチオンポリマーを低屈折率層塗布液に添加するが、これらのカチオンポリマーもまた、水溶性の高いものを用いると好ましい。水系溶媒は、有機溶媒を用いる場合と比較して、大規模な生産設備を必要とすることがないため、生産性の点で好ましく、また環境保全の点でも好ましい。
前記有機溶媒としては、例えば、メタノール、エタノールなどのアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテルなどのエーテル類、ジメチルホルムアミドなどのアミド類、アセトン、メチルエチルケトンなどのケトン類などが挙げられる。これら有機溶媒は、単独でもまたは2種以上混合して用いてもよい。環境面、操作の簡便性などから、塗布液の溶媒としては、水系溶媒が好ましく、水、または水とメタノール、エタノール、もしくは酢酸エチルとの混合溶媒がより好ましく、水が特に好ましい。
水と少量の有機溶媒との混合溶媒を用いる際、当該混合溶媒中の水の含有量は、混合溶媒全体を100質量%として、80〜99.9質量%であることが好ましく、85〜99.5質量%であることがより好ましい。ここで、80質量%以上にすることで、溶媒の揮発による体積変動が低減でき、ハンドリングが向上し、また、99.9質量%以下にすることで、液添加時の均質性が増し、安定した液物性を得ることができるからである。
高屈折率層塗布液中の樹脂の濃度(複数種類の樹脂を用いる場合は、その合計濃度)は、0.5〜10質量%であることが好ましい。また、高屈折率層塗布液中の酸化ジルコニウムを含む金属酸化物粒子の合計濃度は、1〜50質量%であることが好ましい。
低屈折率層塗布液中の樹脂の濃度は、0.5〜10質量%であることが好ましい。また、低屈折率層塗布液中の酸化ケイ素粒子を含む金属酸化物粒子の合計濃度は、1〜50質量%であることが好ましい。また、低屈折率層塗布液中の2種以上のカチオンポリマーの含有量は、各カチオンポリマーが、酸化ケイ素粒子を含む金属酸化物粒子の合計質量に対して、例えば0.5〜20質量%であり、2〜20質量%であることが好ましく、3〜10質量%であることがより好ましく、1〜10質量%であることがさらに好ましく、2〜5質量%であることがさらにより好ましい。
高屈折率層塗布液の調製方法は、特に制限されず、例えば、酸化ジルコニウム粒子を含む金属酸化物粒子、ポリビニルアルコール、さらに必要に応じて添加されるその他の添加剤を添加し、攪拌混合する方法が挙げられる。この際、各成分の添加順も特に制限されず、攪拌しながら各成分を順次添加し混合してもよいし、攪拌しながら一度に添加し混合してもよい。
低屈折率層塗布液の調製方法も、特に制限されず、例えば、酸化ケイ素粒子を含む金属酸化物粒子、ポリビニルアルコール、2種以上のカチオンポリマー、さらに必要に応じて添加されるその他の添加剤を添加し、攪拌混合する方法が挙げられる。この際、各成分の添加順も特に制限されず、攪拌しながら各成分を順次添加し混合してもよいし、攪拌しながら一度に添加し混合してもよい。
また、本発明において、同時重層塗布を行う場合は高屈折率層塗布液および低屈折率層塗布液に用いるポリビニルアルコールの鹸化度が異なることが好ましい。鹸化度が異なることによって塗布、乾燥工程の各工程において層の混合を抑制することができる。この仕組みはいまだ明らかではないが、鹸化度差に由来する表面張力差によって混合が抑制されていると考えられる。本発明においては高屈折率層塗布液と低屈折率層塗布液に用いるポリビニルアルコールの鹸化度の差は3モル%以上が好ましく、より好ましくは8モル%以上が好ましい。すなわち、高屈折率層の鹸化度と低屈折率層の鹸化度との差が3モル%以上であることが好ましく、8モル%以上であることがより好ましい。高屈折率層の鹸化度と低屈折率層の鹸化度との差の上限は、高屈折率層と低屈折率層との層間混合の抑制/防止効果を考慮すると、高いほど好ましいため、特に制限されないが、20モル%以下であることが好ましく、15モル%以下であることがより好ましい。
各屈折率層中で鹸化度の相違を比較する際、各屈折率層が(鹸化度および重合度が異なる)複数のポリビニルアルコールを含む場合には、屈折率層中で最も含有量の高いポリビニルアルコールを比較する。ここで、「屈折率層中で最も含有量が高いポリビニルアルコール」という際には、鹸化度の差が3モル%以内のポリビニルアルコールは同一のポリビニルアルコールであるとし、重合度を算出する。具体的には、鹸化度が90モル%、鹸化度が91モル%、鹸化度が93モル%のポリビニルアルコールが同一層内にそれぞれ10質量%、40質量%、50質量%含まれる場合には、これら3つのポリビニルアルコールは同一のポリビニルアルコールとし、これら3つの混合物をポリビニルアルコール(A)または(B)とするが、このポリビニルアルコール(A)/(B)の鹸化度は、(90×0.1+91×0.4+93×0.5)/1=91.9モル%となる。また、上記「鹸化度の差が3モル%以内のポリビニルアルコール」とは、いずれかのポリビニルアルコールに着目した場合に3モル%以内であれば足り、例えば、90、91、92、94モル%のビニルアルコールを含む場合には、91モル%のビニルアルコールに着目した場合にいずれのポリビニルアルコールも3モル%以内なので、同一のポリビニルアルコールとなる。
同一層内に鹸化度が3モル%以上異なるポリビニルアルコールが含まれる場合、異なるポリビニルアルコールの混合物とみなし、それぞれに重合度と鹸化度を算出する。
例えば、PVA203:5質量%、PVA117:25質量%、PVA217:10質量%、PVA220:10質量%、PVA224:10質量%、PVA235:20質量%、PVA245:20質量%が含まれる場合、最も含有量の多いPVAはPVA217〜245の混合物であり(PVA217〜245の鹸化度の差は3モル%以内なので同一のポリビニルアルコールである)、この混合物がポリビニルアルコール(A)または(B)となる。そして、PVA217〜245の混合物(ポリビニルアルコール(A)/(B))においては、重合度は、(1700×0.1+2000×0.1+2400×0.1+3500×0.2+4500×0.2)/0.7=3200であり、鹸化度は、88モル%となる。
同時重層塗布を行う際の高屈折率層塗布液および低屈折率層塗布液の温度は、スライドビード塗布方式を用いる場合は、25〜60℃の温度範囲が好ましく、30〜45℃の温度範囲がより好ましい。また、カーテン塗布方式を用いる場合は、25〜60℃の温度範囲が好ましく、30〜45℃の温度範囲がより好ましい。
同時重層塗布を行う際の高屈折率層塗布液と低屈折率層塗布液の粘度は、特に制限されない。しかしながら、スライドビード塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲において、5〜160mPa・sの範囲が好ましく、さらに好ましくは60〜140mPa・sの範囲である。また、カーテン塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲において、5〜1200mPa・sの範囲が好ましく、さらに好ましくは25〜500mPa・sの範囲である。このような粘度の範囲であれば、効率よく同時重層塗布を行うことができる。
また、塗布液の15℃における粘度としては、100mPa・s以上が好ましく、100〜30,000mPa・sがより好ましく、さらに好ましくは2,500〜30,000mPa・sである。
塗布および乾燥方法の条件は、特に制限されないが、例えば、逐次塗布法の場合は、まず、30〜60℃に加温した高屈折率層塗布液および低屈折率層塗布液のいずれか一方を基材上に塗布、乾燥して層を形成した後、もう一方の塗布液をこの層上に塗布、乾燥して積層膜前駆体(ユニット)を形成する。次に、所望の遮蔽性能を発現するために必要なユニット数を、前記方法にて逐次塗布、乾燥して積層させて積層膜前駆体を得る。乾燥する際は、形成した塗膜を、30℃以上で乾燥することが好ましい。例えば、湿球温度5〜50℃、膜面温度5〜100℃(好ましくは10〜50℃)の範囲で乾燥するのが好ましく、例えば、40〜60℃の温風を1〜5秒吹き付けて乾燥する。乾燥方法としては、温風乾燥、赤外乾燥、マイクロ波乾燥が用いられる。また単一プロセスでの乾燥よりも多段プロセスの乾燥が好ましく、恒率乾燥部の温度<減率乾燥部の温度にするのがより好ましい。この場合の恒率乾燥部の温度範囲は30〜60℃、減率乾燥部の温度範囲は50〜100℃にするのが好ましい。
