JPWO2016208769A1 - 空気極、金属空気電池及び空気極材料 - Google Patents

空気極、金属空気電池及び空気極材料 Download PDF

Info

Publication number
JPWO2016208769A1
JPWO2016208769A1 JP2016568454A JP2016568454A JPWO2016208769A1 JP WO2016208769 A1 JPWO2016208769 A1 JP WO2016208769A1 JP 2016568454 A JP2016568454 A JP 2016568454A JP 2016568454 A JP2016568454 A JP 2016568454A JP WO2016208769 A1 JPWO2016208769 A1 JP WO2016208769A1
Authority
JP
Japan
Prior art keywords
air electrode
air
ldh
particles
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016568454A
Other languages
English (en)
Other versions
JP6570545B2 (ja
Inventor
服部 達哉
達哉 服部
鬼頭 賢信
賢信 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPWO2016208769A1 publication Critical patent/JPWO2016208769A1/ja
Application granted granted Critical
Publication of JP6570545B2 publication Critical patent/JP6570545B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8615Bifunctional electrodes for rechargeable cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)
  • Catalysts (AREA)

Abstract

空気極(12)は、複数本のカーボンナノチューブ(12a)と、複数個の層状複水酸化物粒子(12b)とを含む。複数個の層状複水酸化物粒子(12b)は、複数本のカーボンナノチューブ(12a)に支持されている。

