WO2017169810A1 - 光学反射フィルム - Google Patents

光学反射フィルム Download PDF

Info

Publication number
WO2017169810A1
WO2017169810A1 PCT/JP2017/010526 JP2017010526W WO2017169810A1 WO 2017169810 A1 WO2017169810 A1 WO 2017169810A1 JP 2017010526 W JP2017010526 W JP 2017010526W WO 2017169810 A1 WO2017169810 A1 WO 2017169810A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
water
urethane resin
index layer
cationic urethane
Prior art date
Application number
PCT/JP2017/010526
Other languages
English (en)
French (fr)
Inventor
翔太 畠沢
洋一 斎藤
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to US16/090,373 priority Critical patent/US10894385B2/en
Priority to CN201780019813.7A priority patent/CN108885288B/zh
Priority to JP2018509002A priority patent/JP6683249B2/ja
Publication of WO2017169810A1 publication Critical patent/WO2017169810A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/042Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • G02B5/282Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/287Interference filters comprising deposited thin solid films comprising at least one layer of organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/73Hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2410/00Agriculture-related articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings

Definitions

  • the present invention relates to an optical reflection film.
  • a dielectric multilayer film in which a high refractive index layer and a low refractive index layer are laminated on the surface of a substrate by adjusting the optical film thickness can selectively reflect light of a specific wavelength.
  • a dielectric multilayer film is used, for example, as an optical reflection film installed on a building window or a vehicle member.
  • Such an optical reflection film transmits visible light and selectively shields near infrared rays, but the reflection wavelength can be controlled only by adjusting the film thickness and refractive index of each layer. Can be reflected.
  • a method of forming a multilayer body such as a dielectric multilayer film there is generally a method of laminating by a dry film forming method.
  • formation of a dielectric multilayer film by a dry film forming method requires a lot of manufacturing costs. Not practical. Practical methods include, for example, a method of applying and laminating a coating solution containing a mixture of a water-soluble resin and inorganic fine particles by a wet coating method.
  • the method of manufacturing by simultaneously applying the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is excellent from the viewpoint of cost.
  • JP 2012-973 A discloses that a coating solution contains a cross-linking agent, and the water-soluble resin and the cross-linking agent are present at the interface between adjacent layers. And a method for suppressing the mixing of moisture is disclosed.
  • the water resistance of the laminate can be improved by using a water-soluble resin in combination with a crosslinking agent.
  • a crosslinking agent in the method described in Japanese Patent Application Laid-Open No. 2012-973, an unreacted crosslinking agent remains after coating and drying of the coating solution. Therefore, the crosslinking agent reacts with time to cause shrinkage due to post-curing of the coating film. Arise. As a result, it was found that the generation of cracks when exposed to a high humidity environment for a long period of time was further deteriorated.
  • the optical reflection film since the optical reflection film is used as a heat shielding film or laminated glass, it may be exposed to strong sunlight for a long time. For this reason, the optical reflective film is required to have little color tone fluctuation even when exposed to sunlight for a long time.
  • the present invention has been made in view of the above circumstances, and in an optical reflective film having a refractive index layer containing a water-soluble resin, an optical reflective film with little occurrence of color tone fluctuations and cracks even when used for a long period of time.
  • the purpose is to provide.
  • the present inventors have found that the object of the present invention can be achieved by adopting the following configuration.
  • a substrate A dielectric multilayer film in which low-refractive index layers and high-refractive index layers are alternately stacked, disposed on one surface of the substrate; At least one of the low refractive index layer and the high refractive index layer includes a water-soluble resin, a refractive index adjusting agent, a water-dispersible cationic urethane resin, a tertiary amino group or a cation (salt) thereof, or An optical reflective film, which is a water-dispersible cationic urethane resin-containing layer comprising a cationic polymer having a quaternary ammonium group.
  • the mass ratio of the cationic polymer having the tertiary amino group or its cation (salt) or quaternary ammonium group is 0.2 to 4.0 with respect to the water-dispersible cationic urethane resin. , 1.
  • the content of the water-dispersible cationic urethane resin is 2 to 20% by mass. Or 2.
  • the water-dispersible cationic urethane resin is a carbonate-based urethane resin.
  • ⁇ 3 The optical reflective film of any one of these.
  • the average degree of polymerization of the water-soluble resin is 4000 to 6000. ⁇ 4. The optical reflective film of any one of these.
  • At least one of the high refractive index layers is a water-dispersible cationic urethane resin-containing layer containing zirconium oxide particles as a refractive index adjusting agent.
  • ⁇ 5 The optical reflective film of any one of these.
  • At least one of the low refractive index layers is a water-dispersible cationic urethane resin-containing layer containing silicon oxide particles as a refractive index adjusting agent.
  • a plurality of the low refractive index layers are the water-dispersible cationic urethane resin-containing layers; ⁇ 7.
  • One embodiment of the present invention includes a base material, and a dielectric multilayer film in which low refractive index layers and high refractive index layers are alternately stacked, which are disposed on one surface of the base material.
  • At least one of the low refractive index layer and the high refractive index layer is composed of a water-soluble resin, a refractive index adjusting agent, a water-dispersible cationic urethane resin, a tertiary amino group or a cation (salt) thereof.
  • it is an optical reflective film which is a water-dispersible cationic urethane resin containing layer containing the cationic polymer which has a quaternary ammonium group.
  • an optical reflective film having a refractive index layer containing a water-soluble resin in an optical reflective film having a refractive index layer containing a water-soluble resin, an optical reflective film with little color tone fluctuation and occurrence of cracks can be obtained even when used for a long time.
  • the optical reflective film of the present invention contains a water-soluble resin in at least one refractive index layer among the high refractive index layer and the low refractive index layer.
  • the optical reflective film containing the water-soluble resin has a problem that cracks occur with time.
  • the present inventors examined cracks in the optical reflection film.
  • a water-dispersible cationic urethane resin that is hydrophobic together with a water-soluble resin, the refractive index layer can be expanded and contracted. It has been found that the generation of cracks over time can be reduced.
  • a hydrophobic water-dispersible cationic urethane resin is added to a water-soluble resin, when this resin is fused and formed into a film, the hydrophobicity is less than when no water-dispersible cationic urethane resin is added. A strong film is obtained. Therefore, it is considered that the occurrence of cracks can be prevented because the expansion and contraction of the film due to the change in the amount of moisture in the atmosphere can be reduced.
  • the coating film can be softened by containing a water-dispersible cationic urethane resin, and the force applied to the coating film when the film expands or contracts due to a change in the amount of moisture in the atmosphere can be reduced. Furthermore, it is known that a resin containing a urethane bond has a high elongation at break at the same Tg value as compared with other resins, and it is considered that such characteristics are advantageous for crack resistance.
  • urethane resins are colored due to photodegradation of urethane bonds, so they are more easily colored than acrylic resins, but water-dispersible cationic urethane resins and tertiary amino groups or their cations (salts) or quaternary. It turned out that coloring of a coating film can also be prevented by using together with the cationic polymer which has an ammonium group. This is due to the fact that the water-dispersible cationic urethane resin and the cationic group tertiary amino group or its cation (salt) or quaternary ammonium group have electron withdrawing properties, resulting in peroxide generated by light or heat. This is presumed to be caused by acting on the radical to stop or delay the oxidation reaction. In addition, the said mechanism is based on estimation and this invention is not restrict
  • the components of the optical reflection film of the present invention will be described in detail.
  • the concept including both is referred to as a “refractive index layer”.
  • X to Y indicating a range means “X or more and Y or less”.
  • operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • An optical reflective film according to the present invention comprises a base material, and a dielectric multilayer film formed by alternately laminating low refractive index layers and high refractive index layers disposed on one surface of the base material. Have.
  • the optical reflective film according to the present invention includes a base material for supporting a dielectric multilayer film or the like.
  • various resin films can be used, such as polyolefin films (polyethylene, polypropylene, etc.), polyester films (polyethylene terephthalate (PET), polyethylene naphthalate, etc.), polyvinyl chloride, cellulose acetate, etc.
  • PET polyethylene terephthalate
  • PET polyethylene naphthalate
  • polyvinyl chloride cellulose acetate
  • a polyester film is preferable. Although it does not specifically limit as a polyester film (henceforth polyester), It is preferable that it is polyester which has the film formation property which has a dicarboxylic acid component and a diol component as main structural components.
  • the main constituent dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid.
  • diol component examples include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like.
  • polyesters having these as main components from the viewpoints of transparency, mechanical strength, dimensional stability, etc., dicarboxylic acid components such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, diol components such as ethylene glycol and 1 Polyester having 1,4-cyclohexanedimethanol as the main constituent is preferred.
  • polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferable.
  • the thickness of the substrate used in the present invention is preferably 10 to 300 ⁇ m, particularly 20 to 150 ⁇ m.
  • two substrates may be stacked, and in this case, the type may be the same or different.
  • the base material preferably has a visible light region transmittance of 85% or more shown in JIS R3106-1998, and particularly preferably 90% or more.
  • the base material has the above transmittance or more, it is advantageous in that the transmittance in the visible light region shown in JIS R3106-1998 is 50% or more (upper limit: 100%) when a laminated film is formed. preferable.
  • the base material using the resin or the like may be an unstretched film or a stretched film.
  • a stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
  • the base material can be manufactured by a conventionally known general method.
  • an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular-type simultaneous biaxial stretching, or the flow direction of the base material (vertical axis), or A stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis).
  • the draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
  • additives for example, stabilizers, surfactants, infrared absorbers, ultraviolet absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, colorings
  • stabilizers for example, stabilizers, surfactants, infrared absorbers, ultraviolet absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, colorings
  • an agent, a pigment, an adhesion adjusting agent and the like can also be contained.
  • the dielectric multilayer film has a configuration in which low refractive index layers and high refractive index layers are alternately laminated, and has at least one unit composed of a low refractive index layer and a high refractive index layer. Since the dielectric multilayer film includes the refractive index layers having different refractive indexes in this way, when light having a predetermined wavelength (for example, infrared light) is incident, at least a part of this light is It can reflect and can exhibit the shielding effect (and heat shielding effect in the case of infrared light).
  • a predetermined wavelength for example, infrared light
  • whether the refractive index layer constituting the dielectric multilayer film is a low refractive index layer or a high refractive index layer is determined by comparing the refractive index with the adjacent refractive index layer. Specifically, when a refractive index layer is used as a reference layer, if the refractive index layer adjacent to the reference layer has a lower refractive index than the reference layer, the reference layer is a high refractive index layer (the adjacent layer is a low refractive index layer). It is judged to be a rate layer.
  • the refractive index of the adjacent layer is higher than that of the reference layer, it is determined that the reference layer is a low refractive index layer (the adjacent layer is a high refractive index layer). Therefore, whether the refractive index layer is a high refractive index layer or a low refractive index layer is a relative one determined by the relationship with the refractive index of the adjacent layer. Depending on the relationship, it can be a high refractive index layer or a low refractive index layer.
  • the refractive index layer at least one of the high refractive index layer and the low refractive index layer constituting the dielectric multilayer film includes a water-soluble resin, a refractive index adjusting agent, and a water-dispersible cationic urethane.
  • a water-dispersible cationic urethane resin-containing layer containing a resin and a cationic polymer having a tertiary amino group or a cation (salt) thereof or a quaternary ammonium group, and used in this technical field.
  • Any known refractive index layer can be used.
  • a refractive index layer formed by a wet film forming method is preferably used from the viewpoint of manufacturing efficiency.
  • At least one of the high refractive index layer and the low refractive index layer preferably contains a refractive index adjusting agent, and both the high refractive index layer and the low refractive index layer contain a refractive index adjusting agent. It is more preferable.
  • a water-soluble resin is used for at least one of the high refractive index layer and the low refractive index layer.
  • the refractive index layer of the optical reflection film formed by the wet film forming method is a coating film coated with a coating solution containing a water-soluble resin (usually containing an aqueous solvent such as water).
  • the water-soluble resin is preferable because it does not use an organic solvent, has a low environmental load, and has high flexibility, so that the durability of the film during bending is improved.
  • the water-soluble resin is preferably used particularly when a refractive index adjusting agent is contained in at least one of the high refractive index layer and the low refractive index layer.
  • water-soluble means a G2 glass filter (maximum pores 40 to 50 ⁇ m) when dissolved in water so as to have a concentration of 0.5% by mass at the temperature at which the substance is most dissolved. This means that the mass of insoluble matter to be filtered out is within 50% by mass of the added polymer.
  • the layer is a low refractive index layer or a high refractive index layer is a relative one that is determined by the relationship with the adjacent refractive index layer.
  • the structure of a typical high refractive index layer and low refractive index layer among the refractive index layers that can be formed by the respective methods will be described below.
  • the high refractive index layer preferably contains a water-soluble resin.
  • metal oxide particles, a curing agent, a surfactant, and other additives as a refractive index adjusting agent may be included as necessary.
  • the water-soluble resin and the refractive index adjusting agent contained in the high refractive index layer are hereinafter referred to as “first water-soluble resin” and “first refractive index adjusting agent” for convenience.
  • the refractive index of the first refractive index adjusting agent contained in the high refractive index layer is preferably higher than the refractive index of the second refractive index adjusting agent contained in the low refractive index layer described later.
  • the refractive index difference between the refractive index layers can be increased, and the transparency of the film is increased by reducing the number of layers. This is preferable because it can be performed.
  • stress relaxation works and film properties are improved.
  • the refractive index adjusting agent may be contained in any one of the refractive index layers, but a preferable form is that at least the high refractive index layer contains the refractive index adjusting agent, and more preferable forms are the high refractive index layer and the low refractive index layer. All of the refractive index layers are in a form containing a refractive index adjusting agent.
  • the first water-soluble resin is not particularly limited, and polyvinyl alcohol resins, gelatin, celluloses, thickening polysaccharides, and polymers having reactive functional groups can be used. . Of these, it is preferable to use a polyvinyl alcohol-based resin.
  • Polyvinyl alcohol-based resin As the polyvinyl alcohol-based resin, ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate (unmodified polyvinyl alcohol), anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, vinyl alcohol-based polymers, etc. Polyvinyl alcohol is mentioned.
  • the modified polyvinyl alcohol may improve the film adhesion, water resistance, and flexibility.
  • Gelatin As the gelatin, various gelatins that have been widely used in the field of silver halide photographic light-sensitive materials can be applied. For example, acid-treated gelatin, alkali-treated gelatin, enzyme-treated gelatin that performs enzyme treatment in the gelatin production process, and treatment with a reagent that has a hydroxyl group or carboxyl group as a functional group in the molecule and a group that can react with it. And modified gelatin derivatives.
  • gelatin When gelatin is used, a gelatin hardener can be added as necessary.
  • a water-soluble cellulose derivative can be preferably used.
  • water-soluble cellulose derivatives such as carboxymethyl cellulose (cellulose carboxymethyl ether), methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose; carboxylic acid group-containing celluloses such as carboxymethyl cellulose (cellulose carboxymethyl ether) and carboxyethyl cellulose; Examples thereof include cellulose derivatives such as cellulose, cellulose acetate propionate, cellulose acetate, and cellulose sulfate.
  • Thickening polysaccharides are saccharide polymers that have many hydrogen bonding groups in the molecule.
  • the thickening polysaccharide has a characteristic that the viscosity difference at low temperature and the viscosity at high temperature are large due to the difference in hydrogen bonding force between molecules depending on temperature. Further, when metal oxide fine particles are added to the thickening polysaccharide, the viscosity is increased due to hydrogen bonding with the metal oxide fine particles at a low temperature.
  • the viscosity at 15 ° C. is usually 1.0 mPa ⁇ s or more, preferably 5.0 mPa ⁇ s or more, more preferably 10.0 mPa ⁇ s or more.
  • the thickening polysaccharide that can be used is not particularly limited, and examples include generally known natural polysaccharides, natural complex polysaccharides, synthetic simple polysaccharides, and synthetic complex polysaccharides. The details of these polysaccharides can be referred to “Biochemical Dictionary (2nd edition), Tokyo Chemical Doujinshi”, “Food Industry”, Vol. 31, (1988), p.
  • Polymers having reactive functional groups include polyvinylpyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymers, potassium acrylate-acrylonitrile copolymers, and vinyl acetate-acrylic esters.
  • Acrylic resins such as copolymers, acrylic acid-acrylic acid ester copolymers; styrene-acrylic acid copolymers, styrene-methacrylic acid copolymers, styrene-methacrylic acid-acrylic acid ester copolymers, styrene- ⁇ -Styrene acrylic resins such as methylstyrene-acrylic acid copolymer and styrene- ⁇ -methylstyrene-acrylic acid-acrylic acid ester copolymer; styrene-sodium styrenesulfonate copolymer, styrene-2-hydroxyethyl acrylate Copolymer, styrene -2-hydroxyethyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, styrene-maleic anhydr
  • the above water-soluble resins may be used alone or in combination of two or more.
  • the weight average molecular weight of the first water-soluble resin is preferably 1000 to 200000, more preferably 3000 to 40000.
  • the value measured by gel permeation chromatography (GPC) is adopted as the value of “weight average molecular weight”.
  • the content of the first water-soluble resin is preferably 5 to 50% by mass and more preferably 10 to 40% by mass with respect to 100% by mass of the solid content of the high refractive index layer.
  • the first refractive index adjusting agent is not particularly limited, but is preferably metal oxide particles having a refractive index of 2.0 to 3.0. Specifically, titanium oxide, zirconium oxide, cerium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, ferric oxide, iron black, copper oxide, oxidation Examples thereof include magnesium, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide.
  • the first refractive index adjusting agent described above may be used alone or in combination of two or more.
  • the first refractive index adjuster is preferably titanium oxide, zirconium oxide, or cerium oxide from the viewpoint of forming a transparent and high refractive index layer having a high refractive index, and zirconium oxide from the viewpoint of improving weather resistance. It is more preferable that
  • the high refractive index layer preferably contains zirconium oxide particles as a refractive index adjusting agent.
  • the high refractive index layer containing zirconium oxide particles is transparent and can exhibit a high refractive index. Further, since the photocatalytic activity is low, the light resistance and weather resistance of the high refractive index layer and the adjacent low refractive index layer are increased.
  • zirconium oxide means zirconium dioxide (ZrO 2 ).
  • the zirconium oxide particles may be cubic or tetragonal, or a mixture thereof.
  • zirconium oxide particles particles obtained by modifying the surface of an aqueous zirconium oxide sol so as to be dispersible in an organic solvent or the like may be used.
  • any conventionally known method can be used.
  • a method for preparing zirconium oxide particles or a dispersion thereof any conventionally known method can be used.
  • a method can be used in which a zirconium salt is reacted with an alkali in water to prepare a slurry of zirconium oxide particles, and an organic acid is added to perform hydrothermal treatment. .
  • zirconium oxide particles may be used.
  • SZR-W, SZR-CW, SZR-M, SZR-K and the like are preferably used. Can do.
  • the content of the zirconium oxide particles is It is preferably 80 to 100% by mass, preferably 90 to 100% by mass, and more preferably 100% by mass.
  • titanium oxide particles used for high refractive index layer are more preferably rutile (tetragonal) titanium oxide from the viewpoint of improving weather resistance.
  • the titanium oxide particles may be in the form of core / shell particles coated with a silicon-containing hydrated oxide.
  • the core / shell particles have a structure in which the surface of the titanium oxide particles is coated with a shell made of a silicon-containing hydrated oxide on titanium oxide serving as a core.
  • the volume average particle diameter of the titanium oxide particles serving as the core portion is preferably more than 1 nm and less than 30 nm, and more preferably 4 nm or more and less than 30 nm.
  • cerium oxide particles used for high refractive index layers As the cerium oxide particles, a synthetic product or a commercially available product may be used.
  • commercially available products that can be suitably used in the present invention include NYACOL (registered trademark) CEO2 (AC), NYACOL (registered trademark) CEO2 (AC) -30, NYACOL (registered trademark) CEO2 (NO3), and NYACOL (registered trademark).
  • examples thereof include colloidal ceria such as DP6255 and NYACOL (registered trademark) DP6255-NH4 (hereinafter, Nyacol Nano Technologies).
  • Niedral (registered trademark) P10 manufactured by Taki Chemical Co., Ltd.
  • NANOBYK registered trademark
  • -3810 manufactured by BYK
  • the size of the refractive index adjusting agent contained in the high refractive index layer is not particularly limited, but can be determined from the volume average particle size or the primary average particle size.
  • the volume average particle diameter of the refractive index adjusting agent used in the high refractive index layer is preferably 100 nm or less, more preferably 1 to 100 nm, and further preferably 2 to 50 nm.
  • the primary average particle size of the refractive index adjusting agent used in the high refractive index layer is preferably 100 nm or less, more preferably 1 to 100 nm, and further preferably 2 to 50 nm.
  • a volume average particle size or primary average particle size of 1 nm or more and 100 nm or less is preferred from the viewpoint of low haze and excellent visible light transmittance.
  • the volume average particle size referred to in this specification is a method of observing the particles themselves using a laser diffraction scattering method, a dynamic light scattering method, or an electron microscope, or particles appearing on the cross section or surface of the refractive index layer.
  • the particle diameter of 1,000 arbitrary particles is measured by a method of observing an image with an electron microscope, and particles having particle diameters of d1, d2,.
  • Ni: In a group of nk particles, when the volume per particle is vi, the volume average particle diameter mv ⁇ (vi ⁇ di) ⁇ / ⁇ (vi) ⁇
  • the average particle size weighted by the volume to be calculated is calculated.
  • the primary average particle diameter can be measured from an electron micrograph taken with a transmission electron microscope (TEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc.
  • TEM transmission electron microscope
  • the primary average particle diameter of the particles is observed with an electron microscope on the particles themselves or the cross section or surface of the refractive index layer, and the particle diameter of 1000 arbitrary particles is measured. It is obtained as its simple average value (number average).
  • the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
  • the refractive index adjusting agent used in the present invention is preferably monodispersed.
  • the monodispersion here means that the monodispersity obtained by the following formula is 40% or less. This monodispersity is more preferably 30% or less, and particularly preferably 0.1 to 20%.
  • the content of the refractive index adjusting agent in the high refractive index layer is not particularly limited, but is preferably 15 to 95% by mass, and preferably 20 to 90% by mass with respect to the total solid content of the high refractive index layer. More preferred is 30 to 90% by mass, and still more preferred. By setting it as the said range, it can be set as a favorable optical reflection characteristic.
  • the curing agent has a function of reacting with the first water-soluble resin (preferably polyvinyl alcohol resin) contained in the high refractive index layer to form a hydrogen bond network.
  • first water-soluble resin preferably polyvinyl alcohol resin
  • the curing agent is not particularly limited as long as it causes a curing reaction with the first water-soluble resin, but in general, a compound having a group capable of reacting with the water-soluble resin or a different group possessed by the water-soluble resin.
  • stimulates mutual reaction is mentioned.
  • boric acid and its salt as a curing agent.
  • curing agents other than boric acid and its salt may be used.
  • boric acid and its salt mean an oxyacid and its salt having a boron atom as a central atom.
  • Specific examples include orthoboric acid, diboric acid, metaboric acid, tetraboric acid, pentaboric acid, octaboric acid, and salts thereof.
  • the content of the curing agent is preferably 1 to 10% by mass and more preferably 2 to 6% by mass with respect to 100% by mass of the solid content of the high refractive index layer (or low refractive index layer). .
  • the total amount of the curing agent used is preferably 1 to 600 mg per gram of polyvinyl alcohol, more preferably 10 to 600 mg per gram of polyvinyl alcohol. .
  • Surfactants Cationic surfactants, anionic surfactants, nonionic surfactants, amphoteric surfactants, etc. can be used as surfactants used to adjust the surface tension during coating. An agent is more preferable.
  • amphoteric surfactants preferably used in the present invention include amide sulfobetaine type, carboxybetaine type, sulfobetaine type, and imidazolium type. Specific examples of the amphoteric surfactant preferably used in the present invention are shown below.
  • the sulfobetaine type and the carboxybetaine type are preferable from the viewpoint of coating unevenness, and the products are LSB-R, LSB, LMEB-R (manufactured by Kawaken Fine Chemical Co., Ltd.), Amphital (registered trademark) 20HD (manufactured by Kao Corporation). ) And the like.
  • Examples of the cationic surfactant include alkylamine salts and quaternary ammonium salts.
  • An anionic surfactant is a surfactant in which a hydrophilic group is ionized to an anion in an aqueous solution
  • examples of the anionic surfactant include a sulfate ester salt, a sulfonate salt, a carboxylate salt, and a phosphate ester salt. It is done.
  • alkyl sulfate ester salt, polyoxyethylene alkyl ether sulfate salt, polyoxyethylene aryl ether sulfate ester salt, alkylbenzene sulfonate, fatty acid salt, polyoxyethylene alkyl ether phosphate, alkenyl succinate dipotassium can be used. .
  • anionic surfactants examples include, for example, Emar (registered trademark) manufactured by Kao Corporation, Hytenol (registered trademark) NF-08, NF-0825, NF-manufactured by Daiichi Kogyo Co., Ltd. 13, NF-17 (both polyoxyethylene styrenated phenyl ether ammonium sulfate) and the like, and examples of the sulfonate include Neo-Perex (registered trademark) and Perex (registered trademark) manufactured by Kao Corporation.
  • Examples of the carboxylate include Neo Haitenol (registered trademark) manufactured by Daiichi Kogyo Seiyaku Co., Ltd., and examples of the phosphate ester salt include Prisurf (registered trademark) manufactured by Daiichi Kogyo Seiyaku Co., Ltd. .
  • Nonionic surfactants include polyoxyethylene alkyl ethers (for example, Emulgen (registered trademark) manufactured by Kao Corporation), polyoxyethylene sorbitan fatty acid esters (for example, Leodol (registered trademark) TW series manufactured by Kao Corporation), glycerin.
  • examples include fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene alkylamines, and alkyl alkanolamides.
  • polyoxyethylene alkyl ethers include polyoxyethylene mono 2-ethylhexyl ether, polyoxyethylene decyl ether (for example, Neugen (registered trademark) XL-40, XL-50, XL-60 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) Etc.) can also be used.
  • the content of the surfactant in the high refractive index layer is preferably 0.001 to 1% by mass, and preferably 0.005 to 0.50% by mass, based on the total solid content of the high refractive index layer. Is more preferable.
  • the high refractive index layer can also contain other additives.
  • other additives include amino acids and lithium compounds.
  • the low refractive index layer also preferably contains a water-soluble resin.
  • a refractive index adjusting agent, a curing agent, a surfactant, and other additives may be included as necessary.
  • the water-soluble resin and the refractive index adjusting agent contained in the low refractive index layer are hereinafter referred to as “second water-soluble resin” and “second refractive index adjusting agent” for convenience.
  • Second water-soluble resin As the second water-soluble resin, the same one as the first water-soluble resin can be used.
  • the polyvinyl alcohol resins having different saponification degrees are used. Is preferably used. Thereby, mixing of the interface is suppressed, the infrared reflectance (infrared shielding rate) becomes better, and the haze can be lowered.
  • the degree of saponification is the ratio of hydroxyl groups to the total number of carbonyloxy groups such as acetyloxy groups (derived from the starting vinyl acetate) and hydroxyl groups in the polyvinyl alcohol resin.
  • the saponification degree of polyvinyl alcohol can be measured according to the method described in Japanese Industrial Standard JIS K6726: 1994.
  • the content of the second water-soluble resin is preferably 3 to 60% by mass and more preferably 10 to 45% by mass with respect to 100% by mass of the solid content of the low refractive index layer.
  • the second refractive index adjusting agent is not particularly limited, but silica (silicon dioxide) such as synthetic amorphous silica or colloidal silica or polysilsesquioxane is used. preferable.
  • silica silicon dioxide
