JPWO2015115651A1 - 連続鋳造における鋳造状態の判定方法、装置及びプログラム - Google Patents

連続鋳造における鋳造状態の判定方法、装置及びプログラム Download PDF

Info

Publication number
JPWO2015115651A1
JPWO2015115651A1 JP2015560070A JP2015560070A JPWO2015115651A1 JP WO2015115651 A1 JPWO2015115651 A1 JP WO2015115651A1 JP 2015560070 A JP2015560070 A JP 2015560070A JP 2015560070 A JP2015560070 A JP 2015560070A JP WO2015115651 A1 JPWO2015115651 A1 JP WO2015115651A1
Authority
JP
Japan
Prior art keywords
mold
casting
state
heat transfer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015560070A
Other languages
English (en)
Other versions
JP6274226B2 (ja
Inventor
聡史 小杉
聡史 小杉
健介 岡澤
健介 岡澤
中川 淳一
淳一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JPWO2015115651A1 publication Critical patent/JPWO2015115651A1/ja
Application granted granted Critical
Publication of JP6274226B2 publication Critical patent/JP6274226B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/188Controlling or regulating processes or operations for pouring responsive to thickness of solidified shell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • B22D11/201Controlling or regulating processes or operations for removing cast stock responsive to molten metal level or slag level
    • B22D11/202Controlling or regulating processes or operations for removing cast stock responsive to molten metal level or slag level by measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • B22D11/207Controlling or regulating processes or operations for removing cast stock responsive to thickness of solidified shell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

熱電対(6)からのデータを用いて、モールドフラックス層(3)を挟む凝固シェル(2)と鋳型(4)との間の熱伝達係数α、及び溶鋼(1)と凝固シェル(2)との間の熱伝達係数βを逆問題を解くことにより求めるとともに、凝固シェル厚み及び凝固シェル温度を推定し(鋳型内凝固状態推定量)、さらに鋳型内凝固状態評価量を得る。そして、鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量と、過去に異常鋳造が発生したときの鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量に基づいて求められて、データ保存部に保存された許容限度値とを比較することにより、平常鋳造状態であるか、異常鋳造状態であるかを判定する。

Description

本発明は、溶鋼から鋳型冷却水までの間に凝固シェル、モールドフラックス層、鋳型が存在する連続鋳造における鋳造状態の判定方法、装置及びプログラムに関する。