また、同時重層塗布を行う場合の塗布および乾燥方法の条件は、高屈折率層塗布液および低屈折率層塗布液を30〜60℃に加温して、基材上に高屈折率層塗布液および低屈折率層塗布液の同時重層塗布を行った後、形成した塗膜の温度を好ましくは1〜15℃にいったん冷却し(セット)、その後10℃以上で乾燥することが好ましい。より好ましい乾燥条件は、湿球温度5〜50℃、膜面温度10〜50℃の範囲の条件である。例えば、40〜80℃の温風を1〜5秒吹き付けて乾燥する。また、塗布直後の冷却方式としては、形成された塗膜の均一性向上の観点から、水平セット方式で行うことが好ましい。
ここで、前記セットとは、冷風等を塗膜に当てて温度を下げるなどの手段により、塗膜組成物の粘度を高め、各層間および各層内の物質の流動性を低下させたり、またゲル化する工程のことを意味する。冷風を塗布膜に表面から当てて、塗布膜の表面に指を押し付けたときに指に何もつかなくなった状態を、セット完了の状態と定義する。
塗布した時点から、冷風を当ててセットが完了するまでの時間(セット時間)は、5分以内であることが好ましく、2分以内であることがより好ましい。また、下限の時間は特に制限されないが、45秒以上の時間をとることが好ましい。セット時間が短すぎると、層中の成分の混合が不十分となる虞がある。一方、セット時間が長すぎると、金属酸化物粒子の層間拡散が進み、高屈折率層と低屈折率層との屈折率差が不十分となるおそれがある。
セット時間の調整は、ポリビニルアルコールの濃度、金属酸化物粒子の濃度を調整したり、ゼラチン、ペクチン、寒天、カラギーナン、ゲランガム等の各種公知のゲル化剤など、他の成分を添加することにより調整することができる。
冷風の温度は、0〜25℃であることが好ましく、5〜10℃であることがより好ましい。また、塗膜が冷風に晒される時間は、塗膜の搬送速度にもよるが、好ましくは10〜360秒、より好ましくは10〜300秒、さらに好ましくは10〜120秒である。
高屈折率層塗布液および低屈折率層塗布液の塗布厚は、上記で示したような好ましい乾燥時の厚みとなるように塗布すればよい。
〔膜設計〕
本発明の光学反射フィルムは、高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含む。好適には基材の片面上または両面上に、高屈折率層と低屈折率層が交互に積層して形成された多層の光学干渉膜を有する。生産性の観点から、基材の片面あたりの好ましい高屈折率層および低屈折率層の総層数の範囲は、100層以下、より好ましくは45層以下である。基材の片面あたりの好ましい高屈折率層および低屈折率層の総層数の範囲の下限は特に限定されるものではないが、5層以上であることが好ましい。
なお、前記の好ましい高屈折率層および低屈折率層の総層数の範囲は、基材の片面にのみ積層される場合においても適応可能であり、基材の両面に同時に積層される場合においても適応可能である。基材の両面に積層される場合において、基材一の面と他の面との高屈折率層および低屈折率層の総層数は、同じであってもよく、異なっていてもよい。また、本発明の光学反射フィルムにおいて、最下層(基材と接触する層)および最表層は、高屈折率層および低屈折率層のいずれであってもよい。
一般に、光学反射フィルムにおいては、高屈折率層と低屈折率層との屈折率の差を大きく設計することが、少ない層数で所望の光線に対する反射率を高くすることができるという観点から好ましい。本発明においては、少なくとも隣接した2層(高屈折率層および低屈折率層)の屈折率差が0.15以上であることが好ましく、より好ましくは0.2以上であり、もっとも好ましくは0.21以上である。また、上限には特に制限はないが通常0.5以下である。
この屈折率差と、必要な層数とについては、市販の光学設計ソフトを用いて計算することができる。例えば、近赤外線反射率90%以上を得るためには、屈折率差が0.1より小さいと200層以上の積層が必要になり、生産性が低下するだけでなく、積層界面での散乱が大きくなり、透明性が低下し、故障なく製造することも非常に困難になる場合がある。
光学反射フィルムにおいて高屈折率層および低屈折率層を交互に積層する場合には、高屈折率層と低屈折率層との屈折率差が、上記好適な屈折率差の範囲内にあることが好ましい。ただし、例えば、最表層はフィルムを保護するための層として形成される場合または最下層が基板との接着性改良層として形成される場合などにおいて、最表層や最下層に関しては、上記好適な屈折率差の範囲外の構成であってもよい。
隣接した層界面(高屈折率層と低屈折率層との界面)での反射は、層間の屈折率比に依存するのでこの屈折率比が大きいほど、反射率が高まる。また、単層膜でみたとき層表面における反射光と、層底部における反射光の光路差を、n・d=波長/4、で表される関係にすると位相差により反射光を強めあうよう制御出来、反射率を上げることができる。ここで、nは屈折率、またdは層の物理膜厚、n・dは光学膜厚である。この光路差を利用することで、反射を制御出来る。この関係を利用して、各層の屈折率と膜厚を制御して、可視光や、近赤外光の反射を制御する。即ち、各層の屈折率、各層の膜厚、各層の積層のさせ方で、特定波長領域の反射率をアップさせることができる。
本発明の光学反射フィルムは反射率をアップさせる特定波長領域を変えることにより、可視光反射フィルムや近赤外線反射フィルムとすることができる。即ち、反射率をアップさせる特定波長領域を可視光領域に設定すれば可視光線反射フィルムとなり、近赤外領域に設定すれば近赤外線反射フィルムとなる。また、反射率をアップさせる特定波長領域を紫外光領域に設定すれば、紫外線反射フィルムとなる。本発明の光学反射フィルムを遮熱フィルムに用いる場合は、(近)赤外反射(遮蔽)フィルムとすればよい。赤外反射フィルムの場合、高分子フィルムに互いに屈折率が異なる膜を積層させた多層膜を形成し、JIS R3106(1998)で示される可視光領域の550nmでの透過率が50%以上であることが好ましく、70%以上であることがより好ましく、75%以上であることがさらに好ましい。また、1200nmでの透過率が35%以下であることが好ましく、25%以下であることがより好ましく、20%以下であることがさらに好ましい。かような好適な範囲となるように光学膜厚とユニットを設計することが好ましい。また、波長900nm〜1400nmの領域に反射率50%を超える領域を有することが好ましい。
太陽直達光の入射スペクトルのうち赤外域が室内温度上昇に関係し、これを遮蔽することで室内温度の上昇を抑えることができる。日本工業規格JIS R3106(1998)に記載された重価係数をもとに赤外の最短波長(760nm)から最長波長3200nmまでの累積エネルギー比率をみてみると、波長760nmから最長波長3200nmまでの赤外全域の総エネルギーを100としたときの、760nmから各波長までの累積エネルギーを算出すると、760から1300nmのエネルギー合計が赤外域全体の約75%を占めている。従って、1300nmまでの波長領域を遮蔽することが熱線遮蔽による省エネルギー効果の効率がよい。
この近赤外光域(760〜1300nm)の反射率を最大ピーク値で約80%以上にすると体感温度の低下が官能評価により得られる。たとえば8月の午前中の南東方法を向く窓際での体感温度が近赤外光域の反射率を最大ピーク値で約80%にまで遮蔽したとき明確な差がでた。
このような機能を発現するのに必要となる多層膜構造を光学シミュレーション(FTG Software Associates Film DESIGN Version 2.23.3700)で求めた結果、1.7以上、望ましくは1.73以上の高屈折率層を利用し、22層以上積層した場合に優れた特性が得られることがわかっている。例えば、高屈折率層と低屈折率層(屈折率=1.45)を交互に22層積層したモデルのシミュレーション結果をみると、高屈折率層の屈折率が1.6では反射率が30%にも達しないが、1.7になると約60%の反射率が得られる。
低屈折率層は、屈折率が1.10〜1.60であることが好ましく、より好ましくは1.30〜1.50である。高屈折率層は、屈折率が1.65〜1.8であることが好ましく、より好ましくは1.7〜1.75である。
屈折率層の1層(最下層、最表層を除く)あたりの厚み(乾燥後の厚み)は、20〜1000nmであることが好ましく、50〜500nmであることがより好ましく、50〜350nmであることがより好ましい。