  • the refractive index adjusting agent contained in the low refractive index layer may be used alone or in combination of two or more.
  • silicon oxide particles used in the low refractive index layer Specific examples of the silicon oxide particles include synthetic amorphous silica, colloidal silica, zinc oxide, alumina, colloidal alumina, and the like. Of these, colloidal silica sol, particularly acidic colloidal silica sol is more preferably used, and colloidal silica dispersed in an organic solvent is particularly preferably used. In order to further reduce the refractive index, hollow fine particles having pores inside the particles may be used as a refractive index adjusting agent for the low refractive index layer.
  • the colloidal silica used in the present invention is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer.
  • a silica sol obtained by metathesis JP-A-60-219083, JP-A-60-218904, JP-A-61-20792, JP-A-61-188183, JP-A-63-17807, JP-A-4-93284 JP-A-5-278324, JP-A-6-92011, JP-A-6-183134, JP-A-6-297830, JP-A-7-81214, JP-A-7-101142 , JP-A-7-179029, JP-A-7-137431, and International Publication No. 94/26530. Than is.
  • colloidal silica may be a synthetic product or a commercially available product.
  • Snowtex (registered trademark) series sold by Nissan Chemical Industries, Ltd. Snowtex (registered trademark) OS, OXS, S, OS, 20, 30, 40, O, N, C, etc.) Is mentioned.
  • the surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
  • hollow fine particles can be used as the silicon oxide particles of the low refractive index layer.
  • the average particle pore size is preferably 3 to 70 nm, more preferably 5 to 50 nm, and even more preferably 5 to 45 nm.
  • the average particle pore size of the hollow fine particles is an average value of the inner diameters of the hollow fine particles. If the average particle pore diameter of the hollow fine particles is within the above range, the refractive index of the low refractive index layer is sufficiently lowered.
  • the average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation, and obtains the pore diameter of each particle. Is obtained.
  • the average particle hole diameter means the minimum distance among the distances between the two parallel lines that surround the outer edge of the hole diameter that can be observed as a circle, an ellipse, or a substantially circle or ellipse.
  • Polysilsesquioxane particles used for low refractive index layers Polysilsesquioxane particles used for low refractive index layers
  • Polysilsesquioxane is a network-type polymer or polyhedral cluster obtained by hydrolyzing a trifunctional silane compound, having a siloxane bond in the main chain and a hydrogen atom or an organic group in the side chain. Any of the structures of a shape, a ladder shape, and a random shape can be preferably used.
  • Polysilsesquioxanes include polyhydrogen silsesquioxane, polymethyl silsesquioxane, polyethyl silsesquioxane, polypropyl silsesquioxane, polyisopropyl silsesquioxane, polybutyl silsesquioxane, polybutyl silsesquioxane, -Sec-butylsilsesquioxane, poly-tert-butylsilsesquioxane, polyvinylsilsesquioxane, polyphenylsilsesquioxane, polynaphthylsilsesquioxane, polystyrylsilsesquioxane and polyadamantylsilsesqui And oxane. Of these, polymethylsilsesquioxane and polyvinylsilsesquioxane are preferable.
  • polysilsesquioxane particles a synthetic product or a commercially available product may be used.
  • commercially available products that can be suitably used in the present invention include SP series (for example, SP-1120 (H2O), SP-1160 (H2O), SP-6120 (H2O)) manufactured by Konishi Chemical Industries, Ltd. .
  • the second refractive index adjusting agent (preferably silicon dioxide) contained in the low refractive index layer of the present invention preferably has an average particle size (number average; diameter) of 3 to 100 nm, preferably 3 to 50 nm. It is more preferable.
  • the “average particle diameter (number average; diameter)” of the refractive index adjusting agent is 1,000 particles observed by an electron microscope on the particles themselves or on the cross section or surface of the refractive index layer. The particle size of any of the particles is measured and determined as a simple average value (number average).
  • the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
  • the content of the second refractive index adjusting agent in the low refractive index layer is preferably 0.1 to 70% by mass, and preferably 30 to 70% by mass with respect to 100% by mass of the total solid content of the low refractive index layer. More preferred is 45 to 65% by mass.
  • the above-mentioned second refractive index adjusting agent may be used alone or in combination of two or more from the viewpoint of adjusting the refractive index.
  • the low refractive index layer may contain a cation or a cationic polymer having a cationic group.
  • a cationic polymer which has the tertiary amino group contained in the below-mentioned water-dispersible cationic urethane resin content layer or its cation (salt), or a quaternary ammonium group is used suitably.
  • Other cationic polymers may be included.
  • curing agent Surfactant, and Other Additives
  • the same materials as those for the high refractive index layer can be used, and the description thereof is omitted here.
  • At least one of the high refractive index layer and the low refractive index layer constituting the dielectric multilayer film is composed of a water-soluble resin, a refractive index adjusting agent, and water dispersibility.
  • a water-dispersible cationic urethane resin-containing layer comprising a cationic urethane resin and a cationic polymer having a tertiary amino group or a cation (salt) thereof or a quaternary ammonium group.
  • the water-dispersible cationic urethane resin-containing layer comprises a water-soluble resin, a refractive index adjusting agent, a water-dispersible cationic urethane resin, a tertiary amino group or a cation (salt) thereof, or a quaternary ammonium group.
  • a layer containing a cationic polymer it may be a high refractive index layer or a low refractive index layer.
  • the water-dispersible cationic urethane resin-containing layer has a water-soluble resin, a refractive index adjusting agent, a water-dispersible cationic urethane resin, and a tertiary amino group or a cation (salt) thereof or a quaternary ammonium group. Except for containing a cationic polymer, the same configuration as the above-described high refractive index layer and low refractive index layer can be adopted.
  • water-dispersible cationic urethane resins have a low refractive index (about 1.5), so if unfused water-dispersible cationic urethane resin remains, haze depends on the refractive index of the high refractive index layer. Since there is concern about an increase, the water-dispersible cationic urethane resin-containing layer is preferably a low refractive index layer.
  • At least one of the high refractive index layer and the low refractive index layer constituting the dielectric multilayer film may be a water-dispersible cationic urethane resin-containing layer.
  • the plurality of low refractive index layers are water-dispersible cationic urethane resin-containing layers.
  • the lowermost layer in contact with the substrate or the uppermost layer opposite to the substrate is a water-dispersible cationic urethane resin-containing layer. More preferably, all the low refractive index layers including the lowermost layer and the uppermost layer are water-dispersible cationic urethane resin-containing layers.
  • the water-dispersible cationic urethane resin applied to the present invention has a cationic group in the molecule, and is formed from an aqueous dispersion in which the urethane resin is self-emulsified in an aqueous solvent. Resin. Since the water-dispersible cationic urethane resin is hydrophobic, a film having strong hydrophobicity can be obtained when it is fused to form a film. Therefore, since the expansion and contraction of the film due to the change in the amount of moisture in the atmosphere can be reduced, the generation of cracks can be prevented. Further, the coating film becomes soft, and the force applied to the coating film when the film expands and contracts due to a change in the amount of moisture in the atmosphere can be reduced. Examples of the cationic group include a quaternary ammonium group.
  • the aqueous dispersion may be either reactive or non-reactive.
  • the reactive aqueous dispersion is obtained by emulsifying a urethane resin having an isocyanate group (reactive group) blocked with a blocking agent in an aqueous solvent.
  • the reactive aqueous dispersion is further classified into a self-emulsification type and a forced emulsification type.
  • the self-emulsifying reactive aqueous dispersion is obtained by self-emulsifying a urethane resin having an isocyanate group blocked with a hydrophilic blocking agent in an aqueous solvent.
  • a forced emulsification type reactive aqueous dispersion is obtained by forcibly emulsifying a urethane resin having an isocyanate group blocked with a hydrophobic blocking agent in an aqueous solvent with a surfactant or the like.
  • the non-reactive aqueous dispersion is obtained by emulsifying a urethane resin (non-reactive urethane resin) having no isocyanate group (reactive group) in an aqueous solvent.
  • the non-reactive aqueous dispersion is further classified into a self-emulsification type and a forced emulsification type.
  • the self-emulsifying non-reactive aqueous dispersion is obtained by self-emulsifying a hydrophilic non-reactive urethane resin in an aqueous solvent.
  • the forced emulsification type non-reactive aqueous dispersion is obtained by forcibly emulsifying a hydrophobic non-reactive urethane resin in an aqueous solvent with a surfactant or the like.
  • the aqueous dispersion is preferably a self-emulsifying non-reactive aqueous dispersion.
  • the self-emulsifying non-reactive aqueous dispersion is formed as follows. That is, after synthesizing a urethane prepolymer from a polyol having no hydrophilic group, a polyol having a hydrophilic group, and a polyisocyanate, and emulsifying the urethane prepolymer in an aqueous medium, the urethane prepolymers are bonded to each other by chain extension of the isocyanate. Is crosslinked to form an aqueous dispersion in which a urethane resin having an internal crosslinked structure is emulsified in an aqueous medium.
  • the urethane resin is obtained by an addition polymerization reaction between polyisocyanate and polyol.
  • the water-dispersible cationic urethane resin used in the present invention is an ether-based urethane resin or polyester using a polyether-based polyol as a polyol. Either an ester-based urethane resin using a polyol based on polycarbonate or a carbonate-based urethane resin using a polycarbonate-based polyol may be used.
  • carbonate-based urethane resins are preferable because they are excellent in water resistance and hydrolysis resistance, and therefore have little shrinkage due to moisture absorption and desorption and have a high effect of suppressing the generation of cracks.
  • water-dispersible cationic urethane resin commercially available products may be used.
  • Superflex registered trademark
  • 620, 650 Densiichi Kogyo Seiyaku Co., Ltd.
  • Hydran registered trademark
  • CP-7020 CP-7050 manufactured by DIC Corporation.
  • the particle size of the water-dispersible cationic urethane resin is not particularly limited, but the average particle size is preferably 1 to 100 nm, more preferably 5 to 60 nm.
  • the average particle size of the water-dispersible cationic urethane resin can be measured by a dynamic light scattering method.
  • the refractive index of the water-dispersible cationic urethane resin is not particularly limited, but is preferably 1.3 to 1.7, and more preferably 1.4 to 1.6. If it is the said range, since it becomes close to the refractive index of water-soluble resin, the haze of the optical reflection film obtained can be reduced.
  • the above-mentioned water-dispersible cationic urethane resin preferably has a glass transition temperature (Tg) of 75 ° C. or lower, more preferably ⁇ 30 to 50 ° C., from the viewpoint of enhancing flexibility.
  • Tg glass transition temperature
  • the content (solid mass) of the water-dispersible cationic urethane resin in the water-dispersible cationic urethane resin-containing layer is set to the total mass (solid) of the water-dispersible cationic urethane resin-containing layer.
  • the content of the water-dispersible cationic urethane resin is 1% by mass or more, the water-dispersible cationic urethane resins are easily fused together, and an excellent crack preventing effect can be obtained.
  • the content of the water-dispersible cationic urethane resin is 30% by mass or less, coloring can be suppressed.
  • the viscosity of the coating solution does not easily decrease during aqueous coating, particularly simultaneous multi-layer coating, a uniform coating film is formed, and even when used for a long time, cracks are unlikely to occur and coating film failure is unlikely to occur.
  • the total amount is preferably in the above range.
  • the content of at least one water-dispersible cationic urethane resin is preferably in the above range, and more preferably in all layers. preferable.
  • the cationic polymer applied to the present invention is a polymer having a tertiary amino group or a cation (salt) or a quaternary ammonium group as a cationic group.
  • a cationic polymer having a tertiary amino group or a cation (salt) thereof or a quaternary ammonium group it is possible to prevent the coating film containing the water-dispersible cationic urethane resin from being colored.
  • Whether the cationic polymer is cationic can be determined by adding the cationic polymer to colloidal silica and measuring the zeta potential.
  • a cationic polymer having a tertiary amino group or a cation (salt) thereof or a quaternary ammonium group does not contain the above-described water-dispersible cationic urethane resin.
  • the cationic polymer having a tertiary amino group or its cation (salt) is effective for the surface of the refractive index adjusting agent when the surface of the silicon oxide particle or the like is used as the refractive index adjusting agent. It can be cationized to contribute to maintaining the dispersion stability of the refractive index adjusting agent in the coating solution, and the coating property can be improved.
  • a cationic polymer having a quaternary ammonium group as a cationic group has the effect of causing fine aggregation of the refractive index adjusting agent and protecting the refractive index adjusting agent.
  • the cationic polymer having a tertiary amino group or a cation (salt) thereof or a quaternary ammonium group is not particularly limited, but polyallylamine amide sulfate, a copolymer of allylamine hydrochloride and diallylamine hydrochloride, allylamine hydrochloride Salt and dimethylallylamine hydrochloride copolymer, allylamine hydrochloride and other copolymers, partially methoxycarbonylated allylamine polymer, partially methylcarbonylated allylamine acetate polymer, diallylamine hydrochloride polymer, methyldiallylamine hydrochloride Polymer, methyldiallylamine amide sulfate polymer, methyldiallylamine acetate polymer, copolymer of diallylamine hydrochloride and sulfur dioxide, copolymer of diallylamine acetate and sulfur dioxide, diallylmethylethylammonium ethyls
  • methyldiallylamine hydrochloride polymer methyldiallylamine amide sulfate polymer, methyldiallylamine acetate polymer and the like are suitably used as cationic polymers containing tertiary amino groups or their cations (salts), and diallyldimethylammonium chloride.
  • a polymer, vinylpyrrolidone-N, N-dimethylaminoethyl methacrylic acid copolymer and the like can be suitably used as the cationic polymer containing a quaternary ammonium group.
  • cationic polymers such as PAS-M-1, PAS-M-1L, PAS-H-1L, PAS-H-5L, PAS-H-10L (Knit-Bo Medical). Co., Ltd.), H. C. Polymer 1S (M), H.I. C. Polymer 1N (M), H.P. C. Examples thereof include polymer 1NS (manufactured by Osaka Organic Chemical Industry Co., Ltd.).
  • the above cationic polymers may be used alone or in combination of two or more.
  • the content of the cationic polymer having a tertiary amino group or its cation (salt) or quaternary ammonium group in the water-dispersible cationic urethane resin-containing layer is not particularly limited as long as the effect of the present invention is exhibited.
  • the mass ratio of the cationic polymer is preferably 0.1 to 5.0 in terms of solid content ratio (cationic polymer / water-dispersible cationic urethane resin) with respect to the water-dispersible cationic urethane resin. It is more preferably 2 to 4.0, and further preferably 0.2 to 2.0.
  • the mass ratio of the cationic polymer in the water-dispersible cationic urethane resin-containing layer to the water-dispersible cationic urethane resin is 0.1 or more, the color suppressing effect is excellent. Excellent resistance.
  • the mass ratio of at least one cationic polymer is preferably in the above range, and is in the above range for all water-dispersible cationic urethane resin-containing layers. It is more preferable.
  • the weight average molecular weight of the cationic polymer is not particularly limited, but is preferably 5,000 to 800,000, more preferably 5,000 to 200,000, and 20,000 to 30,000. More preferably. In the present specification, the value measured by gel permeation chromatography (GPC) is adopted as the value of “weight average molecular weight”.
  • the water-dispersible cationic urethane resin-containing layer contains a refractive index adjuster.
  • the same refractive index adjusting agent as the above-described high refractive index layer and low refractive index layer can be used, but when the water-dispersible cationic urethane resin-containing layer is a high refractive index layer, the refractive index adjusting agent is Zirconium oxide particles are preferred from the viewpoints of refractive index, transparency, and light stability.
  • the refractive index adjusting agent is preferably silicon oxide particles. Since the silicon oxide particles have a large interaction with the water-soluble resin, when the coating liquid is applied in multiple layers, interlayer mixing with the adjacent refractive index layer can be suppressed, and an optical reflection film with less haze can be obtained.
  • Water-soluble resin The water-dispersible cationic urethane resin-containing layer in the optical reflective film of the present invention contains a water-soluble resin.
  • a water-soluble resin those similar to the above-described high refractive index layer and low refractive index layer can be used.
  • the average degree of polymerization of the water-soluble resin in the water-dispersible cationic urethane resin-containing layer is 1500 to 6000, more preferably 4000 to 6000.
  • the average degree of polymerization of the water-soluble resin in the water-dispersible cationic urethane resin-containing layer is more preferably 4000 to 5000, and still more preferably 4500 to 5000. If the average degree of polymerization of the water-soluble resin is 1500 or more, it is possible to suppress the occurrence of haze due to diffusion of the water-soluble resin even when applied by the simultaneous multilayer coating method.
  • the average degree of polymerization of the water-soluble resin is 6000 or less, the viscosity of the coating solution does not become too high, which is suitable for the production of a dielectric multilayer film by coating.
  • the water-soluble resin in the water-dispersible cationic urethane resin-containing layer is preferably polyvinyl alcohol.
  • the saponification degree of polyvinyl alcohol is, for example, 70 to 99.5 mol%, and is preferably 80 to 95 mol%, more preferably 85 to 90 mol% from the viewpoint of further suppressing haze.
  • the degree of polymerization of polyvinyl alcohol can be measured according to Japanese Industrial Standard JIS K6726: 1994.
  • At least one of the high refractive index layer and the low refractive index layer constituting the dielectric multilayer film may be a water-dispersible cationic urethane resin-containing layer.
  • the lowermost layer on the substrate side or the uppermost layer that is the farthest from the substrate is preferably a water-dispersible cationic urethane resin-containing layer.
  • the uppermost layer of the dielectric multilayer film is used as an optical reflector by being bonded to a substrate such as glass through an adhesive layer, for example, when the layer expands or contracts due to adsorption or desorption of moisture in the environment, The stress accompanying it tends to concentrate. For this reason, it is effective to improve the weather resistance of the optical reflective film by disposing a water-dispersible cationic urethane resin-containing layer capable of suppressing the adsorption and desorption of moisture in the environment as the uppermost layer.
  • the lowermost layer in contact with the substrate is a water-dispersible cationic urethane resin-containing layer among the refractive index layers constituting the dielectric multilayer film.
  • the lowermost layer of the dielectric multilayer film is a layer in which the stress associated with the expansion and contraction of the layer due to the adsorption and desorption of moisture in the environment compared to the inner layer tends to concentrate. It is preferable to use a water-dispersible cationic urethane resin-containing layer. More preferably, both the uppermost layer and the lowermost layer are water-dispersible cationic urethane resin-containing layers.
  • the uppermost layer and the lowermost layer of the dielectric multilayer film are low refractive index layers, and all the low refractive index layers are water-dispersible cationic urethane resin-containing layers.
  • the average degree of polymerization of the water-soluble resin in the water-dispersible cationic urethane resin-containing layer is 4000 to 6000, even if all the low-refractive index layers contain the water-dispersible cationic urethane resin, haze Is unlikely to occur.
  • the thickness of the water-dispersible cationic urethane resin-containing layer is not particularly limited, but when the water-dispersible cationic urethane resin-containing layer is a high refractive index layer, the thickness per layer is 20 to 800 nm. It is preferably 50 to 500 nm. Further, when the water-dispersible cationic urethane resin-containing layer is a low refractive index layer, the thickness per layer is preferably 20 to 800 nm, and more preferably 50 to 500 nm.
  • the optical reflective film according to the present invention is an infrared shielding film that reflects infrared light, it is possible to design a large difference in refractive index between the low refractive index layer and the high refractive index layer with a small number of layers. It is preferable from the viewpoint that the infrared reflectance can be increased.
  • the difference in refractive index between the adjacent low refractive index layer and high refractive index layer may be 0.15 or more. Preferably, it is 0.2 or more, more preferably 0.21 or more.
  • the refractive index difference between the high refractive index layer and the low refractive index layer in all the laminated bodies is within the above-mentioned preferable range.
  • the refractive index layers constituting the uppermost layer and the lowermost layer of the dielectric multilayer film may have a configuration outside the above preferred range.
  • the transmittance in the visible light region shown in JIS R3106-1998 is preferably 50% or more, more preferably 75% or more, and further preferably 85% or more. is there.
  • the region having a wavelength of 900 nm to 1400 nm has a region with a reflectance exceeding 50%.
  • the number of refractive index layers of the dielectric multilayer film (total number of high refractive index layers and low refractive index layers) is, for example, 6 to 500 layers, and 6 to 300 layers. Is preferred. In particular, when prepared by a wet film forming method, 6 to 50 layers are preferable, 8 to 40 layers are more preferable, 9 to 30 layers are further preferable, and 11 to 31 layers are preferable. It is particularly preferred. It is preferable that the number of refractive index layers of the dielectric multilayer film is in the above range because excellent heat shielding performance and transparency, suppression of film peeling and cracking, and the like can be realized. When the dielectric multilayer film has a plurality of high refractive index layers and / or low refractive index layers, each high refractive index layer and / or each low refractive index layer is the same, but different. It may be a thing.
  • the thickness per layer of the high refractive index layer is preferably 20 to 800 nm, and more preferably 50 to 500 nm. Further, the thickness per layer of the low refractive index layer is preferably 20 to 800 nm, and more preferably 50 to 500 nm.
  • the composition when measuring the thickness per layer, the composition may change continuously without having a clear interface at the boundary between the high refractive index layer and the low refractive index layer.
  • the above composition can be observed from the concentration profile of the refractive index adjusting agent.
  • the concentration profile of the refractive index adjusting agent is etched from the surface in the depth direction using a sputtering method, and is sputtered at a rate of 0.5 nm / min using the XPS surface analyzer with the outermost surface as 0 nm. It can be seen by measuring the atomic composition ratio. Further, the laminated film may be cut and the cut surface may be confirmed by measuring the atomic composition ratio with an XPS surface analyzer.
  • the XPS surface analyzer is not particularly limited, and any model can be used.
  • the XPS surface analyzer for example, ESCALAB-200R manufactured by VG Scientific, Inc. can be used. Mg is used for the X-ray anode, and measurement is performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA).
  • the optical reflective film according to the present invention may have an adhesive layer.
  • This pressure-sensitive adhesive layer is usually provided on the surface of the dielectric multilayer film opposite to the substrate, and a known release paper or separator may be further provided.
  • the configuration of the adhesive layer is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent, and the like is used.
  • the pressure-sensitive adhesive for example, a polyester-based pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a polyvinyl acetate-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, nitrile rubber, or the like is used.
  • the optical reflective film of the present invention When the optical reflective film of the present invention is bonded to a window glass, water is sprayed on the window, and a method of applying the adhesive layer of the optical reflective film to the wet glass surface, the so-called water pasting method is repositioned, repositioned, etc. From the viewpoint of, it is preferably used. For this reason, an acrylic pressure-sensitive adhesive that has a weak adhesive force in the presence of water is preferably used.
  • the acrylic pressure-sensitive adhesive used may be either solvent-based or emulsion-based, but is preferably a solvent-based pressure-sensitive adhesive because it is easy to increase the adhesive strength and the like, and among them, those obtained by solution polymerization are preferable.
  • the raw material for producing such a solvent-based acrylic pressure-sensitive adhesive by solution polymerization include, for example, acrylic acid esters such as ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and acryl acrylate as main monomers serving as a skeleton, As a comonomer to improve cohesive strength, vinyl acetate, acrylonitrile, styrene, methyl methacrylate, etc., to further promote crosslinking, to give stable adhesive strength, and to maintain a certain level of adhesive strength even in the presence of water
  • the functional group-containing monomer include methacrylic acid, acrylic acid, itaconic acid, hydroxyethyl methacrylate, and glycid
  • acrylic pressure-sensitive adhesives examples include, for example, Coponil (registered trademark) series (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
  • additives for example, stabilizers, surfactants, infrared absorbers, ultraviolet absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, colorants, dyes Further, an adhesion adjusting agent or the like can be contained.
  • an ultraviolet absorber when used for window sticking, the addition of an ultraviolet absorber is effective in order to suppress deterioration of the optical reflection film due to ultraviolet rays.
  • the method for applying the adhesive is not particularly limited, and any known method can be used, for example, bar coating method, die coater method, comma coating method, gravure roll coater method, blade coater method, spray coater method, An air knife coating method, a dip coating method, a transfer method, and the like are preferably mentioned, and they can be used alone or in combination. However, it is preferable to carry out a roll method continuously from the viewpoint of economy and productivity. These can be appropriately coated with a coating solution in which the pressure-sensitive adhesive can be dissolved or dispersed, and known solvents can be used.
  • the thickness of the adhesive layer is preferably in the range of usually about 1 to 100 ⁇ m from the viewpoint of the adhesive effect, the drying speed and the like.
  • the adhesive strength is preferably 2 to 30 N / 25 mm, more preferably 4 to 20 N / 25 mm, as measured by a 180 ° peel test described in JIS K6854 (1999).
  • the adhesive layer may be formed directly on the dielectric multilayer film by the previous coating method.
  • the adhesive layer may be applied to a release film and dried, and then the dielectric multilayer film is bonded.
  • the adhesive may be transferred.
  • the drying temperature at this time is preferably such that the residual solvent is reduced as much as possible.
  • the drying temperature and time are not specified, but a drying time of 10 seconds to 5 minutes is preferably provided at a temperature of 50 to 150 ° C. Is good.
  • a hard coat layer containing a resin that is cured by heat, ultraviolet rays, or the like may be laminated as a surface protective layer for improving the scratch resistance.
  • a preferable example is a form in which a dielectric multilayer film and an adhesive layer are laminated in this order on the substrate surface, and a hard coat layer is coated on the substrate surface on the side opposite to the side where these layers are laminated. Can be mentioned.
  • curable resin used in the hard coat layer examples include a thermosetting resin and an ultraviolet curable resin.
  • an ultraviolet curable resin is preferable because it is easy to mold, and among them, those having a pencil hardness of at least 2H. More preferred.
  • curable resins can be used alone or in combination of two or more.
  • ultraviolet curable resin examples include (meth) acrylate, urethane acrylate, polyester acrylate, epoxy acrylate, epoxy resin, and oxetane resin, and these can also be used as a solvent-free resin composition.
  • the ultraviolet curable resin it is preferable to add a photopolymerization initiator to accelerate curing.
  • Photoinitiators include acetophenones, benzophenones, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds, thiuram compounds, fluoroamine compounds Etc. are used.
  • Specific examples of the photopolymerization initiator include 2,2′-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxycyclohexyl phenyl ketone, 1-hydroxydimethylphenyl ketone, 2-methyl-4′-methylthio-2-mori.
  • Acetophenones such as holinopropiophenone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone 1, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyldimethylletal, etc.
  • These photopolymerization initiators may be used alone, in combination of two or more, or in a eutectic mixture.
  • acetophenones are preferably used from the viewpoints of stability of the curable composition and polymerization reactivity.
  • photopolymerization initiators Commercially available products may be used as such photopolymerization initiators, and preferred examples include Irgacure (registered trademark) 819, 184, 907, 651 manufactured by BASF Japan Ltd., for example.
  • Irgacure registered trademark 819, 184, 907, 651 manufactured by BASF Japan Ltd., for example.
  • additives for example, stabilizers, surfactants, infrared absorbers, ultraviolet absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, colorants, A pigment
  • the thickness of the hard coat layer is preferably from 0.1 ⁇ m to 50 ⁇ m, more preferably from 1 to 20 ⁇ m, from the viewpoints of improving the hard coat properties and improving the transparency of the optical reflection film.
  • the method for forming the hard coat layer is not particularly limited. For example, after preparing a hard coat layer coating solution containing the above components, the coating solution is applied with a wire bar or the like, and the coating solution is cured with heat and / or UV. And a method of forming a hard coat layer.
  • the optical reflective film according to the present invention may have a layer (other layers) other than the layers described above.
  • an intermediate layer can be provided as the other layer.
  • the “intermediate layer” means a layer between the base material and the dielectric multilayer film, or a layer between the base material and the hard coat layer.
  • the constituent material of the intermediate layer include polyester resin, polyvinyl alcohol resin, polyvinyl acetate resin, polyvinyl acetal resin, acrylic resin, urethane resin, and the like. Any of them may be used as long as they are satisfied.
  • the glass transition temperature (Tg) of the intermediate layer is preferably 30 to 120 ° C. because sufficient weather resistance can be obtained, and more preferably in the range of 30 to 90 ° C.
  • additives for example, stabilizers, surfactants, infrared absorbers, ultraviolet absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, colorants, pigments, An adhesion regulator or the like can also be contained.
  • At least 1 unit comprised from a high refractive index layer and a low refractive index layer is formed on a base material, and a high refractive index layer or a low refractive index is formed. Any method can be used as long as at least one of the layers can be the above-described water-dispersible cationic urethane resin-containing layer.