図19に、連続鋳造設備の概要を示す。転炉及び二次精錬で作られた溶鋼は取鍋51に入れられ、タンデッシュ52を介して鋳型4へと注がれる。鋳型4に接触した溶鋼は冷やされて凝固し、鋳造速度がコントロールされながらロール54で運ばれて、ガス切断機55で適当な長さに切断される。かかる鋼の連続鋳造においては、鋳型4内の溶鋼流動状態や凝固状態が鋳片の性状の悪化トラブルによる鋳造停止を招くことがあり、安定鋳造や欠陥のない鋳片を製造するためには、鋳型内状態をオンラインで推定し、制御することが必要である。
図20に、連続鋳造設備の鋳型付近の断面を示す。1は溶鋼、2は凝固シェル、3はモールドフラックス層、4は鋳型、5は冷却水、8は浸漬ノズルである。
連続鋳造の工程では、図20に示されるように、浸漬ノズル8から鋳型4内に溶鋼1が注ぎこまれ、側面が凝固した鋳片が鋳型4の底から引き抜かれてゆく。その鋳型4下端付近では、鋳片内部に未凝固部が存在し、鋳型4より下層の2次冷却部分で完全に凝固する。
連続鋳造の操業においては、生産性の向上を狙って、高速鋳造が指向されるが、鋳造速度が速すぎると、鋳型4側面で凝固した鋳片である凝固シェル2が、強度不十分なまま鋳型4外部に引き抜かれ、極端な場合には凝固シェル2が破断して、溶鋼1が連続鋳造設備内に流出しブレイクアウトと呼ばれる操業トラブルを誘発する。ひとたびブレイクアウトが発生すると、操業を中断して、設備内に流出して凝固した鋼の撤去や設備修繕を行うため、操業復旧に多大な時間がかかり、損失も大きい。
そこで、ブレイクアウト等の操業トラブルを発生させることなく、安定的な高速鋳造を実現するための高速鋳造用パウダーの開発、鋳型銅板の冷却構造の改善、温度管理等の様々な鋳造技術が提案されている(非特許文献1)。
また、鋳型温度等の計測値から、鋳型内凝固シェルの健全性を診断し、鋳造状態がブレイクアウトに繋がるような状態か判定し、判定結果を用いて鋳造速度等を制御する技術も提案されている。例えば特許文献1には、拘束性ブレイクアウトの検知技術が提案されている。この例では、鋳型に埋め込まれた熱電対で温度を計測し、凝固シェルが鋳型に拘束されてシェル破断が起きた際に観測される特徴的な熱電対温度の時系列変化を捕らえ、鋳型内凝固シェルの破断面を認知して、破断面が鋳型下端に到達する前に鋳造速度を減速することで拘束性ブレイクアウトを回避する。
しかし、ブレイクアウトは拘束性だけではなく、その兆候が温度の時系列変化を示す温度波形に表れにくいものもある。その一つが偏流起因ブレイクアウトである。偏流起因ブレイクアウトは鋳型4内の溶鋼流動が偏る等想定外の状態になり、局所的に鋳型4の冷却能力を超えた熱量が凝固シェル2に与えられて凝固成長が阻害され、強度不足の凝固シェル2が鋳型4外部に引き抜かれて発生するブレイクアウトである。連続鋳造では浸漬ノズル8から鋳型4内に溶鋼1が注ぎこまれるが、例えば鋳造中に浸漬ノズル8の溶損や介在物が生じて吐出口が極端に変形した場合に、偏流起因ブレイクアウトが誘発されることがある。偏流現象は、直接観測することが困難であり、また、拘束性ブレイクアウトと異なり、鋳型温度波形にも特徴が表れにくい。
このような偏流起因ブレイクアウトの検知技術として、特許文献2〜5にあるように、鋳型温度に加えて鋳造速度や冷却水温度といった他の情報も加味した逆問題手法により、鋳型内状態を推定することが可能となり、ブレイクアウト発生を未然に防ぐ技術の開発が提案されている。特許文献2では、連続鋳造において凝固状態を推定する逆問題手法について述べられている。また、特許文献3〜5では、特許文献2の方法で得られる鋳型内状態を表す推定量を用いて、鋳造を制御し操業トラブルを回避する方法が述べられている。しかし、特許文献3〜5では、ブレイクアウトに至る異常な鋳造状態を判定するための方法と回避手段が提案されているが、一般化されておらず、異常な鋳造を判定するための許容限度値を決定する具体的な方法までは明示されていない。そのため、特許文献3〜5の技術を実際に使用する場合には、実行者の経験に頼ってしまう部分が大きい。また、鋳造条件によって推定結果のばらつきに差異が発生することに触れていないため、過剰に低い許容限度値が設定されてしまう可能性がある。
また、鋳型内の複数点で計測した温度から、伝熱逆問題手法を用いて熱流束を推定し、ブレイクアウトを検出する技術も提案されている(特許文献6)。
特開昭57−152356号公報 特開2011−245507号公報 特開2011−251302号公報 特開2011−251307号公報 特開2011−251308号公報 特開2001−239353号公報
日本鉄鋼協会編、鉄鋼便覧(第4版)、日本鉄鋼協会発行(2002年) 中戸ら、鉄と鋼Vol.62 、No.11、 Page.S506 (1976)
本発明は、連続鋳造の異常状態判定のための凝固シェル温度と凝固シェル厚みを含む量について具体的な許容限度値を決定し、過検知及び検知漏れの少ない偏流起因ブレイクアウトの検知技術を提供できるようにすることを目的とする。
上述の課題を解決するための本発明の要旨は以下のとおりである。
[1] 溶鋼から鋳型用の冷却水までの間に凝固シェル、モールドフラックス層、鋳型の各熱伝導体が存在する連続鋳造における鋳造状態の判定方法であって、