本発明の光学反射フィルムの全体の厚み(基材を含む)は、好ましくは12〜315μm、より好ましくは15〜200μm、さらに好ましくは20〜100μmである。
さらに、光学特性をより良好なものとするために、光学反射フィルムのヘイズは小さい方が好ましく、0〜1.5%であるとより好ましい。また、耐久性の観点から、露光後のクラックが抑制されることが好ましい。なお、ヘイズは、実施例の方法により測定された値を指すものとする。
〔光学反射フィルムの層構成〕
光学反射フィルムは、基材上に高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含む。該ユニットは、基材の片面にのみ形成されていてもよいし、両面に形成されていてもよい。特定波長の反射率が向上することから、該ユニットが基材の両面に形成されてなることが好ましい。
光学反射フィルムは、基材の下または基材と反対側の最表面層の上に、さらなる機能の付加を目的として、導電性層、帯電防止層、ガスバリア層、易接着層(接着層)、防汚層、消臭層、流滴層、易滑層、ハードコート層、耐摩耗性層、反射防止層、電磁波シールド層、紫外線吸収層、赤外線吸収層、印刷層、蛍光発光層、ホログラム層、剥離層、粘着層、接着層、上記高屈折率層および低屈折率層以外の赤外線カット層(金属層、液晶層)、着色層(可視光線吸収層)、合わせガラスに利用される中間膜などの機能層の1つ以上を有していてもよい。
反射フィルムにおける上述の各種の機能層の積層順は、特に制限されない。
例えば、窓ガラスの室内側に光学反射フィルムを貼る(内貼り)仕様では、基材表面に、上記高屈折率層および低屈折率層を積層したユニットを少なくとも1つ含む光学反射層、粘着層の順に積層し、さらにこれらの層が積層されている側とは逆の側の基材表面にハードコート層を塗設する形態が好ましい一例として挙げられる。また、粘着層、基材、光学反射層、ハードコート層の順であってもよく、さらに他の機能層、基材、または赤外線吸収剤などを有していてもよい。また、窓ガラスの室外側に本発明の光学反射フィルムを貼る(外貼り)仕様でも好ましい一例を挙げると、基材表面に光学反射層、粘着層の順に積層し、さらにこれらの層が積層されている側とは逆の側の基材表面にハードコート層を塗設する構成である。内貼りの場合と同様に、粘着層、基材、光学反射層、ハードコート層の順であってもよく、さらに他の機能層、基材、または赤外線吸収剤などを有していてもよい。
[粘着層]
本発明に係る光学反射フィルムは、粘着層を有していてもよい。この粘着層は通常、光学反射層の基材とは反対側の面に設けられ、さらに公知の剥離紙またはセパレータがさらに設けられていてもよい。粘着層の構成としては、特に制限されず、例えば、ドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤等のいずれもが用いられる。
粘着剤としては、例えば、ポリエステル系粘着剤、ウレタン系粘着剤、ポリ酢酸ビニル系粘着剤、アクリル系粘着剤、ニトリルゴム等が用いられる。
本発明の光学反射フィルムは、窓ガラスに貼り合わせる場合、窓に水を吹き付け、濡れた状態のガラス面に光学反射フィルムの粘着層を合わせる貼り方、いわゆる水貼り法が張り直し、位置直し等の観点で好適に用いられる。そのため、水が存在する湿潤下では粘着力が弱い、アクリル系粘着剤が好ましく用いられる。
使用されるアクリル系粘着剤は、溶剤系およびエマルジョン系どちらでもよいが、粘着力等を高め易いことから、溶剤系粘着剤が好ましく、その中でも溶液重合で得られたものが好ましい。このような溶剤系アクリル系粘着剤を溶液重合で製造する場合の原料としては、例えば、骨格となる主モノマーとして、エチルアクリレート、ブチルアクリレート、2−エチルヘキシルアクリレート、オクリルアクリレート等のアクリル酸エステル、凝集力を向上させるためのコモノマーとして、酢酸ビニル、アクリルニトリル、スチレン、メチルメタクリレート等、さらに架橋を促進し、安定した粘着力を付与させ、また水の存在下でもある程度の粘着力を保持するために官能基含有モノマーとして、メタクリル酸、アクリル酸、イタコン酸、ヒドロキシエチルメタクリレート、グリシジルメタクリレート等が挙げられる。粘着層には、主ポリマーとして、特に高タック性を要するため、ブチルアクリレート等のような低いガラス転移温度(Tg)を有するものが特に有用である。
上記アクリル系粘着剤の市販品としては、たとえば、コーポニール(登録商標)シリーズ(日本合成化学工業株式会社製)等が挙げられる。
この粘着層には、添加剤として、例えば安定剤、界面活性剤、赤外線吸収材、紫外線吸収剤、難燃剤、帯電防止剤、抗酸化剤、熱安定剤、滑剤、充填剤、着色剤、色素、接着調整剤等を含有させることもできる。特に、窓貼用として使用する場合は、紫外線による光学反射フィルムの劣化を抑制するためにも、紫外線吸収剤の添加は有効である。
粘着剤の塗工方法としては、特に制限されず、任意の公知の方法が使用でき、例えば、バーコート法、ダイコーター法、コンマコーティング法、グラビアロールコーター法、ブレードコーター法、スプレーコーター法、エアーナイフコート法、ディップコート法、転写法等が好ましく挙げられ、単独または組合せて用いることができるが、ロール式で連続的に行うのが経済性及び生産性の点から好ましい。これらは適宜、粘着剤を溶解できる溶媒にて溶液にする、または分散させた塗布液を用いて塗工することができ、溶媒としては公知の物を使用することができる。
また、粘着層の厚さは、粘着効果、乾燥速度等の観点から、通常1〜100μm程度の範囲であることが好ましい。
粘着力は、JIS K6854記載の180°剥離試験にて測定した剥離強度が2〜30N/25mmであることが好ましく、4〜20N/25mmであることがより好ましい。
粘着層の形成は、先の塗工方式にて、直接光学反射層に塗工してもよく、また、一度剥離フィルムに塗工して乾燥させた後、光学反射層を貼り合せて粘着剤を転写させてもよい。この時の乾燥条件は、残留溶剤ができるだけ少なくなることが好ましく、そのためには乾燥温度や時間は特定されないが、好ましくは50〜150℃の温度で、10秒〜5分の乾燥時間を設けることがよい。
[ハードコート層]
本発明の光学反射フィルムは、耐擦過性を高めるための表面保護層として、熱や紫外線などで硬化する樹脂を含むハードコート層を積層してもよい。例えば、基材表面に光学反射層、粘着層の順に積層し、さらにこれらの層が積層されている側とは逆の側の基材表面にハードコート層を塗設する形態が好ましい一例として挙げられる。
ハードコート層で使用される硬化樹脂としては、熱硬化型樹脂や紫外線硬化型樹脂が挙げられるが、成形が容易なことから、紫外線硬化型樹脂が好ましく、その中でも鉛筆硬度が少なくとも2Hのものがより好ましい。かような硬化型樹脂は、単独でもまたは2種以上組み合わせても用いることができる。
紫外線硬化型樹脂としては(メタ)アクリレート、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、エポキシ樹脂、オキセタン樹脂が挙げられ、これらは無溶剤型の樹脂組成物としても使用できる。
上記紫外線硬化型樹脂を用いる場合、硬化促進のために、光重合開始剤を添加することが好ましい。
光重合開始剤としては、アセトフェノン類、ベンゾフェノン類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、チウラム化合物類、フルオロアミン化合物などが用いられる。光重合開始剤の具体例としては、2,2’−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、1−ヒドロキシジメチルフェニルケトン、2−メチル−4’−メチルチオ−2−モリホリノプロピオフェノン、2−ベンジル−2−ジメチルアミノ−1−(4−モリホリノフェニル)−ブタノン1などのアセトフェノン類、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルレタールなどのベンゾイン類、ベンゾフェノン、2,4’−ジクロロベンゾフェノン、4,4’−ジクロロベンゾフェノン、p−クロロベンゾフェノンなどのベンゾフェノン類、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、アントラキノン類、チオキサントン類などがある。これらの光重合開始剤は単独で用いてもよいし、2種以上の組合せや、共融混合物であってもよい。特に、硬化性組成物の安定性や重合反応性等からアセトフェノン類を用いることが好ましい。