Description

本発明は、空気極、金属空気電池、空気極材料及び空気極材料の製造方法に関する。
従来、金属空気電池用の空気極は、電子伝導性材料を主成分として含み、層状複水酸化物と結着剤を副成分として含む(例えば、特許文献1参照)。電子伝導性材料としては、炭素材料などが使用される。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン及びスチレン/ブタジエンゴムなどのいわゆる有機バインダが使用される。
特開2012−43567号公報
一方で、空気極の特性(水酸化物イオン伝導性、電子伝導性及び触媒反応活性)をさらに向上させたいという要請がある。本発明者等は、カーボンナノチューブをバインダとして用いることによって空気極の特性をさらに向上できるという新たな知見を得た。
本発明は、このような新たな知見に基づいてなされたものであり、特性を向上可能な空気極、金属空気電池及び空気極材料を提供することを目的とする。
本発明に係る空気極は、金属空気電池に用いられる空気極であって、複数本のカーボンナノチューブ(CNT)と、複数個の層状複水酸化物粒子(LDH)とを含む。複数個の層状複水酸化物粒子は、複数本のカーボンナノチューブに支持されている。
本発明によれば、特性を向上可能な空気極、金属空気電池及び空気極材料を提供することができる。
亜鉛空気二次電池10の構成を模式的に示す断面図 空気極の断面拡大図 図2の部分拡大図 空気極抵抗の測定方法を説明するための模式図 空気極断面のSEM二次電子像 空気極断面のSEM反射電子像
図面を参照しながら、実施形態に係る金属空気電池について説明する。金属空気電池は、亜鉛空気二次電池やリチウム空気二次電池などを含む概念である。本実施形態では、金属空気電池の一例として亜鉛空気二次電池について説明する。
なお、図面の記載において同一又は類似の部分には同一又は類似の符号を付している。図面は模式的なものであり、各寸法の比率等は現実のものとは異なっている場合がある。
(亜鉛空気二次電池10の構成)
図1は、亜鉛空気二次電池10の構成を模式的に示す断面図である。亜鉛空気二次電池10は、空気極12、水酸化物イオン伝導性セパレータ14、電解液に浸漬された負極16、正極集電体18及び容器20を備える。
1.空気極12
空気極12は、Oの還元反応及び/又は発生反応を起こす正極として機能する。空気極12は、水酸化物イオン伝導性セパレータ14上に配置される。空気極12は、第1主面12Sと第2主面12Tを有する。空気極12は、第1主面12Sにおいて水酸化物イオン伝導性セパレータ14と接触する。空気極12は、第2主面12Tにおいて正極集電体18と接触する。
空気極12の厚みは特に制限されないが、1〜100μmとすることができ、1〜75μmであることが好ましく、1〜50μmであることがより好ましく、1〜30μmであることがさらに好ましい。これによって、水酸化物イオン伝導相と電子伝導相と気相の三相界面の面積を確保して空気極12の触媒反応活性を維持することができる。
空気極12は、カーボンナノチューブ(以下、「CNT」と略称する。)と、層状複水酸化物(以下、「LDH」と略称する。)とを含有する。
CNTは、六角形格子構造のグラフェンを円筒状に形成した繊維状炭素材料である。CNTは、シングルウォールカーボンナノチューブであってもよいしマルチウォールカーボンナノチューブであってもよい。CNTの両端は、閉口していてもよいし開口していてもよい。
CNTは、無機バインダとして機能する。CNTは、LDHを結着することによって空気極12の形状を維持する。CNTは、酸素還元発生触媒としても機能する。空気極12にCNTを含有させることによって、空気極12の触媒反応活性を向上させることができる。CNTは、電子伝導体としても機能する。空気極12にCNTを含有させることによって、空気極12の電子伝導性を向上させることができる。
CNTは、空気極12内において、束状ではなく束の解かれた状態で存在していることが好ましい。これによって、LDHを効率的に結着させることができる。ただし、CNTの一部は、空気極12内において束状に存在していてもよい。
LDHは、水酸化物イオン伝導性を有する。LDHは、一般式M2+ 1−x3+ (OH)n− x/n・mHO(M2+は1種以上の2価の陽イオンであり、M3+は1種以上の3価の陽イオンであり、An−はn価の陰イオンであり、nは1以上の整数であり、xは0.1〜0.4であり、mは0以上である。)で表される。M2+としては、Ni2+、Mg2+、Ca2+、Mn2+、Fe2+、Co2+、Cu2+、Zn2+が挙げられる。M3+としては、Fe3+、Al3+、Co3+、Cr3+、In3+が挙げられる。An−としては、NO3−、CO 2−、SO 2−、OH、Cl、I、Br、Fが挙げられる。特に、M2+としてMg2+を含み、M3+としてAl3+を含むMg−Al型のLDHが好適である。
空気極12におけるCNTの含有量は、0.1体積%以上40体積%以下とすることができる。これによって、酸素還元発生触媒及び電子伝導体として機能するCNTを無機バインダとしても機能させることができる。従って、空気極12は、特性(電子伝導性や触媒反応活性)に何ら寄与しない有機バインダを含有していなくてもよいため、有機バインダを用いてLDHを結着する場合に比べて、空気極12の特性を顕著に向上させることができる。空気極12におけるCNTの含有量は、0.1体積%以上30体積%以下であることが好ましく、0.1体積%以上20体積%以下であることがより好ましい。
空気極12におけるLDHの含有量は、60体積%以上99.9体積%以下とすることができる。空気極12におけるLDHの含有量は60体積%以上90体積%以下であることが好ましく、60体積%以上70体積%以下であることがより好ましい。
空気極12において、CNTのLDHに対する体積比(CNT体積÷LDH体積)は、0.001以上であることが好ましい。これによって、LDHをCNTによって全体的に包み込むことができるとともに、空気極12の電子伝導性をより向上させることができる。空気極12において、CNTのLDHに対する体積比は、1以下であることが好ましい。これによって、空気極12の水酸化物イオン伝導性をより向上させることができる。
空気極12は、一般式ABO3−δ(δ≦0.4)で表されるペロブスカイト型酸化物を含んでいてもよい。このようなペロブスカイト型酸化物は、電子伝導性を有することが好ましいが、電子伝導性を有していなくてもよい。ペロブスカイト型酸化物は、酸素還元発生触媒として機能することが好ましい。
ペロブスカイト型酸化物としては、一般式ABO3−δ(δ≦0.4)で表され、Aサイトに少なくともLaを含有し、Bサイトに少なくともNi、Fe及びCuを含有するペロブスカイト型酸化物が好適である。このようなペロブスカイト型酸化物は、組成式LaNi1−x−yCuFe3−δ(x>0、y>0、x+y<1、0≦δ≦0.4)で表される。以下においては、組成式LaNi1−x−yCuFe3−δで表されるペロブスカイト型酸化物をLNFCuと略称する。
LNFCuの組成式において、x≦0.5が好ましく、0.01≦x≦0.5がより好ましく、0.05≦x≦0.3がさらに好ましい。LNFCuの組成式において、y≦0.3が好ましく、0.01≦y≦0.3がより好ましい。このような範囲にx及びyを調整することによって、空気極12の電子伝導性、熱膨張率及び触媒反応活性を向上させることができる。