前記鋳型に鋳造方向に位置をずらして埋設された複数の測温手段からのデータを用いて、前記モールドフラックス層を挟む前記凝固シェルと前記鋳型との間の単位温度差あたりの熱流束である熱伝達係数α、及び前記溶鋼と前記凝固シェルとの間の熱伝達係数βを逆問題を解くことにより求め、熱伝達係数α及び熱伝達係数βから凝固シェル厚み及び凝固シェル温度を推定する第1の工程と、
前記第1の工程で求めた熱伝達係数α、熱伝達係数β、凝固シェル推定厚み、及び凝固シェル推定温度を鋳型内凝固状態推定量とし、前記鋳型内凝固状態推定量から鋳型内凝固状態評価量を得る第2の工程と、
前記第2の工程で得た鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量と、過去に異常鋳造が発生したときの鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量に基づいて求められて、許容限度値記憶手段に保存された許容限度値とを比較することにより、平常鋳造状態であるか、異常鋳造状態であるかを判定する第3の工程とを有し、
前記モールドフラックス層を介して鋳片と接する4面の鋳型表面のうち、隣り合わずに相対する2面の水平方向の幅が等しい鋳型において、
他の2面よりも水平方向の幅が狭い2面を短辺と称し、
該短辺において得られる熱伝達係数βの同じ鋳型高さ位置での差を短辺β差と称し、
該短辺において得られる判定シェル厚みの同じ鋳型高さ位置での差を短辺シェル厚み差と称し、
前記鋳型内凝固状態評価量が、前記短辺β差及び前記短辺シェル厚み差のうち少なくともいずれかから算出されることを特徴とする鋳造状態の判定方法。
[2] 前記第3の工程では、平常鋳造状態であるか、異常鋳造状態であるかとしてブレイクアウトの発生を判定することを特徴とする[1]に記載の鋳造状態の判定方法。
[3] 前記第2の工程で得た鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量を時系列データとして、異常鋳造が発生したか否かの情報と併せてデータ記憶手段に保存する時系列データ保存工程と、
異常鋳造が発生したときの時系列データ、並びに該時系列データの平均及び標準偏差を含む統計情報に基づいて、平常鋳造状態とみなす範囲を規定する許容限度値を決定して前記許容限度値記憶手段に保存する許容限度値保存工程とを有することを特徴とする[1]又は[2]に記載の鋳造状態の判定方法。
[4] 前記鋳型内凝固状態評価量が、短辺β差及び短辺シェル厚み差のうち少なくともいずれかの過去1秒間から15分間の移動平均であることを特徴とする[1]乃至[3]のいずれか一つに記載の鋳造状態の判定方法。
[5] 前記鋳型内凝固状態評価量が、短辺β差の絶対値及び短辺シェル厚み差の絶対値のうち少なくともいずれかの過去1秒間から15分間の最小値であることを特徴とする[1]乃至[3]のいずれか一つに記載の鋳造状態判定方法。
[6] 前記統計情報は、予め定めておいた鋳造条件及び計測値に対する区分に応じて、鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量を層別し、各層別集団における前記平均及び前記標準偏差のうち少なくともいずれかであることを特徴とする[3]に記載の鋳造状態の判定方法。
[7] 前記鋳造条件及び前記計測値は、鋳造速度、鋳造幅、溶鋼温度、溶鋼温度と液相線温度の差、及び溶鋼温度と固相線温度との差のうち1種以上であることを特徴とする[6]に記載の鋳造状態の判定方法。
[8] 前記許容限度値として、前記平均に前記標準偏差の1倍以上の値を加えた値、及び前記平均に前記標準偏差の1倍以上の値を減じた値を用いることを特徴とする[3]に記載の鋳造状態の判定方法。
[9] 前記測温手段の埋設位置を、鋳型の想定している溶鋼湯面位置から下方に0mm以上95mm以下の任意の位置をPとし、溶鋼湯面位置から下方に220mm以上400mm以下の任意の位置をPとし、PからPまでの範囲に120mm以下の間隔で設け、かつ、鋳型下端からの距離が300mm以内の位置に少なくとも1点設けることを特徴とする[1]乃至[8]のいずれか一つに記載の鋳造状態の判定方法。
[10] 溶鋼から鋳型用の冷却水までの間に凝固シェル、モールドフラックス層、鋳型の各熱伝導体が存在する連続鋳造における鋳造状態の判定装置であって、
前記鋳型に鋳造方向に位置をずらして埋設された複数の測温手段からのデータを用いて、前記モールドフラックス層を挟む前記凝固シェルと前記鋳型との間の単位温度差あたりの熱流束である熱伝達係数α、及び前記溶鋼と前記凝固シェルとの間の熱伝達係数βを逆問題を解くことにより求め、熱伝達係数α及び熱伝達係数βから凝固シェル厚み及び凝固シェル温度を推定する推定手段と、
前記推定手段で求めた熱伝達係数α、熱伝達係数β、凝固シェル推定厚み、及び凝固シェル推定温度を鋳型内凝固状態推定量とし、前記鋳型内凝固状態推定量から鋳型内凝固状態評価量を得る演算手段と、