  • a laminate dielectric multilayer film
  • a high refractive index layer and a low refractive index layer include the following: (1) A high refractive index layer coating solution is applied onto a substrate and dried to form a high refractive index layer, and then a low refractive index layer coating solution is applied and dried.
  • Forming a low refractive index layer and forming an optical reflective film (2) applying a low refractive index layer coating solution on a substrate and drying to form a low refractive index layer; A method of forming a high refractive index layer by applying a layer coating solution and drying to form an optical reflective film; (3) alternating a high refractive index layer coating solution and a low refractive index layer coating solution on a substrate A method of forming an optical reflective film comprising a high refractive index layer and a low refractive index layer; (4) a high refractive index layer coating solution and a low refractive index layer; A method of forming an optical reflective film including a high refractive index layer and a low refractive index layer by simultaneously applying a coating layer with a coating solution and drying;
  • the method (4) which is a simpler manufacturing process, is preferable. That is, it is preferable that the method for producing an optical reflective film of the present invention includes laminating the high refractive index layer and the low refractive index
  • the layers are stacked in an undried liquid state, so inter-layer mixing is more likely to occur.
  • the water-soluble resin is polyvinyl alcohol
  • the saponification degree of the polyvinyl alcohol contained in the high refractive index layer is different from the saponification degree of the polyvinyl alcohol contained in the low refractive index layer, the polyvinyl alcohol resin having a different saponification degree. It is known that the compatibility of is low.
  • Examples of the coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a curtain coating method, or US Pat. Nos. 2,761,419 and 2,761,791.
  • a slide bead coating method using an hopper, an extrusion coating method, or the like is preferably used.
  • the solvent for preparing the high refractive index layer coating solution and the low refractive index layer coating solution is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
  • an aqueous solvent can be used in order to use a water-soluble resin. Compared to the case where an organic solvent is used, the aqueous solvent does not require a large-scale production facility, so that it is preferable in terms of productivity and also in terms of environmental conservation.
  • the organic solvent examples include alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether, Examples thereof include ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is preferably an aqueous solvent, more preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and water is particularly preferable.
  • esters such as e
  • the content of water in the mixed solvent is preferably 80 to 99.9% by mass, based on 100% by mass of the entire mixed solvent, and preferably 90 to 99%. More preferably, it is 5 mass%.
  • volume fluctuation due to solvent volatilization can be reduced, handling is improved, and by setting it to 99.9% by mass or less, homogeneity at the time of liquid addition is increased and stable. This is because the obtained liquid properties can be obtained.
  • the concentration of the water-soluble resin in the high refractive index layer coating solution is preferably 0.5 to 10% by mass.
  • concentration of the refractive index adjusting agent in the high refractive index layer coating solution is preferably 1 to 50% by mass.
  • the concentration of the water-soluble resin in the low refractive index layer coating solution is preferably 0.5 to 10% by mass.
  • concentration of the refractive index adjusting agent in the low refractive index layer coating solution is preferably 1 to 50% by mass.
  • the method for preparing the high refractive index layer coating solution and the low refractive index layer coating solution is not particularly limited, and examples thereof include a method of adding a refractive index adjusting agent, a water-soluble resin, a curing agent and the like to an aqueous solvent and stirring and mixing. It is done. At this time, the order of addition of the respective components is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed at one time while stirring.
  • the above-described high refractive index layer coating solution contains a water-dispersible cationic urethane resin and a tertiary amino group or Add the cation (salt) or cationic polymer with quaternary ammonium group to prepare water-dispersible cationic urethane resin-containing layer coating solution (water-dispersible cationic urethane resin-containing high refractive index layer coating solution) do it.
  • a water-dispersible cationic urethane resin-containing layer that functions as a high refractive index layer can be obtained by applying and drying the water-dispersible cationic urethane resin-containing layer coating solution.
  • the above-described low refractive index layer coating liquid is mixed with a water-dispersible cationic urethane resin and a tertiary grade.
  • Water-dispersible cationic urethane resin-containing layer coating solution water-dispersible cationic urethane resin-containing low refractive index layer coating solution by adding an amino group or a cation (salt) thereof or a cationic polymer having a quaternary ammonium group ).
  • a water-dispersible cationic urethane resin-containing layer functioning as a low refractive index layer can be obtained by applying and drying the water-dispersible cationic urethane resin-containing layer coating solution.
  • the concentration of the water-dispersible cationic urethane resin in the water-dispersible cationic urethane resin-containing layer coating solution, and the concentration of the tertiary amino group or its cationic (salt) or cationic polymer having a quaternary ammonium group are Although not particularly limited, the content (solid content) of the water-dispersible cationic urethane resin in the water-dispersible cationic urethane resin-containing layer, and the mass ratio of the cationic polymer to the water-dispersible cationic urethane resin (solid content ratio) ) Is preferably adjusted to be in the above range.
  • the optical reflective film of the present invention has a water-soluble resin, a refractive index adjusting agent, a water-dispersible cationic urethane resin, and a tertiary amino group or a cation (salt) thereof or a quaternary ammonium group.
  • the method includes a step of preparing a coating solution by dissolving or dispersing a cationic polymer in an aqueous solvent, and a step of forming the water-dispersible cationic urethane resin-containing layer by coating the coating solution.
  • the temperature of the high refractive index layer coating solution and the low refractive index layer coating solution during simultaneous multilayer coating is preferably a temperature range of 25 to 60 ° C., and a temperature range of 30 to 45 ° C. Is more preferable.
  • a temperature range of 25 to 60 ° C. is preferable, and a temperature range of 30 to 45 ° C. is more preferable.
  • the viscosity of the high refractive index layer coating solution and the low refractive index layer coating solution during simultaneous multilayer coating is not particularly limited.
  • the preferable temperature range of the coating liquid is preferably 5 to 160 mPa ⁇ s, more preferably 60 to 140 mPa ⁇ s.
  • the preferable temperature range of the coating solution is preferably 5 to 1200 mPa ⁇ s, more preferably 25 to 500 mPa ⁇ s. If it is the range of such a viscosity, simultaneous multilayer coating can be performed efficiently.
  • the viscosity at 15 ° C. of the coating solution is preferably 100 mPa ⁇ s or more, more preferably 100 to 30,000 mPa ⁇ s, and further preferably 2,500 to 30,000 mPa ⁇ s.
  • the conditions for the coating and drying method are not particularly limited.
  • first, either one of the high refractive index layer coating solution and the low refractive index layer coating solution heated to 30 to 60 ° C. is used.
  • the other coating solution is coated on this layer and dried to form a laminated film precursor (unit).
  • the number of units necessary for expressing the desired optical reflection performance is sequentially applied and dried by the above method to obtain a laminated film precursor.
  • drying it is preferable to dry the formed coating film at 30 ° C. or higher.
  • drying is preferably performed in the range of a wet bulb temperature of 5 to 50 ° C.
  • a film surface temperature of 5 to 100 ° C. preferably 10 to 50 ° C.
  • hot air of 40 to 60 ° C. is blown for 1 to 5 seconds. dry.
  • warm air drying, infrared drying, and microwave drying are used.
  • drying in a multi-stage process is preferable to drying in a single process, and it is more preferable to set the temperature of the constant rate drying section ⁇ the temperature of the rate-decreasing drying section.
  • the temperature range of the constant rate drying section is preferably 30 to 60 ° C.
  • the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
  • the conditions for the coating and drying method for simultaneous multilayer coating are as follows: the high refractive index layer coating solution and the low refractive index layer coating solution are heated to 30 to 60 ° C., and the high refractive index layer coating is performed on the substrate.
  • the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C. and then dried at 10 ° C. or higher. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. For example, it is dried by blowing warm air of 40 to 80 ° C. for 1 to 5 seconds.
  • coating it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
  • the set means that the viscosity of the coating composition is increased by means such as lowering the temperature by applying cold air or the like to the coating film, the fluidity of the substances in each layer and in each layer is reduced, or the gel It means the process of converting.
  • a state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
  • the time (setting time) from the time of application until the setting is completed by applying cold air is preferably within 5 minutes, and more preferably within 2 minutes. Further, the lower limit time is not particularly limited, but it is preferable to take 45 seconds or more.
  • the set time is adjusted by adjusting the concentration of polyvinyl alcohol and inorganic oxide particles, or adding other components such as various known gelling agents such as gelatin, pectin, agar, carrageenan and gellan gum. Can be adjusted.
  • the temperature of the cold air is preferably 0 to 25 ° C, more preferably 5 to 10 ° C.
  • the time for which the coating film is exposed to cold air is preferably 10 to 360 seconds, more preferably 10 to 300 seconds, and further preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
  • the coating thickness of the high refractive index layer coating solution and the low refractive index layer coating solution may be applied so as to have a preferable dry thickness as described above.
  • optical reflective film of the present invention can be applied to a wide range of fields. Therefore, one embodiment of the present invention is an optical reflector in which the above-described optical reflective film is provided on at least one surface of a substrate.
  • film for window pasting such as heat ray reflecting film that gives heat ray reflection effect, film for agricultural greenhouses, etc. Etc., mainly for the purpose of improving the weather resistance.
  • the optical reflective film according to the present invention is suitable for a member that is bonded to a substrate such as glass or a glass substitute resin through the above-mentioned adhesive layer.
  • the substrate include, for example, glass, polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin, epoxy resin, melamine resin, and phenol.
  • examples thereof include resins, diallyl phthalate resins, polyimide resins, urethane resins, polyvinyl acetate resins, polyvinyl alcohol resins, styrene resins, vinyl chloride resins, metal plates, and ceramics.
  • the type of resin may be any of a thermoplastic resin, a thermosetting resin, and an ionizing radiation curable resin, and two or more of these may be used in combination.
  • the substrate can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding or the like.
  • the thickness of the substrate is not particularly limited, but is usually 0.1 mm to 5 cm.
  • the adhesive layer that bonds the optical reflection film and the substrate is preferably installed so that the optical reflection film is on the sunlight (heat ray) incident surface side when bonded to a window glass or the like. Further, when the optical reflection film is sandwiched between the window glass and the base material, it can be sealed from ambient gas such as moisture, which is preferable for durability. Even if the optical reflective film of the present invention is installed outdoors or on the outside of a vehicle (for external application), it is preferable because of environmental durability.
  • Laminated glass is a member in which the optical reflective film according to the present invention is bonded to a glass substrate via an intermediate film.
  • Laminated glass can be used for architectural applications, residential applications, automobile applications, and the like.
  • the laminated glass has a structure in which an optical reflection film is sandwiched between two sheet glasses using two intermediate films.
  • the optical reflection film is the optical reflection film of the present invention described above.
  • the optical reflective film may have a configuration in which a reflective layer is laminated on one surface of a base material and a hard coat layer is coated on the other surface.
  • the optical reflective film is bonded to the other surface of the base material with a reflective layer laminated on one surface and the other surface of the base material with a hard coat layer laminated on one surface with an adhesive layer. It may be a configuration.
  • any film can be used as long as the film has an adhesive performance for bonding the optical reflection film and the glass plate, but it may contain a thermoplastic resin.
  • the pair of intermediate films may be the same type or different types.
  • thermoplastic resins include ethylene-vinyl acetate copolymer (EVA) and polyvinyl butyral (PVB), with PVB being preferred.
  • EVA ethylene-vinyl acetate copolymer
  • PVB polyvinyl butyral
  • infrared absorbers for example, fine particles that absorb infrared rays
  • ultraviolet absorbers for example, fine particles that absorb infrared rays
  • ultraviolet absorbers antioxidants, antistatic agents, thermal stabilizers, lubricants, fillers, colorants, dyes, adhesion modifiers Etc.
  • the fine particles that absorb infrared rays include metal fine particles such as Ag, Al, and Ti, metal nitride, metal oxide fine particles, cesium-doped tungsten oxide (CWO), ITO, ATO, and aluminum-zinc composite oxide ( There are conductive transparent metal oxide fine particles such as AZO), gallium doped zinc oxide (GZO), and indium zinc composite oxide (IZO). Performance can be improved. In particular, conductive transparent metal oxide fine particles such as ITO, ATO, AZO, GZO, and IZO are preferable.
  • the type of the pair of glass plates sandwiching the optical reflection film and the pair of intermediate films is not particularly limited, and may be selected depending on the light transmission performance and heat insulation performance required for the application. Either a glass plate or an organic-inorganic hybrid glass plate may be used.
  • the inorganic glass plate is not particularly limited, and various inorganic glass plates such as a float glass plate, a polished glass plate, a mold glass plate, a netted glass plate, a lined glass plate, a heat ray absorbing glass plate, a colored glass plate, etc. Is mentioned.
  • Examples of the organic glass plate include glass plates made of polycarbonate resin, polystyrene resin, polymethyl methacrylate resin, and the like.
  • These organic glass plates may be a laminate formed by laminating a plurality of sheet-shaped ones made of the resin.
  • Examples of the organic / inorganic hybrid glass plate include a hybrid glass plate in which silica is dispersed in a resin such as an epoxy resin.
  • the color of the glass plate is not limited to the transparent glass plate, and various color glass plates such as general-purpose green, brown, and blue used in vehicles and the like can be used.
  • the glass plate may be of the same type or in combination of two or more.
  • the thickness of the glass plate is preferably about 1 to 10 mm in consideration of the strength and the transmittance of infrared light in the visible light region.
  • the curved glass plate preferably has a radius of curvature of 0.5 to 2.0 m. If the curvature radius of a glass plate is this range, an optical reflection film can follow the curved-surface shape of glass.
  • Insulation performance and solar heat shielding performance of optical reflective film or infrared shield are generally JIS R 3209 (1998) (multi-layer glass), JIS R 3106 (1998) (transmittance / reflectance / radiation of sheet glass) Rate / solar heat acquisition rate test method), JIS R 3107 (1998) (calculation method of thermal resistance of plate glass and heat transmissivity in architecture).
  • Measure solar transmittance, solar reflectance, emissivity, and visible light transmittance (1) Using a spectrophotometer with a wavelength (300 to 2500 nm), measure the spectral transmittance and spectral reflectance of various single glass plates. The emissivity is measured using a spectrophotometer having a wavelength of 5.5 to 50 ⁇ m. In addition, a predetermined value is used for the emissivity of float plate glass, polished plate glass, mold plate glass, and heat ray absorbing plate glass. (2) The solar transmittance, solar reflectance, solar absorption rate, and corrected emissivity are calculated according to JIS R 3106 (1998) by calculating the solar transmittance, solar reflectance, solar absorption rate, and vertical emissivity.
  • the corrected emissivity is obtained by multiplying the vertical emissivity by the coefficient shown in JIS R 3107 (1998).
  • the heat insulation and solar heat shielding properties are calculated by (1) calculating the thermal resistance of the multilayer glass according to JIS R 3209 (1998) using the measured thickness value and the corrected emissivity. However, when the hollow layer exceeds 2 mm, the gas thermal conductance of the hollow layer is determined according to JIS R 3107 (1998).
  • the heat insulation is obtained by adding a heat transfer resistance to the heat resistance of the double-glazed glass and calculating the heat flow resistance.
  • the solar heat shielding property is calculated by calculating the solar heat acquisition rate according to JIS R 3106 (1998) and subtracting it from 1.
  • SOFTAZOLIN registered trademark
  • LMEB-R manufactured by Kawaken Fine Chemical Co., Ltd.
  • the refractive index of the film coated with the high refractive index layer coating solution 1 was 1.75.
  • the measuring method of a refractive index is as follows (hereinafter the same).
  • SOFTAZOLIN registered trademark
  • LMEB-R manufactured by Kawaken Fine Chemical Co., Ltd.
  • silica-attached titanium dioxide sol a silica-attached titanium dioxide sol containing rutile titanium dioxide was prepared as follows.
  • a titanium dioxide sol (hereinafter, silica-attached titanium dioxide sol) (volume average particle diameter: 9 nm) was obtained.
  • silica prepared above adheres in 20 parts by mass of a 10% by mass modified PVA aqueous solution (AZF8035W, average polymerization degree: 300, saponification degree: 98.5%, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.). 20.0% by mass silica-attached titanium dioxide sol containing the rutile-type titanium oxide particles (volume average particle size: 9 nm) was mixed and dispersed, and finished to 90 parts by mass with pure water to prepare a titanium oxide dispersion.
  • a 10% by mass modified PVA aqueous solution (AZF8035W, average polymerization degree: 300, saponification degree: 98.5%, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.). 20.0% by mass silica-attached titanium dioxide sol containing the rutile-type titanium oxide particles (volume average particle size: 9 nm) was mixed and dispersed, and finished to 90 parts by mass with pure water to prepare a titanium oxide dispersion.
  • a 5% by mass aqueous polyvinyl alcohol solution (PVA224, average polymerization degree: 2400, saponification degree: 88%, manufactured by Kuraray Co., Ltd.) is added to and mixed with 90 parts by mass of the titanium oxide dispersion.
  • High-refractive index layer by adding 0.2 part by weight of 5% by weight aqueous solution of NIKKOL (registered trademark) CA-3475V (manufactured by Nikko Chemicals Co., Ltd.) as a neutral surfactant, and finally adding 180 parts by weight with pure water.
  • a coating solution 3 was prepared.
  • the refractive index of the film coated with the high refractive index layer coating solution 1 was 1.80.
  • ⁇ Preparation of low refractive index layer coating solution 1> In a stirring vessel, methyl diallylamine hydrochloride polymer (including cation of tertiary amine) PAS M-1 (weight average molecular weight 20,000, 50 mass% aqueous solution, manufactured by Nitto Bo Medical Co., Ltd.) 2.62 g and boric acid (3 mass) % Aqueous solution) was mixed. To this, 356.41 g of a 10% by mass aqueous solution of acidic colloidal silica (Snowtex (registered trademark) OXS, primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.) was added. This was heated to 40 ° C. with stirring.
  • acidic colloidal silica Snowtex (registered trademark) OXS, primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.
  • aqueous solution of polyvinyl alcohol (JP-45, average degree of polymerization, saponification degree: 86.5 to 89.5 mol%, manufactured by Nippon Bijutsu Poval Co., Ltd.) is a surfactant.
  • a mixed solution of 19.89 g of a 5% by weight aqueous solution of SOFTAZOLIN (registered trademark) LMEB-R (manufactured by Kawaken Fine Chemical Co., Ltd.) and 90 g of pure water was added and stirred at 40 ° C. to obtain a low refractive index layer coating solution 1 It was.
  • the refractive index of the film coated with the low refractive index layer coating solution 1 was 1.50.
  • methyl diallylamine hydrochloride polymer including cation of tertiary amine
  • PAS M-1 weight average molecular weight 20,000, 50 mass% aqueous solution, manufactured by Nitto Bo Medical Co., Ltd.
  • boric acid 3 mass) % Aqueous solution
  • the refractive index of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1 was 1.50.
  • the refractive index of the single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 2 was the same as that of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1.
  • the refractive index of the single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 3 was the same as that of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1.
  • the refractive index of the single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 4 was the same as that of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1.
  • the refractive index of the single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 5 was the same as that of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1.
  • the refractive index of the single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 6 was the same as that of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1.
  • the refractive index of the single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 7 was the same as that of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1.
  • the refractive index of the single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 8 was the same as that of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1.
  • the refractive index of the single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 9 was the same as that of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1.
  • the refractive index of the single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 10 was the same as that of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1.
  • the refractive index of the single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 11 was the same as that of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1.
  • the refractive index of the single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 12 was the same as that of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1.
  • the refractive index of the single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 13 was the same as that of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1.
  • the refractive index of a single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 14 was 1.50.
  • the refractive index of the single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 15 was the same as that of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1.
  • the refractive index of the single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 16 was the same as that of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1.
  • the refractive index of the single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 17 was the same as that of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1.
  • aqueous solution of polyvinyl alcohol PVA-224, average polymerization degree 2400, saponification degree 87-89 mol%, manufactured by Kuraray Co., Ltd.
  • 250.0 g 30 of water-dispersible cationic urethane resin (ester type)
  • Mass% aqueous dispersion Superflex (registered trademark) 620, average particle size 20 nm, Daiichi Kogyo Seiyaku Co., Ltd.
  • Surfactant Softazoline registered trademark
  • LMEB-R Kawaken Fine Chemical Co., Ltd.
  • the refractive index of the single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 18 was the same as that of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1.
  • the refractive index of the single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 19 was the same as that of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1.
  • the refractive index of the single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 20 was the same as that of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1.
  • polyaluminum chloride manufactured by Taki Chemical Co., Ltd., TAKIBINE (registered trademark) # 1500
  • colloidal silica SNOWTEX (registered trademark) OXS, average Particle size:
  • the silicon oxide dispersion was heated to 45 ° C., and 8 parts by mass of pure water and 188 parts by mass of unmodified polyvinyl alcohol (PVA235, average polymerization degree: 3500, saponification degree: 88%, manufactured by Kuraray Co., Ltd.) 4.0 wt% solution and 12.5 wt% cationic emulsion (UW-319SX, average particle size: 50 nm, Tg: 10 ° C, manufactured by Taisei Fine Chemical Co., Ltd.) are added and mixed.
  • PVA235 average polymerization degree: 3500
  • saponification degree: 88% manufactured by Kuraray Co., Ltd.
  • UW-319SX 12.5 wt% cationic emulsion
  • a cationic surfactant 1.90 parts by mass of a 5% by mass aqueous solution of NIKKOL (registered trademark) CA-3475V (manufactured by Nikko Chemicals Co., Ltd.) was added, and the water-dispersible cationic urethane resin-containing low content was added.
  • a refractive index layer coating solution 21 was obtained.
  • the refractive index of the single layer produced using the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 21 was the same as that of the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 14.
  • Example 1 Using a slide hopper coating apparatus capable of 19-layer multilayer coating, the above-prepared high refractive index layer coating solution 1, low refractive index layer coating solution 1, and water-dispersible cationic urethane resin-containing low refractive index layer coating solution 1 Were adjusted to 40 ° C., respectively. On the base material heated to 40 ° C, a polyethylene terephthalate film (Toyobo Co., Ltd., A4300: double-sided easy-adhesion layer) with a width of 160 mm and a thickness of 50 ⁇ m, the lowermost layer and the uppermost layer are low refractive index layers.
  • a polyethylene terephthalate film Toyobo Co., Ltd., A4300: double-sided easy-adhesion layer
  • the 19th layer is a low-refractive-index layer having a low refractive index layer and a water-dispersible cationic urethane resin-containing low-refractive index layer, except that each layer is a water-dispersible cationic urethane resin-containing low-refractive index layer.
  • a total of 19 layers were simultaneously applied so that the thickness of the high refractive index layer was 150 nm.
  • cold air of 10 ° C. was blown to set (thickening).
  • Example 1 After completion of the setting (thickening), warm air of 60 ° C. was blown and dried to produce an optical reflective film of Example 1 consisting of a total of 19 layers.
  • the film thickness is measured (confirmed) by cutting the optical reflection film sample and cutting the cut surface with an XPS surface analyzer using a high refractive index material (CeO 2 in Example 1) and a low refractive index material (SiO 2 , water dispersion). It was confirmed that the film thickness of each of the above layers was secured by measuring the abundance with PMSQ) in the cationic cationic urethane resin-containing layer.
  • Example 2 In Example 1 above, in place of the 19th layer from the substrate side, the first layer from the substrate side was the same as Example 1 except that the water-dispersible cationic urethane resin-containing low refractive index layer was used. Thus, an optical reflection film was produced.
  • Example 2 the coating liquid for constituting the water-dispersible cationic urethane resin-containing low refractive index layer is shown in Table 1 below from the water-dispersible cationic urethane resin-containing low refractive index layer coating liquid 1.
  • an optical reflection film was prepared in the same manner as in Example 2 except that the water-dispersible cationic urethane resin-containing low refractive index layer coating solutions 2 to 13 and 15 to 20 were prepared. did.
  • Example 15 In Example 14, except that the coating liquid for constituting the high refractive index layer was changed from the high refractive index layer coating liquid 1 to the high refractive index layer coating liquid 2 prepared above, Similarly, an optical reflection film was produced.
  • Example 16 the coating liquid for constituting the water-dispersible cationic urethane resin-containing low refractive index layer was prepared as described above from the water-dispersible cationic urethane resin-containing low refractive index layer coating liquid 13.
  • An optical reflective film was produced in the same manner as in Example 15 except that the cationic urethane resin-containing low refractive index layer coating solution 14 was changed.
  • Example 17 an optical reflective film was produced in the same manner as in Example 16 except that the first and 19th layers from the substrate side were water-dispersible cationic urethane resin-containing low refractive index layers. .
  • Example 18 In Example 16, an optical reflective film was produced in the same manner as in Example 16 except that all the low refractive index layers were water-dispersible cationic urethane resin-containing low refractive index layers.
  • Comparative Example 7 In Comparative Example 6, the water-dispersible cation prepared above from the water-dispersible cationic urethane resin-containing low refractive index layer coating solution 20 was used as the coating liquid for constituting the water-dispersible cationic urethane resin-containing low refractive index layer. The coating liquid for forming the high refractive index layer is changed from the high refractive index layer coating liquid 1 to the high refractive index layer coating liquid 3 prepared above. An optical reflective film was produced in the same manner as in Comparative Example 6 except that the change was made.
  • Comparative Example 8 In Comparative Example 7, an optical reflective film was produced in the same manner as Comparative Example 7 except that all the low refractive index layers were water-dispersible cationic urethane resin-containing low refractive index layers.
  • haze was measured according to JISK7136: 2000 using the haze meter (Nippon Denshoku Industries Co., Ltd. make, NDH5000).
  • a haze value of an optical reflection film it is preferable in it being 3.0% or less.
  • an adhesive layer was formed on the surface of the dielectric multilayer film laminated on the base material on the side opposite to the base material. Specifically, the following adhesive layer forming coating solution was applied to a silicone release surface of a separator NS23MA manufactured by Nakamoto Pax Co., Ltd. as a separator with a comma coater so that the dry film thickness was 10 ⁇ m. C. for 1 minute to form an adhesive layer. The film having the dielectric multilayer film formed thereon was bonded to this adhesive layer to form an adhesive layer on the dielectric multilayer film.
  • SP-PET peeling film
  • an optical reflecting film was attached to 6 cm ⁇ 12 cm glass via an adhesive layer.
  • SX-75 manufactured by Suga Test Instruments Co., Ltd.
  • the content of the cationic polymer in the water-dispersible cationic urethane resin-containing layer is 0.2 to 4.0 as a solid content ratio with respect to the water-dispersible cationic urethane resin.
  • the optical reflective films of Examples 5 to 8 in the range of 5 to 8 haze and coloring after the weather resistance test are suppressed, and in Examples 6 to 8 in the range of 0.2 to 2.0, the haze is further reduced.
  • the optically reflective film of Example 2 in which the content of the water-dispersible cationic urethane resin in the water-dispersible cationic urethane resin-containing layer is 2 to 20% by mass is haze and weather resistance. Excellent effect of suppressing coloration after property test.
  • the water-dispersible cationic urethane resin is a carbonate-based urethane resin as in Examples 13 to 18, the effect of suppressing cracks is higher.
  • the average degree of polymerization of the water-soluble resin is 4000 to 6000 as in Examples 14 to 18, the optical reflection film in which haze is suppressed even when the water-dispersible cationic urethane resin is included in a plurality of layers. was found to be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)