LNFCuは、ペロブスカイト単相で構成されることが好ましい。これによって、空気極12の電子伝導性と触媒反応活性をより向上させることができる。
ペロブスカイト型酸化物は、LNFCuを主成分として含んでいてもよい。本実施形態において、組成物Pが物質Qを「主成分として含む」とは、組成物P全体のうち、物質Qが70体積%以上を占め、好ましくは90体積%以上を占めることを意味する。
空気極12におけるペロブスカイト型酸化物の含有量は、0.1体積%以上50体積%以下とすることができる。空気極12におけるペロブスカイト型酸化物の含有量は、0.1体積%以上40体積%以下であることが好ましい。空気極12において、CNTのペロブスカイト型酸化物に対する体積比(CNT体積÷ペロブスカイト型酸化物体積)は、0.002以上400以下とすることができ、0.02以上40以下であることが好ましい。
空気極12は、微量の有機バインダを含有していてもよい。空気極における有機バインダの含有量は10体積%以下であることが好ましい。有機バインダとしては、熱可塑性樹脂や熱硬化性樹脂を用いることができ、特に限定されるものではない。
有機バインダの好ましい例としては、カルボキシメチルセルロース(CMC)、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体、及びこれらの任意の混合物が挙げられる。
2.水酸化物イオン伝導性セパレータ14
水酸化物イオン伝導性セパレータ14は、空気極12と負極16の間に配置される。水酸化物イオン伝導性セパレータ14は、空気極12の第1主面12Sと接触する。水酸化物イオン伝導性セパレータ14は、空気極12で生成及び消費される水酸化物イオンを選択的に透過可能な材料で構成される。
水酸化物イオン伝導性セパレータ14は、空気中に含まれる酸素以外の望ましくない物質(二酸化炭素など)や電解液中のアルカリ金属イオンを通さないことが好ましい。このような材料としては、水酸化物イオン伝導性を有する無機固体電解質である緻密質セラミックスが挙げられる。
水酸化物イオン伝導性を有する無機固体電解質としては、一般式M2+ 1−x3+ (OH)n− x/n・mHOで表され、固化法(例えば水熱固化法)によって緻密化されたLDHが好適である。また、水酸化物イオン伝導性を有する無機固体電解質としては、NaCo、LaFeSr10、BiSr14Fe2456、NaLaTiO、RbLaNb、KLaNb、及びSrCo1.6Ti1.4(OH)・xHOの群から選択される少なくとも一種の基本組成を有するものを用いることもできる。
これらの無機固体電解質は、国際公開第2011/108526号において、燃料電池用の水酸化物イオン伝導性を有する固体電解質として開示されている。水酸化物イオン伝導性セパレータ14として水酸化物イオン伝導性を有する無機固体電解質を用いることによって、炭酸イオンの生成による電解液の劣化を抑制できるとともに、充電時に生成される亜鉛デンドライトが水酸化物イオン伝導性セパレータ14を貫通して正負極間の短絡が生じることを抑制できる。
水酸化物イオン伝導性セパレータ14は、水酸化物イオン伝導性を有する無機固体電解質を含む粒子群と、これら粒子群の緻密化や硬化を補助する成分との複合体であってもよい。
また、水酸化物イオン伝導性セパレータ14は、基材としての開気孔性の多孔質体と、この多孔質体の孔を埋めるように孔中に析出及び成長させた無機固体電解質との複合体であってもよい。多孔質体としては、アルミナ、ジルコニア等のセラミックスや、発泡樹脂又は繊維状物質からなる多孔性シート等の絶縁性の物質が挙げられる。
アルキメデス法で算出される水酸化物イオン伝導性セパレータ14の相対密度は、88%以上であることが好ましく、90%以上であることがより好ましく、94%以上であることがさらに好ましい。
水酸化物イオン伝導性セパレータ14の形状は特に限定されるものではなく、緻密な板状又は膜状とすることができる。板状に形成される場合、水酸化物イオン伝導性セパレータの厚みは、0.001〜0.05mmとすることができ、0.001〜0.01mmであることが好ましく、0.001〜0.005mmであることがより好ましい。
水酸化物イオン伝導性セパレータ14の水酸化物イオン伝導度は高ければ高い方が望ましいが、典型的には、1×10−4〜1×10−1S/m(1×10−3〜1mS/cm)より典型的には、1×10−4〜1×10−2S/m(1×10−3〜1×10−1mS/cm)の伝導度を有する。
3.負極16
負極16は、水酸化物イオン伝導性セパレータ14を挟んで空気極12の反対側に配置される。負極16は、電解液に浸漬される。
負極16は、負極活物質として機能する亜鉛又は亜鉛合金を含む。負極16の形状は特に制限されるものではなく、粒子状、板状又はゲル状などにすることができ、反応速度の観点から粒子状又はゲル状が好ましい。粒子状の負極16の粒径は、30〜350μmであることが好ましい。ゲル状の負極16としては、粒径100〜300μmの無汞化亜鉛合金粉、アルカリ電解液及び増粘剤(ゲル化剤)を混合攪拌してゲル状に形成したものが好ましい。
亜鉛合金としては、マグネシウム、アルミニウム、リチウム、ビスマス、インジウム、鉛などとの汞化合金又は無汞化合金が挙げられる。亜鉛合金としては、無水銀かつ鉛無添加の無汞化亜鉛合金が好適であり、アルミニウム、ビスマス、インジウム又はこれらの組合せを含んでいることが好ましい。この亜鉛合金は、50〜1000ppmのビスマスと100〜1000ppmのインジウムと10〜100ppmのアルミニウム及び/又はカルシウムを含んでいることがより好ましく、100〜500ppmのビスマスと300〜700ppmのインジウムと20〜50ppmのアルミニウム及び/又はカルシウムを含んでいることがさらに好ましい。
負極16は、負極集電体に担持されていてもよい。負極集電体としては、ステンレス鋼、銅及びニッケルなどの金属板、金属メッシュ、カーボンペーパー及び酸化物導電体などが挙げられる。
電解液には、亜鉛空気電池に一般的に使用される周知の電解液を用いることができる。電解液としては、水酸化カリウム水溶液、水酸化ナトリウム水溶液などのアルカリ金属水酸化物水溶液、塩化亜鉛や過塩素酸亜鉛を含む水溶液、過塩素酸亜鉛を含む非水系溶媒、亜鉛ビス(トリフルオロメチルスルフォニル)イミドを含む非水系溶媒などが挙げられる。電解液としては、アルカリ金属水酸化物水溶液の1種である水酸化カリウム水溶液が好ましく、水酸化カリウムを3〜50重量%(例えば30〜45重量%)含むことがより好ましい。
4.正極集電体18
正極集電体18は、空気極12を挟んで水酸化物イオン伝導性セパレータ14の反対側に配置される。正極集電体18は、空気極12の第2主面12Tと接触する。
正極集電体18は、空気極12に空気を供給できるように通気性を有することが好ましい。正極集電体18としては、ステンレス鋼、銅及びニッケルなどの金属板、金属メッシュ、カーボンペーパー及び酸化物導電体などが挙げられる。
5.電池容器20
電池容器20は、空気極12、水酸化物イオン伝導性セパレータ14、電解液に浸漬された負極16及び正極集電体18を収容する。電池容器20は、正極容器22、負極容器24、正極ガスケット26及び負極ガスケット28を有する。