このような光重合開始剤は市販品を用いてもよく、例えば、例えば、BASFジャパン株式会社製のイルガキュア(登録商標)819、184、907、651などが好ましい例示として挙げられる。
このハードコート層には、添加剤として、例えば安定剤、界面活性剤、赤外線吸収剤、紫外線吸収剤、難燃剤、帯電防止剤、抗酸化剤、熱安定剤、滑剤、充填剤、着色剤、色素、接着調整剤等を含有させることもできる。
ハードコート層の厚みは、ハードコート性の向上と、光学反射フィルムの透明性の向上という観点から、0.1〜50μmが好ましく、1〜20μmがより好ましい。
ハードコート層の形成方法は特に制限されず、例えば、上記各成分を含むハードコート層塗布液を調製した後、塗布液をワイヤーバー等により塗布し、熱および/またはUVで塗布液を硬化させ、ハードコート層を形成する方法などが挙げられる。
[その他の層]
本発明に係る光学反射フィルムは、上述した層以外の層(その他の層)を有していてもよい。例えば、その他の層として、中間層を設けることができる。ここで「中間層」とは、基材と光学反射層との間の層や、基材とハードコート層との間の層を意味する。中間層の構成材料としては、ポリエステル樹脂、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、ポリビニルアセタール樹脂、アクリル樹脂、ウレタン樹脂などが挙げられ、添加剤の相溶性、Tgが低い物質が好ましいが、それを満たしていればいずれを用いてもよい。中間層のガラス転移温度(Tg)は、30〜120℃であれば、十分な耐候性が得られるため好ましく、より好ましくは、30〜90℃の範囲である。
中間層には、添加剤として、例えば安定剤、界面活性剤、赤外線吸収剤、紫外線吸収剤、難燃剤、帯電防止剤、抗酸化剤、熱安定剤、滑剤、充填剤、着色剤、色素、接着調整剤等を含有させることもできる。
〔光学反射フィルムの応用:光学反射体〕
本発明の光学反射フィルムは、幅広い分野に応用することができる。例えば、上記光学反射フィルムが基体の少なくとも一方の面に設けられた、光学反射体が提供される。例えば、建物の屋外の窓や自動車窓等長期間太陽光に晒らされる設備(基体)に貼り合せ、熱線反射効果を付与する熱線反射フィルム等の窓貼用フィルム、農業用ビニールハウス用フィルム等として、主として耐候性を高める目的で用いられる。特に、本発明に係る光学反射フィルムが直接もしくは接着剤を介してガラスもしくはガラス代替樹脂等の基体に貼合されている部材には好適である。
基体の具体的な例としては、例えば、ガラス、ポリカーボネート樹脂、ポリスルホン樹脂、アクリル樹脂、ポリオレフィン樹脂、ポリエーテル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリスルフィド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、メラミン樹脂、フェノール樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ウレタン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、スチレン樹脂、塩化ビニル樹脂、金属板、セラミック等が挙げられる。樹脂の種類は、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂のいずれでもよく、これらを2種以上組み合わせて用いてもよい。基体は、押出成形、カレンダー成形、射出成形、中空成形、圧縮成形等、公知の方法で製造することができる。基体の厚みは特に制限されないが、通常0.1mm〜5cmである。
光学反射フィルムと基体とを貼り合わせる接着層または粘着層は、窓ガラスなどに貼り合わせたとき、光学反射フィルムが日光(熱線)入射面側にあるように設置することが好ましい。また光学反射フィルムを窓ガラスと基材との間に挟持すると、水分等周囲ガスから封止でき耐久性に好ましい。本発明の光学反射フィルムを屋外や車の外側(外貼り用)に設置しても環境耐久性があって好ましい。
本発明に適用可能な接着剤としては、光硬化性もしくは熱硬化性の樹脂を主成分とする接着剤を用いることができる。
接着剤は紫外線に対して耐久性を有するものが好ましく、アクリル系粘着剤またはシリコーン系粘着剤が好ましい。更に粘着特性やコストの観点から、アクリル系粘着剤が好ましい。特に剥離強さの制御が容易なことから、アクリル系粘着剤において、溶剤系およびエマルジョン系の中で溶剤系が好ましい。アクリル溶剤系粘着剤として溶液重合ポリマーを使用する場合、そのモノマーとしては公知のものを使用できる。
〔合わせガラス〕
合わせガラスは、本発明に係る光学反射フィルムが中間膜を介してガラスの基体に貼合されている部材である。合わせガラスは、建築用途、住居用途、自動車用途などに用いることができる。
合わせガラスの一実施形態は、2枚の板ガラスの間に、2枚の中間膜を用いて光学反射フィルムが挟持されてなる構造をとる。光学反射フィルムは、上記で説明した本発明の光学反射フィルムである。光学反射フィルムは、基材の一方の表面に反射層が積層され、他方の表面にハードコート層を塗設する構成であってもよい。また、光学反射フィルムは、一方の表面に反射層が積層された基材の他方の面と、一方の表面にハードコート層が積層された基材の他方の面とを、粘着層で貼り合わせた構成であってもよい。
その他の合わせガラスの構成部材について以下説明する。
中間膜
光学反射フィルムを挟持する一対の中間膜は、光学反射フィルムとガラス板とを張り合わせる接着性能を有する膜であればいずれの膜も用いることができるが、熱可塑性樹脂を含有することが好ましい。一対の中間膜は、同じ種類であっても異なる種類であってもよい。熱可塑性樹脂の例としては、エチレン−ビニルアセテート共重合体(EVA)やポリビニルブチラール(PVB)が挙げられ、中でもPVBが好ましい。また、各中間膜において、赤外線吸収剤(例えば、赤外線を吸収する微粒子など)、紫外線吸収剤、抗酸化剤、帯電防止剤、熱安定剤、滑剤、充填剤、着色剤、色素、接着調整剤等を適宜添加配合してもよい。可視光透過率を阻害しない範囲で、各種の赤外線を吸収する微粒子または紫外線吸収剤などを含ませたり、色素を混入して着色したりして、日射透過率を75%以上とすることがより好ましい。
赤外線を吸収する微粒子としては、例えば、Ag、Al、Tiなどの金属微粒子、金属窒化物、金属酸化物の微粒子、セシウムドープ酸化タングステン(CWO)、また、ITO、ATO、アルミニウム亜鉛複合酸化物(AZO)、ガリウムドープ酸化亜鉛(GZO)、インジウム亜鉛複合酸化物(IZO)などの導電性透明金属酸化物微粒子があり、これらの中から1種以上を選択して、中間膜に含有させ、断熱性能を向上させることができる。特に、ITO、ATO、AZO、GZO、IZOなどの導電性透明金属酸化物微粒子が好ましい。
ガラス板
光学反射フィルムおよび一対の中間膜を挟持する一対のガラス板の種類は特に限定されるものではなく、用途に要求される光透過性能や断熱性能によって選択すればよく、無機ガラス板、有機ガラス板、有機無機ハイブリッドガラス板のいずれであってもよい。無機ガラス板としては特に限定されるものではなく、フロートガラス板、磨きガラス板、型ガラス板、網入りガラス板、線入りガラス板、熱線吸収ガラス板、着色ガラス板などの各種無機ガラス板などが挙げられる。有機ガラス板としては、ポリカーボネート樹脂、ポリスチレン樹脂、ポリメチルメタクリレート樹脂、などからなるガラス板などが挙げられる。これらの有機ガラス板は、上記樹脂からなるシート形状のものを複数積層してなる積層体であってもよい。有機無機ハイブリッドガラス板としては、エポキシ樹脂などの樹脂中にシリカを分散させたハイブリッドガラス板などが挙げられる。ガラス板の色についても、透明ガラス板に限らず車両等に用いられる汎用の緑色、茶色、青色等の様々な色のガラス板を用いることができる。ガラス板は同一の種類であってもよく、2種以上併用してもよい。
ガラス板の厚さは、強度および可視光域の赤外光の透過性を考慮して、1〜10mm程度であることが好ましい。曲面形状のガラス板は、ガラス板の曲率半径が0.5〜2.0mであることが好ましい。ガラス板の曲率半径がこの範囲であれば、光学反射フィルムがガラスの曲面形状に沿うことができる。