Abstract

【課題】水溶性樹脂を含む屈折率層を有する光学反射フィルムにおいて、長期間使用しても色調変動およびクラックの発生が少ない光学反射フィルムを提供する。 【解決手段】基材と、前記基材の一方の面上に配置された、低屈折率層と高屈折率層とが交互に積層されてなる誘電体多層膜と、を有し、前記低屈折率層および前記高屈折率層のうち少なくとも1層は、水溶性樹脂と、屈折率調整剤と、水分散性カチオン性ウレタン樹脂と、第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーと、を含む水分散性カチオン性ウレタン樹脂含有層である、光学反射フィルムである。

Description

光学反射フィルム
 本発明は、光学反射フィルムに関する。
 一般に、高屈折率層と低屈折率層とを、それぞれ光学的膜厚を調整して基材の表面に積層させた誘電体多層膜は、特定の波長の光を選択的に反射することが知られている。このような誘電体多層膜は、例えば、建築物の窓や車両用部材などに設置される光学反射フィルムとして利用されている。このような光学反射フィルムは、可視光線を透過し、近赤外線を選択的に遮蔽するが、各層の膜厚や屈折率を調整するだけで、反射波長をコントロールすることができ、紫外線や可視光を反射することが可能である。
 誘電体多層膜のような積層体の形成方法として、一般的には乾式製膜法で積層する方法があるが、乾式製膜法による誘電体多層膜の形成は、多くの製造コストを要するため、実用的ではない。実用的な方法としては、例えば、水溶性樹脂および無機微粒子の混合物を含む塗布液を、湿式塗布方式により塗布して積層する方法が挙げられる。特に、高屈折率層用の塗布液と低屈折率層用の塗布液とを同時重層塗布することによって製造する方法は、コストの面から優れている。
 しかしながら、水溶性樹脂を含む塗布液の塗布によって複数の層を形成し、積層した積層体では、水分の吸脱着が容易に発生することが知られている。水分の吸脱着により各層が収縮、膨張を繰り返すことで、経時によりクラックが発生してしまう。
 水溶性樹脂を含む積層体の耐水性を改善するために、例えば、特開2012-973号公報には、塗布液に架橋剤を含有させ、隣接する層どうしの界面において水溶性樹脂と架橋剤とを架橋させることで層間を密着させ、水分の混入を抑制する方法が開示されている。
 上記特開2012-973号公報のように、水溶性樹脂に架橋剤を組み合わせて用いることで、積層体の耐水性を向上させることができる。しかしながら、特開2012-973号公報に記載される方法では、塗布液の塗布乾燥後に未反応の架橋剤が残留するため、この架橋剤が経時で反応することで塗膜の後硬化による収縮が生じる。その結果、高湿環境中に長期間さらした際のクラックの発生に関しては、より悪化してしまうことがわかった。
 また、光学反射フィルムは、遮熱フィルムや合わせガラスとして用いられるため、強い太陽光に長時間曝される場合もある。このため、光学反射フィルムには長期間太陽光にさらされた場合であっても色調変動が少ないことが要求される。
 したがって、本発明は、上記事情を鑑みてなされたものであり、水溶性樹脂を含む屈折率層を有する光学反射フィルムにおいて、長期間使用しても色調変動やクラックの発生が少ない光学反射フィルムを提供することを目的とする。
 本発明者らは、上記の問題を解決すべく、鋭意研究を行った結果、下記構成を採ることにより本発明の目的が達成されることが判明した。
 すなわち、本発明の上記課題は、以下の手段により解決される。
 1.基材と、
 前記基材の一方の面上に配置された、低屈折率層と高屈折率層とが交互に積層されてなる誘電体多層膜と、を有し、
 前記低屈折率層および前記高屈折率層のうち少なくとも1層は、水溶性樹脂と、屈折率調整剤と、水分散性カチオン性ウレタン樹脂と、第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーと、を含む水分散性カチオン性ウレタン樹脂含有層である、光学反射フィルム。
 2.前記第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーの質量比が前記水分散性カチオン性ウレタン樹脂に対して固形分比で0.2~4.0である、前記1.に記載の光学反射フィルム。
 3.前記水分散性カチオン性ウレタン樹脂含有層における前記水分散性カチオン性ウレタン樹脂の含有量が、2~20質量%である、前記1.または2.に記載の光学反射フィルム。
 4.前記水分散性カチオン性ウレタン樹脂がカーボネート系ウレタン樹脂である、前記1.~3.のいずれか1項に記載の光学反射フィルム。
 5.前記水溶性樹脂の平均重合度が4000~6000である、前記1.~4.のいずれか1項に記載の光学反射フィルム。
 6.前記高屈折率層のうち少なくとも1層が、屈折率調整剤として酸化ジルコニウム粒子を含む水分散性カチオン性ウレタン樹脂含有層である、前記1.~5.のいずれか1項に記載の光学反射フィルム。
 7.前記低屈折率層のうち少なくとも1層が、屈折率調整剤として酸化ケイ素粒子を含む水分散性カチオン性ウレタン樹脂含有層である、前記1.~6.のいずれか1項に記載の光学反射フィルム。
 8.複数の低屈折率層が前記水分散性カチオン性ウレタン樹脂含有層である、前記1.~7.のいずれか1項に記載の光学反射フィルム。
 以下、本発明の実施の形態を説明する。
 本発明の一形態は、基材と、前記基材の一方の面上に配置された、低屈折率層と高屈折率層とが交互に積層されてなる誘電体多層膜と、を有し、前記低屈折率層および前記高屈折率層のうち少なくとも1層は、水溶性樹脂と、屈折率調整剤と、水分散性カチオン性ウレタン樹脂と、第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーと、を含む水分散性カチオン性ウレタン樹脂含有層である、光学反射フィルムである。
 本発明によれば、水溶性樹脂を含む屈折率層を有する光学反射フィルムにおいて、長期間使用しても色調変動およびクラックの発生が少ない光学反射フィルムが得られうる。
 本発明の光学反射フィルムは、高屈折率層および低屈折率層のうち少なくとも1つの屈折率層に水溶性樹脂を含有する。ここで、上述のように、水溶性樹脂を含む光学反射フィルムにおいては経時でクラックが発生する問題がある。
 そこで、本発明者らは、光学反射フィルムのクラック(割れ)について検討したところ、水溶性樹脂とともに、疎水性である水分散性カチオン性ウレタン樹脂を用いることで、屈折率層の膨張、収縮を低減でき、経時でのクラック発生を低減できることを見出した。水溶性樹脂に疎水性の水分散性カチオン性ウレタン樹脂を加えると、この樹脂が融着して造膜されたとき、水分散性カチオン性ウレタン樹脂を加えなかった場合と比べて、疎水性が強い膜が得られる。そのため、大気中の水分量変化による膜の膨張、収縮を低減できるため、クラックの発生が防止できるものと考えられる。また、水分散性カチオン性ウレタン樹脂を含有することにより塗布膜が柔軟化し、大気中の水分量変化による膜の膨張、収縮の際に塗膜にかかる力が低減されうる。さらに、ウレタン結合を含む樹脂は他の樹脂に比べて、同じTg値において破断伸度が大きいことが知られており、このような特性がクラック耐性に対して有利に働いていると考えられる。
 また、一般にウレタン樹脂はウレタン結合の光劣化により着色するため、アクリル樹脂などと比べて着色しやすいが、水分散性カチオン性ウレタン樹脂と第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーとを合わせて用いることで、塗膜の着色も防止することができることがわかった。これは、水分散性カチオン性ウレタン樹脂およびカチオン性基である第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基が電子吸引性を持つことで、光または熱により発生した過酸化ラジカルに何らかの作用をして、酸化反応を停止または遅延させていることによると推測される。なお、上記機構は推測によるものであり、本発明はこれに何ら制限されるものではない。
 以下、本発明の光学反射フィルムの構成要素について、詳細に説明する。なお、以下では、低屈折率層および高屈折率層を区別しない場合は、両者を含む概念として「屈折率層」と称する。
 また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で測定する。
 〔光学反射フィルム〕
 本発明に係る光学反射フィルムは、基材と、前記基材の一方の面上に配置された、低屈折率層と高屈折率層とが交互に積層されてなる誘電体多層膜と、を有する。
 [基材]
 本発明に係る光学反射フィルムは、誘電体多層膜などを支持するための基材を含む。基材としては、種々の樹脂フィルムを用いることができ、ポリオレフィンフィルム(ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等)、ポリ塩化ビニル、3酢酸セルロース等を用いることができ、好ましくはポリエステルフィルムである。ポリエステルフィルム(以降ポリエステルと称す)としては、特に限定されるものではないが、ジカルボン酸成分とジオール成分とを主要な構成成分とするフィルム形成性を有するポリエステルであることが好ましい。
 主要な構成成分のジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルエタンジカルボン酸、シクロヘキサンジカルボン酸、ジフェニルジカルボン酸、ジフェニルチオエーテルジカルボン酸、ジフェニルケトンジカルボン酸、フェニルインダンジカルボン酸などを挙げることができる。また、ジオール成分としては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、シクロヘキサンジメタノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビスフェノールフルオレンジヒドロキシエチルエーテル、ジエチレングリコール、ネオペンチルグリコール、ハイドロキノン、シクロヘキサンジオールなどを挙げることができる。これらを主要な構成成分とするポリエステルの中でも透明性、機械的強度、寸法安定性などの点から、ジカルボン酸成分として、テレフタル酸や2,6-ナフタレンジカルボン酸、ジオール成分として、エチレングリコールや1,4-シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。中でも、ポリエチレンテレフタレートやポリエチレンナフタレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、およびこれらのポリエステルの2種以上の混合物を主要な構成成分とするポリエステルが好ましい。
 本発明に用いられる基材の厚みは、10~300μm、特に20~150μmであることが好ましい。また、基材は、2枚重ねたものであってもよく、この場合、その種類が同じでも異なってもよい。
 基材は、JIS R3106-1998で示される可視光領域の透過率が85%以上であることが好ましく、特に90%以上であることが好ましい。基材が上記透過率以上であることにより、積層フィルムとしたときのJIS R3106-1998で示される可視光領域の透過率を50%以上(上限:100%)にするという点で有利であり、好ましい。
 また、上記樹脂等を用いた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。
 基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2~10倍が好ましい。
 なお、上記の基材には、添加剤として、例えば安定剤、界面活性剤、赤外線吸収剤、紫外線吸収剤、難燃剤、帯電防止剤、抗酸化剤、熱安定剤、滑剤、充填剤、着色剤、色素、接着調整剤等を含有させることもできる。
 [誘電体多層膜]
 誘電体多層膜は、低屈折率層と高屈折率層とが交互に積層されてなる構成を有するものであり、低屈折率層と高屈折率層とからなるユニットを少なくとも1つ有する。誘電体多層膜がこのように異なる屈折率を有する屈折率層を含む構成であることにより、所定の波長を有する光(例えば、赤外光)が入射した場合に、少なくともこの光の一部を反射して遮蔽効果(ひいては赤外光の場合には遮熱効果)を発揮することができる。
 本形態において、誘電体多層膜を構成する屈折率層が、低屈折率層であるか高屈折率層であるかは、隣接する屈折率層との屈折率の対比によって判断される。具体的には、ある屈折率層を基準層としたとき、当該基準層に隣接する屈折率層が基準層より屈折率が低ければ、基準層は高屈折率層である(隣接層は低屈折率層である)と判断される。一方、基準層より隣接層の屈折率が高ければ、基準層は低屈折率層である(隣接層は高屈折率層である)と判断される。したがって、屈折率層が高屈折率層であるか低屈折率層であるかは、隣接層が有する屈折率との関係で定まる相対的なものであり、ある屈折率層は、隣接層との関係によって高屈折率層にも低屈折率層にもなりうる。
 屈折率層としては、誘電体多層膜を構成する高屈折率層および低屈折率層のうち、少なくとも1つの屈折率層が、水溶性樹脂と、屈折率調整剤と、水分散性カチオン性ウレタン樹脂と、第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーと、を含む水分散性カチオン性ウレタン樹脂含有層であれば特に制限はなく、当該技術分野において用いられる公知の屈折率層が用いられうる。公知の屈折率層としては、例えば、製造効率の観点から、湿式製膜法を用いて形成する屈折率層が好ましく用いられる。
 さらに、反射特性の観点から、高屈折率層および低屈折率層の少なくとも一方が、屈折率調整剤を含むことが好ましく、高屈折率層および低屈折率層の両方が屈折率調整剤を含むことがより好ましい。
 また、上述のように、本発明の光学反射フィルムの誘電体多層膜において、高屈折率層および低屈折率層の少なくとも一層に水溶性樹脂を用いる。また、湿式製膜法によって形成される光学反射フィルムの屈折率層は、水溶性樹脂を含有する塗布液(通常は水等の水系溶媒を含む)を塗布した塗膜であることが好ましい。水溶性樹脂は、有機溶剤を用いないため、環境負荷が少なく、また、柔軟性が高いため、屈曲時の膜の耐久性が向上するため好ましい。水溶性樹脂は、特に、高屈折率層および前記低屈折率層の少なくとも一層に屈折率調整剤を含む場合に好適に使用される。
 なお、本明細書において「水溶性」とは、物質が最も溶解する温度で、0.5質量%の濃度となるように水に溶解させた際、G2グラスフィルタ(最大細孔40~50μm)で濾過した場合に、濾別される不溶物の質量が加えた高分子の50質量%以内であることを意味する。
 上述のように、低屈折率層であるか高屈折率層であるかは、隣接する屈折率層との関係で定まる相対的なものであり、ある屈折率層は低屈折率層にも高屈折率層にもなりうるが、以下、それぞれの方法で形成されうる屈折率層のうち、代表的な高屈折率層および低屈折率層の構成について説明する。
 (高屈折率層)
 高屈折率層は、好ましくは水溶性樹脂を含む。その他必要に応じて、屈折率調整剤としての金属酸化物粒子、硬化剤、界面活性剤、その他の添加剤を含んでいてもよい。なお、高屈折率層に含まれる水溶性樹脂および屈折率調整剤を、便宜上、以下では「第1の水溶性樹脂」および「第1の屈折率調整剤」とそれぞれ称する。
 この際、高屈折率層に含まれる第1の屈折率調整剤の屈折率は、後述の低屈折率層に含まれる第2の屈折率調整剤の屈折率より高い方が好ましい。高屈折率層および/または低屈折率層に屈折率調整剤を含有することにより、各屈折率層間の屈折率差を大きくすることができ、積層数が低減されることでフィルムの透明度を上げることが出来るため好ましい。また、応力緩和が働き、膜物性(屈曲時および高温高湿時の屈曲性)が向上する等の利点がある。屈折率調整剤は、いずれかの屈折率層に含有させればよいが、好適な形態は、少なくとも高屈折率層が屈折率調整剤を含み、より好適な形態は高屈折率層および低屈折率層のいずれもが屈折率調整剤を含む形態である。
 (1)第1の水溶性樹脂
 第1の水溶性樹脂としては、特に制限されないが、ポリビニルアルコール系樹脂、ゼラチン、セルロース類、増粘多糖類、および反応性官能基を有するポリマーが用いられうる。これらのうち、ポリビニルアルコール系樹脂を用いることが好ましい。
 ポリビニルアルコール系樹脂
 前記ポリビニルアルコール系樹脂としては、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコール(未変性ポリビニルアルコール)、アニオン変性ポリビニルアルコール、ノニオン変性ポリビニルアルコール、ビニルアルコール系ポリマー等の変性ポリビニルアルコールが挙げられる。なお、変性ポリビニルアルコールにより、膜の密着性、耐水性、柔軟性が改良される場合がある。
 ゼラチン
 ゼラチンとしては、従来、ハロゲン化銀写真感光材料分野で広く用いられてきた各種ゼラチンを適用することができる。例えば、酸処理ゼラチン、アルカリ処理ゼラチン、ゼラチンの製造過程で酵素処理をする酵素処理ゼラチン、分子中に官能基としてのヒドロキシル基、カルボキシル基を有し、それと反応し得る基を持った試薬で処理し改質したゼラチン誘導体等が挙げられる。
 なお、ゼラチンを用いる場合、必要に応じてゼラチンの硬膜剤を添加することもできる。
 セルロース類
 セルロース類としては、水溶性のセルロース誘導体を好ましく用いることができる。例えば、カルボキシメチルセルロース(セルロースカルボキシメチルエーテル)、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等の水溶性セルロース誘導体;カルボキシメチルセルロース(セルロースカルボキシメチルエーテル)、カルボキシエチルセルロース等のカルボン酸基含有セルロース類;ニトロセルロース、セルロースアセテートプロピオネート、酢酸セルロース、セルロース硫酸エステル等のセルロース誘導体が挙げられる。
 増粘多糖類
 増粘多糖類は、糖類の重合体であり、分子内に水素結合基を多数有するものである。当該増粘多糖類は、温度による分子間の水素結合力の違いにより、低温時の粘度と高温時の粘度差が大きいという特性を有する。また、増粘多糖類に金属酸化物微粒子を添加すると、低温時にその金属酸化物微粒子との水素結合によると思われる粘度上昇を起こす。その粘度上昇幅は、15℃における粘度が、通常、1.0mPa・s以上であり、好ましくは5.0mPa・s以上であり、よりに好ましくは10.0mPa・s以上である。
 用いられうる増粘多糖類としては、特に制限はなく、一般に知られている天然単純多糖類、天然複合多糖類、合成単純多糖類、合成複合多糖類が挙げられる。これら多糖類の詳細については、「生化学辞典(第2版),東京化学同人出版」、「食品工業」第31巻(1988)21頁等を参照することができる。
 反応性官能基を有するポリマー
 反応性官能基を有するポリマーとしては、例えば、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸-アクリロニトリル共重合体、アクリル酸カリウム-アクリロニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、アクリル酸-アクリル酸エステル共重合体などのアクリル系樹脂;スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸エステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、スチレン-α-メチルスチレン-アクリル酸-アクリル酸エステル共重合体などのスチレンアクリル酸樹脂;スチレン-スチレンスルホン酸ナトリウム共重合体、スチレン-2-ヒドロキシエチルアクリレート共重合体、スチレン-2-ヒドロキシエチルアクリレート-スチレンスルホン酸カリウム共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体などの酢酸ビニル系共重合体;およびこれらの塩が挙げられる。これらのうち、ポリビニルピロリドン類およびこれを含有する共重合体を用いることが好ましい。
 上述の水溶性樹脂は、単独で用いても、2種以上を混合して用いてもよい。
 第1の水溶性樹脂の重量平均分子量は、1000~200000であることが好ましく、3000~40000であることがより好ましい。なお、本明細書において、「重量平均分子量」の値は、ゲルパーミエーションクロマトグラフィ(GPC)によって測定した値を採用するものとする。
 第1の水溶性樹脂の含有量は、高屈折率層の固形分100質量%に対して、5~50質量%であることが好ましく、10~40質量%であることがより好ましい。
 (2)第1の屈折率調整剤
 第1の屈折率調整剤としては、特に制限されないが、屈折率が2.0~3.0である金属酸化物粒子であることが好ましい。具体的には、酸化チタン、酸化ジルコニウム、酸化セリウム、酸化亜鉛、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第二鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、チタン酸ストロンチウム、酸化イットリウム、酸化ニオブ、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズなどが挙げられる。上述の第1の屈折率調整剤は、単独で用いても、2種以上を混合して用いてもよい。これらのうち、第1の屈折率調整剤は、透明で屈折率の高い高屈折率層を形成する観点から酸化チタン、酸化ジルコニウム、酸化セリウムであることが好ましく、耐候性向上の観点から酸化ジルコニウムであることがより好ましい。
 (高屈折率層に使用される酸化ジルコニウム粒子)
 本発明の光学反射フィルムにおいて、高屈折率層は、屈折率調整剤として酸化ジルコニウム粒子を含有することが好ましい。酸化ジルコニウム粒子を含む高屈折率層は、透明で高い屈折率を発現することができる。また、光触媒活性が低いことから、高屈折率層や隣接した低屈折率層の耐光性、耐候性が高くなる。なお、本発明において、酸化ジルコニウムとは二酸化ジルコニウム(ZrO)を意味する。
 上記酸化ジルコニウム粒子は、立方晶でも正方晶であってもよく、また、それらの混合物であってもよい。
 また、酸化ジルコニウム粒子としては、水系の酸化ジルコニウムゾルの表面を変性して有機溶剤等に分散可能な状態にしたものを用いてもよい。
 酸化ジルコニウム粒子またはその分散液の調製方法としては、従来公知のいずれの方法も用いることができる。例えば、特開2014-80361号公報に記載されるように、ジルコニウム塩を水中にてアルカリと反応させて、酸化ジルコニウム粒子のスラリーを調製し、有機酸を加えて水熱処理する方法が用いられうる。
 酸化ジルコニウム粒子は、市販のものを使用してもよく、例えば、SZR-W、SZR-CW、SZR-M、およびSZR-K等(以上、堺化学工業株式会社製)を好適に使用することができる。
 なお、高屈折率層に用いられる屈折率調整剤の総量(酸化ジルコニウム粒子と上記酸化ジルコニウム以外の高屈折率層の屈折率調整剤との合計量)に対して、酸化ジルコニウム粒子の含有量は80~100質量%であることが好ましく、90~100質量%であることが好ましく、100質量%であることがさらに好ましい。
 (高屈折率層に使用される酸化チタン粒子)
 高屈折率層に使用される酸化チタン粒子は、耐候性向上の観点からルチル型(正方晶形)酸化チタンであることがより好ましい。
 また、酸化チタン粒子は、含ケイ素の水和酸化物で被覆されたコア・シェル粒子の形態であってもよい。当該コア・シェル粒子は、酸化チタン粒子の表面を、コアとなる酸化チタンに含ケイ素の水和酸化物からなるシェルが被覆してなる構造を有する。この際のコアの部分となる酸化チタン粒子の体積平均粒子径は、1nm超30nm未満であることが好ましく、4nm以上30nm未満であることがより好ましい。かようなコア・シェル粒子を含有させることで、シェル層の含ケイ素の水和酸化物と水溶性樹脂との相互作用により、高屈折率層と低屈折率層との層間混合が抑制されうる。
 (高屈折率層に使用される酸化セリウム粒子)
 酸化セリウム粒子としては合成品を用いてもよいし、市販品を用いてもよい。本発明において好適に用いられ得る市販品としては、NYACOL(登録商標)CEO2(AC)、NYACOL(登録商標)CEO2(AC)-30、NYACOL(登録商標)CEO2(NO3)、NYACOL(登録商標)DP6255、NYACOL(登録商標)DP6255-NH4(以上、Nyacol Nano Technologies社)等のコロイダルセリアなどが例示できる。または、ニードラール(登録商標)P10(多木化学株式会社製)、NANOBYK(登録商標)-3810(BYK社製)などが用いられうる。
 高屈折率層に含まれる屈折率調整剤の大きさは、特に制限されるものではないが、体積平均粒径または一次平均粒径により求めることができる。高屈折率層で用いられる屈折率調整剤の体積平均粒径は、100nm以下であると好ましく、1~100nmであるとより好ましく、2~50nmであるとさらに好ましい。また、高屈折率層で用いられる屈折率調整剤の一次平均粒径は、100nm以下であることが好ましく、1~100nmであることがより好ましく、2~50nmであることがさらに好ましい。体積平均粒径または一次平均粒径が1nm以上100nm以下であれば、ヘイズが少なく可視光透過性に優れる観点で好ましい。
 なお、本明細書でいう体積平均粒径とは、粒子そのものをレーザー回折散乱法、動的光散乱法、あるいは電子顕微鏡を用いて観察する方法や、屈折率層の断面や表面に現れた粒子像を電子顕微鏡で観察する方法により、1,000個の任意の粒子の粒径を測定し、それぞれd1、d2・・・di・・・dkの粒径を持つ粒子がそれぞれn1、n2・・・ni・・・nk個存在する粒子の集団において、粒子1個当りの体積をviとした場合に、体積平均粒径mv={Σ(vi・di)}/{Σ(vi)}で表される体積で重み付けされた平均粒径を算出する。
 また、本明細書において一次平均粒径は、透過型電子顕微鏡(TEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。
 透過型電子顕微鏡から求める場合、粒子の一次平均粒径は、粒子そのものあるいは屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。
 さらに、本発明で用いられる屈折率調整剤は、単分散であることが好ましい。ここでいう単分散とは、下記式で求められる単分散度が40%以下であることをいう。この単分散度は、さらに好ましくは30%以下であり、特に好ましくは0.1~20%である。
Figure JPOXMLDOC01-appb-M000001
 高屈折率層における屈折率調整剤の含有量としては、特に制限されないが、高屈折率層の全固形分に対して、15~95質量%であると好ましく、20~90質量%であるとより好ましく、30~90質量%であるとさらにより好ましい。上記範囲とすることで、光学反射特性の良好なものとできる。
 (3)硬化剤
 硬化剤は、高屈折率層に含有される第1の水溶性樹脂(好ましくは、ポリビニルアルコール系樹脂)と反応して、水素結合のネットワークを形成する機能を有する。
 硬化剤としては、第1の水溶性樹脂と硬化反応を起こすものであれば特に制限はないが、一般的には、水溶性樹脂と反応しうる基を有する化合物または水溶性樹脂が有する異なる基同士の反応を促進するような化合物が挙げられる。
 具体例として、第1の水溶性樹脂としてポリビニルアルコールを用いる場合には、硬化剤としてホウ酸およびその塩を用いることが好ましい。また、ホウ酸およびその塩以外の公知の硬化剤を使用してもよい。
 なお、ホウ酸およびその塩とは、ホウ素原子を中心原子とする酸素酸およびその塩のことを意味する。具体的には、オルトホウ酸、二ホウ酸、メタホウ酸、四ホウ酸、五ホウ酸、八ホウ酸、およびこれらの塩が挙げられる。
 硬化剤の含有量は、高屈折率層(または低屈折率層)の固形分100質量%に対して、1~10質量%であることが好ましく、2~6質量%であることがより好ましい。
 特に、第1の水溶性樹脂としてポリビニルアルコールを使用する場合の硬化剤の総使用量は、ポリビニルアルコール1g当たり1~600mgであることが好ましく、ポリビニルアルコール1g当たり10~600mgであることがより好ましい。
 界面活性剤
 塗布時の表面張力調整のため用いられる界面活性剤としてカチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤などを用いることができるが、両性界面活性剤がより好ましい。
 本発明に好ましく用いられる両性界面活性剤としては、アミドスルホベタイン型、カルボキシベタイン型、スルホベタイン型、イミダゾリウム型などがある。本発明に好ましく用いられる両性界面活性剤の具体例を以下に示す。本発明ではスルホベタイン型、カルボキシベタイン型が塗布ムラの観点から好ましく、製品としてはLSB-R、LSB、LMEB-R(川研ファインケミカル株式会社製)、アンヒトール(登録商標)20HD(花王株式会社製)等が挙げられる。
 カチオン系界面活性剤としては、アルキルアミン塩、第四級アンモニウム塩が挙げられる。
 アニオン系界面活性剤は、親水基が水溶液中でアニオンに電離する界面活性剤であり、アニオン系界面活性剤としては、硫酸エステル塩、スルホン酸塩、カルボン酸塩、リン酸エステル塩等が挙げられる。例えば、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、ポリオキシエチレンアリールエーテル硫酸エステル塩、アルキルベンゼンスルフォン酸塩、脂肪酸塩、ポリオキシエチレンアルキルエーテルリン酸塩、アルケニルコハク酸ジカリウムが用いられうる。市販のアニオン系界面活性剤としては、例えば硫酸エステル塩としては花王株式会社製のエマール(登録商標)、第一工業株式会社製のハイテノール(登録商標)NF-08、NF-0825、NF-13、NF-17(いずれもポリオキシエチレンスチレン化フェニルエーテル硫酸アンモニウム)などが挙げられ、スルホン酸塩としては花王株式会社製のネオペレックス(登録商標)、ペレックス(登録商標)が挙げられる。カルボン酸塩としては、第一工業製薬株式会社製のネオハイテノール(登録商標)が挙げられ、リン酸エステル塩としては、第一工業製薬株式会社製のプライサーフ(登録商標)等が挙げられる。
 ノニオン系界面活性剤としては、ポリオキシエチレンアルキルエーテル(例えば、花王株式会社製エマルゲン(登録商標))、ポリオキシエチレンソルビタン脂肪酸エステル(例えば、花王株式会社製レオドール(登録商標)TWシリーズ)、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルアミン、アルキルアルカノールアミドが挙げられる。または、ポリオキシエチレンアルキルエーテルとしては、ポリオキシエチレンモノ2-エチルヘキシルエーテル、ポリオキシエチレンデシルエーテル(例えば、第一工業製薬株式会社製ノイゲン(登録商標)XL-40、XL-50、XL-60など)を用いることもできる。
 高屈折率層における界面活性剤の含有量は、高屈折率層の全固形分に対して、0.001~1質量%であることが好ましく、0.005~0.50質量%であることがより好ましい。
 高屈折率層は、その他の添加剤をも含みうる。その他の添加剤としては、アミノ酸、リチウム化合物等が挙げられる。また、特開昭57-74193号公報、特開昭57-87988号公報、特開昭62-261476号公報に記載の紫外線吸収剤;特開昭57-74192号、特開昭57-87989号公報、特開昭60-72785号公報、特開昭61-146591号公報、特開平1-95091号公報、特開平3-13376号公報等に記載の退色防止剤;特開昭59-42993号公報、特開昭59-52689号公報、特開昭62-280069号公報、特開昭61-242871号公報、特開平4-219266号公報等に記載の蛍光増白剤;硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤;消泡剤;ジエチレングリコール等の潤滑剤;防腐剤;防黴剤;帯電防止剤;マット剤;熱安定剤;酸化防止剤;難燃剤;結晶核剤;無機粒子;有機粒子;減粘剤;滑剤;赤外線吸収剤;色素;顔料等の公知の各種添加剤等がその他の添加剤として使用されてもよい。
 (低屈折率層)
 低屈折率層もまた、好ましくは水溶性樹脂を含む。その他必要に応じて、屈折率調整剤、硬化剤、界面活性剤、その他の添加剤を含んでいてもよい。なお、低屈折率層に含まれる水溶性樹脂および屈折率調整剤を、便宜上、以下では「第2の水溶性樹脂」および「第2の屈折率調整剤」とそれぞれ称する。
 (1)第2の水溶性樹脂
 第2の水溶性樹脂としては、第1の水溶性樹脂と同様のものが用いられうる。
 この際、高屈折率層および低屈折率層が、第1の水溶性樹脂および第2の水溶性樹脂として、ともにポリビニルアルコール系樹脂を使用する場合には、それぞれ鹸化度の異なるポリビニルアルコール系樹脂を用いることが好ましい。これにより、界面の混合が抑制され、赤外反射率(赤外遮蔽率)がより良好となり、ヘイズが低くなりうる。なお、本明細書において、鹸化度とは、ポリビニルアルコール樹脂中のアセチルオキシ基(原料の酢酸ビニル由来のもの)等のカルボニルオキシ基と水酸基の合計数に対する水酸基の割合である。なお、ポリビニルアルコールの鹸化度は、日本工業規格JIS K6726:1994に記載される方法に準じて測定することができる。