正極容器22は、空気極12、水酸化物イオン伝導性セパレータ14及び正極集電体18を収容する。正極容器22には、外部空気を通すための空気孔20aが形成されている。負極容器24は、負極16を収容する。
正極ガスケット26は、正極容器22の内周縁に沿って配置される。負極ガスケット28は、負極容器24の縁に沿って配置される。正極ガスケット26及び負極ガスケット28の材質、形状及び構造は特に制限されないが、ナイロンなどの絶縁性を有する材質で構成されることが好ましい。正極ガスケット26と負極ガスケット28が水酸化物イオン伝導性セパレータ14を挟み込むことによって、正極容器22と負極容器24の内部の密閉性が確保される。
(空気極12の微構造)
次に、空気極12の詳細な微構造について説明する。図2は、図1に示す空気極12の拡大断面図である。図3は、図2の部分拡大図である。
図2及び図3に示すように、空気極12は、水酸化物イオン伝導性セパレータ14と正極集電体18の間に配置される。空気極12は、複数本のCNT12aと、複数個のLDH粒子12bとを含む。
CNT12aの形状は、ひも状である。本実施形態においてCNT12aは、らせん状に巻いた構造を有しているが、直線状であってもよいし屈曲又は湾曲していてもよい。CNT12aの平均長さは、0.1μm以上とすることができるが特に制限されるものではない。CNT12aの平均径は、1.0nm以上とすることができるが特に制限されるものではない。
複数本のCNT12aは、複数個のLDH12bを全体的に取り囲んでいる。複数本のCNT12aは、複数個のLDH12bに絡み付いていることが好ましい。これによって、空気極12の形状を強固に維持することができる。複数本のCNT12aのうち少なくとも一部のCNT12aは、互いに接触していることが好ましい。これによって、長距離の電子伝導パスが形成される。複数本のCNT12aのうち少なくとも一部のCNT12aは、第1主面12S又は第2主面12Tに垂直な方向(以下、「厚み方向」という。)に連なっていることが好ましい。これによって、厚み方向における空気極12の電子伝導性を向上させることができる。
LDH粒子12bの粒子形状は、板状である。本実施形態においてLDH粒子12bは、楕円板状に形成されているが、円板状や角板状であってもよい。LDH粒子12bの平均粒径は、10μm以下であることが好ましい。LDH粒子12bの平均粒径は、0.01μm以上5μm以下とすることができる。LDH粒子12bの平均粒径は、1μm以下であることが好ましい。LDH粒子12bの平均粒径は、SEM(走査型電子顕微鏡)で粒子形状を観察した際の板状粒子の直径である。
LDH粒子12bは、ひも状のCNT12aによって支持されている。LDH粒子12bは、他のLDH粒子12bを介して間接的にCNT12aによって支持されていてもよいが、CNT12aと直接的に接触することによって支持されていることが好ましい。LDH粒子12bは、数本のCNT12aと直接的に接触していてもよい。LDH粒子12bがCNT12aと直接的に接触することによって、CNT12aを通る電子とLDH粒子12bを通る水酸化物イオンとを反応させることができるため、空気極12の触媒反応活性を促進することができる。複数個のLDH粒子12bのうちCNT12aと直接的に接触するLDH粒子12bの個数割合は、特に制限されるものではないが90%以上であることが好ましい。
複数個のLDH粒子12bのうち少なくとも一部のLDH粒子12bは、互いに接触していることが好ましい。これによって、水酸化物イオンの伝導パスを形成することができる。特に、複数個のLDH粒子12bは厚み方向に連なっていることが好ましい。
図2及び図3に示すように、空気極12は、複数個のペロブスカイト型酸化物粒子12cを含んでいることが好ましい。ペロブスカイト型酸化物粒子12cは、LNFCu粒子であることが好ましい。
本実施形態においてペロブスカイト型酸化物粒子12cの粒子形状は球状であるが、真球状でなくてもよく複雑かつ不規則な形状であってもよい。ペロブスカイト型酸化物粒子12cの平均粒径は、0.01μm以上10μm以下とすることができる。ペロブスカイト型酸化物粒子12cの平均粒径は、LDH粒子12bの平均粒径より小さいことが好ましい。具体的に、ペロブスカイト型酸化物粒子12cの平均粒径は、0.1μm以下であることが好ましい。ペロブスカイト型酸化物粒子12cの平均粒径は、SEMで粒子形状を観察した際の粒子の直径である。
ペロブスカイト型酸化物粒子12cは、LDH粒子12b上に担持されていることが好ましい。ペロブスカイト型酸化物粒子12cは、板状のLDH粒子12bの2つの主面上に配置されていてもよいし、板状のLDH粒子12bの側面上に配置されていてもよい。ペロブスカイト型酸化物粒子12cは、LDH粒子12bの表面全体を完全には被覆していないことが好ましい。これによって、LDH粒子12bの表面の一部を露出させることができるため、LDH粒子12bどうしの接続やCNT12aとLDH粒子12bとの接続を図ることができる。
複数個のペロブスカイト型酸化物粒子12cのうち少なくとも一部のペロブスカイト型酸化物粒子12cは、互いに接触していることが好ましい。これによって、短距離の電子伝導パスが形成される。複数個のペロブスカイト型酸化物粒子12cのうち少なくとも一部のペロブスカイト型酸化物粒子12cは、CNT12aと直接的に接触していることが好ましい。これによって、CNT12aによる長距離の電子伝導パスとペロブスカイト型酸化物粒子12cによる短距離の電子伝導パスとを接続することができる。
(亜鉛空気二次電池10の製造方法)
次に、亜鉛空気二次電池10の製造方法について説明する。
1.空気極12の作製
まず、CNT分散液を準備する。CNT分散液は、CNTを溶媒(例えば、水など)に分散させることで作製することができる。CNT分散液におけるCNTの濃度は0.1wt%〜2.0wt%とすることができるが特に制限されない。なお、CNTは凝集しやすい性質を有するため液中に分散し難い。そのため、市販のCNT分散液(例えば、(株)名城カーボン製、製品名SWNT分散液)を用いてもよい。
次に、CNT分散液を加熱して溶媒を揮発させることによってCNT分散液を濃縮する。これによりCNT分散液の粘度を0.1Pa・s以上200Pa・s以下とすることによって、CNT分散液のバインダとしての機能をより有効に発揮させることができる。
次に、上述した一般式M2+ 1−x3+ (OH)n− x/n・mHOで表されるLDH粉末を準備する。
次に、空気極12にペロブスカイト型酸化物を導入する場合には、ペロブスカイト型酸化物粉末を準備する。以下、ペロブスカイト型酸化物粉末としてLNFCu粉末を用いる場合について説明する。まず、水酸化ランタン粉末、酸化ニッケル粉末、酸化銅粉末及び酸化鉄粉末を乾燥(110℃、12時間)させる。次に、La、Ni、Cu及びFeが所望のモル比になるように乾燥させた各粉末を秤量する。次に、秤量した各粉末を水媒体で湿式混合した後に乾燥させた後、篩を通して混合粉体を作製する。次に、混合粉体を蓋付きのアルミナ坩堝に入れて酸素雰囲気中で仮焼(900〜1200℃、12時間)することによって仮焼粉末を作製する。次に、仮焼粉末を粉砕して一軸プレスを行った後、CIP(Cold Isostatic Press)によって成形体を作製する。次に、成形体をアルミナ鞘中に配置して酸素雰囲気中で焼成(900〜1200℃、12時間)することによって焼結体を作製する。次に、焼結体をポットミルで湿式粉砕してLNFCu粉末を作製する。