前記演算手段で得た鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量と、過去に異常鋳造が発生したときの鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量に基づいて求められて、許容限度値記憶手段に保存された許容限度値とを比較することにより、平常鋳造状態であるか、異常鋳造状態であるかを判定する判定手段とを備え、
前記モールドフラックス層を介して鋳片と接する4面の鋳型表面のうち、隣り合わずに相対する2面の水平方向の幅が等しい鋳型において、
他の2面よりも水平方向の幅が狭い2面を短辺と称し、
該短辺において得られる熱伝達係数βの同じ鋳型高さ位置での差を短辺β差と称し、
該短辺において得られる判定シェル厚みの同じ鋳型高さ位置での差を短辺シェル厚み差と称し、
前記鋳型内凝固状態評価量が、前記短辺β差及び前記短辺シェル厚み差のうち少なくともいずれかから算出されることを特徴とする鋳造状態の判定装置。
[11] 前記測温手段の埋設位置を、鋳型上端から120mm以上175mm以下の任意の位置をPとし、鋳型上端から340mm以上480mm以下の任意の位置をPとし、PからPまでの範囲に120mm以下の間隔で設け、かつ、鋳型下端からの距離が300mm以内の位置に少なくとも1点設けることを特徴とする[10]に記載の鋳造状態の判定装置。
[12] 溶鋼から鋳型用の冷却水までの間に凝固シェル、モールドフラックス層、鋳型の各熱伝導体が存在する連続鋳造における鋳造状態を判定するためのプログラムであって、
前記鋳型に鋳造方向に位置をずらして埋設された複数の測温手段からのデータを用いて、前記モールドフラックス層を挟む前記凝固シェルと前記鋳型との間の単位温度差あたりの熱流束である熱伝達係数α、及び前記溶鋼と前記凝固シェルとの間の熱伝達係数βを逆問題を解くことにより求め、熱伝達係数α及び熱伝達係数βから凝固シェル厚み及び凝固シェル温度を推定する第1の処理と、
前記第1の処理で求めた熱伝達係数α、熱伝達係数β、凝固シェル推定厚み、及び凝固シェル推定温度を鋳型内凝固状態推定量とし、前記鋳型内凝固状態推定量から鋳型内凝固状態評価量を得る第2の処理と、
前記第2の処理で得た鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量と、過去に異常鋳造が発生したときの鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量に基づいて求められて、許容限度値記憶手段に保存された許容限度値とを比較することにより、平常鋳造状態であるか、異常鋳造状態であるかを判定する第3の処理とをコンピュータに実行させ、
前記モールドフラックス層を介して鋳片と接する4面の鋳型表面のうち、隣り合わずに相対する2面の水平方向の幅が等しい鋳型において、
他の2面よりも水平方向の幅が狭い2面を短辺と称し、
該短辺において得られる熱伝達係数βの同じ鋳型高さ位置での差を短辺β差と称し、
該短辺において得られる判定シェル厚みの同じ鋳型高さ位置での差を短辺シェル厚み差と称し、
前記鋳型内凝固状態評価量が、前記短辺β差及び前記短辺シェル厚み差のうち少なくともいずれかから算出されることを特徴とするプログラム。
本発明によれば、連続鋳造の異常状態判定のための凝固シェル温度と凝固シェル厚みを含む量について具体的な許容限度値を決定することができるので、実行者は、経験によらず許容限度値を決定することができる。これにより、過検知及び検知漏れの少ない偏流起因ブレイクアウトの検知技術を提供でき、鋳造状態の状態判定の精度が向上するので、偏流起因ブレイクアウト等の操業事故を未然に防ぐとともに、操業事故を懸念した鋳造速度規制を緩和することによる生産性の向上に寄与する。
図1は、実施形態に係る鋳造状態の判定方法を示すフローチャートである。 図2は、連続鋳造設備の鋳型付近の断面の一部と情報処理装置を示す図である。 図3は、実施形態に係る好適な測温手段の埋設位置の例を示す図である。 図4は、典型的な鋳型温度分布を示す特性図である。 図5は、典型的な鋳型温度分布における温度勾配を示す特性図である。 図6は、実施形態に係る線形補間した鋳型温度分布の近似精度を示す特性図である。 図7は、実施形態に係る線形補間した鋳型温度分布を示す特性図である。 図8は、実施形態に係る鋳造状態の判定装置として機能する情報処理装置の構成を示すブロック図である。 図9は、実施例1での線形補間した鋳型温度分布を示す特性図である。 図10は、実施例1での線形補間した鋳型温度分布を示す特性図である。 図11は、実施例2での熱伝達係数の短辺β差の時間変化を示す特性図である。 図12は、実施例2での凝固シェル厚みの短辺s差の時間変化を示す特性図である。 図13は、実施例2での鋳型内凝固状態評価量の比較を示す特性図である。 図14は、実施例2での鋳型内凝固状態評価量の比較を示す特性図である。 図15は、実施例2において層別した鋳造状態判定量の平均の比較を示す特性図である。 図16は、実施例2において層別した鋳造状態判定量の標準偏差の比較を示す特性図である。 図17は、実施例2において許容限度値調整定数に対する平常鋳造を異常鋳造と見誤る比率の予測値を示す特性図である。 図18は、実施例2において本発明を適用した許容限度値と鋳造状態判定量の変化を示す特性図である。 図19は、連続鋳造設備の概要を説明するための図である。 図20は、連続鋳造設備の鋳型付近の断面を示す図である。