 第2の水溶性樹脂の含有量は、低屈折率層の固形分100質量%に対して、3~60質量%であることが好ましく、10~45質量%であることがより好ましい。
 (2)第2の屈折率調整剤
 第2の屈折率調整剤としては、特に制限されないが、合成非晶質シリカ、コロイダルシリカ等のシリカ(二酸化ケイ素)またはポリシルセスキオキサンを用いることが好ましい。屈折率を調整するために、低屈折率層に含まれる屈折率調整剤としては、1種単独で用いてもよいし、2種以上を併用してもよい。
 (低屈折率層に使用される酸化ケイ素粒子)
 酸化ケイ素粒子の具体的な例としては、合成非晶質シリカ、コロイダルシリカ、酸化亜鉛、アルミナ、コロイダルアルミナ等が挙げられる。これらのうち、コロイダルシリカゾル、特に酸性のコロイダルシリカゾルを用いることがより好ましく、有機溶媒に分散させたコロイダルシリカを用いることが特に好ましい。また、屈折率をより低減させるために、低屈折率層の屈折率調整剤として、粒子の内部に空孔を有する中空微粒子を用いてもよい。
 本発明で用いられるコロイダルシリカは、珪酸ナトリウムの酸等による複分解やイオン交換樹脂層を通過させて得られるシリカゾルを加熱熟成して得られるものであり、例えば、特開昭57-14091号公報、特開昭60-219083号公報、特開昭60-219084号公報、特開昭61-20792号公報、特開昭61-188183号公報、特開昭63-17807号公報、特開平4-93284号公報、特開平5-278324号公報、特開平6-92011号公報、特開平6-183134号公報、特開平6-297830号公報、特開平7-81214号公報、特開平7-101142号公報、特開平7-179029号公報、特開平7-137431号公報、および国際公開第94/26530号などに記載されているものである。
 このようなコロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。市販品としては、日産化学工業株式会社から販売されているスノーテックス(登録商標)シリーズ(スノーテックス(登録商標)OS、OXS、S、OS、20、30、40、O、N、C等)が挙げられる。
 コロイダルシリカは、その表面をカチオン変性されたものであってもよく、また、Al、Ca、MgまたはBa等で処理されたものであってもよい。
 また、低屈折率層の酸化ケイ素粒子としては、上述のように、中空微粒子を用いることもできる。中空微粒子を用いる場合には、平均粒子空孔径が、3~70nmであると好ましく、5~50nmであるとより好ましく、5~45nmであるとさらに好ましい。なお、中空微粒子の平均粒子空孔径とは、中空微粒子の内径の平均値である。中空微粒子の平均粒子空孔径は、上記範囲であれば、十分に低屈折率層の屈折率が低屈折率化される。平均粒子空孔径は、電子顕微鏡観察で、円形、楕円形または実質的に円形は楕円形として観察できる空孔径を、ランダムに50個以上観察し、各粒子の空孔径を求め、その数平均値を求めることにより得られる。なお、平均粒子空孔径は、円形、楕円形または実質的に円形もしくは楕円形として観察できる空孔径の外縁を、2本の平行線で挟んだ距離のうち、最小の距離を意味する。
 (低屈折率層に使用されるポリシルセスキオキサン粒子)
 ポリシルセスキオキサンは、三官能性シラン化合物を加水分解することによって得られる、主鎖にシロキサン結合を有し、側鎖に水素原子または有機基を有するネットワーク型ポリマーまたは多面体クラスターであり、かご状、ラダー状、ランダム状のいずれの構造のものも好ましく用いることができる。
 ポリシルセスキオキサンとしては、ポリ水素化シルセスキオキサン、ポリメチルシルセスキオキサン、ポリエチルシルセスキオキサン、ポリプロピルシルセスキオキサン、ポリイソプロピルシルセスキオキサン、ポリブチルシルセスキオキサン、ポリ-sec-ブチルシルセスキオキサン、ポリ-tert-ブチルシルセスキオキサン、ポリビニルシルセスキオキサン、ポリフェニルシルセスキオキサン、ポリナフチルシルセスキオキサン、ポリスチリルシルセスキオキサンおよびポリアダマンチルシルセスキオキサンなどが挙げられる。中でも、ポリメチルシルセスキオキサン、ポリビニルシルセスキオキサンが好ましい。
 ポリシルセスキオキサン粒子としては合成品を用いてもよいし、市販品を用いてもよい。本発明において好適に用いられうる市販品としては、小西化学工業株式会社製のSPシリーズ(例えば、SP-1120(H2O)、SP-1160(H2O)、SP-6120(H2O))などが挙げられる。
 本発明の低屈折率層に含まれる第2の屈折率調整剤(好ましくは二酸化ケイ素)は、その平均粒径(個数平均;直径)が3~100nmであることが好ましく、3~50nmであることがより好ましい。なお、本明細書中、屈折率調整剤の「平均粒径(個数平均;直径)」は、粒子そのものあるいは屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1,000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。
 低屈折率層における第2の屈折率調整剤の含有量は、低屈折率層の全固形分100質量%に対して、0.1~70質量%であることが好ましく、30~70質量%であることがより好ましく、45~65質量%であることがさらに好ましい。
 上述の第2の屈折率調整剤は、屈折率を調整する等の観点から、単独で用いても、2種以上を組み合わせて用いてもよい。
 カチオンポリマー
 本発明に係る光学反射フィルムにおいて、低屈折率層は、カチオンまたはカチオン性基を有するカチオンポリマーを含んでいてもよい。カチオンポリマーとしては特に制限されないが、例えば、後述の水分散性カチオン性ウレタン樹脂含有層に含まれる第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーが好適に用いられうる。これ以外のカチオンポリマーを含んでいてもよい。
 硬化剤、界面活性剤、その他の添加剤
 硬化剤、界面活性剤、その他の添加剤としては、高屈折率層と同様のものが用いられうることからここでは説明を省略する。
 (水分散性カチオン性ウレタン樹脂含有層)
 本発明の光学反射フィルムは、上述のように、誘電体多層膜を構成する高屈折率層および低屈折率層のうち少なくとも1層が、水溶性樹脂と、屈折率調整剤と、水分散性カチオン性ウレタン樹脂と、第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーと、を含む水分散性カチオン性ウレタン樹脂含有層である。
 前記水分散性カチオン性ウレタン樹脂含有層は、水溶性樹脂と、屈折率調整剤と、水分散性カチオン性ウレタン樹脂と、第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーと、を含む層であれば、高屈折率層であっても低屈折率層であってもよい。前記水分散性カチオン性ウレタン樹脂含有層としては、水溶性樹脂、屈折率調整剤、水分散性カチオン性ウレタン樹脂、および第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーを含有させることを除いては、上記の高屈折率層および低屈折率層と同様の構成が採用されうる。一般的に水分散性カチオン性ウレタン樹脂は低屈折率(1.5程度)であるため、未融着の水分散性カチオン性ウレタン樹脂が残存した場合、高屈折率層の屈折率によってはヘイズ上昇が懸念されるため、前記水分散性カチオン性ウレタン樹脂含有層は低屈折率層であることが好ましい。
 また、本発明の光学反射フィルムは、誘電体多層膜を構成する高屈折率層および低屈折率層のうち少なくとも1層が水分散性カチオン性ウレタン樹脂含有層であればよいが、好ましくは、複数の低屈折率層が水分散性カチオン性ウレタン樹脂含有層である。複数の低屈折率層を水分散性カチオン性ウレタン樹脂含有層とすることで、ヘイズが抑制されるとともに、クラックの防止と着色の抑制を両立させる効果がより顕著に得られうる。
 また、好ましくは基材に接する最下層、または基材と反対側の最上層が水分散性カチオン性ウレタン樹脂含有層である。より好ましくは、前記最下層および前記最上層を含むすべての低屈折率層が水分散性カチオン性ウレタン樹脂含有層である。
 水分散性カチオン性ウレタン樹脂
 本発明に適用される水分散性カチオン性ウレタン樹脂は、分子内にカチオン性基を有し、水系溶媒にウレタン樹脂が自己乳化されてなる水分散体から形成される樹脂である。水分散性カチオン性ウレタン樹脂は疎水性であることから、融着して造膜されたときに疎水性が強い膜が得られる。そのため、大気中の水分量変化による膜の膨張、収縮を低減できるため、クラックの発生が防止できる。また、塗布膜が柔軟化し、大気中の水分量変化による膜の膨張、収縮の際に塗膜にかかる力が低減されうる。カチオン性基としては、例えば第四級アンモニウム基などが挙げられる。
 水系分散体は、反応型および非反応型のいずれであってもよい。反応型水系分散体は、ブロック剤でブロックされたイソシアネート基(反応性基)を有するウレタン樹脂を、水系溶媒中に乳化させたものである。反応型水系分散体は、さらに、自己乳化型と強制乳化型とに分類される。自己乳化型の反応型水系分散体は、親水性のブロック剤でイソシアネート基がブロックされたウレタン樹脂を、水系溶媒中に自己乳化させたものである。一方、強制乳化型の反応型水系分散体は、疎水性のブロック剤でブロックされたイソシアネート基を有するウレタン樹脂を、界面活性剤等によって強制的に水系溶媒中に乳化させたものである。
 一方、非反応型水系分散体は、イソシアネート基(反応性基)を有しないウレタン樹脂(非反応性ウレタン樹脂)を、水系溶媒中に乳化させたものである。
 非反応型水系分散体は、さらに、自己乳化型と強制乳化型とに分類される。自己乳化型の非反応型水系分散体は、親水性の非反応性ウレタン樹脂を、水系溶媒中に自己乳化させたものである。一方、強制乳化型の非反応型水系分散体は、疎水性の非反応性ウレタン樹脂を、界面活性剤等によって水系溶媒中に強制的に乳化させたものである。
 これらのうち、水系分散体は、自己乳化型の非反応型水系分散体が好ましい。
 自己乳化型の非反応型水系分散体は、以下のようにして形成される。すなわち、親水基を有しないポリオール、親水基を有するポリオール、及び、ポリイソシアネートからウレタンプレポリマーを合成し、該ウレタンプレポリマーを水系媒体中に乳化させた後、イソシアネートの鎖伸長によってウレタンプレポリマー同士を架橋することによって、内部架橋構造体を有するウレタン樹脂が水系媒体に乳化されてなる上記水系分散体が形成される。
 また、ウレタン樹脂は、ポリイソシアネートとポリオールとの付加重合反応によって得られるが、本発明に用いられる水分散性カチオン性ウレタン樹脂は、ポリオールとしてポリエーテル系のポリオールを用いたエーテル系ウレタン樹脂、ポリエステル系のポリオールを用いたエステル系ウレタン樹脂、ポリカーボネート系のポリオールを用いたカーボネート系ウレタン樹脂のいずれであってもよい。中でも、カーボネート系ウレタン樹脂は、耐水性、耐加水分解性に優れることから、吸脱湿による収縮が少なく、クラックの発生を抑制する効果が高いため好ましい。
 水分散性カチオン性ウレタン樹脂としては、市販されているものを用いてもよく、例えば、スーパーフレックス(登録商標)620、650(第一工業製薬株式会社製)、ハイドラン(登録商標)CP-7020、CP-7050(DIC株式会社製)などが挙げられる。
 水分散性カチオン性ウレタン樹脂の粒子径は特に制限されないが、平均粒子径が1~100nmであることが好ましく、5~60nmであることがより好ましい。水分散性カチオン性ウレタン樹脂が上記平均粒子径を有することにより、得られる光学反射フィルムのヘイズが低減され、透明性が向上しうる。水分散性カチオン性ウレタン樹脂の平均粒子径は、動的光散乱法によって測定することができる。
 水分散性カチオン性ウレタン樹脂の屈折率も特に制限されないが、1.3~1.7であることが好ましく、1.4~1.6であることがより好ましい。上記範囲であれば、水溶性樹脂の屈折率に近くなるため、得られる光学反射フィルムのヘイズが低減されうる。
 上述した水分散性カチオン性ウレタン樹脂は、柔軟性を高める観点から、ガラス転移温度(Tg)が75℃以下であることが好ましく、-30~50℃であることがより好ましい。
 本発明の光学反射フィルムにおいては、水分散性カチオン性ウレタン樹脂含有層における水分散性カチオン性ウレタン樹脂の含有量(固形分質量)を、水分散性カチオン性ウレタン樹脂含有層の全質量(固形分質量)に対して、例えば1~30質量%であり、1~25質量%とすることが好ましく、2~20質量%とすることがより好ましい。水分散性カチオン性ウレタン樹脂の含有量が1質量%以上であれば、水分散性カチオン性ウレタン樹脂同士が融着しやすく、優れたクラック防止効果が得られうる。一方、水分散性カチオン性ウレタン樹脂の含有量が30質量%以下であれば、着色が抑制されうる。また、水系塗布、特に同時重層塗布する際に塗布液の粘度低下が生じにくいため、均一な塗膜が形成され、長期間使用してもクラックが発生しにくく、塗膜故障も生じにくい。さらに、塗布液の粘度低下に起因する屈折率層どうしの混合が抑制できるため、ヘイズが発生しにくくなる。2種類以上の水分散性カチオン性ウレタン樹脂を用いる場合、その合計量が上記範囲であることが好ましい。2以上の水分散性カチオン性ウレタン樹脂含有層を含む場合、少なくとも1層の水分散性カチオン性ウレタン樹脂の含有量が上記範囲であることが好ましく、すべての層で上記範囲であることがより好ましい。
 カチオンポリマー
 本発明に適用されるカチオンポリマーは、カチオン性基として、第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基を有するポリマーである。第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーを用いることで、水分散性カチオン性ウレタン樹脂を含む塗膜の着色を防止することができる。上記カチオンポリマーがカチオン性であることは、コロイダルシリカにカチオンポリマーを添加して、ゼータ電位を測定して判断することができる。なお、本明細書中、第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーは、上述した水分散性カチオン性ウレタン樹脂を含まないものとする。
 さらに、特に第三級アミノ基、またはそのカチオン(塩)を有するカチオンポリマーは、屈折率調整剤として酸化ケイ素粒子などの表面がアニオン性の粒子を用いる場合、屈折率調整剤の表面を効果的にカチオン化し、塗布液中の屈折率調整剤の分散安定性を保つことに寄与し、塗布性が向上しうる。一方、カチオン性基として、第四級アンモニウム基を有するカチオンポリマーは、屈折率調整剤の微凝集を発生させ、屈折率調整剤を保護する効果を有する。そのため、第四級アンモニウム基を有するカチオンポリマーをさらに用いることで、酸化ケイ素粒子を沈降させずに微凝集を起こすことが容易となり、水溶性樹脂との相互作用が増大する。これにより重層塗布時の隣接する屈折率層との混合が抑えられヘイズの少ない光学反射フィルムが得られうる。
 第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーとしては、特に制限されないが、ポリアリルアミンアミド硫酸塩、アリルアミン塩酸塩とジアリルアミン塩酸塩との共重合体、アリルアミン塩酸塩とジメチルアリルアミン塩酸塩との共重合体、アリルアミン塩酸塩とその他の共重合体、部分メトキシカルボニル化アリルアミン重合体、部分メチルカルボニル化アリルアミン酢酸塩重合体、ジアリルアミン塩酸塩重合体、メチルジアリルアミン塩酸塩重合体、メチルジアリルアミンアミド硫酸塩重合体、メチルジアリルアミン酢酸塩重合体、ジアリルアミン塩酸塩と二酸化イオウの共重合体、ジアリルアミン酢酸塩と二酸化イオウとの共重合体、ジアリルメチルエチルアンモニウムエチルサルフェイトと二酸化イオウとの共重合体、メチルジアリルアミン塩酸塩と二酸化イオウとの共重合体、ジアリルジメチルアンモニウムクロリドと二酸化イオウとの共重合体、ジアリルジメチルアンモニウムクロリドとアクリルアミドとの共重合体、ジアリルジメチルアンモニウムクロリドとジアリルアミン塩酸塩誘導体との共重合体、ジメチルアミンとエピクロロヒドリンとの共重合体、ジメチルアミンとエチレンジアミンとエピクロロヒドリンとの共重合体、ポリアミドポリアミンとエピクロロヒドリンとの共重合体、ビニルピロリドン-N,N-ジメチルアミノエチルメタクリル酸共重合体等が挙げられる。
 特に、メチルジアリルアミン塩酸塩重合体、メチルジアリルアミンアミド硫酸塩重合体、メチルジアリルアミン酢酸塩重合体などが第三級アミノ基またはそのカチオン(塩)を含むカチオンポリマーとして好適に用いられ、ジアリルジメチルアンモニウムクロリド重合体、ビニルピロリドン-N,N-ジメチルアミノエチルメタクリル酸共重合体などが第四級アンモニウム基を含むカチオンポリマーとして好適に用いられうる。
 カチオンポリマーとしては、市販されているものを用いてもよく、例えば、PAS-M-1、PAS-M-1L、PAS-H-1L、PAS-H-5L、PAS-H-10L(ニットーボーメディカル株式会社製)、H.C.ポリマー1S(M)、H.C.ポリマー1N(M)、H.C.ポリマー1NS(大阪有機化学工業株式会社製)などが挙げられる。
 上記のカチオンポリマーは単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 水分散性カチオン性ウレタン樹脂含有層中の第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーの含有量は、本発明の効果が発揮される限り特に制限されないが、カチオンポリマーの質量比が、水分散性カチオン性ウレタン樹脂に対して、固形分比(カチオンポリマー/水分散性カチオン性ウレタン樹脂)で0.1~5.0であることが好ましく、0.2~4.0であることがより好ましく、0.2~2.0であることがさらに好ましい。水分散性カチオン性ウレタン樹脂含有層中の上記カチオンポリマーの水分散性カチオン性ウレタン樹脂に対する質量比が0.1以上であれば、着色を抑制する効果に優れ、5.0以下であればクラック耐性に優れる。2以上の水分散性カチオン性ウレタン樹脂含有層を含む場合、少なくとも1層のカチオンポリマーの質量比が上記範囲であることが好ましく、すべての水分散性カチオン性ウレタン樹脂含有層で上記範囲であることがより好ましい。
 上記カチオンポリマーの重量平均分子量は、特に制限されないが、5,000~800,000であることが好ましく、5,000~200,000であることがより好ましく、20,000~30,000であることがさらに好ましい。なお、本明細書において、「重量平均分子量」の値は、ゲルパーミエーションクロマトグラフィ(GPC)によって測定した値を採用するものとする。
 屈折率調整剤
 水分散性カチオン性ウレタン樹脂含有層は、屈折率調整剤を含む。屈折率調整剤は上記の高屈折率層および低屈折率層と同様のものが用いられうるが、前記水分散性カチオン性ウレタン樹脂含有層が高屈折率層である場合、屈折率調整剤は屈折率、透明性、光に対する安定性の観点から、酸化ジルコニウム粒子であることが好ましい。前記水分散性カチオン性ウレタン樹脂含有層が低屈折率層である場合、屈折率調整剤は酸化ケイ素粒子であることが好ましい。酸化ケイ素粒子は水溶性樹脂との相互作用が大きいため、塗布液を重層塗布する際に隣接する屈折率層との層間混合が抑えられ、ヘイズの少ない光学反射フィルムが得られうる。
 水溶性樹脂
 本発明の光学反射フィルムにおける水分散性カチオン性ウレタン樹脂含有層は、水溶性樹脂を含む。水溶性樹脂としては、上記の高屈折率層および低屈折率層と同様のものが用いられうる。
 好ましくは、前記水分散性カチオン性ウレタン樹脂含有層中の水溶性樹脂の平均重合度が1500~6000であり、より好ましくは4000~6000である。前記水分散性カチオン性ウレタン樹脂含有層中の水溶性樹脂の平均重合度は4000~5000であることがさらに好ましく、4500~5000であることがさらにより好ましい。水溶性樹脂の平均重合度が1500以上であれば、同時重層塗布法によって塗布した場合であっても水溶性樹脂が拡散してヘイズが発生することを抑制することができる。また、水溶性樹脂の平均重合度が6000以下であれば、塗布液の粘度が高くなりすぎないため、塗布による誘電体多層膜の作製に適する。
 また、前記水分散性カチオン性ウレタン樹脂含有層中の水溶性樹脂は、ポリビニルアルコールであることが好ましい。これにより、水分散性カチオン性ウレタン樹脂の分散性が安定化し、ヘイズの上昇が抑制されうる。ポリビニルアルコールの鹸化度は、例えば70~99.5モル%であり、ヘイズがより一層抑えられるという観点から、好ましくは80~95モル%であり、より好ましくは85~90モル%である。なお、ポリビニルアルコールの重合度は、日本工業規格JIS K6726:1994に準じて測定することができる。
 上述のように、本発明の光学反射フィルムにおいては、誘電体多層膜を構成する高屈折率層および低屈折率層のうち少なくとも1層が水分散性カチオン性ウレタン樹脂含有層であればよいが、基材側の最下層、または基材から最も遠い層である最上層が水分散性カチオン性ウレタン樹脂含有層であることが好ましい。
 誘電体多層膜の最上層は、例えば粘着層を介してガラスなどの基体に接着されて光学反射体として用いられる場合、環境中の水分の吸着、脱離による層の膨張、収縮が発生すると、それに伴う応力が集中しやすい。そのため、最上層に環境中の水分の吸着、脱離が抑制されうる水分散性カチオン性ウレタン樹脂含有層を配置することが光学反射フィルムの耐候性を向上させる上で効果的である。
 また、本発明の好ましい一実施形態は、誘電体多層膜を構成する屈折率層のうち、基材に接する最下層が水分散性カチオン性ウレタン樹脂含有層である。誘電体多層膜の最下層は、内側の層と比較して環境中の水分の吸着、脱離による層の膨張、収縮が発生すると、それに伴う応力が集中しやすい層であるため、最下層を水分散性カチオン性ウレタン樹脂含有層とすることが好ましい。より好ましくは、最上層および最下層のいずれもが水分散性カチオン性ウレタン樹脂含有層である。
 本発明の好ましい実施形態は、前記誘電体多層膜の最上層および最下層が低屈折率層であり、すべての低屈折率層が水分散性カチオン性ウレタン樹脂含有層である。このようにすることで、水溶性樹脂を用いた誘電体多層膜において、環境中の水分量の変動に伴う水分の吸着、脱離をさらに低減することができるため、高湿下に長期間さらした場合のクラックの発生がより低減できる。このとき、水分散性カチオン性ウレタン樹脂含有層中の水溶性樹脂の平均重合度を4000~6000とすると、すべての低屈折率層に水分散性カチオン性ウレタン樹脂を含む場合であってもヘイズの上昇が生じにくい。
 水分散性カチオン性ウレタン樹脂含有層の厚さは特に制限されないが、水分散性カチオン性ウレタン樹脂含有層が高屈折率層である場合、その1層当たりの厚さは、20~800nmであることが好ましく、50~500nmであることがより好ましい。また、水分散性カチオン性ウレタン樹脂含有層が低屈折率層である場合、その1層当たりの厚さは、20~800nmであることが好ましく、50~500nmであることがより好ましい。
 [光学特性]
 本発明に係る光学反射フィルムが赤外光を反射する赤外遮蔽フィルムである場合には、低屈折率層と高屈折率層との屈折率の差を大きく設計することが、少ない層数で赤外反射率を高くすることができるという観点から好ましい。本形態では、低屈折率層および高屈折率層から構成される積層ユニットの少なくとも1つにおいて、隣接する低屈折率層と高屈折率層との屈折率差が0.15以上であることが好ましく、0.2以上であることがより好ましく、0.21以上であることがさらに好ましい。また、上限には特に制限はないが通常0.5以下である。高屈折率層および低屈折率層の積層体を複数有する場合には、全ての積層体における高屈折率層と低屈折率層との屈折率差が上記好適な範囲内にあることが好ましい。ただし、この場合でも誘電体多層膜の最上層や最下層を構成する屈折率層に関しては、上記好適な範囲外の構成であってもよい。
 本形態の光学反射フィルムの光学特性として、JIS R3106-1998で示される可視光領域の透過率が50%以上であることが好ましく、より好ましくは75%以上であり、さらに好ましくは85%以上である。また、波長900nm~1400nmの領域に反射率50%を超える領域を有することが好ましい。
 誘電体多層膜の屈折率層の層数(高屈折率層および低屈折率層の総層数)としては、上記の観点から、例えば、6~500層であり、6~300層であることが好ましい。また、特に湿式製膜法で作製する場合、6~50層であることが好ましく、8~40層であることがより好ましく、9~30層であることがさらに好ましく、11~31層であることが特に好ましい。誘電体多層膜の屈折率層の層数が上記範囲にあると、優れた遮熱性能および透明性、膜剥がれやひび割れの抑制等が実現されうることから好ましい。なお、誘電体多層膜が、複数の高屈折率層および/または低屈折率層を有する場合には、各高屈折率層および/または各低屈折率層はそれぞれ同じものであっても、異なるものであってもよい。
 高屈折率層の1層当たりの厚さは、20~800nmであることが好ましく、50~500nmであることがより好ましい。また、低屈折率層の1層当たりの厚さは、20~800nmであることが好ましく、50~500nmであることがより好ましい。
 ここで、1層あたりの厚さを測定する場合、高屈折率層および低屈折率層の境界において明確な界面を持たず、連続的に組成が変化する場合がある。このような組成が連続的に変化するような界面領域においては、最大屈折率-最小屈折率=Δnとした場合、2層間の最小屈折率+Δn/2の地点を層界面とみなすものとする。
 なお、高屈折率層および低屈折率層が屈折率調整剤を含む場合には、当該屈折率調整剤の濃度プロファイルにより上記組成を観察することができる。当該屈折率調整剤の濃度プロファイルは、スパッタ法を用いて表面から深さ方向へエッチングを行い、XPS表面分析装置を用いて、最表面を0nmとして、0.5nm/minの速度でスパッタし、原子組成比を測定することで見ることができる。また、積層膜を切断して、切断面をXPS表面分析装置で原子組成比を測定することで確認してもよい。
 XPS表面分析装置は、特に制限されず、いかなる機種も使用することができる。当該XPS表面分析装置としては、例えば、VGサイエンティフィックス社製ESCALAB-200Rを用いることができる。X線アノードにはMgを用い、出力600W(加速電圧15kV、エミッション電流40mA)で測定する。
 [粘着層]
 本発明に係る光学反射フィルムは、粘着層を有していてもよい。この粘着層は通常、誘電体多層膜の基材とは反対側の面に設けられ、さらに公知の剥離紙またはセパレータがさらに設けられていてもよい。粘着層の構成としては、特に制限されず、例えば、ドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤等のいずれもが用いられる。
 粘着剤としては、例えば、ポリエステル系粘着剤、ウレタン系粘着剤、ポリ酢酸ビニル系粘着剤、アクリル系粘着剤、ニトリルゴム等が用いられる。
 本発明の光学反射フィルムは、窓ガラスに貼り合わせる場合、窓に水を吹き付け、濡れた状態のガラス面に光学反射フィルムの粘着層を合わせる貼り方、いわゆる水貼り法が張り直し、位置直し等の観点で好適に用いられる。そのため、水が存在する湿潤下では粘着力が弱い、アクリル系粘着剤が好ましく用いられる。
 使用されるアクリル系粘着剤は、溶剤系およびエマルジョン系どちらでもよいが、粘着力等を高め易いことから、溶剤系粘着剤が好ましく、その中でも溶液重合で得られたものが好ましい。このような溶剤系アクリル系粘着剤を溶液重合で製造する場合の原料としては、例えば、骨格となる主モノマーとして、エチルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、オクリルアクリレート等のアクリル酸エステル、凝集力を向上させるためのコモノマーとして、酢酸ビニル、アクリルニトリル、スチレン、メチルメタクリレート等、さらに架橋を促進し、安定した粘着力を付与させ、また水の存在下でもある程度の粘着力を保持するために官能基含有モノマーとして、メタクリル酸、アクリル酸、イタコン酸、ヒドロキシエチルメタクリレート、グリシジルメタクリレート等が挙げられる。粘着層には、主ポリマーとして、特に高タック性を要するため、ブチルアクリレート等のような低いガラス転移温度(Tg)を有するものが特に有用である。
 上記アクリル系粘着剤の市販品としては、たとえば、コーポニール(登録商標)シリーズ(日本合成化学工業株式会社製)等が挙げられる。
 この粘着層には、添加剤として、例えば安定剤、界面活性剤、赤外線吸収材、紫外線吸収剤、難燃剤、帯電防止剤、抗酸化剤、熱安定剤、滑剤、充填剤、着色剤、色素、接着調整剤等を含有させることもできる。特に、窓貼用として使用する場合は、紫外線による光学反射フィルムの劣化を抑制するためにも、紫外線吸収剤の添加は有効である。
 粘着剤の塗工方法としては、特に制限されず、任意の公知の方法が使用でき、例えば、バーコート法、ダイコーター法、コンマコーティング法、グラビアロールコーター法、ブレードコーター法、スプレーコーター法、エアーナイフコート法、ディップコート法、転写法等が好ましく挙げられ、単独または組合せて用いることができるが、ロール式で連続的に行うのが経済性及び生産性の点から好ましい。これらは適宜、粘着剤を溶解できる溶媒にて溶液にする、または分散させた塗布液を用いて塗工することができ、溶媒としては公知のものを使用することができる。
 また、粘着層の厚さは、粘着効果、乾燥速度等の観点から、通常1~100μm程度の範囲であることが好ましい。
 粘着力は、JIS K6854(1999)記載の180°剥離試験にて測定した剥離強度が2~30N/25mmであることが好ましく、4~20N/25mmであることがより好ましい。
 粘着層の形成は、先の塗工方式にて、直接誘電体多層膜に塗工してもよく、また、一度剥離フィルムに塗工して乾燥させた後、誘電体多層膜を貼り合せて粘着剤を転写させてもよい。この時の乾燥温度は、残留溶剤ができるだけ少なくなることが好ましく、そのためには乾燥温度や時間は特定されないが、好ましくは50~150℃の温度で、10秒~5分の乾燥時間を設けることがよい。
 [ハードコート層]
 本発明の光学反射フィルムは、耐擦過性を高めるための表面保護層として、熱や紫外線などで硬化する樹脂を含むハードコート層を積層してもよい。例えば、基材表面に誘電体多層膜、粘着層の順に積層し、さらにこれらの層が積層されている側とは逆の側の基材表面にハードコート層を塗設する形態が好ましい一例として挙げられる。
 ハードコート層で使用される硬化樹脂としては、熱硬化型樹脂や紫外線硬化型樹脂が挙げられるが、成形が容易なことから、紫外線硬化型樹脂が好ましく、その中でも鉛筆硬度が少なくとも2Hのものがより好ましい。かような硬化型樹脂は、単独でもまたは2種以上組み合わせても用いることができる。
 紫外線硬化型樹脂としては(メタ)アクリレート、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、エポキシ樹脂、オキセタン樹脂が挙げられ、これらは無溶剤型の樹脂組成物としても使用できる。
 上記紫外線硬化型樹脂を用いる場合、硬化促進のために、光重合開始剤を添加することが好ましい。
 光重合開始剤としては、アセトフェノン類、ベンゾフェノン類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、チウラム化合物類、フルオロアミン化合物などが用いられる。光重合開始剤の具体例としては、2,2’-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、1-ヒドロキシジメチルフェニルケトン、2-メチル-4’-メチルチオ-2-モリホリノプロピオフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モリホリノフェニル)-ブタノン1などのアセトフェノン類、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルレタールなどのベンゾイン類、ベンゾフェノン、2,4’-ジクロロベンゾフェノン、4,4’-ジクロロベンゾフェノン、p-クロロベンゾフェノンなどのベンゾフェノン類、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、アントラキノン類、チオキサントン類などがある。これらの光重合開始剤は単独で用いてもよいし、2種以上組合せや、共融混合物であってもよい。特に、硬化性組成物の安定性や重合反応性等からアセトフェノン類を用いることが好ましい。
 このような光重合開始剤は市販品を用いてもよく、例えば、例えば、BASFジャパン株式会社製のイルガキュア(登録商標)819、184、907、651などが好ましい例示として挙げられる。
 このハードコート層には、添加剤として、例えば安定剤、界面活性剤、赤外線吸収剤、紫外線吸収剤、難燃剤、帯電防止剤、抗酸化剤、熱安定剤、滑剤、充填剤、着色剤、色素、接着調整剤等を含有させることもできる。
 ハードコート層の厚みは、ハードコート性の向上と、光学反射フィルムの透明性の向上という観点から、0.1μm~50μmが好ましく、1~20μmがより好ましい。