次に、濃縮したCNT分散液とLDH粉末それぞれを秤量する。この際、ペロブスカイト型酸化物粉末を準備した場合にはペロブスカイト型酸化物粉末も秤量する。
次に、秤量したCNT分散液とLDH粉末をメノウ乳鉢に投入した後、メノウ乳鉢をホットスターラで加熱(60〜90℃)しながらCNT分散液とLDH粉末を混合して混合ペースト(空気極材料の一例)を作製する。
この際、次工程の印刷が可能な粘度になるまで混合ペーストから溶媒を揮発させる。混合ペーストにおけるCNTのLDHに対する体積比(CNT体積÷LDH体積)は0.001以上1以下である。このように、CNT分散液を用いて混合ペーストを作製することによって、粉末状やシート状のCNTを用いる場合に比べて、混合ペーストにおけるCNTの均一混合性を顕著に向上させることができる。その結果、空気極12を全体的に均質化することができる。なお、ペロブスカイト型酸化物粉末を秤量した場合には、CNT分散液及びLDH粉末とともにペロブスカイト型酸化物粉末を混合すればよい。
次に、正極集電体18(例えば、カーボンペーパーなど)に印刷法によって混合ペーストを印刷した後、大気雰囲気で乾燥(60〜120℃、1時間〜12時間)させる。以上により、空気極12と正極集電体18の積層体が完成する。
2.水酸化物イオン伝導性セパレータ14の作製
以下、水酸化物イオン伝導性セパレータ14としてLDHセパレータを作製する場合について説明する。
まず、上述した一般式M2+ 1−x3+ (OH)n− x/n・mHOで表されるLDH粉末を準備する。
次に、LDH粉末を加圧成形(例えば、CIPなど)することによって、相対密度が43〜65%のLDH成形体を作製する。LDH成形体の相対密度は、LDH成形体の寸法及び重量から算出される密度を理論密度で除した値である。相対密度に対する吸着水分の影響を抑えるために、LDH成形体は、相対湿度20%以下のデシケータ内で24時間以上保管したLDH粉末を用いて作製することが好ましい。
次に、LDH成形体を焼成(400〜850℃、1時間〜10時間)することによってLDH焼成体を作製する。LDH焼成体の重量はLDH成形体の57%〜65%であることが好ましく、LDH焼成体の体積はLDH成形体の70%〜76%以下であることが好ましい。
次に、LDH焼成体をn価の陰イオン(An−)を含む水溶液中又は直上に保持し、水熱合成(20〜200℃、1時間〜50時間)によってLDH体へと再生させる。
次に、温度300℃以下、湿度25%以上の環境下でLDH体から余剰水分を除去することによって、LDHセパレータが完成する。
3.電池容器20の組み上げ
次に、電解液に浸漬した負極16を収容した負極容器24に負極ガスケット28を取り付ける。
次に、水酸化物イオン伝導性セパレータ14、空気極12と正極集電体18の積層体及び正極ガスケット26を負極ガスケット28上に順次配置した後、正極ガスケット26が取り付けられた正極容器22を被せる。
以上により、亜鉛空気二次電池10が完成する。
(他の実施形態)
本発明は以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱しない範囲で種々の変形又は変更が可能である。
金属空気電池の一例として亜鉛空気二次電池10について説明したが、本発明に係る空気極12はリチウム空気二次電池など他の金属空気電池にも用いることができる。
亜鉛空気二次電池10は、空気極12、水酸化物イオン伝導性セパレータ14、電解液に浸漬された負極16、正極集電体18及び容器20を備えることとしたが、少なくとも空気極12と負極16と電解質とを備えていればよい。
亜鉛空気二次電池10の形状は特に制限されるものではなく、例えば、コイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などにすることができる。
空気極12は、小型の二次電池だけでなく電気自動車などに用いる大型の二次電池にも適用可能である。
亜鉛空気二次電池10は、充電専用の正極をさらに備えていてもよい。充電専用の正極については、例えば特開2010−176941号公報に記載されている。充電専用の正極を備えることによって、水酸化物イオン伝導性セパレータ14の水酸化物イオン伝導性が低い場合であっても、充電時には充電専用の正極を用いることによって高速充電が可能となる。さらに、充電時における空気極12での酸素の発生が抑えられるため、空気極12の腐食や劣化を抑制することができる。充電専用の正極としては、カーボンや金属チタンメッシュなどが挙げられる。
以下において本発明に係る金属空気電池の実施例について説明するが、本発明は以下に説明する実施例に限定されるものではない。
(実施例1〜3の作製)
以下のようにして、実施例1〜3に係る金属空気電池を作製した。
まず、無機バインダとしてのCNTを水に分散させて、CNT濃度が0.1wt.%のCNT分散液を準備した。
次に、CNT分散液を加熱して溶媒を揮発させることによって、CNT分散液の粘度を25Pa・sとした。
次に、市販されているMg0.75−Al0.25型のLDH粉末(協和化学工業株式会社製、商品名DHT6)を準備した。
次に、CNTとLDHの混合比が表1に示す値になるように、濃縮したCNT分散液とLDH粉末を秤量した。
次に、秤量したCNT分散液とLDH粉末をメノウ乳鉢に投入した後、メノウ乳鉢をホットスターラで加熱しながらCNT分散液とLDH粉末を混合して混合ペースト(空気極材料)を作製した。この際、混合ペースト中にCNTを均一に混合できていることを目視にて確認した。なお、表1には示していないが、CNT粉末((株)名城カーボン製、品番EC−P)とLDH粉末を混合して作製した混合体では、CNTどうしが凝集してしまったため均一に混合させることができなかった。同様に、表1には示していないが、CNTシート((株)名城カーボン製、品番EC−P paper)を細かく裁断して用いた混合体では、シートを十分細かく均一に裁断することが困難であったため均一に混合させることができなかった。
次に、カーボンペーパー上に混合ペーストを印刷した後、大気雰囲気において80℃で乾燥させた。以上により、空気極と正極集電体の積層体が完成した。
次に、セパレータとしてのイオン交換膜((株)アストム製、型番ネオセプタAHA)を準備した。
次に、1MのKOH水溶液に含侵されたポリプロピレン不織布を収容した負極容器に負極ガスケットを取り付けて、セパレータ、空気極と正極集電体の積層体及び正極ガスケットを負極ガスケット上に順次配置した後、正極ガスケットが取り付けられた正極容器を被せた。
(実施例4の作製)
以下のようにして、実施例4に係る金属空気電池を作製した。
まず、無機バインダとしてのCNTを水に分散させて、CNT濃度が0.1wt.%のCNT分散液を準備した。
次に、CNT分散液を加熱して溶媒を揮発させることによって、CNT分散液の粘度を25Pa・sとした。
次に、市販されているMg0.75−Al0.25型のLDH粉末(協和化学工業株式会社製、商品名DHT6)を準備した。