以下、本発明を実施するための形態を、添付図面を参照しながら説明する。
まず、特許文献2の技術にあたる、連続鋳造における鋳型内凝固伝熱現象を模擬する数理モデルになる偏微分方程式とプロファイル法による近似解の導出、及び、その近似解を用いて鋳型内凝固状態を推定する逆問題を明確にし、その解法を説明する。
次に、鋳型内凝固状態を推定する逆問題手法を操業異常である偏流起因ブレイクアウトの早期検知に適用するにあたり、本発明の主たる部分である、異常鋳造を判定する凝固シェル温度と凝固シェル厚みの具体的な許容限度値の決定方法を説明する。
図2は、連続鋳造設備の鋳型付近の断面の一部(浸漬ノズルを除く右半分)を示す。溶鋼1から鋳型用の冷却水5までの間に凝固シェル2、モールドフラックス層3、鋳型4の各熱伝導体が存在する。鋳型4には、複数の測温手段である熱電対6が鋳造方向に、即ち図の下向きに位置をずらして埋設されている。また、鋳造状態の判定装置として機能する情報処理装置7が装備されている。
[測温手段の埋設位置]
本発明を適用して鋳型内凝固状態の推定を行うに際し、好適な測温手段の埋設位置について説明する。
測温手段の埋設位置は、鋳造状況を監視するために、従来から使用している状態で使用すれば鋳型内凝固状態の推定は可能であるが、好ましくは、鋳型の想定している溶鋼湯面下95mm以内の任意の位置をPとし、溶鋼湯面下220mm以上400mm以内の任意の位置をPとし、PからPまでの範囲に120mm以下の間隔で設け、かつ、鋳型下端から300mm以内の位置に少なくとも1点設けるのが望ましい。
図3は、想定している溶鋼湯面が鋳型上端から85mmの位置にある長さ1090mmの鋳型への好適な測温手段の埋設位置(図3中の●)の例を示したものである。
配置パターン1は、鋳型上端から100mm以上340mm以内の範囲において間隔が120mmとなるように、かつ、鋳型下端から250mmの位置に1点設けたものである。
配置パターン2は、鋳型上端から40mm以上400mm以内の範囲において間隔が120mmとなるように、かつ、鋳型下端から250mmの位置に2点設けたものである。
配置パターン3は、鋳型上端から100mm以上340mm以内の範囲において間隔が60mmとなるように、かつ、鋳型下端から250mmの位置に1点設けたものである。
配置パターン4は、鋳型上端から100mm以上340mm以内の範囲において間隔が120mm以下で不等間隔となるように、かつ、鋳型下端から250mmの位置に1点設けたものである。
次に、前述の埋設位置が好ましい理由を説明する。本発明は、鋳型の温度分布を用いて鋳型内部の状態を推定するため、鋳型の温度分布をできる限り忠実に再現できるように計測するのが好ましい。鋳型温度分布を忠実に再現するためには、高密度に鋳型に測温手段を埋設して計測すればよいが、測温手段は装置であるため、ある確率で故障する。測温手段の埋設密度を高くすれば、複数の測温手段の総合した故障確率の増加を招くだけでなく、施工費用も高額になり、反って操業コスト高を招くことになる。したがって、許容できる程度の少ない測温手段を用いて、鋳型の温度分布を忠実に再現できるように適切に測温手段を鋳型に埋設して計測する必要がある。
一般的な連続鋳造機では、鋳型上端で高温にならないこと、湯面の大きな変動でも漏れないこと等、安全上の理由から、溶鋼湯面を鋳型上端からの距離が80mm以上120mm以内の位置になるように溶鋼注入量を調整している。そのため、鋳造中であっても、溶鋼湯面より上方の鋳型内面は外気に触れており、鋳型上端部が最も低温で、冷却水温度とほぼ同じ温度になる。鋳造条件によって鋳型温度は変化するものの、鋳型上端から溶鋼湯面付近に向かって鋳型温度は上昇し、溶鋼湯面から溶鋼湯面下約100mm以内に鋳型の最高温度位置があり、鋳型の最高温度位置から鋳型下端に向けて、鋳型温度は低下傾向となって、鋳型下端から300mm以内で溶鋼湯面以下の最低温度に達する。
図4は、非特許文献2に開示されている鋳型温度測定結果をもとに作成した、長さが900mmの鋳型にて溶鋼湯面位置が鋳型上端から100mmの場合の典型的な鋳型温度分布である。発明者らはこの典型的な温度分布から好適な測温手段の埋設位置を導出できると考えた。すなわち、この典型的な温度分布から有限個の温度情報を取得し、線形補間により温度分布を再現したときに、元の温度分布を良好に近似する温度情報取得位置が好適な測温手段の埋設位置と考えた。