光学反射フィルムまたは赤外遮蔽体の断熱性能、日射熱遮へい性能は、一般的にJIS R 3209(1998)(複層ガラス)、JIS R 3106(1998)(板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法)、JIS R 3107(1998)(板ガラス類の熱抵抗および建築における熱貫流率の算定方法)に準拠した方法により求めることができる。
日射透過率、日射反射率、放射率、可視光透過率の測定は、(1)波長(300〜2500nm)の分光測光器を用い、各種単板ガラスの分光透過率、分光反射率を測定する。また、波長5.5〜50μmの分光測定器を用いて放射率を測定する。なお、フロート板ガラス、磨き板ガラス、型板ガラス、熱線吸収板ガラスの放射率は既定値を用いる。(2)日射透過率、日射反射率、日射吸収率、修正放射率の算出は、JIS R 3106(1998)に従い、日射透過率、日射反射率、日射吸収率、垂直放射率を算出する。修正放射率に関しては、JIS R 3107(1998)に示されている係数を、垂直放射率に乗ずることにより求める。断熱性、日射熱遮へい性の算出は、(1)厚さの測定値、修正放射率を用いJIS R 3209(1998)に従って複層ガラスの熱抵抗を算出する。ただし中空層が2mmを超える場合はJIS R 3107(1998)に従って中空層の気体熱コンダクタンスを求める。(2)断熱性は、複層ガラスの熱抵抗に熱伝達抵抗を加えて熱貫流抵抗で求める。(3)日射熱遮蔽性はJIS R 3106(1998)により日射熱取得率を求め、1から差し引いて算出する。
以下、実施例により本発明を具体的に説明するが、本発明はこれにより限定されるものではない。なお、実施例において「部」または「%」の表示を用いるが、特に断りがない限り「質量部」または「質量%」を表す。また、特記しない限り、各操作は、室温(25℃)で行った。
(高屈折率層塗布液1の作製)
30質量%の酸化ジルコニウム粒子の分散液(SZR−W、ジルコニアゾル、粒度分布:D50 3nm〜5nm、堺化学工業株式会社製)384.8gに対してクエン酸水溶液(1.9質量%)を175.4g加えた。これに界面活性剤(ソフタゾリンLMEB−R、川研ファインケミカル株式会社製)の5質量%水溶液を1.94g添加し、これを40℃まで加温した。次いで、さらにエチレン変性ポリビニルアルコールの8質量%水溶液(株式会社クラレ製、エクセバールRS2117、鹸化度:97.5〜99モル%)を120.4g加え、さらに純水9.9gを加えた。これを10分撹拌後、ポリビニルアルコールの6質量%水溶液(JC−40、鹸化度:99モル%〜 日本酢ビ・ポバール株式会社製)240.8gおよび純水66.7gを加えた。この後、40℃で180分間撹拌し、高屈折率層塗布液1を得た。
高屈折率層塗布液1を用いて作製した単層の屈折率は1.73であった。なお、屈折率の測定方法は下記の通りである(以下同様)。
(各層の単膜屈折率の測定)
屈折率を測定するため、基材上に上記高屈折率層塗布液1を単層で塗布したサンプルを作製し、このサンプルを10cm×10cmに裁断した後、下記の方法に従って屈折率を求めた。株式会社日立製作所製の分光光度計 U−4100(固体試料測定システム)を用いて、各サンプルの測定面とは反対側の面(裏面)を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面での光の反射を防止して、5°正反射の条件にて400nm〜2500nmの反射率の測定を行い、結果より屈折率を求めた。下記の屈折率は屈折率の波長依存性を考え1000nmの屈折率とした。
(低屈折率層塗布液1の作製)
撹拌容器にカチオンポリマーとしてアリルアミン塩酸塩重合体(1級アミン塩)を含む)(PAA−HCL−03、重量平均分子量3000、40質量%水溶液、ニットーボーメディカル株式会社製)4.65gおよびアリルアミン塩酸塩重合体(1級アミン塩を含む)(PAA−HCL−10L、重量平均分子量150000、40質量%水溶液、ニットーボーメディカル株式会社製)3.8gと、ゆすぎ水31gと、ホウ酸(3質量%水溶液)31.9gとを混合した。ここに10質量%の酸性コロイダルシリカの水溶液(ST−OXS、濃度10%、平均一次粒径:4〜6nm、日産化学工業株式会社製)を489.9g加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(JP−45、重合度4500、鹸化度88モル%、日本酢ビポバール株式会社製)386.3g、エマルジョン樹脂(スーパーフレックス(登録商標)650、第一工業製薬株式会社)30.5g、および5質量%の界面活性剤の溶液(ソフタゾリンLMEB−R、川研ファインケミカル株式会社)6.3g、および純水15gの混合液を加え、40℃で撹拌、混合し、低屈折率層塗布液1を得た。低屈折率層塗布液1を用いて作製した単層の屈折率は1.48であった。
(低屈折率層塗布液2の作製)
撹拌容器にカチオンポリマーとしてアリルアミン塩酸塩重合体(1級アミン塩を含む)(PAA−HCL−03、重量平均分子量3000、40質量%水溶液、ニットーボーメディカル株式会社製)4.65gおよびジアリルアミン塩酸塩重合体(2級アミン塩を含む)(PAS21CL、重量平均分子量50000、25質量%水溶液、ニットーボーメディカル株式会社製)6.07gと、ゆすぎ水31gと、ホウ酸(3質量%水溶液)31.9gとを混合した。ここに10質量%の酸性コロイダルシリカの水溶液(ST−OXS、濃度10%、平均一次粒径:4〜6nm、日産化学工業株式会社製)を489.9g加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(JP−45、重合度4500、鹸化度88モル%、日本酢ビポバール株式会社製)386.3g、エマルジョン樹脂(スーパーフレックス(登録商標)650、第一工業製薬株式会社)30.5g、および5質量%の界面活性剤の溶液(ソフタゾリンLMEB−R、川研ファインケミカル株式会社)6.3g、および純水15gの混合液を加え、40℃で撹拌、混合し、低屈折率層塗布液2を得た。低屈折率層塗布液2を用いて作製した単層の屈折率は1.48であった。
(低屈折率層塗布液3の作製)
撹拌容器にカチオンポリマーとしてアリルアミン塩酸塩重合体(1級アミン塩を含む)(PAA−HCL−03、重量平均分子量3000、40質量%水溶液、ニットーボーメディカル株式会社製)4.65gおよびジアリルジメチルアンモニウムクロライド重合体(4級アンモニウム基を含む)(PAS H−5、重量平均分子量30000、28質量%水溶液、ニットーボーメディカル株式会社製)5.4gと、ゆすぎ水31gと、ホウ酸(3質量%水溶液)31.9gとを混合した。ここに10質量%の酸性コロイダルシリカの水溶液(ST−OXS、平均一次粒径:4〜6nm、日産化学工業株式会社製)を489.9g加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(JP−45、重合度4500、鹸化度88モル%、日本酢ビポバール株式会社製)386.3g、エマルジョン樹脂(スーパーフレックス(登録商標)650、第一工業製薬株式会社)30.5g、および5質量%の界面活性剤の溶液(ソフタゾリンLMEB−R、川研ファインケミカル株式会社)6.3g、および純水15gの混合液を加え、40℃で撹拌、混合し、低屈折率層塗布液3を得た。低屈折率層塗布液3を用いて作製した単層の屈折率は1.48であった。
(低屈折率層塗布液4の作製)
低屈折率層塗布液3の作製において、アリルアミン塩酸塩重合体(1級アミン塩を含む)(PAA−HCL−03、重量平均分子量3000、40質量%水溶液、ニットーボーメディカル株式会社製)4.65gを、ジアリルアミン塩酸塩重合体(2級アミン塩を含む)(PAS−21CL、重量平均分子量50000、25質量%水溶液、ニットーボーメディカル株式会社製)7.45gに変更した以外は同様にして、低屈折率層塗布液4を作製した。低屈折率層塗布液4を用いて作製した単層の屈折率は低屈折率層塗布液3の場合と同様であった。
(低屈折率層塗布液5の作製)
低屈折率層塗布液3の作製において、アリルアミン塩酸塩重合体(1級アミン塩を含む)(PAA−HCL−03、重量平均分子量3000、40質量%水溶液、ニットーボーメディカル株式会社製)4.65gを、ジアリルジメチルアンモニウムクロライド重合体(4級アンモニウム基を含む)(PAS−H1、重量平均分子量8500、28質量%水溶液、ニットーボーメディカル株式会社製)6.65gに変更した以外は同様にして、低屈折率層塗布液5を作製した。低屈折率層塗布液5を用いて作製した単層の屈折率は低屈折率層塗布液3の場合と同様であった。