次に、乾燥(110℃、12時間)させた水酸化ランタン粉末、酸化ニッケル粉末、酸化銅粉末及び酸化鉄粉末を組成式LaNi1−x−yCuFe3−δにおいてx=0.2、y=0.05となるように秤量した。次に、秤量した各粉末を水媒体で湿式混合して乾燥させた後、篩を通して混合粉体を作製した。次に、混合粉体を蓋付きのアルミナ坩堝に入れて酸素雰囲気中で仮焼(1100℃、12時間)することによって仮焼粉末を作製した。次に、仮焼粉末を粉砕して一軸プレスで成形体を作製した後、成形体をアルミナ鞘中に配置して酸素雰囲気中で焼成(1100℃、12時間)することによって焼結体を作製した。次に、焼結体をポットミルで湿式粉砕して、ペロブスカイト型酸化物としてのLNFCu粉末を作製した。
次に、CNTとLDHとLNFCuの混合比が表1に示す値になるように、濃縮したCNT分散液とLDH粉末とLNFCu粉末を秤量した。
次に、秤量したCNT分散液とLDH粉末とLNFCu粉末をメノウ乳鉢に投入した後、メノウ乳鉢をホットスターラで加熱しながらCNT分散液とLDH粉末とLNFCu粉末を混合して混合ペースト(空気極材料)を作製した。この際、混合ペースト中にCNTを均一に混合できていることを目視にて確認した。
次に、カーボンペーパー上に混合ペーストを印刷した後、大気雰囲気において80℃で乾燥させた。以上により、空気極と正極集電体の積層体が完成した。
次に、セパレータとしてのイオン交換膜((株)アストム製、型番ネオセプタAHA)を準備した。
次に、1MのKOH水溶液に含侵されたポリプロピレン不織布を収容した負極容器に負極ガスケットを取り付けて、セパレータ、空気極と正極集電体の積層体及び正極ガスケットを負極ガスケット上に順次配置した後、正極ガスケットが取り付けられた正極容器を被せた。
(実施例5の作製)
以下のようにして、実施例5に係る金属空気電池を作製した。
まず、実施例1〜3と同様の濃縮したCNT分散液を準備した。
次に、実施例1〜3と同様のLDH粉末を準備した。
次に、有機バインダとしてのポリテトラフルオロエチレン(PTFE)の分散液(PTFE濃度60wt.%)(エレクトロケム社製、商品名EC−TFE−500ML)を準備した。
次に、CNT、LNFCu及びPTFEの混合比が表1に示す値になるように、CNT分散液とLNFCu粉末とPTFE分散液を秤量した。
次に、秤量したCNT分散液とLNFCu粉末とPTFE分散液をメノウ乳鉢に投入した後、メノウ乳鉢をホットスターラで加熱しながらCNT分散液とLNFCu粉末とPTFE分散液を混合して混合ペースト(空気極材料)を作製した。
次に、カーボンペーパー上に混合ペーストを印刷した後、大気雰囲気において80℃で乾燥させた。以上により、空気極と正極集電体の積層体が完成した。
次に、セパレータとしてのイオン交換膜((株)アストム製、型番ネオセプタAHA)を準備した。
次に、1MのKOH水溶液に含侵されたポリプロピレン不織布を収容した負極容器に負極ガスケットを取り付けて、セパレータ、空気極と正極集電体の積層体及び正極ガスケットを負極ガスケット上に順次配置した後、正極ガスケットが取り付けられた正極容器を被せた。
(比較例1の作製)
以下のようにして、比較例1に係る金属空気電池を作製した。
まず、カーボンブラック(電気化学工業製、品番デンカブラック(粉状))を準備した。
次に、実施例1〜3と同様のLDH粉末を準備した。
次に、有機バインダとしてのPTFEの分散液を準備した。
次に、カーボンブラック、LNFCu及びPTFEの混合比が表1に示す値になるように、カーボンブラックとLNFCu粉末とPTFE粉末を秤量した。
次に、秤量したカーボンブラックとLNFCu粉末とPTFE分散液をメノウ乳鉢に投入した後、メノウ乳鉢をホットスターラで加熱しながらカーボンブラックとLNFCu粉末とPTFE分散液を混合して混合ペースト(空気極材料)を作製した。
次に、カーボンペーパー上に混合ペーストを印刷した後、大気雰囲気において80℃で乾燥させた。以上により、空気極と正極集電体の積層体が完成した。
次に、セパレータとしてのイオン交換膜((株)アストム製、型番ネオセプタAHA)を準備した。
次に、1MのKOH水溶液に含侵されたポリプロピレン不織布を収容した負極容器に負極ガスケットを取り付けて、セパレータ、空気極と正極集電体の積層体及び正極ガスケットを負極ガスケット上に順次配置した後、正極ガスケットが取り付けられた正極容器を被せた。
(SEMによる観察)
実施例1〜5の空気極の断面をSEMで観察することによって、空気極の微構造を観察した。図5は、実施例4の空気極断面のSEM二次電子像である。図6は、実施例4の空気極断面のSEM反射電子像である。SEMには日本電子株式会社のJSM−6610LVを用い、加速電圧20kVとした。
図5に示すように、複数本のCNTが複数個のLDHを全体的に取り囲んでおり、バインダとして機能している様子を観察することができた。複数本のCNTが互いに接触することによって、長距離の電子伝導パスが形成されていた。複数本のCNTは、複数個のLDHに絡み付いているに絡み付いていた。複数個のLDHそれぞれは板状であった。複数個のLDHそれぞれの表面の一部は露出していた。
また、図6に示すように、複数個のLNFCu粒子の平均粒径は、複数個のLDHの平均粒径より小さかった。LNFCu粒子は、LDH上に担持されていた。LNFCu粒子どうしが互いに接触することによって、短距離の電子伝導パスが形成されていた。LNFCu粒子がCNTと直接接触することによって、CNTによる長距離の電子伝導パスとLNFCu粒子による短距離の電子伝導パスとが接続されていた。
(空気極の過電圧の評価)
図4は、空気極の過電圧の測定方法を説明するための模式図である。
まず、参照極としてのPtワイヤを電解液に挿入し、電解液を挟んで空気極の反対側に対極としてのZn板を配置し、作用極を空気極とした。
次に、開回路状態から電流密度100mA/cmの電流を流し、10分後の参照極に対する対極の充放電電圧を記録した。
次に、開回路状態に戻してから10分後の参照極に対する対極の開回路電圧を測定した。
そして、充放電電圧それぞれと開回路電圧の差を過電圧(V)として算出した。算出結果を表1にまとめて示す。表1では、1.0(V)未満の過電圧をA(優)、1.0(V)以上1.5(V)未満の過電圧をB(良)、1.5(V)以上2.0(V)未満の過電圧をC(可)、2.0(V)以上の過電圧をD(不可)と評価した。
Figure 2016208769
表1に示されるように、実施例1〜5では、比較例1に比べて充放電時における過電圧を低減させることができた。これは、有機バインダの代わりに無機バインダであるCNTを用いることによって、空気極の特性(水酸化物イオン伝導性、電子伝導性及び触媒反応活性)を向上させることができたためである。
表1に示されるように、実施例2,4では、実施例1,3に比べて充放電時における過電圧をより低減させることができた。このことから、空気極におけるCNTの含有量は5体積%以下が好ましいことが分かった。
表1に示されるように、実施例4では、実施例2に比べて充放電時における過電圧をさらに低減させることができた。このことから、ペロブスカイト型酸化物としてペロブスカイト型酸化物(LNFCu)の導入が有効であることが分かった。
本発明によれば、空気極の特性を向上させることができるため、金属空気電池分野において有用である。
10 亜鉛空気二次電池
12 空気極
14 水酸化物イオン伝導性セパレータ
16 負極
18 正極集電体
20 容器