 ハードコート層の形成方法は特に制限されず、例えば、上記各成分を含むハードコート層塗布液を調製した後、塗布液をワイヤーバー等により塗布し、熱および/またはUVで塗布液を硬化させ、ハードコート層を形成する方法などが挙げられる。
 [その他の層]
 本発明に係る光学反射フィルムは、上述した層以外の層(その他の層)を有していてもよい。例えば、その他の層として、中間層を設けることができる。ここで「中間層」とは、基材と誘電体多層膜との間の層や、基材とハードコート層との間の層を意味する。中間層の構成材料としては、ポリエステル樹脂、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、ポリビニルアセタール樹脂、アクリル樹脂、ウレタン樹脂などが挙げられ、添加剤の相溶性、Tgが低い物質が好ましいが、それを満たしていればいずれを用いてもよい。中間層のガラス転移温度(Tg)は、30~120℃であれば、十分な耐候性が得られるため好ましく、より好ましくは、30~90℃の範囲である。
 中間層には、添加剤として、例えば安定剤、界面活性剤、赤外線吸収剤、紫外線吸収剤、難燃剤、帯電防止剤、抗酸化剤、熱安定剤、滑剤、充填剤、着色剤、色素、接着調整剤等を含有させることもできる。
 [光学反射フィルムの製造方法]
 本発明の光学反射フィルムの製造方法について特に制限はなく、基材上に、高屈折率層と低屈折率層とから構成されるユニットを少なくとも1つ形成し、高屈折率層または低屈折率層のうち少なくとも1層を上述の水分散性カチオン性ウレタン樹脂含有層とすることができるものであれば、いかなる方法でも用いられうる。
 具体的には高屈折率層と低屈折率層とを交互に塗布、乾燥して積層体(誘電体多層膜)を形成することが好ましい。具体的には以下の形態が挙げられる;(1)基材上に、高屈折率層塗布液を塗布し乾燥して高屈折率層を形成した後、低屈折率層塗布液を塗布し乾燥して低屈折率層を形成し、光学反射フィルムを形成する方法;(2)基材上に、低屈折率層塗布液を塗布し乾燥して低屈折率層を形成した後、高屈折率層塗布液を塗布し乾燥して高屈折率層を形成し、光学反射フィルムを形成する方法;(3)基材上に、高屈折率層塗布液と、低屈折率層塗布液とを交互に逐次重層塗布した後乾燥して、高屈折率層、および低屈折率層を含む光学反射フィルムを形成する方法;(4)基材上に、高屈折率層塗布液と、低屈折率層塗布液とを同時重層塗布し、乾燥して、高屈折率層、および低屈折率層を含む光学反射フィルムを形成する方法;などが挙げられる。なかでも、より簡便な製造プロセスとなる上記(4)の方法が好ましい。すなわち、本発明の光学反射フィルムの製造方法は、同時重層塗布法により前記高屈折率層と前記低屈折率層とを積層することを含むことが好ましい。
 同時重層塗布した場合、未乾燥の液状態で重ねられるため、層間混合等がより起こりやすい。しかしながら、水溶性樹脂がポリビニルアルコールである場合、高屈折率層に含まれるポリビニルアルコールの鹸化度と、低屈折率層に含まれるポリビニルアルコールの鹸化度とが異なる場合、鹸化度が異なるポリビニルアルコール樹脂の相溶性が低いことが知られている。そのため、高屈折率層と低屈折率層とが未乾燥の液状態で重ねられた際に各層が多少混合したとしても、乾燥過程で溶媒である水が揮発して濃縮されると、鹸化度が異なるポリビニルアルコール樹脂同士が相分離を起こし、各層の界面の面積を最小にしようとする力が働くようになるため、相間混合が抑制され、界面の乱れも小さくなる。そのため、所望の波長領域の光反射特性に優れ、ヘイズの少ない光学反射フィルムが得られうる。
 塗布方式としては、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、カーテン塗布方法、あるいは米国特許第2,761,419号、同第2,761,791号公報に記載のホッパーを使用するスライドビード塗布方法、エクストルージョンコート法等が好ましく用いられる。
 高屈折率層塗布液および低屈折率層塗布液を調製するための溶媒は、特に制限されないが、水、有機溶媒、またはその混合溶媒が好ましい。本発明においては、水溶性樹脂を用いるために、水系溶媒を用いることができる。水系溶媒は、有機溶媒を用いる場合と比較して、大規模な生産設備を必要とすることがないため、生産性の点で好ましく、また環境保全の点でも好ましい。
 前記有機溶媒としては、例えば、メタノール、エタノール、2-プロパノール、1-ブタノールなどのアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどのエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエーテル類、ジメチルホルムアミド、N-メチルピロリドンなどのアミド類、アセトン、メチルエチルケトン、アセチルアセトン、シクロヘキサノンなどのケトン類などが挙げられる。これら有機溶媒は、単独でもまたは2種以上混合して用いてもよい。環境面、操作の簡便性などから、塗布液の溶媒としては、水系溶媒が好ましく、水、または水とメタノール、エタノール、もしくは酢酸エチルとの混合溶媒がより好ましく、水が特に好ましい。
 水と少量の有機溶媒との混合溶媒を用いる際、当該混合溶媒中の水の含有量は、混合溶媒全体を100質量%として、80~99.9質量%であることが好ましく、90~99.5質量%であることがより好ましい。ここで、80質量%以上にすることで、溶媒の揮発による体積変動が低減でき、ハンドリングが向上し、また、99.9質量%以下にすることで、液添加時の均質性が増し、安定した液物性を得ることができるからである。
 高屈折率層塗布液中の水溶性樹脂の濃度は、0.5~10質量%であることが好ましい。また、高屈折率層塗布液中の屈折率調整剤の濃度は、1~50質量%であることが好ましい。
 低屈折率層塗布液中の水溶性樹脂の濃度は、0.5~10質量%であることが好ましい。また、低屈折率層塗布液中の屈折率調整剤の濃度は、1~50質量%であることが好ましい。
 高屈折率層塗布液および低屈折率層塗布液の調製方法は、特に制限されず、例えば、屈折率調整剤、水溶性樹脂、硬化剤などを水系溶媒に添加し、攪拌混合する方法が挙げられる。この際、各成分の添加順も特に制限されず、攪拌しながら各成分を順次添加し混合してもよいし、攪拌しながら一度に添加し混合してもよい。
 高屈折率層のうち少なくとも1層を水分散性カチオン性ウレタン樹脂含有層とする場合、上記のような高屈折率層塗布液に、水分散性カチオン性ウレタン樹脂と、第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーとを添加して、水分散性カチオン性ウレタン樹脂含有層塗布液(水分散性カチオン性ウレタン樹脂含有高屈折率層塗布液)を作製すればよい。上記水分散性カチオン性ウレタン樹脂含有層塗布液を塗布、乾燥させることで高屈折率層として機能する水分散性カチオン性ウレタン樹脂含有層を得ることができる。
 同様に、低屈折率層のうち少なくとも1層を水分散性カチオン性ウレタン樹脂含有層とする場合、上記のような低屈折率層塗布液に、水分散性カチオン性ウレタン樹脂と、第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーとを添加して、水分散性カチオン性ウレタン樹脂含有層塗布液(水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液)を作製すればよい。上記水分散性カチオン性ウレタン樹脂含有層塗布液を塗布、乾燥させることで低屈折率層として機能する水分散性カチオン性ウレタン樹脂含有層を得ることができる。
 また、水分散性カチオン性ウレタン樹脂含有層塗布液中の水分散性カチオン性ウレタン樹脂の濃度、および第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーの濃度は特に制限されないが、水分散性カチオン性ウレタン樹脂含有層における水分散性カチオン性ウレタン樹脂の含有量(固形分含量)、および水分散性カチオン性ウレタン樹脂に対する上記カチオンポリマーの質量比(固形分比)が上述の範囲になるように調節することが好ましい。
 したがって、好ましくは、本発明の光学反射フィルムは、水溶性樹脂、屈折率調整剤、水分散性カチオン性ウレタン樹脂、および第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーを水系溶媒に溶解または分散させて塗布液を調製する段階と、前記塗布液を塗布することによって前記水分散性カチオン性ウレタン樹脂含有層を形成する段階と、を含む。
 同時重層塗布を行う際の高屈折率層塗布液および低屈折率層塗布液の温度は、スライドビード塗布方式を用いる場合は、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。また、カーテン塗布方式を用いる場合は、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。
 同時重層塗布を行う際の高屈折率層塗布液および低屈折率層塗布液の粘度は、特に制限されない。しかしながら、スライドビード塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲において、5~160mPa・sの範囲が好ましく、さらに好ましくは60~140mPa・sの範囲である。また、カーテン塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲において、5~1200mPa・sの範囲が好ましく、さらに好ましくは25~500mPa・sの範囲である。このような粘度の範囲であれば、効率よく同時重層塗布を行うことができる。
 また、塗布液の15℃における粘度としては、100mPa・s以上が好ましく、100~30,000mPa・sがより好ましく、さらに好ましくは2,500~30,000mPa・sである。
 塗布および乾燥方法の条件は、特に制限されないが、例えば、逐次塗布法の場合は、まず、30~60℃に加温した高屈折率層塗布液および低屈折率層塗布液のいずれか一方を基材上に塗布、乾燥して層を形成した後、もう一方の塗布液をこの層上に塗布、乾燥して積層膜前駆体(ユニット)を形成する。次に、所望の光学反射性能を発現するために必要なユニット数を、前記方法にて逐次塗布、乾燥して積層させて積層膜前駆体を得る。乾燥する際は、形成した塗膜を、30℃以上で乾燥することが好ましい。例えば、湿球温度5~50℃、膜面温度5~100℃(好ましくは10~50℃)の範囲で乾燥するのが好ましく、例えば、40~60℃の温風を1~5秒吹き付けて乾燥する。乾燥方法としては、温風乾燥、赤外乾燥、マイクロ波乾燥が用いられる。また単一プロセスでの乾燥よりも多段プロセスの乾燥が好ましく、恒率乾燥部の温度<減率乾燥部の温度にするのがより好ましい。この場合の恒率乾燥部の温度範囲は30~60℃、減率乾燥部の温度範囲は50~100℃にするのが好ましい。
 また、同時重層塗布を行う場合の塗布および乾燥方法の条件は、高屈折率層塗布液および低屈折率層塗布液を30~60℃に加温して、基材上に高屈折率層塗布液および低屈折率層塗布液の同時重層塗布を行った後、形成した塗膜の温度を好ましくは1~15℃にいったん冷却し(セット)、その後10℃以上で乾燥することが好ましい。より好ましい乾燥条件は、湿球温度5~50℃、膜面温度10~50℃の範囲の条件である。例えば、40~80℃の温風を1~5秒吹き付けて乾燥する。また、塗布直後の冷却方式としては、形成された塗膜の均一性向上の観点から、水平セット方式で行うことが好ましい。
 ここで、前記セットとは、冷風等を塗膜に当てて温度を下げるなどの手段により、塗膜組成物の粘度を高め、各層間および各層内の物質の流動性を低下させたり、またゲル化する工程のことを意味する。冷風を塗布膜に表面から当てて、塗布膜の表面に指を押し付けたときに指に何もつかなくなった状態を、セット完了の状態と定義する。
 塗布した時点から、冷風を当ててセットが完了するまでの時間(セット時間)は、5分以内であることが好ましく、2分以内であることがより好ましい。また、下限の時間は特に制限されないが、45秒以上の時間をとることが好ましい。
 セット時間の調整は、ポリビニルアルコールの濃度や無機酸化物粒子の濃度を調整したり、ゼラチン、ペクチン、寒天、カラギ-ナン、ゲランガム等の各種公知のゲル化剤など、他の成分を添加することにより調整することができる。
 冷風の温度は、0~25℃であることが好ましく、5~10℃であることがより好ましい。また、塗膜が冷風に晒される時間は、塗膜の搬送速度にもよるが、好ましくは10~360秒、より好ましくは10~300秒、さらに好ましくは10~120秒である。
 高屈折率層塗布液および低屈折率層塗布液の塗布厚は、上記で示したような好ましい乾燥時の厚みとなるように塗布すればよい。
 <光学反射体>
 本発明の光学反射フィルムは、幅広い分野に応用することができる。よって、本発明の一実施形態は、上記の光学反射フィルムが、基体の少なくとも一方の面に設けられてなる光学反射体である。例えば、建物の屋外の窓や自動車窓等長期間太陽光に晒らされる設備(基体)に貼り合せ、熱線反射効果を付与する熱線反射フィルム等の窓貼用フィルム、農業用ビニールハウス用フィルム等として、主として耐候性を高める目的で用いられる。特に、本発明に係る光学反射フィルムが例えば上記の粘着層を介してガラスもしくはガラス代替樹脂等の基体に貼合されている部材には好適である。
 基体の具体的な例としては、例えば、ガラス、ポリカーボネート樹脂、ポリスルホン樹脂、アクリル樹脂、ポリオレフィン樹脂、ポリエーテル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリスルフィド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、メラミン樹脂、フェノール樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ウレタン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、スチレン樹脂、塩化ビニル樹脂、金属板、セラミック等が挙げられる。樹脂の種類は、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂のいずれでも良く、これらを2種以上組み合わせて用いても良い。基体は、押出成形、カレンダー成形、射出成形、中空成形、圧縮成形等、公知の方法で製造することができる。基体の厚みは特に制限されないが、通常0.1mm~5cmである。
 光学反射フィルムと基体とを貼り合わせる粘着層は、窓ガラスなどに貼り合わせたとき、光学反射フィルムが日光(熱線)入射面側にあるように設置することが好ましい。また光学反射フィルムを窓ガラスと基材との間に挟持すると、水分等周囲ガスから封止でき耐久性に好ましい。本発明の光学反射フィルムを屋外や車の外側(外貼り用)に設置しても環境耐久性があって好ましい。
 〔合わせガラス〕
 合わせガラスは、本発明に係る光学反射フィルムが中間膜を介してガラスの基体に貼合されている部材である。合わせガラスは、建築用途、住居用途、自動車用途などに用いることができる。
 合わせガラスの一実施形態は、2枚の板ガラスの間に、2枚の中間膜を用いて光学反射フィルムが挟持されてなる構造をとる。光学反射フィルムは、上記で説明した本発明の光学反射フィルムである。光学反射フィルムは、基材の一方の表面に反射層が積層され、他方の表面にハードコート層を塗設する構成であってもよい。また、光学反射フィルムは、一方の表面に反射層が積層された基材の他方の面と、一方の表面にハードコート層が積層された基材の他方の面とを、粘着層で貼り合わせた構成であってもよい。
 その他の合わせガラスの構成部材について以下説明する。
 中間膜
 光学反射フィルムを挟持する一対の中間膜は、光学反射フィルムとガラス板とを張り合わせる接着性能を有する膜であればいずれの膜も用いることができるが、熱可塑性樹脂を含有することが好ましい。一対の中間膜は、同じ種類であっても異なる種類であってもよい。熱可塑性樹脂の例としては、エチレン-ビニルアセテート共重合体(EVA)やポリビニルブチラール(PVB)が挙げられ、中でもPVBが好ましい。また、各中間膜において、赤外線吸収剤(例えば、赤外線を吸収する微粒子など)、紫外線吸収剤、抗酸化剤、帯電防止剤、熱安定剤、滑剤、充填剤、着色剤、色素、接着調整剤等を適宜添加配合してもよい。可視光透過率を阻害しない範囲で、各種の赤外線を吸収する微粒子または紫外線吸収剤などを含ませたり、色素を混入して着色したりして、日射透過率を75%以上とすることがより好ましい。
 赤外線を吸収する微粒子としては、例えば、Ag、Al、Tiなどの金属微粒子、金属窒化物、金属酸化物の微粒子、セシウムドープ酸化タングステン(CWO)、また、ITO、ATO、アルミニウム亜鉛複合酸化物(AZO)、ガリウムドープ酸化亜鉛(GZO)、インジウム亜鉛複合酸化物(IZO)などの導電性透明金属酸化物微粒子があり、これらの中から1種以上を選択して、中間膜に含有させ、断熱性能を向上させることができる。特に、ITO、ATO、AZO、GZO、IZOなどの導電性透明金属酸化物微粒子が好ましい。
 ガラス板
 光学反射フィルムおよび一対の中間膜を挟持する一対のガラス板の種類は特に限定されるものではなく、用途に要求される光透過性能や断熱性能によって選択すればよく、無機ガラス板、有機ガラス板、有機無機ハイブリッドガラス板のいずれであってもよい。無機ガラス板としては特に限定されるものではなく、フロートガラス板、磨きガラス板、型ガラス板、網入りガラス板、線入りガラス板、熱線吸収ガラス板、着色ガラス板などの各種無機ガラス板などが挙げられる。有機ガラス板としては、ポリカーボネート樹脂、ポリスチレン樹脂、ポリメチルメタクリレート樹脂、などからなるガラス板などが挙げられる。これらの有機ガラス板は、上記樹脂からなるシート形状のものを複数積層してなる積層体であってもよい。有機無機ハイブリッドガラス板としては、エポキシ樹脂などの樹脂中にシリカを分散させたハイブリッドガラス板などが挙げられる。ガラス板の色についても、透明ガラス板に限らず車両等に用いられる汎用の緑色、茶色、青色等の様々な色のガラス板を用いることができる。ガラス板は同一の種類であってもよく、2種以上併用してもよい。
 ガラス板の厚さは、強度および可視光域の赤外光の透過性を考慮して、1~10mm程度であることが好ましい。曲面形状のガラス板は、ガラス板の曲率半径が0.5~2.0mであることが好ましい。ガラス板の曲率半径がこの範囲であれば、光学反射フィルムがガラスの曲面形状に沿うことができる。
 光学反射フィルムまたは赤外遮蔽体の断熱性能、日射熱遮へい性能は、一般的にJIS R 3209(1998)(複層ガラス)、JIS R 3106(1998)(板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法)、JIS R 3107(1998)(板ガラス類の熱抵抗および建築における熱貫流率の算定方法)に準拠した方法により求めることができる。
 日射透過率、日射反射率、放射率、可視光透過率の測定は、(1)波長(300~2500nm)の分光測光器を用い、各種単板ガラスの分光透過率、分光反射率を測定する。また、波長5.5~50μmの分光測定器を用いて放射率を測定する。なお、フロート板ガラス、磨き板ガラス、型板ガラス、熱線吸収板ガラスの放射率は既定値を用いる。(2)日射透過率、日射反射率、日射吸収率、修正放射率の算出は、JIS R 3106(1998)に従い、日射透過率、日射反射率、日射吸収率、垂直放射率を算出する。修正放射率に関しては、JIS R 3107(1998)に示されている係数を、垂直放射率に乗ずることにより求める。断熱性、日射熱遮へい性の算出は、(1)厚さの測定値、修正放射率を用いJIS R 3209(1998)に従って複層ガラスの熱抵抗を算出する。ただし中空層が2mmを超える場合はJIS R 3107(1998)に従って中空層の気体熱コンダクタンスを求める。(2)断熱性は、複層ガラスの熱抵抗に熱伝達抵抗を加えて熱貫流抵抗で求める。(3)日射熱遮蔽性はJIS R 3106(1998)により日射熱取得率を求め、1から差し引いて算出する。
 以下、実施例により本発明を具体的に説明するが、本発明はこれにより限定されるものではない。なお、実施例において「部」または「%」の表示を用いるが、特に断りがない限り「質量部」または「質量%」を表す。また、特記しない限り、各操作は、室温(25℃)で行われる。
 ≪光学反射フィルムの作製≫
 〈高屈折率層塗布液1の調製〉
 30質量%の酸化セリウムゾル(NYACOL CEO2(AC)-30、粒径10~30nm、Nyacol Nano Technologies社製)384.8gに対してクエン酸(1.9質量%水溶液)を175.4g加えた。ここに界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液を1.94g添加し、これを40℃まで加温した。さらに、ポリビニルアルコールの8質量%水溶液(エクセバール(登録商標)RS-2117、平均重合度1700、鹸化度97.5~99.0モル%、株式会社クラレ製)を120.4g加え、さらに純水9.9gを加えた。10分撹拌後、ポリビニルアルコールの6質量%水溶液(JC-40、平均重合度4000、鹸化度99.0モル%以上、日本酢ビ・ポバール株式会社製)240.8gと純水66.7gとを加えた。この後、40℃で撹拌し、高屈折率層塗布液1を得た。
 上記高屈折率層塗布液1を塗布した膜の屈折率は1.75であった。なお、屈折率の測定方法は下記の通りである(以下同様)。
 〈各層の単膜屈折率の測定〉
 屈折率を測定するため、基材上に上記高屈折率層塗布液1を単層で塗布したサンプルを作製し、このサンプルを10cm×10cmに裁断した後、下記の方法に従って屈折率を求めた。日立製の分光光度計 U-4100(固体試料測定システム)を用いて、各サンプルの測定面とは反対側の面(裏面)を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面での光の反射を防止して、5°正反射の条件にて可視光領域(400nm~700nm)の反射率の測定を行い、結果より屈折率を求めた。
 〈高屈折率層塗布液2の調製〉
 30質量%のジルコニアゾル(SZR-W、粒度分布:D50 3nm~5nm、堺化学工業株式会社)384.8gに対してクエン酸(1.9質量%水溶液)を175.4g加えた。ここに界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液を1.94g添加し、これを40℃まで加温した。さらに、ポリビニルアルコールの8質量%水溶液(エクセバール(登録商標)RS-2117、平均重合度1700、鹸化度97.5~99.0モル%、株式会社クラレ製)を120.4g加え、さらに純水9.9gを加えた。10分撹拌後、ポリビニルアルコールの6質量%水溶液(JC-40、平均重合度4000、鹸化度99.0モル%以上、日本酢ビ・ポバール株式会社製)240.8gと純水66.7gとを加えた。この後、40℃で撹拌し、高屈折率層塗布液2を得た。上記高屈折率層塗布液2を塗布した膜の屈折率は1.73であった。
 〈高屈折率層塗布液3の調製〉
 (シリカ付着二酸化チタンゾルの調製)
 はじめに、ルチル型二酸化チタンを含有するシリカ付着二酸化チタンゾルを以下のように調製した。
 固形分15.0質量%の酸化チタンゾル(SRD-W、体積平均粒径:5nm、ルチル型二酸化チタン粒子、堺化学工業株式会社製)0.5質量部に純水2質量部を加えた後、90℃に加熱した。次いで、ケイ酸水溶液(ケイ酸ソーダ4号(日本化学工業株式会社製)をSiO濃度が0.5質量%となるように純水で希釈したもの)0.5質量部を徐々に添加し、ついでオートクレーブ中、175℃で18時間加熱処理を行い、冷却後、限外濾過膜にて濃縮することにより、固形分濃度が二酸化チタンに対して6質量%のSiOを表面に付着させた二酸化チタンゾル(以下、シリカ付着二酸化チタンゾル)(体積平均粒径:9nm)を得た。
 20質量部の変性PVAの10質量%水溶液(AZF8035W、平均重合度:300、鹸化度:98.5%、日本合成化学工業株式会社製)中に、30質量部の上記で調製したシリカが付着したルチル型酸化チタン粒子(体積平均粒径:9nm)を含む20.0質量%シリカ付着二酸化チタンゾルを、混合、分散し、純水で90質量部に仕上げて酸化チタン分散液を調製した。
 次いで、上記酸化チタン分散液90質量部に、ポリビニルアルコールの5質量%水溶液(PVA224、平均重合度:2400、鹸化度:88%、株式会社クラレ製)30質量部を添加、混合し、さらにカチオン性界面活性剤としてNIKKOL(登録商標)CA-3475V(日光ケミカルズ株式会社製)の5質量%水溶液0.2質量部を添加し、最後に純水で180質量部に仕上げて、高屈折率層塗布液3を調製した。上記高屈折率層塗布液1を塗布した膜の屈折率は1.80であった。
 〈低屈折率層塗布液1の調製〉
 撹拌容器にメチルジアリルアミン塩酸塩重合体(第三級アミンのカチオンを含む)PAS M-1(重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)2.62gおよびほう酸(3質量%水溶液)28.1gを混合した。ここに酸性コロイダルシリカの10質量%水溶液(スノーテックス(登録商標)OXS、一次粒子径:5.4nm、日産化学工業株式会社製)を356.41g加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(JP-45、平均重合度、鹸化度:86.5~89.5モル%、日本酢ビ・ポバール株式会社製)502.72g、界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水90gの混合液を加え、40℃で撹拌し、低屈折率層塗布液1を得た。上記低屈折率層塗布液1を塗布した膜の屈折率は1.50であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の調製〉
 撹拌容器にメチルジアリルアミン塩酸塩重合体(第三級アミンのカチオンを含む)PAS M-1(重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)0.33gおよびほう酸(3質量%水溶液)28.1gを混合した。ここにポリメチルシルセスキオキサン(PMSQ)ゾル(10質量%水分散液)SP-1120(H2O)(粒径20nm、小西化学工業株式会社製)を356.41g加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(PVA-224、平均重合度2400、鹸化度:87~89モル%、株式会社クラレ製)502.72g、水分散性カチオン性ウレタン樹脂(エステル系)の30質量%水分散液(スーパーフレックス(登録商標)620、平均粒子径20nm、第一工業製薬株式会社製)5.3g、界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水87gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1を得た。
 なお、上記水分散カチオン性ウレタン樹脂がカチオン性の樹脂であることをゼータ電位を測定して確認した。具体的な測定方法は下記の通りである。
 装置:Malvern社 ゼータサイザーナノZSP
 測定方式:電気泳動光散乱法
 試料調製:水分散カチオン性ウレタン樹脂を質量%で1%に希釈したものを測定。
 上記水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の屈折率は1.50であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液2の調製〉
 撹拌容器にメチルジアリルアミン塩酸塩重合体(第三級アミンのカチオンを含む)PAS M-1(重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)0.16gおよびほう酸(3質量%水溶液)28.1gを混合した。ここにポリメチルシルセスキオキサン(PMSQ)ゾル(10質量%水分散液)SP-1120(H2O)(粒径20nm、小西化学工業株式会社製)を356.41g加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(PVA-224、平均重合度2400、鹸化度87~89モル%、株式会社クラレ製)502.0g、水分散性カチオン性ウレタン樹脂(エステル系)の30質量%水分散液(スーパーフレックス(登録商標)620、平均粒径20nm、第一工業製薬株式会社製)2.67g、界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水90gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液2を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液2を用いて作製した単層の屈折率は水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の場合と同様であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液3の調製〉
 撹拌容器にメチルジアリルアミン塩酸塩重合体(第三級アミンのカチオンを含む)PAS M-1(重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)3.8gおよびほう酸(3質量%水溶液)28.1gを混合した。ここにポリメチルシルセスキオキサン(PMSQ)ゾル(10質量%水分散液)SP-1120(H2O)(粒径20nm、小西化学工業株式会社製)を356.41g加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(PVA-224、平均重合度2400、鹸化度87~89モル%、株式会社クラレ製)244g、水分散性カチオン性ウレタン樹脂(エステル系)の30質量%水分散液(スーパーフレックス(登録商標)620、平均粒径20nm、第一工業製薬株式会社製)66.2g、界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水281gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液3を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液3を用いて作製した単層の屈折率は水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の場合と同様であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液4の調製〉
 撹拌容器にメチルジアリルアミン塩酸塩重合体(第三級アミンのカチオンを含む)PAS M-1(重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)13.50gおよびほう酸(3質量%水溶液)28.1gを混合した。ここにポリメチルシルセスキオキサン(PMSQ)ゾル(10質量%水分散液)SP-1120(H2O)(粒径20nm、小西化学工業株式会社製)を356.41g加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(PVA-224、平均重合度2400、鹸化度87~89モル%、株式会社クラレ製)502.72g、水分散性カチオン性ウレタン樹脂(エステル系)の30質量%水分散液(スーパーフレックス(登録商標)620、平均粒径20nm、第一工業製薬株式会社製)5.7g、界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水74gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液4を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液4を用いて作製した単層の屈折率は水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の場合と同様であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液5の調製〉
 撹拌容器にメチルジアリルアミン塩酸塩重合体(第三級アミンのカチオンを含む)PAS M-1(重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)0.65gおよびほう酸(3質量%水溶液)28.1gを混合した。ここにポリメチルシルセスキオキサン(PMSQ)ゾル(10質量%水分散液)SP-1120(H2O)(粒径20nm、小西化学工業株式会社製)を356.41g加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(PVA-224、平均重合度2400、鹸化度87~89モル%、株式会社クラレ製)502.72g、水分散性カチオン性ウレタン樹脂(エステル系)の30質量%水分散液(スーパーフレックス(登録商標)620、平均粒径20nm、第一工業製薬株式会社製)5.3g、界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水87gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液5を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液5を用いて作製した単層の屈折率は水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の場合と同様であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液6の調製〉