(低屈折率層塗布液6の作製)
低屈折率層塗布液3の作製において、アリルアミン塩酸塩重合体(1級アミン塩を含む)(PAA−HCL−03、重量平均分子量3000、40質量%水溶液、ニットーボーメディカル株式会社製)4.65gを、メチルジアリルアミン塩酸塩重合体(3級アミン塩を含む)(PAS M−1、重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)3.7gに変更した以外は同様にして、低屈折率層塗布液6を作製した。低屈折率層塗布液6を用いて作製した単層の屈折率は低屈折率層塗布液3の場合と同様であった。
(低屈折率層塗布液7の作製)
低屈折率層塗布液6の作製において、ジアリルジメチルアンモニウムクロライド重合体(4級アンモニウム基を含む)(PAS H−5、重量平均分子量30000、28質量%水溶液、ニットーボーメディカル株式会社製)5.4gを、アリルアミン塩酸塩重合体(1級アミン塩を含む)(PAA−HCL−03、重量平均分子量3000、40質量%水溶液、ニットーボーメディカル株式会社製)3.80gに変更した以外は同様にして、低屈折率層塗布液7を作製した。低屈折率層塗布液7を用いて作製した単層の屈折率は低屈折率層塗布液6の場合と同様であった。
(低屈折率層塗布液8の作製)
低屈折率層塗布液6の作製において、ジアリルジメチルアンモニウムクロライド重合体(4級アンモニウム基を含む)(PAS H−5、重量平均分子量30000、28質量%水溶液、ニットーボーメディカル株式会社製)5.4gを、ジアリルアミン塩酸塩重合体(2級アミン塩を含む)(PAS−21CL、重量平均分子量50000、25質量%水溶液、ニットーボーメディカル株式会社製)6.07gに変更した以外は同様にして、低屈折率層塗布液8を作製した。低屈折率層塗布液8を用いて作製した単層の屈折率は低屈折率層塗布液6の場合と同様であった。
(低屈折率層塗布液9の作製)
低屈折率層塗布液6の作製において、ジアリルジメチルアンモニウムクロライド重合体(4級アンモニウム基を含む)(PAS H−5、重量平均分子量30000、28質量%水溶液、ニットーボーメディカル株式会社製)5.4gを、ポリ塩化アルミニウム(タキバイン1500、23質量%水溶液、多木化学株式会社製)6.46gに変更した以外は同様にして、低屈折率層塗布液9を作製した。低屈折率層塗布液9を用いて作製した単層の屈折率は低屈折率層塗布液6の場合と同様であった。
(低屈折率層塗布液10の作製)
低屈折率層塗布液6の作製において、ジアリルジメチルアンモニウムクロライド重合体(4級アンモニウム基を含む)(PAS H−5、重量平均分子量30000、28質量%水溶液、ニットーボーメディカル株式会社製)5.4gを、ジアリルジメチルアンモニウムクロライド重合体(4級アンモニウム基を含む)(PAS H−1、重量平均分子量8500、28質量%水溶液、ニットーボーメディカル株式会社製)5.4gに変更した以外は同様にして、低屈折率層塗布液10を作製した。低屈折率層塗布液10を用いて作製した単層の屈折率は低屈折率層塗布液6の場合と同様であった。
(低屈折率層塗布液11の作製)
低屈折率層塗布液6の作製において、メチルジアリルアミン塩酸塩重合体(3級アミン塩を含む)(PAS M−1、重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)の添加量を、3.7gから4.12gに変更した以外は同様にして、低屈折率層塗布液11を作製した。低屈折率層塗布液11を用いて作製した単層の屈折率は低屈折率層塗布液6の場合と同様であった。
(低屈折率層塗布液12の作製)
低屈折率層塗布液6の作製において、メチルジアリルアミン塩酸塩重合体(3級アミン塩を含む)(PAS M−1、重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)の添加量を、3.7gから3.33gに変更した以外は同様にして、低屈折率層塗布液12を作製した。低屈折率層塗布液12を用いて作製した単層の屈折率は低屈折率層塗布液6の場合と同様であった。
(低屈折率層塗布液13の作製)
低屈折率層塗布液6の作製において、ジアリルジメチルアンモニウムクロライド重合体(4級アンモニウム基を含む)(PAS H−5、重量平均分子量30000、28質量%水溶液、ニットーボーメディカル株式会社製)の添加量を、5.4gから5.95gに変更した以外は同様にして、低屈折率層塗布液13を作製した。低屈折率層塗布液13を用いて作製した単層の屈折率は低屈折率層塗布液6の場合と同様であった。
(低屈折率層塗布液14の作製)
低屈折率層塗布液6の作製において、ジアリルジメチルアンモニウムクロライド重合体(PAS H−5、重量平均分子量30000、28質量%水溶液、ニットーボーメディカル株式会社製)5.4gを、ジアリルジメチルアンモニウムクロライド重合体(4級アンモニウム基を含む)(PAS−H10、重量平均分子量200,000、28質量%水溶液、ニットーボーメディカル株式会社製)5.4gに変更した以外は同様にして、低屈折率層塗布液14を作製した。低屈折率層塗布液14を用いて作製した単層の屈折率は低屈折率層塗布液6の場合と同様であった。
(低屈折率層塗布液15の作製)
低屈折率層塗布液6の作製において、ジアリルジメチルアンモニウムクロライド重合体(4級アンモニウム基を含む)(PAS H−5、重量平均分子量30000、28質量%水溶液、ニットーボーメディカル株式会社製)5.4gを、アリルアミン塩酸塩・ジアリルアミン塩酸塩共重合体(1級アミン塩、2級アミン塩を含む)(PAA−D19−HCl、重量平均分子量40,000、21質量%水溶液、ニットーボーメディカル株式会社製)7.23gに変更した以外は同様にして、低屈折率層塗布液15を作製した。低屈折率層塗布液15を用いて作製した単層の屈折率は低屈折率層塗布液6の場合と同様であった。
(低屈折率層塗布液16の作製)
低屈折率層塗布液15の作製において、メチルジアリルアミン塩酸塩重合体(3級アミン塩を含む)(PAS M−1、重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)3.7gを、ジアリルジメチルアンモニウムクロライド重合体(4級アンモニウム基を含む)(PAS H−5、重量平均分子量30000、28質量%水溶液、ニットーボーメディカル株式会社製)6.65gに変更した以外は同様にして、低屈折率層塗布液16を作製した。低屈折率層塗布液16を用いて作製した単層の屈折率は低屈折率層塗布液15の場合と同様であった。
(低屈折率層塗布液17の作製)
低屈折率層塗布液5の作製において、ジアリルジメチルアンモニウムクロライド重合体(4級アンモニウム基を含む)(PAS H−5、重量平均分子量30000、28質量%水溶液、ニットーボーメディカル株式会社製)を添加せずにPAS H−1の添加量を12.1gに増やした以外は同様にして、低屈折率層塗布液17を作製した。低屈折率層塗布液17を用いて作製した単層の屈折率は低屈折率層塗布液5の場合と同様であった。
(低屈折率層塗布液18の作製)
低屈折率層塗布液16の作製において、アリルアミン塩酸塩・ジアリルアミン塩酸塩共重合体(1級アミン塩、2級アミン塩を含む)(PAA−D19−HCl、重量平均分子量40,000、21質量%水溶液、ニットーボーメディカル株式会社製)を添加せずにPAS H−5の添加量を12.1gに増やした以外は同様にして、低屈折率層塗布液18を作製した。低屈折率層塗布液18を用いて作製した単層の屈折率は低屈折率層塗布液16の場合と同様であった。
(低屈折率層塗布液19の作製)
低屈折率層塗布液6の作製において、ジアリルジメチルアンモニウムクロライド重合体(4級アンモニウム基を含む)(PAS H−5、重量平均分子量30000、28質量%水溶液、ニットーボーメディカル株式会社製)を添加せずにPAS M−1の添加量を6.72gに増やした以外は同様にして、低屈折率層塗布液19を作製した。低屈折率層塗布液19を用いて作製した単層の屈折率は低屈折率層塗布液6の場合と同様であった。
(低屈折率層塗布液20の作製)