鋳型の温度分布を忠実に再現するには、温度勾配が大きい範囲、又は、温度勾配の変化が大きい範囲に測温手段を密に配置し、温度勾配が比較的小さい範囲には測温手段を疎に配置するのがよい。溶鋼湯面下から最下端測温手段位置までの温度分布を用いて鋳型内部の鋳造状態を推定することも考慮すると、鋳型上方の溶鋼湯面下は測温手段を密に埋設し、鋳型下方は測温手段を粗に埋設するのがよいことがわかり、密に埋設する範囲と粗に埋設する範囲の境目となる測温位置Pを決定する必要がある。
図5は、前述の典型的な温度分布の温度勾配のグラフである。溶鋼湯面下の温度勾配が正から負に転じて、温度勾配の変化が溶鋼湯面付近に比べて少なくなる湯面下100mmの位置から、溶鋼湯面下で最低温度に達した鋳型下端から200mmの位置までの範囲に、密に埋設する範囲と粗に埋設する範囲の境目がある。その境目となる測温位置Pを以下の方法で決定した。つまり、溶鋼湯面下100mmの位置、鋳型下端から200mmの位置、及び、その中間位置の3点の温度を用いて線形補間した近似温度分布を算出して、上記典型的な温度分布からの相対差の2乗平均平方根を求め、相対差が許容できる程度に小さくなる中間位置をPとすることにした。
図6は、上記の中間位置に対する相対差の2乗平均平方根を示したグラフである。中間位置が溶鋼湯面下300mmのときに相対差の2乗平均平方根が2.3%で最良近似となり、その約2倍の5%以下に抑えることを測温位置Pの条件とした。すなわち、測温位置Pは溶鋼湯面から220mm以上400mm以内とした。
図7は、上記典型的な温度分布と、測温位置Pを溶鋼湯面下300mmとした近似温度分布を示すグラフである。上記範囲に測温手段を埋設することで、精度よく効率的に鋳型温度分布を再現できることが分かる。
測温位置Pよりも下方の配置については、鋳型下端から300mm以内で最低温度に達することから、鋳型下端から300mm以内の位置に少なくとも1点設けるのが望ましい。測温位置Pよりも上方の配置については、実施例1の結果から以下のように決定した。すなわち、密に埋設する範囲の最上方の測温位置Pは溶鋼湯面下95mm以内、測温手段を配置する間隔を120mm以下とした。
以上の理由から、測温手段の埋設位置は、鋳型の想定している溶鋼湯面位置から95mm以内の任意の位置をPとし、溶鋼湯面下220mm以上400mm以内の任意の位置をPとし、PからPまでの範囲に120mm以下の間隔で設け、かつ、鋳型下端から300mm以内の位置に少なくとも1点設けるのが好ましい。
前述したように、一般的な連続鋳造機では、溶鋼湯面を鋳型上端からの距離が80mm以上120mm以内の位置になるように溶鋼注入量を調整していることから、前記Pを鋳型上端から120mm以上175mm以下の任意の位置とし、前記Pを鋳型上端から340mm以上480mm以下の任意の位置とすれば、溶鋼湯面がいずれの位置であっても前述の測温手段の埋設位置の好適な条件を満足することになる。
[鋳型内凝固状態の推定方法]
本実施形態において使用する数理モデルについて説明する。一般に、数理モデルは現象の要因となる構成の簡略化によって異なるものが考えられるため、同じ現象を表すにも複数の選択肢がある。本発明で使用できる数理モデルは、図2に示すように、鋳型表面垂直方向、及び、鋳造方向の2方向からなる2次元断面上で、溶融金属から、凝固シェル2、モールドフラックス層3、鋳型4、冷却水5までの範囲における凝固伝熱現象を表す数理モデルであり、その数理モデルの枠組みの中で後述する逆問題が成立し、なおかつ、その逆問題を数値的・近似的に解くことができるものである。現在のところ、上記条件を満たすモデルのうち、計算機で実行可能となるものには、鋳型内の凝固伝熱現象を表す式(1)〜(5)を連立した偏微分方程式と、鋳型4を通過する熱流束を異なる表現で表した式(6)〜(8)を組み合わせたものがある。
Figure 2015115651
Figure 2015115651
ここで、tは時間である。zはz=0を溶鋼湯面とした鋳造方向の座標、xはx=0を鋳型表面とした鋳型垂直方向の座標である。zは鋳型4に埋設された最下端熱電対6の位置である。cは凝固シェル比熱、ρは凝固シェル密度、λは凝固シェル熱伝導率、Lは凝固潜熱である。Vは鋳造速度である。Tは溶鋼温度、Tは凝固温度、T=T(t,z)は鋳型表面温度、T=T(t,z,x)は凝固シェル温度である。s=s(t,z)は凝固シェル厚みである。α=α(t,z)は凝固シェル2と鋳型4との間の熱伝達係数、β=β(t,z)は溶鋼1と凝固シェル2との間の熱伝達係数である。qout=qout(t,z)は鋳型4を通過する熱流束である。λは鋳型熱伝導率である。dは鋳型表面からの熱電対埋め込み深さ、dは熱電対6から冷却水5までの距離である。hは鋳型冷却水間熱伝達係数である。T=T(t,z)は熱電対埋め込み深さ位置の鋳型温度、T=T(t,z)は冷却水温度である。