Claims (15)

  1. 金属空気電池に用いられる空気極であって、
    複数本のカーボンナノチューブと、
    複数個の層状複水酸化物粒子と、
    を含み、
    前記複数個の層状複水酸化物粒子は、前記複数本のカーボンナノチューブに支持されている、
    空気極。
  2. 前記複数本のカーボンナノチューブの少なくとも一部は互いに接触する、
    請求項1に記載の空気極。
  3. 前記複数本のカーボンナノチューブは、前記複数個の層状複水酸化物粒子に絡み付いている、
    請求項1又は2に記載の空気極。
  4. 前記複数本のカーボンナノチューブの平均長さは、0.1μm以上である、
    請求項1又は2に記載の空気極。
  5. 前記複数個の層状複水酸化物粒子の少なくとも一部は互いに接触する、
    請求項1乃至4のいずれかに記載の空気極。
  6. 前記複数個の層状複水酸化物粒子それぞれは板状である、
    請求項1乃至5のいずれかに記載の空気極。
  7. 前記複数個の層状複水酸化物粒子の平均粒径は、10μm以下である、
    請求項1乃至6のいずれかに記載の空気極。
  8. 複数個のペロブスカイト型酸化物粒子を含み、
    前記複数個のペロブスカイト型酸化物粒子の平均粒径は、前記複数個の層状複水酸化物粒子の平均粒径より小さい、
    請求項1乃至7のいずれかに記載の空気極。
  9. 前記複数個のペロブスカイト型酸化物粒子は、前記複数個の層状複水酸化物粒子上に担持されている、
    請求項8に記載の空気極。
  10. 前記複数個のペロブスカイト型酸化物粒子の少なくとも一部は互いに接触する、
    請求項8又は9に記載の空気極。
  11. 前記複数個のペロブスカイト型酸化物粒子の少なくとも一部は、前記複数本のカーボンナノチューブに接触する、
    請求項8乃至10のいずれかに記載の空気極。
  12. 前記複数個の層状複水酸化物粒子それぞれの表面の一部は、前記複数個のペロブスカイト型酸化物粒子から露出している、
    請求項8乃至11のいずれかに記載の空気極。
  13. 請求項1乃至12のいずれかに記載の空気極と、
    負極と、
    前記空気極と前記負極の間に配置される電解質と、
    を備える金属空気電池。
  14. 前記電解質は、水酸化物イオン伝導性を有する無機固体電解質である、
    請求項13に記載の金属空気電池。
  15. 金属空気電池に用いられる空気極材料であって、
    複数本のカーボンナノチューブと、
    複数個の層状複水酸化物粒子と、
    を含み、
    前記複数個の層状複水酸化物粒子は、前記複数本のカーボンナノチューブと接触する、
    空気極材料。
JP2016568454A 2015-06-26 2016-06-27 空気極、金属空気電池及び空気極材料 Active JP6570545B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015128648 2015-06-26
JP2015128648 2015-06-26
PCT/JP2016/069032 WO2016208769A1 (ja) 2015-06-26 2016-06-27 空気極、金属空気電池及び空気極材料