低屈折率層塗布液1の作製において、アリルアミン塩酸塩重合体(PAA−HCL−03、1級アミン、重量平均分子量3000、40質量%水溶液、ニットーボーメディカル株式会社製)4.65gおよびジアリルジメチルアンモニウムクロライド重合体(PAS H−5、4級アミン、重量平均分子量30000、28質量%水溶液、ニットーボーメディカル株式会社製)5.4gに代えて、ポリ塩化アルミニウム(タキバイン1500、23質量%水溶液、多木化学株式会社製)14.4gを用いたこと以外は同様にして、低屈折率層塗布液20を作製した。低屈折率層塗布液20を用いて作製した単層の屈折率は低屈折率層塗布液1の場合と同様であった。
実施例1
21層重層塗布可能なスライドビード(スライドホッパー)塗布装置を用いて、上記で作製された高屈折率層塗布液1および低屈折率層塗布液1を、40℃に保温しながら、厚さ50μmのポリエチレンテレフタレートフィルム(東洋紡株式会社製A4300、両面易接着層、長さ200m×幅210mm)上に積層した。このとき、最下層および最上層(最表層)は低屈折率層とし、それ以外は高屈折率層と低屈折率層とがそれぞれ交互になるように、計21層の同時重層塗布を行った。この際、乾燥時の膜厚は、最下層が1510nm、最表層が100nm、最下層および最表層以外の低屈折率層の各層が150nm、および高屈折率層の各層が150nmになるように調整した。
塗布直後、5℃の冷風を吹き付けて増粘させた。増粘後、80℃の温風を吹き付けて乾燥させて、計21層からなる光学反射層を有する光学反射フィルム1を作製した。
実施例2〜16および比較例1〜4
実施例1において、低屈折率層を形成するために用いる塗布液を、それぞれ表1に示される低屈折率層塗布液2〜20に変更した以外は、実施例1と同様にして光学反射フィルム2〜16および比較光学反射フィルム1〜4を、それぞれ作製した。なお、表1中、カチオンポリマーの含有量は、酸化ケイ素の質量に対する質量%の値である。
〔評価〕
(ヘイズの測定)
上記実施例および比較例でそれぞれ得られた光学反射フィルムについて、ヘイズメーター(日本電色工業株式会社製、NDH2000)によりヘイズを測定した。なお、ヘイズメーターの光源は、5V9Wのハロゲン球とし、受光部は、シリコンフォトセル(比視感度フィルター付き)を使用した。また、ヘイズの測定は、23℃で55%RHの条件下にて行った。結果を下記表1に示す。なお、光学反射フィルムのヘイズ値としては、1.5%以下であると好ましい。
(クラック試験)
厚さ3mmの青色ガラスに、上記実施例および比較例で作製した光学反射フィルムのそれぞれを、粘着層を介して貼り付けた。
具体的には、下記粘着層形成塗布液を中本パックス株式会社製セパレータ NS23MAのシリコーン離型面に対して、コンマコーターにて乾燥膜厚が10μmになるように塗工し、90℃、1分間乾燥して粘着層を形成した。この粘着層に、上記にて光学反射層を形成したフィルムを貼りあわせ、光学反射層上に粘着層を形成した。
粘着層形成塗布液の調製
粘着剤であるコーポニール(登録商標)N−6941M(日本合成化学工業株式会社製)に対して、硬化剤であるコロネートL−55E(日本ポリウレタン工業株式会社製)を3質量%添加し、さらに紫外線吸収剤であるチヌビン477(BASFジャパン株式会社製)を5質量%添加し、溶媒としての酢酸エチルで固形分が10質量%になるように希釈して、粘着層形成塗布液を調製した。
この試料を30℃60%RHの条件でキセノンウェザーメーター(スガ試験機株式会社製;太陽光に極めて近似した光を発する)を用いて、160w/mの強度のキセノン光に2000時間曝露した。その後、フィルムに膜割れが発生したかどうかを偏光顕微鏡を用いて、倍率12倍で3視野観察し、以下の評価基準に従って評価した。結果を下記表1に示す。なお、以下の評価基準で、0、1は実用上問題なく使用できる。
0:ひび割れ等なし、
1:3視野でひび割れがトータルで1つ以上見られる、
2:3視野で各視野にひび割れが見られる、
3:視野全体にひび割れが見られる。
(近赤外反射率の測定)
分光光度計としてU−4000型(積分球使用、株式会社日立製作所製)を用いて、各実施例および比較例の光学反射フィルムの800〜1400nmの領域における反射率を測定し、その最大値を求め、これを近赤外反射率とした。各実施例、比較例のいずれの光学反射フィルムにおいても、約70%の良好な近赤外反射率が得られることが確認された。
上記表1から、低屈折率層に2種以上のアミンポリマーを有する実施例1〜16の光学反射フィルムは、比較例1〜4と比較して、ヘイズが大幅に低減され、クラック耐性に優れることが明らかになった。
なかでも、3級アミノ基またはそのカチオン(塩)を含むカチオンポリマーと、4級アンモニウム基を含むカチオンポリマーとを含む実施例6、10〜14の光学反射フィルムはヘイズを低減する効果に優れ、カチオンポリマーの重量平均分子量がいずれも20000〜30000の重量平均分子量を有する実施例6、11〜13の光学反射フィルムは特にヘイズが低下した。
なお、本出願は、2015年12月25日に出願された日本特許出願第2015−255322号に基づいており、その開示内容は、参照により全体として引用されている。

Claims (4)

  1. 基材上に、低屈折率層と高屈折率層とを積層したユニットを少なくとも1つ含む光学反射フィルムであって、
    前記高屈折率層が、酸化ジルコニウム粒子を含み、
    前記低屈折率層が、酸化ケイ素粒子と、2種以上のカチオンポリマーとを含有することを特徴とする、光学反射フィルム。
  2. 前記2種以上のカチオンポリマーは、カチオン性基として3級アミノ基またはそのカチオン(塩)を含むカチオンポリマーと、4級アンモニウム基を含むカチオンポリマーとを含む、請求項1に記載の光学反射フィルム。
  3. 前記2種以上のカチオンポリマーは、いずれも20,000〜30,000の重量平均分子量を有する、請求項1または2に記載の光学反射フィルム。
  4. 同時重層塗布法により前記高屈折率層と前記低屈折率層とを積層することを含む、請求項1〜3のいずれか1項に記載の光学反射フィルムの製造方法。
JP2017558074A 2015-12-25 2016-12-15 光学反射フィルム Active JP6834984B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015255322 2015-12-25
JP2015255322 2015-12-25
PCT/JP2016/087409 WO2017110651A1 (ja) 2015-12-25 2016-12-15 光学反射フィルム

Publications (2)

Publication Number Publication Date
JPWO2017110651A1 true JPWO2017110651A1 (ja) 2018-10-11
JP6834984B2 JP6834984B2 (ja) 2021-02-24

Family

ID=59090222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017558074A Active JP6834984B2 (ja) 2015-12-25 2016-12-15 光学反射フィルム

Country Status (4)

Country Link
US (1) US10962695B2 (ja)
JP (1) JP6834984B2 (ja)
CN (1) CN108369303B (ja)
WO (1) WO2017110651A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169810A1 (ja) * 2016-03-31 2017-10-05 コニカミノルタ株式会社 光学反射フィルム
CN109239821B (zh) * 2018-11-26 2021-01-05 广东轩朗实业有限公司 反射膜及导光板
DE102021200675A1 (de) 2021-01-26 2022-07-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Interferenzfilter, Verfahren zu seiner Herstellung und seiner Verwendung
CN113897064B (zh) * 2021-09-17 2022-10-28 山东亿隆薄膜材料有限责任公司 一种塑料光学透明保护膜及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083191A (ja) * 2006-09-26 2008-04-10 Mitsubishi Polyester Film Copp 光学フィルター用ポリエステルフィルムロール