 撹拌容器にメチルジアリルアミン塩酸塩重合体(第三級アミンのカチオンを含む)PAS M-1(重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)6.55gおよびほう酸(3質量%水溶液)28.1gを混合した。ここにポリメチルシルセスキオキサン(PMSQ)ゾル(10質量%水分散液)SP-1120(H2O)(粒径20nm、小西化学工業株式会社製)を356.41g加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(PVA-224、平均重合度2400、鹸化度87~89モル%、株式会社クラレ製)502.72g、水分散性カチオン性ウレタン樹脂(エステル系)の30質量%水分散液(スーパーフレックス(登録商標)620、平均粒径20nm、第一工業製薬株式会社製)5.5g、界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水83gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液6を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液6を用いて作製した単層の屈折率は水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の場合と同様であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液7の調製〉
 撹拌容器にメチルジアリルアミン塩酸塩重合体(第三級アミンのカチオンを含む)PAS M-1(重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)2.62gおよびほう酸(3質量%水溶液)28.1gを混合した。ここにポリメチルシルセスキオキサン(PMSQ)ゾル(10質量%水分散液)SP-1120(H2O)(粒径20nm、小西化学工業株式会社製)を356.41g加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(PVA-224、平均重合度2400、鹸化度87~89モル%、株式会社クラレ製)502.72g、水分散性カチオン性ウレタン樹脂(エステル系)の30質量%水分散液(スーパーフレックス(登録商標)620、平均粒径20nm、第一工業製薬株式会社製)5.5g、界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水83gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液7を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液7を用いて作製した単層の屈折率は水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の場合と同様であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液8の調製〉
 撹拌容器にジアリルジメチルアンモニウムクロリド重合体(第四級アンモニウム基を含む)PAS H-1L(重量平均分子量8,500、28質量%水溶液、ニットーボーメディカル株式会社製)4.68gおよびほう酸(3質量%水溶液)28.1gを混合した。ここにポリメチルシルセスキオキサン(PMSQ)ゾル(10質量%水分散液)SP-1120(H2O)(粒径20nm、小西化学工業株式会社製)を356.41g加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(PVA-224、平均重合度2400、鹸化度87~89モル%、株式会社クラレ製)502.72g、水分散性カチオン性ウレタン樹脂(エステル系)の30質量%水分散液(スーパーフレックス(登録商標)620、平均粒径20nm、第一工業製薬株式会社製)5.5g、界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水83gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液8を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液8を用いて作製した単層の屈折率は水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の場合と同様であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液9の調製〉
 撹拌容器にジアリルジメチルアンモニウムクロリド重合体(第四級アンモニウム基を含む)PAS H-1L(重量平均分子量8,500、28質量%水溶液、ニットーボーメディカル株式会社製)2.34g、メチルジアリルアミン塩酸塩重合体(第三級アミンのカチオンを含む)PAS M-1(重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)1.31gおよびほう酸(3質量%水溶液)28.1gを混合した。ここにポリメチルシルセスキオキサン(PMSQ)ゾル(10質量%水分散液)SP-1120(H2O)(粒径20nm、小西化学工業株式会社製)を356.41g加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(PVA-224、平均重合度2400、鹸化度87~89モル%、株式会社クラレ製)502.72g、水分散性カチオン性ウレタン樹脂(エステル系)の30質量%水分散液(スーパーフレックス(登録商標)620、平均粒径20nm、第一工業製薬株式会社製)5.5g、界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水83gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液9を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液9を用いて作製した単層の屈折率は水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の場合と同様であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液10の調製〉
 撹拌容器にメチルジアリルアミン塩酸塩重合体(第三級アミンのカチオンを含む)PAS M-1(重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)26.5gおよびほう酸(3質量%水溶液)28.1gを混合した。ここにポリメチルシルセスキオキサン(PMSQ)ゾル(10質量%水分散液)SP-1120(H2O)(粒径20nm、小西化学工業株式会社製)を356.41g加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(PVA-224、平均重合度2400、鹸化度87~89モル%、株式会社クラレ製)195.0g、水分散性カチオン性ウレタン樹脂(エステル系)の30質量%水分散液(スーパーフレックス(登録商標)620、平均粒径20nm、第一工業製薬株式会社製)56.1g、界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水318gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液10を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液10を用いて作製した単層の屈折率は水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の場合と同様であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液11の調製〉
 撹拌容器にメチルジアリルアミン塩酸塩重合体(第三級アミンのカチオンを含む)PAS M-1(重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)5.8gおよびほう酸(3質量%水溶液)28.1gを混合した。ここにポリメチルシルセスキオキサン(PMSQ)ゾル(10質量%水分散液)SP-1120(H2O)(粒径20nm、小西化学工業株式会社製)を356.41g加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(PVA-224、平均重合度2400、鹸化度87~89モル%、株式会社クラレ製)480.0g、水分散性カチオン性ウレタン樹脂(エステル系)の30質量%水分散液(スーパーフレックス(登録商標)620、平均粒径20nm、第一工業製薬株式会社製)12.3g、界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水98gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液11を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液11を用いて作製した単層の屈折率は水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の場合と同様であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液12の調製〉
 撹拌容器にメチルジアリルアミン塩酸塩重合体(第三級アミンのカチオンを含む)PAS M-1(重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)5.8gおよびほう酸(3質量%水溶液)28.1gを混合した。ここにポリメチルシルセスキオキサン(PMSQ)ゾル(10質量%水分散液)SP-1120(H2O)(粒径20nm、小西化学工業株式会社製)を356.41g加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(PVA-224、平均重合度2400、鹸化度87~89モル%、株式会社クラレ製)480.0g、水分散性カチオン性ウレタン樹脂(カーボネート系)の26質量%水分散液(スーパーフレックス(登録商標)650、平均粒径10nm、第一工業製薬株式会社製)14.2g、界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水96gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液12を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液12を用いて作製した単層の屈折率は水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の場合と同様であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液13の調製〉
 撹拌容器にメチルジアリルアミン塩酸塩重合体(第三級アミンのカチオンを含む)PAS M-1(重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)5.8gおよびほう酸(3質量%水溶液)28.1gを混合した。ここにポリメチルシルセスキオキサン(PMSQ)ゾル(10質量%水分散液)SP-1120(H2O)(粒径20nm、小西化学工業株式会社製)を356.41g加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(JP-45、平均重合度4500、日本酢ビ・ポバール株式会社製)480.0g、水分散性カチオン性ウレタン樹脂(カーボネート系)の26質量%水分散液(スーパーフレックス(登録商標)650、平均粒径10nm、第一工業製薬株式会社製)14.2g、界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水96gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液13を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液13を用いて作製した単層の屈折率は水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の場合と同様であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液14の調製〉
 撹拌容器にメチルジアリルアミン塩酸塩重合体(第三級アミンのカチオンを含む)PAS M-1(重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)5.8gおよびほう酸(3質量%水溶液)28.1gを混合した。ここに酸性コロイダルシリカの10質量%水溶液(スノーテックス(登録商標)OXS、一次粒径:5.4nm、日産化学工業株式会社製)を356.41g加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(JP-45、平均重合度4500、日本酢ビ・ポバール株式会社製)480.0g、水分散性カチオン性ウレタン樹脂(カーボネート系)の26質量%水分散液(スーパーフレックス(登録商標)650、平均粒径10nm、第一工業製薬株式会社製)14.2g、界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水96gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液14を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液14を用いて作製した単層の屈折率は1.50であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液15の調製〉
 撹拌容器にほう酸(3質量%水溶液)28.1gとポリメチルシルセスキオキサン(PMSQ)ゾル(10質量%水分散液)SP-1120(H2O)(粒径20nm、小西化学工業株式会社製)356.41gとを加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(PVA-224、平均重合度2400、鹸化度87~89モル%、株式会社クラレ製)502.72gおよび界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水93gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液15を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液15を用いて作製した単層の屈折率は水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の場合と同様であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液16の調製〉
 撹拌容器にほう酸(3質量%水溶液)28.1gとポリメチルシルセスキオキサン(PMSQ)ゾル(10質量%水分散液)SP-1120(H2O)(粒径20nm、小西化学工業株式会社製)356.41gとを加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(PVA-224、平均重合度2400、鹸化度87~89モル%、株式会社クラレ製)502.72g、水分散性カチオン性ウレタン樹脂(エステル系)の30質量%水分散液(スーパーフレックス(登録商標)620、平均粒径20nm、第一工業製薬株式会社製)5.37g、および界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水88gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液16を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液16を用いて作製した単層の屈折率は水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の場合と同様であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液17の調製〉
 撹拌容器にほう酸(3質量%水溶液)28.1gとポリメチルシルセスキオキサン(PMSQ)ゾル(10質量%水分散液)SP-1120(H2O)(粒径20nm、小西化学工業株式会社製)356.41gとを加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(PVA-224、平均重合度2400、鹸化度87~89モル%、株式会社クラレ製)502.72g、水分散性カチオン性ウレタン樹脂(エステル系)の30質量%水分散液(スーパーフレックス(登録商標)620、平均粒径20nm、第一工業製薬株式会社製)1.30g、界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水91gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液17を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液17を用いて作製した単層の屈折率は水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の場合と同様であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液18の調製〉
 撹拌容器にほう酸(3質量%水溶液)28.1gとポリメチルシルセスキオキサン(PMSQ)ゾル(10質量%水分散液)SP-1120(H2O)(粒径20nm、小西化学工業株式会社製)356.41gとを加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(PVA-224、平均重合度2400、鹸化度87~89モル%、株式会社クラレ製)250.0g、水分散性カチオン性ウレタン樹脂(エステル系)の30質量%水分散液(スーパーフレックス(登録商標)620、平均粒径20nm、第一工業製薬株式会社製)83.57g、界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水262gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液18を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液18を用いて作製した単層の屈折率は水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の場合と同様であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液19の調製〉
 撹拌容器にメチルジアリルアミン塩酸塩重合体(第三級アミンのカチオンを含む)PAS M-1(重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)0.33gおよびほう酸(3質量%水溶液)28.1gを混合した。ここにポリメチルシルセスキオキサン(PMSQ)ゾル(10質量%水分散液)SP-1120(H2O)(粒径20nm、小西化学工業株式会社製)356.41gを加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(PVA-224、平均重合度2400、鹸化度87~89モル%、株式会社クラレ製)502.7g、界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水93gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液19を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液19を用いて作製した単層の屈折率は水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の場合と同様であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液20の調製〉
 撹拌容器にメチルジアリルアミン塩酸塩重合体(第三級アミンのカチオンを含む)PAS M-1(重量平均分子量20,000、50質量%水溶液、ニットーボーメディカル株式会社製)0.33gおよびほう酸(3質量%水溶液)28.1gを混合した。ここにポリメチルシルセスキオキサン(PMSQ)ゾル(10質量%水分散液)SP-1120(H2O)(粒径20nm、小西化学工業株式会社製)356.41gを加えた。これを撹拌しながら40℃まで加温した。ここに、ポリビニルアルコールの8質量%水溶液(PVA-224、平均重合度2400、鹸化度87~89モル%、株式会社クラレ製)502.7g、水分散性ノニオン性ウレタン樹脂(エステル系)の45質量%水分散液(スーパーフレックス(登録商標)500M、平均粒径140nm、第一工業製薬株式会社製)3.5g、界面活性剤であるソフタゾリン(登録商標)LMEB-R(川研ファインケミカル株式会社製)の5質量%水溶液19.89g、および純水89gの混合液を加え、40℃で撹拌し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液20を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液20を用いて作製した単層の屈折率は水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1の場合と同様であった。
 〈水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液21の調製〉
 9.18質量部のポリ塩化アルミニウム(多木化学株式会社製、タキバイン(登録商標)#1500)の23.5質量%水溶液と、215質量部のコロイダルシリカ(スノーテックス(登録商標)OXS、平均粒径:5.4nm、日産化学工業株式会社製)の10質量%水溶液と、23質量部のホウ酸の3.0質量%水溶液と、8.4質量部の酢酸ナトリウムの3.3質量%水溶液とを、混合、分散し、純水で400質量部に仕上げて、酸化ケイ素分散液を調製した。
 次いで、上記酸化ケイ素分散液を45℃に加熱し、8質量部の純水、188質量部の未変性ポリビニルアルコール(PVA235、平均重合度:3500、鹸化度:88%、株式会社クラレ製)の4.0質量%溶液、および12.5質量部のカチオン系エマルジョン(UW-319SX、平均粒径:50nm、Tg:10℃、大成ファインケミカル株式会社製)の30.0質量%溶液を添加、混合した後、さらにカチオン性界面活性剤として、1.90質量部のNIKKOL(登録商標) CA-3475V(日光ケミカルズ株式会社製)の5質量%水溶液を添加し、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液21を得た。水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液21を用いて作製した単層の屈折率は水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液14の場合と同様であった。
 [実施例1]
 19層重層塗布可能なスライドホッパー塗布装置を用いて、上記で調製した高屈折率層塗布液1、低屈折率層塗布液1、および水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1を、それぞれ、40℃に調節した。40℃に加温した基材である160mm幅で厚さ50μmのポリエチレンテレフタレートフィルム(東洋紡株式会社製A4300:両面易接着層)上に、最下層と最上層は低屈折率層とし、基材側から19層目を水分散性カチオン性ウレタン樹脂含有低屈折率層とした以外はそれぞれ交互に、乾燥時の膜厚が低屈折率層および水分散性カチオン性ウレタン樹脂含有低屈折率層は各層150nm、高屈折率層は各層130nmになるように、計19層の同時重層塗布を行った。塗布直後、10℃の冷風を吹き付けてセット(増粘)させた。
 セット(増粘)完了後、60℃の温風を吹き付けて乾燥させて、計19層からなる実施例1の光学反射フィルムを作製した。
 なお、膜厚の測定(確認)は、光学反射フィルム試料を切断して切断面をXPS表面分析装置で高屈折率材料(実施例1ではCeO)と低屈折率材料(SiO、水分散性カチオン性ウレタン樹脂含有層ではPMSQ)との存在量を測定することで、上記各層の膜厚が確保されていることが確認できた。
 [実施例2]
 上記実施例1において、基材側から19層目に代えて、基材側から1層目を水分散性カチオン性ウレタン樹脂含有低屈折率層としたことを除いては、実施例1と同様にして光学反射フィルムを作製した。
 [実施例3~14、比較例1~6]
 上記実施例2において、水分散性カチオン性ウレタン樹脂含有低屈折率層を構成するための塗布液を、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液1から、下記表1に示すように、それぞれ、上記で作製した水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液2~13、15~20に変更したことを除いては、実施例2と同様にして光学反射フィルムを作製した。
 [実施例15]
 実施例14において、高屈折率層を構成するための塗布液を、高屈折率層塗布液1から上記で作製した高屈折率層塗布液2に変更したことを除いては、実施例14と同様にして光学反射フィルムを作製した。
 [実施例16]
 実施例15において、水分散性カチオン性ウレタン樹脂含有低屈折率層を構成するための塗布液を、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液13から、上記で作製した水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液14に変更したことを除いては、実施例15と同様にして光学反射フィルムを作製した。
 [実施例17]
 実施例16において、基材側から1層目および19層目を水分散性カチオン性ウレタン樹脂含有低屈折率層としたことを除いては、実施例16と同様にして光学反射フィルムを作製した。
 [実施例18]
 実施例16において、すべての低屈折率層を水分散性カチオン性ウレタン樹脂含有低屈折率層としたことを除いては、実施例16と同様にして光学反射フィルムを作製した。
 [比較例7]
 比較例6において、水分散性カチオン性ウレタン樹脂含有低屈折率層を構成するための塗布液を、水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液20から上記で作製した水分散性カチオン性ウレタン樹脂含有低屈折率層塗布液21に変更し、さらに、高屈折率層を構成するための塗布液を、高屈折率層塗布液1から上記で作製した高屈折率層塗布液3に変更したことを除いては、比較例6と同様にして光学反射フィルムを作製した。
 [比較例8]
 比較例7において、すべての低屈折率層を水分散性カチオン性ウレタン樹脂含有低屈折率層としたことを除いては、比較例7と同様にして光学反射フィルムを作製した。
 ≪評価≫
 <ヘイズの測定>
 上記実施例および比較例で製造した光学反射フィルム試料について、ヘイズメーター(日本電色工業株式会社製、NDH5000)を用い、JIS K7136:2000に従ってヘイズを測定した。なお、光学反射フィルムのヘイズ値としては、3.0%以下であると好ましい。
 (耐候性試験)
 上記実施例および比較例で製造した光学反射フィルムにおいて、基材上に積層された誘電体多層膜の基材と反対側の表面上に、粘着層を形成した。具体的には、下記粘着層形成塗布液をセパレータである中本パックス株式会社製セパレータ NS23MAのシリコーン離型面に対して、コンマコーターにて乾燥膜厚が10μmになるように塗工し、90℃、1分間乾燥して粘着層を形成した。この粘着層に、上記にて誘電体多層膜を形成したフィルムを貼りあわせ、誘電体多層膜上に粘着層を形成した。
 粘着層形成塗布液の調製
 コーポニールN-2147(固形分35質量%、日本合成化学工業株式会社製)100質量部、UV吸収剤としてTINUVIN(登録商標)477(固形分80質量%、BASFジャパン株式会社製)2.1質量部、硬化剤としてコロネート(登録商標)L55E(固形分55質量%、東ソー株式会社製)5質量部を混合して粘着層形成塗布液を作製した。
 その後、試料から、セパレータであるSP-PET(剥離フィルム)を剥がし、6cm×12cmのガラスに粘着層を介して光学反射フィルムを貼り付けた。そして、キセノンウェザーメーター(スガ試験機株式会社製 SX-75)を用い、ガラス側が光入射側になるように配置して、JIS K 7350-2に則って試験を5000時間実施した。
 (色調変化)
 分光光度計(積分球使用、株式会社日立製作所製、U-4000型)を用いて透過スペクトルを測定し、耐候性試験前後の色差(ΔE)を算出し、試験試料6枚の平均値を求めた。なお、実使用においてはΔEが3.0未満であれば耐候性が確保されているといえる。
 (クラックの評価)
 耐候性試験後の試料を目視観察し、以下の基準に従ってクラックを評価した。以下の基準で、3~6は実用上問題なく使用できる。
 6:クラック、うねりとも全くみられない、
 5:クラックは全くみられず表面にうねりがみられるが実用上問題ない、
 4:ルーペではフィルム端部に微小なクラックがみられるが実用上問題ない、
 3:目視でフィルム端部に微小なクラックがみられる、
 2:クラックがフィルム中央部にも発生し、実用上支障がある、
 1:フィルム全体にクラックが発生し、実用上問題がある。
 <近赤外反射率の測定>
 分光光度計としてU-4000型(積分球使用、株式会社日立製作所製)を用いて、各実施例および比較例の光学反射フィルムの800~1400nmの領域における反射率を測定し、その最大値を求め、これを近赤外反射率とした。各実施例、比較例のいずれの光学反射フィルムにおいても、70%以上の良好な近赤外反射率が得られることが確認された。
 評価結果を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記表1の結果から、水溶性樹脂と、屈折率調整剤と、水分散性カチオン性ウレタン樹脂と、第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーと、を有する水分散性カチオン性ウレタン樹脂含有層を有する実施例1~18の光学反射フィルムは、比較例1~8の光学反射フィルムに比べて、着色防止とクラック発生防止とが両立され、耐候性に優れることがわかる。比較例2~4のように水分散性カチオン性ウレタン樹脂を導入すると、カチオン性ウレタン樹脂を用いない比較例1の光学反射フィルムに比べてクラックは生じにくくなるが、光照射により着色してしまう。比較例6のようなノニオン性ウレタン樹脂を用いた場合は十分な着色防止効果が得られない。
 また、実施例2、5~8を比較すると、水分散性カチオン性ウレタン樹脂含有層におけるカチオンポリマーの含有量が水分散性カチオン性ウレタン樹脂に対して固形分比で0.2~4.0の範囲である実施例5~8の光学反射フィルムではヘイズおよび耐候性試験後の着色が抑制され、0.2~2.0の範囲である実施例6~8ではヘイズがより低減される。
 実施例2~4のうち、水分散性カチオン性ウレタン樹脂含有層における前記水分散性カチオン性ウレタン樹脂の含有量が、2~20質量%である実施例2の光学反射フィルムは、ヘイズおよび耐候性試験後の着色が抑制される効果に優れる。
 さらに、実施例13~18のように水分散性カチオン性ウレタン樹脂がカーボネート系ウレタン樹脂である場合にはクラックを抑制する効果がより高い。実施例14~18のように水溶性樹脂の平均重合度が4000~6000である場合は、複数の層に水分散性カチオン性ウレタン樹脂を有する場合であってもヘイズが抑制された光学反射フィルムが得られることがわかった。
 なお、本出願は、2016年3月31日に出願された日本特許出願第2016-071520号に基づいており、その開示内容は、参照により全体として引用されている。
 