Publications (2)

Publication Number Publication Date
JPWO2016208769A1 true JPWO2016208769A1 (ja) 2018-04-12
JP6570545B2 JP6570545B2 (ja) 2019-09-04

Family

ID=57585593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016568454A Active JP6570545B2 (ja) 2015-06-26 2016-06-27 空気極、金属空気電池及び空気極材料

Country Status (5)

Country Link
US (1) US10790560B2 (ja)
EP (1) EP3163659B1 (ja)
JP (1) JP6570545B2 (ja)
CN (1) CN107710477A (ja)
WO (1) WO2016208769A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6560621B2 (ja) * 2016-01-06 2019-08-14 日本特殊陶業株式会社 電気化学反応単セル、インターコネクタ−電気化学反応単セル複合体、および、電気化学反応セルスタック
WO2018163353A1 (ja) * 2017-03-09 2018-09-13 日本碍子株式会社 セパレータ/空気極複合体の製造方法
CN107240703A (zh) * 2017-05-10 2017-10-10 新材料与产业技术北京研究院 含有石墨烯和/或碳纳米管的空气电极及其制备方法和金属空气电池
JP6721763B2 (ja) * 2018-06-15 2020-07-15 日本碍子株式会社 電気化学セル
WO2020246177A1 (ja) * 2019-06-05 2020-12-10 日本碍子株式会社 空気極/セパレータ接合体及び金属空気二次電池
CN110797463B (zh) * 2019-10-30 2021-08-20 华中科技大学 一种碳对电极钙钛矿太阳能电池及其制备方法
DE112021000456T5 (de) * 2020-03-02 2022-10-27 Ngk Insulators, Ltd. Geschichtetes doppelhydroxid und verfahren zu seiner herstellung sowie luftelektrode und metall-luft-sekundärbatterie, die das geschichtete doppelhydroxid verwenden
CN111604015B (zh) * 2020-06-07 2022-02-22 宁夏大学 一种纳米碳材料包覆金属化合物的壳-芯结构复合材料制备方法
KR102503501B1 (ko) * 2020-10-20 2023-02-23 재단법인대구경북과학기술원 막 전극 접합체 및 이를 포함하는 연료전지
JP7350049B2 (ja) * 2020-12-25 2023-09-25 ダイキン工業株式会社 単層カーボンナノチューブとptfeとを複合した結着剤並びにそれを用いた電極作製用組成物及び二次電池
CN116885198B (zh) * 2023-09-08 2023-12-08 浙江帕瓦新能源股份有限公司 前驱体及制备方法、正极材料、钠离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012043567A (ja) * 2010-08-17 2012-03-01 Toyota Motor Corp 金属空気電池用空気極、及び当該空気極を備える金属空気電池
JP2012099266A (ja) * 2010-10-29 2012-05-24 Kyoto Univ 金属空気電池用空気極、並びに当該空気極を備える金属空気電池用膜・空気極接合体及び金属空気電池
JP2013211201A (ja) * 2012-03-30 2013-10-10 Tokyo Institute Of Technology 触媒−電解質複合体及びその製造方法
JP2014011000A (ja) * 2012-06-29 2014-01-20 Hitachi Ltd イオン伝導体およびこれを用いた電気化学デバイス
JP2015005493A (ja) * 2013-05-23 2015-01-08 株式会社日本触媒 電極前駆体、電極、及び、電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4996332B2 (ja) * 2007-05-17 2012-08-08 日立電線メクテック株式会社 ヒートシンク及びその製造方法
US9362568B2 (en) * 2011-02-18 2016-06-07 The Board Of Trustees Of The Leland Stanford Junior University Battery with hybrid electrocatalysts
US20140332731A1 (en) * 2012-04-02 2014-11-13 CNano Technology Limited Electrode Composition for Battery
KR101309577B1 (ko) * 2012-04-18 2013-09-17 연세대학교 산학협력단 리튬-공기전지용 공기극 및 이를 포함하는 리튬-공기전지
KR102256769B1 (ko) 2013-02-01 2021-05-26 가부시키가이샤 닛폰 쇼쿠바이 전극 전구체, 전극 및 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012043567A (ja) * 2010-08-17 2012-03-01 Toyota Motor Corp 金属空気電池用空気極、及び当該空気極を備える金属空気電池
JP2012099266A (ja) * 2010-10-29 2012-05-24 Kyoto Univ 金属空気電池用空気極、並びに当該空気極を備える金属空気電池用膜・空気極接合体及び金属空気電池
JP2013211201A (ja) * 2012-03-30 2013-10-10 Tokyo Institute Of Technology 触媒−電解質複合体及びその製造方法
JP2014011000A (ja) * 2012-06-29 2014-01-20 Hitachi Ltd イオン伝導体およびこれを用いた電気化学デバイス
JP2015005493A (ja) * 2013-05-23 2015-01-08 株式会社日本触媒 電極前駆体、電極、及び、電池

Also Published As

Publication number Publication date
EP3163659A4 (en) 2017-12-13
JP6570545B2 (ja) 2019-09-04
CN107710477A (zh) 2018-02-16
WO2016208769A1 (ja) 2016-12-29
US10790560B2 (en) 2020-09-29
EP3163659A1 (en) 2017-05-03
EP3163659B1 (en) 2019-08-28
US20170141445A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
JP6570545B2 (ja) 空気極、金属空気電池及び空気極材料
JP6517606B2 (ja) 空気極、金属空気電池、空気極材料及び空気極材料の製造方法
JP5574516B2 (ja) 亜鉛空気二次電池
JP6441900B2 (ja) 金属空気電池用空気極
JP6206971B2 (ja) リチウム空気二次電池
JP5755624B2 (ja) 空気電池用空気極及び空気電池
JP6722170B2 (ja) 空気極、水電解アノード、金属空気電池及び水電解装置
US10601094B2 (en) Separator-equipped air electrode for air-metal battery
JP5782170B2 (ja) 空気電池用空気極及び空気電池
JP6081863B2 (ja) 金属空気二次電池の使用方法
JP6397646B2 (ja) 亜鉛電極用合剤
JP6619164B2 (ja) 空気極材料の製造方法
JP2016015264A (ja) 組成物、該組成物を含有する多孔性層を有する電極、および該電極を有する金属空気二次電池
JP6618484B2 (ja) 空気極材料、空気極及び金属空気電池
JP2017050294A (ja) 組成物、該組成物を含有する多孔性層を有する電極、および該電極を有する金属空気二次電池
JP2018147897A (ja) 組成物、該組成物を含有する多孔性層を有する電極、および該電極を有する金属空気二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190516

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190806

R150 Certificate of patent or registration of utility model

Ref document number: 6570545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150