JP2012093482A (ja) * 2010-10-26 2012-05-17 Konica Minolta Holdings Inc 近赤外反射フィルム及び近赤外反射体
WO2013089066A1 (ja) * 2011-12-12 2013-06-20 コニカミノルタ株式会社 光学積層フィルム、赤外遮蔽フィルムおよび赤外遮蔽体
JP2014089347A (ja) * 2012-10-30 2014-05-15 Konica Minolta Inc 赤外遮蔽フィルムおよびその製造方法
WO2014148366A1 (ja) * 2013-03-19 2014-09-25 コニカミノルタ株式会社 光線反射フィルムおよびその製造方法
JP2014215513A (ja) * 2013-04-26 2014-11-17 コニカミノルタ株式会社 赤外遮蔽フィルムおよび赤外遮蔽体
WO2015050171A1 (ja) * 2013-10-01 2015-04-09 コニカミノルタ株式会社 光学反射フィルムおよび光学反射体
US20150285956A1 (en) * 2012-12-20 2015-10-08 3M Innovative Properties Company Method of making multilayer optical film comprising layer-by-layer self-assembled layers and articles

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641226B2 (ja) * 1984-06-27 1994-06-01 キヤノン株式会社 カラーインクジェット記録方法
KR101414294B1 (ko) * 2006-12-28 2014-07-18 누플렉스 레진스 비브이 개질된 나노입자를 포함하는 필름 형성 조성물 및 필름 형성 조성물에 사용되는 개질된 나노입자
WO2010044402A1 (ja) * 2008-10-17 2010-04-22 日立化成工業株式会社 低屈折率膜及びその製造方法、反射防止膜及びその製造方法、低屈折率膜用コーティング液セット、微粒子積層薄膜付き基材及びその製造方法、並びに光学部材
DE102009002499A1 (de) * 2009-04-20 2010-10-21 Evonik Degussa Gmbh Dispersion enthaltend mit quartären, aminofunktionellen siliciumorganischen Verbindungen oberflächenmodifizierte Siliciumdioxidpartikel
JP6070550B2 (ja) * 2011-06-24 2017-02-01 コニカミノルタ株式会社 光学反射フィルム
JPWO2013111735A1 (ja) * 2012-01-25 2015-05-11 コニカミノルタ株式会社 光学フィルム
US9597707B2 (en) * 2012-05-18 2017-03-21 Konica Minolta, Inc. Manufacturing method for multilayer laminated film
US8619445B1 (en) 2013-03-15 2013-12-31 Arctic Sand Technologies, Inc. Protection of switched capacitor power converter
WO2014171494A1 (ja) * 2013-04-17 2014-10-23 コニカミノルタ株式会社 光学反射フィルム、その製造方法およびそれを用いる光学反射体
WO2015060305A1 (ja) * 2013-10-24 2015-04-30 コニカミノルタ株式会社 近赤外線遮蔽体及び近赤外線遮蔽フィルム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083191A (ja) * 2006-09-26 2008-04-10 Mitsubishi Polyester Film Copp 光学フィルター用ポリエステルフィルムロール
JP2012093482A (ja) * 2010-10-26 2012-05-17 Konica Minolta Holdings Inc 近赤外反射フィルム及び近赤外反射体
WO2013089066A1 (ja) * 2011-12-12 2013-06-20 コニカミノルタ株式会社 光学積層フィルム、赤外遮蔽フィルムおよび赤外遮蔽体
JP2014089347A (ja) * 2012-10-30 2014-05-15 Konica Minolta Inc 赤外遮蔽フィルムおよびその製造方法
US20150285956A1 (en) * 2012-12-20 2015-10-08 3M Innovative Properties Company Method of making multilayer optical film comprising layer-by-layer self-assembled layers and articles
WO2014148366A1 (ja) * 2013-03-19 2014-09-25 コニカミノルタ株式会社 光線反射フィルムおよびその製造方法
JP2014215513A (ja) * 2013-04-26 2014-11-17 コニカミノルタ株式会社 赤外遮蔽フィルムおよび赤外遮蔽体
WO2015050171A1 (ja) * 2013-10-01 2015-04-09 コニカミノルタ株式会社 光学反射フィルムおよび光学反射体

Also Published As

Publication number Publication date
US20190004224A1 (en) 2019-01-03
CN108369303A (zh) 2018-08-03
CN108369303B (zh) 2020-10-09
JP6834984B2 (ja) 2021-02-24
WO2017110651A1 (ja) 2017-06-29
US10962695B2 (en) 2021-03-30

Similar Documents

Publication Publication Date Title
JP6115675B2 (ja) 光学反射フィルム及びそれを用いた光学反射体
WO2014024873A1 (ja) 光反射フィルムおよびこれを用いた光反射体
JP5949910B2 (ja) 多層積層膜の製造方法
WO2018207563A1 (ja) 光反射フィルム及び光反射フィルムの製造方法
JP6834984B2 (ja) 光学反射フィルム
WO2014171494A1 (ja) 光学反射フィルム、その製造方法およびそれを用いる光学反射体
WO2014188831A1 (ja) 紫外線遮蔽フィルム
JP6176256B2 (ja) 光学反射フィルムおよびそれを用いた光学反射体
JP6724912B2 (ja) 光学反射フィルム
JP6759697B2 (ja) ロール状の光学反射フィルム
JP2017219694A (ja) 光学反射フィルム、光学反射フィルムの製造方法、及び、光学反射体
WO2017086048A1 (ja) 光学反射フィルムおよび光学反射体
JP6683249B2 (ja) 光学反射フィルム
JP6326780B2 (ja) 窓貼り用フィルム
JP6642235B2 (ja) 光学反射フィルムおよび光学反射フィルムの製造方法
JP2017219774A (ja) 光学反射フィルム
JP6672984B2 (ja) 光学反射フィルム、光学反射フィルムの製造方法、及び、光学反射体
WO2019193907A1 (ja) 光学物品の製造方法及び光学物品
JP2016057537A (ja) 光学反射フィルム、その製造方法およびそれを用いる光学反射体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6834984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150