この数理モデルは、鋳型表面に並行な水平方向に関し温度変化がほとんどなく、凝固シェル2内の鋳造方向の熱流束が鋳型表面垂直方向に比べて極端に小さい鋳型内状態を模擬するモデルと、熱伝導率の高い鋳型の伝熱現象を模擬するモデルの組み合わせである。後述するプロファイル法によってα、β及びTが与えられていれば、凝固シェル温度分布Tと凝固シェル厚みsの近似解を構成することができ、現象を模擬する上で十分な精度と数値計算負荷の軽量化が両立する。この特徴から、後述する逆問題を解くリアルタイム計算が可能となる。
次に、上記数理モデルのプロファイル法による近似解の導出を説明する。プロファイル法は、対象としている偏微分方程式そのものを解く方法ではなく、偏微分方程式の解が満たす条件をいくつか導出しておき、その条件を満たす解に関して、プロファイルに制約を設けて求める方法である。具体的には以下のようにする。まず、変数(t,z)から式(9)による変数変換によって、(t,η)を新たな変数とし、式(1)〜(5)を変換し、式(6)を用いてαを消去すると、それぞれ式(10)〜(14)となる。
Figure 2015115651
式(10)〜(14)には、tの微分が現れないため、以降では、tを固定値として取り扱う。次に、プロファイル法に利用する関数Ψを式(15)で定義する。
Figure 2015115651
このΨをηで微分し、式(10)〜(13)を用いると、熱流束の収支を表す式(16)を得る。
Figure 2015115651
実際、式(17)のように計算できることから、式(15)の両辺をηで微分して式(17)を代入すれば、式(16)を得る。
Figure 2015115651
また、式(13)の両辺をηで微分すると、式(18)が得られ、式(10)と式(13)を満たすTが存在すれば、境界でも式(10)の等号が成り立つこと、及び、式(12)を用いて式(18)から∂T/∂η及び∂s/∂ηを消去すると、式(19)を得る。
Figure 2015115651
以上をまとめて、プロファイル法による近似解が満たす条件として、式(20)〜(26)を採用する。
Figure 2015115651
Tのプロファイルをxに関し2次として、式(25)を常に満たすように、式(27)でTを与える。
Figure 2015115651
ここで、a=a(η)及びb=b(η)はxと独立であり、式(27)を式(22)及び式(24)に代入することで具体的に求めることができる。実際、式(27)をxで微分すると式(28)が成り立ち、式(22)及び式(24)〜(29)が得られるため、熱流束が溶鋼側から凝固シェルへ向かうことを表す∂T/∂x|x=s>0の条件の下、式(30)及び式(31)を得る。
Figure 2015115651
また、式(27)をxについて積分すると式(32)になることから、式(20)に式(32)、式(31)、式(30)を代入することで、式(33)を得る。
Figure 2015115651
一方、式(27)にx=0、式(31)及び式(30)を代入すると、式(34)を得る。
Figure 2015115651
この式(34)に式(23)を代入し、T|x=0−Tで整理すれば、式(35)を得る。
Figure 2015115651
ただし、上記A、A、及びAはそれぞれ式(36)、式(37)、及び式(38)で与えられる。
Figure 2015115651
式(34)でs=0であればT|x=0=Tになることを考慮すると、T|x=0に関する式(35)の2つの解のうち、式(39)で与えられるT|x=0が、式(34)と式(23)を同時に満足する。
Figure 2015115651
以上をまとめると、プロファイル法による近似解は、式(40)〜(44)を満たす。
Figure 2015115651
ただし、式(41)のA、A、及びAは式(36)〜(38)で与えられるものである。式(40)〜(44)の導出までが、方程式構築工程である。また、式(40)〜(44)を満たすsを構成できれば、式(42)からqoutが求まるため、式(30)及び及び(31)から式(27)でTが定まり、式(20)〜(26)を満たすことが判る。従って、式(40)〜(44)を満たすsが求まれば、プロファイル法による近似解が構成できることになるが、これは、式(43)を差分化することで、数値的に得ることができる。具体的には下記のようになる。c、ρ、λ、L、T、Tを既知定数とし、ηに関し、計算点をη=0、η=ηi−1+dη(dη>0、i=1、2、・・・、n)、η=z/Vとする。α、β、及びTがη=ηで与えられているとして、それぞれα、β、及びTm、iとする。式(43)をオイラー法で差分化し、Ψ(η)の近似値をΨで表すと、式(45)のようになる。
Figure 2015115651