Claims (8)

  1.  基材と、
     前記基材の一方の面上に配置された、低屈折率層と高屈折率層とが交互に積層されてなる誘電体多層膜と、を有し、
     前記低屈折率層および前記高屈折率層のうち少なくとも1層は、水溶性樹脂と、屈折率調整剤と、水分散性カチオン性ウレタン樹脂と、第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーと、を含む水分散性カチオン性ウレタン樹脂含有層である、光学反射フィルム。
  2.  前記第三級アミノ基もしくはそのカチオン(塩)または第四級アンモニウム基をもつカチオンポリマーの質量比が前記水分散性カチオン性ウレタン樹脂に対して固形分比で0.2~4.0である、請求項1に記載の光学反射フィルム。
  3.  前記水分散性カチオン性ウレタン樹脂含有層における前記水分散性カチオン性ウレタン樹脂の含有量が、2~20質量%である、請求項1または2に記載の光学反射フィルム。
  4.  前記水分散性カチオン性ウレタン樹脂がカーボネート系ウレタン樹脂である、請求項1~3のいずれか1項に記載の光学反射フィルム。
  5.  前記水溶性樹脂の平均重合度が4000~6000である、請求項1~4のいずれか1項に記載の光学反射フィルム。
  6.  前記高屈折率層のうち少なくとも1層が、屈折率調整剤として酸化ジルコニウム粒子を含む水分散性カチオン性ウレタン樹脂含有層である、請求項1~5のいずれか1項に記載の光学反射フィルム。
  7.  前記低屈折率層のうち少なくとも1層が、屈折率調整剤として酸化ケイ素粒子を含む水分散性カチオン性ウレタン樹脂含有層である、請求項1~6のいずれか1項に記載の光学反射フィルム。
  8.  複数の低屈折率層が前記水分散性カチオン性ウレタン樹脂含有層である、請求項1~7のいずれか1項に記載の光学反射フィルム。
PCT/JP2017/010526 2016-03-31 2017-03-15 光学反射フィルム WO2017169810A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/090,373 US10894385B2 (en) 2016-03-31 2017-03-15 Optical reflective film
CN201780019813.7A CN108885288B (zh) 2016-03-31 2017-03-15 光学反射膜
JP2018509002A JP6683249B2 (ja) 2016-03-31 2017-03-15 光学反射フィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016071520 2016-03-31
JP2016-071520 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017169810A1 true WO2017169810A1 (ja) 2017-10-05

Family

ID=59964333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010526 WO2017169810A1 (ja) 2016-03-31 2017-03-15 光学反射フィルム

Country Status (4)

Country Link
US (1) US10894385B2 (ja)
JP (1) JP6683249B2 (ja)
CN (1) CN108885288B (ja)
WO (1) WO2017169810A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194175A1 (ja) * 2018-04-06 2019-10-10 日産化学株式会社 塗布膜形成組成物、及び半導体装置の製造方法
KR102253130B1 (ko) 2019-11-13 2021-05-14 에스케이씨 주식회사 플라스틱 중간막, 이를 포함하는 적층체 및 이를 포함하는 이동수단

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215733A (ja) * 2011-04-01 2012-11-08 Konica Minolta Holdings Inc 赤外線遮蔽フィルムおよび赤外線遮蔽体
WO2013058141A1 (ja) * 2011-10-20 2013-04-25 コニカミノルタホールディングス株式会社 赤外遮蔽フィルムおよびこれを用いた赤外遮蔽体
JP2015132780A (ja) * 2014-01-15 2015-07-23 コニカミノルタ株式会社 塗布液送液システム

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039224A1 (en) * 1998-01-28 1999-08-05 Minnesota Mining And Manufacturing Company Infrared interference filter
JP4954519B2 (ja) * 2004-11-12 2012-06-20 富士フイルム株式会社 インクジェット記録用媒体、及びインクジェット記録用媒体の製造方法
JP2008527461A (ja) * 2005-03-04 2008-07-24 エルジー・ケム・リミテッド Pdpフィルタとその製造方法
JP2007326357A (ja) * 2006-05-10 2007-12-20 Fujifilm Corp 積層フィルム及び画像表示装置
US8000012B2 (en) * 2007-01-31 2011-08-16 Fujifilm Corporation Optical multilayer film and image display device
JP2012000973A (ja) * 2010-05-19 2012-01-05 Dainippon Printing Co Ltd 積層体の製造方法及び積層体
CN103154154B (zh) * 2010-07-01 2016-02-17 威士伯采购公司 红外反射性双组份涂料组合物
JP5880438B2 (ja) * 2010-10-27 2016-03-09 コニカミノルタ株式会社 近赤外反射フィルム、その製造方法及び近赤外反射フィルムを設けた近赤外反射体
CN103649790B (zh) * 2011-06-23 2016-10-19 柯尼卡美能达株式会社 光学反射膜及其制造方法
EP2725395A4 (en) * 2011-06-24 2014-12-10 Konica Minolta Inc OPTICAL REFLECTIVE FILM
US9519081B2 (en) * 2011-12-12 2016-12-13 Konica Minolta, Inc. Optical laminate film, infrared shielding film and infrared shielding body
JPWO2014024873A1 (ja) * 2012-08-06 2016-07-25 コニカミノルタ株式会社 光反射フィルムおよびこれを用いた光反射体
CN104583820B (zh) * 2012-08-29 2017-07-11 旭硝子株式会社 近红外线截止滤波器
JP5956291B2 (ja) * 2012-08-31 2016-07-27 富士フイルム株式会社 多層構造および貼合せ構造体
WO2014049891A1 (ja) * 2012-09-28 2014-04-03 東海ゴム工業株式会社 透明積層フィルム
PL2917159T3 (pl) * 2012-11-08 2019-05-31 Saint Gobain Oszklenie o przełączalnych właściwościach optycznych
WO2014171494A1 (ja) * 2013-04-17 2014-10-23 コニカミノルタ株式会社 光学反射フィルム、その製造方法およびそれを用いる光学反射体
CN105452911B (zh) * 2013-10-17 2017-06-09 Jsr株式会社 光学滤波器、固体摄像装置及照相机模块
JPWO2015115329A1 (ja) * 2014-01-29 2017-03-23 コニカミノルタ株式会社 光学フィルム
WO2015159647A1 (ja) * 2014-04-17 2015-10-22 コニカミノルタ株式会社 光反射フィルムロール及び光反射フィルムロール包装体
JP2015227963A (ja) * 2014-06-02 2015-12-17 京セラクリスタルデバイス株式会社 光学フィルタ及びその製造方法
KR101884254B1 (ko) * 2014-06-25 2018-08-01 후지필름 가부시키가이샤 적층체, 적외선 흡수 필터, 밴드 패스 필터, 적층체의 제조 방법, 밴드 패스 필터 형성용 키트, 화상 표시 장치
CN106338783B (zh) * 2015-09-17 2018-08-14 湖北航天化学技术研究所 一种防眩抗反射光学膜及其制备方法和应用
WO2017110651A1 (ja) * 2015-12-25 2017-06-29 コニカミノルタ株式会社 光学反射フィルム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215733A (ja) * 2011-04-01 2012-11-08 Konica Minolta Holdings Inc 赤外線遮蔽フィルムおよび赤外線遮蔽体
WO2013058141A1 (ja) * 2011-10-20 2013-04-25 コニカミノルタホールディングス株式会社 赤外遮蔽フィルムおよびこれを用いた赤外遮蔽体
JP2015132780A (ja) * 2014-01-15 2015-07-23 コニカミノルタ株式会社 塗布液送液システム

Also Published As

Publication number Publication date
JPWO2017169810A1 (ja) 2019-02-07
US20190111659A1 (en) 2019-04-18
CN108885288A (zh) 2018-11-23
JP6683249B2 (ja) 2020-04-15
CN108885288B (zh) 2020-10-16
US10894385B2 (en) 2021-01-19

Similar Documents

Publication Publication Date Title
JP6115675B2 (ja) 光学反射フィルム及びそれを用いた光学反射体
WO2016208548A1 (ja) 光学フィルム、およびこれを含む光学積層体
WO2013111735A1 (ja) 光学フィルム
JP5939257B2 (ja) 近赤外遮蔽フィルムおよび近赤外遮蔽体
JP6834984B2 (ja) 光学反射フィルム
WO2014069507A1 (ja) 光学反射フィルム、赤外遮蔽フィルムおよびその製造方法
WO2014199872A1 (ja) 赤外遮蔽フィルムおよびこれを用いた赤外遮蔽体および熱線反射合わせガラス
JP6428608B2 (ja) 赤外線遮蔽フィルム、赤外線遮蔽フィルムの設置方法及び赤外線遮蔽フィルムの虹彩防止方法
WO2014188831A1 (ja) 紫外線遮蔽フィルム
WO2015056752A1 (ja) 赤外遮蔽フィルムおよびこれを用いた赤外遮蔽体および熱線反射合わせガラス
JP6724912B2 (ja) 光学反射フィルム
WO2014171494A1 (ja) 光学反射フィルム、その製造方法およびそれを用いる光学反射体
JP6344069B2 (ja) 光学反射フィルム
JP6683249B2 (ja) 光学反射フィルム
WO2016010049A1 (ja) 積層フィルムおよびその製造方法
JP6176256B2 (ja) 光学反射フィルムおよびそれを用いた光学反射体
JP6787336B2 (ja) 光学反射フィルムおよび光学反射体
JP2016155256A (ja) 遮熱フィルム、およびその製造方法
JP2017219694A (ja) 光学反射フィルム、光学反射フィルムの製造方法、及び、光学反射体
JP2017203965A (ja) ロール状の光学反射フィルム
JP2015212736A (ja) 積層反射フィルムおよびその製造方法、ならびにこれを含む光学反射体
JP2016090878A (ja) 光学反射フィルム
JP6672984B2 (ja) 光学反射フィルム、光学反射フィルムの製造方法、及び、光学反射体
JP2016057537A (ja) 光学反射フィルム、その製造方法およびそれを用いる光学反射体
JP2016114806A (ja) 光学フィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018509002

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774354

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774354

Country of ref document: EP

Kind code of ref document: A1