このようにするとs(η)の近似値sは、以下に示すように帰納的に計算することができる。まず、式(40)よりs=0となり、式(44)からΨ=0となる。次に、s及びΨが与えられている場合、式(36)〜(38)のα、β、T、及びsにそれぞれα、β、Tm、i、及びsを代入すると、式(41)からT|x=0が求まり、式(42)からqoutが求まり、したがって、式(45)からΨi+1が求まる。次に、式(44)のΨ及びβにそれぞれΨi+1及びβi+1を代入し、qoutに式(42)で得られているqoutを代入して、sについて解き、si+1とする。この方法によりs及びΨからsi+1及びΨi+1が求まるため、帰納的にsを定めることができる。
以上により、c、ρ、λ、L、T、T、Vが既知であり、α、β、Tが与えられれば、tを任意時刻として、η∈[0,z/V]に対しt=t+η、z=V・η上で、Tとsをプロファイル法を用いて求めることができることを説明した。以下、上記プロファイル法で得られるT及びsをα、β、及びTに因っているとして、式(46)のように表す。
Figure 2015115651
次に、逆問題としての定式化とその解法について説明する。逆問題は、結果から原因を推定する問題の総称である。この鋳型内の凝固伝熱現象を表す数理モデルの枠組みの中では、次のようになる。λ、d、d、h、c、ρ、λ、L、T、T、T、及びVを既知とし、z∈(0,z]に対し、t−z/Vが鋳造時間中になるような(t,z)において、t=t−z/Vとし、η∈(0,z/V)に対し鋳型4に埋設された熱電対6による計測値をt=t+η、z=V・η上で補間したTが得られているとき、式(7)及び式(8)から鋳型表面温度及び鋳型を通過する熱流束である式(47)及び式(48)は直ちに計算できる。
Figure 2015115651
一方、式(6)及び式(7)から、モールドフラックス層3を通過する熱流束は式(49)で表せる。
Figure 2015115651
従って、式(48)で与えられるqoutに対し、式(49)が成り立つようにα及びβを推定する問題が鋳型内の凝固伝熱現象における逆問題となる。この逆問題は、式(48)で与えられるqoutに対し、式(50)で表せる最小自乗法による最小化問題を解くことに帰着される。
Figure 2015115651
ここで、η=0、η=ηi−1+dη(dη>0、i=1、2、・・・、n)、η=z/Vであり、前述したとおり、Tprof(α、β、T)が数値的に計算できることから、上記最小化問題は、ガウス・ニュートン法等を用いた一般的な数値解法で解くことができる。この式(50)の最小化問題を解くことが熱伝達係数推定工程になり、各時刻、各位置(t,z)において決定したα、β、及びTを式(46)に代入すれば、凝固シェル厚み、及び凝固シェル温度が得られるため、(t,z)における鋳型内凝固状態推定量である熱伝達係数α、熱伝達係数β、凝固シェル厚みs、凝固シェル温度Tが得られる。この鋳型内凝固状態推定量を、以下では、それぞれαest(t,z)、βest(t,z)、sest(t,z)、Test(t,z,x)と表すことにする。
以上が、特許文献2に記載の鋳型内状態の推定方法である。
[許容限度値の決定方法]
次に、鋳型内状態を推定する逆問題手法を異常鋳造である偏流起因ブレイクアウトの早期検知方法に適用するにあたり、異常鋳造の前兆を判定する具体的な許容限度値の決定方法を説明する。
まず、予め鋳造中の鋳型温度等を保存しておく。その際、鋳造条件である鋳造速度、溶鋼温度と凝固温度の差であるスーパーヒート、鋳造幅も時系列データとして保存しておく。本発明が適用できる連続鋳造設備は、異常鋳造を起こしたことがあり、異常鋳造が発生したときに測定した温度情報等を保存してある連続鋳造設備である。
次に、鋳型内凝固状態評価量となる計算式を用意する。鋳型内凝固状態評価量となりうるものは、溶鋼の流動が偏ることによって変化する鋳型内凝固状態推定量を用いたものであり、偏流が発生していなければ0に、偏流が発生していれば偏流の向きと大きさに応じて正又は負の値になるものである。例えば下記で定義される式(51)、式(52)、式(53)、又は式(54)といった評価値は鋳型内凝固状態評価量となる。
Figure 2015115651
ここで、sestL(t,z)、sestR(t,z)、βestL(t,z)、及びβestR(t,z)は、それぞれ2面ある短辺において鋳型内凝固状態推定量の凝固シェル推定厚み、及び、熱伝達係数βを、左右の短辺の別を表す添え字L,Rを用いて表している。また、δtはサンプリング周期、m・δtは評価時間、sgnは数の符号である。式(51)及び式(52)は過去m・δtの移動平均値であり、式(53)及び式(54)は状態量の差の絶対値に関する過去m・δtの最小値に、偏りの向きを表す符号を掛けたものである。これらの鋳型内凝固状態評価量は、それぞれ評価時間m、及び評価位置zに自由度があるため、mとzの組み合わせを一つ指定するごとに、一つの鋳型内凝固状態評価量が得られることになる。このような鋳型内凝固状態評価量では、対象としている連続鋳造設備に対して最良となる鋳造状態判定量を選択するために、代表的なmとzを離散的に複数選んでおく必要がある。
次に、予め許容限度値検討期間を設けて、許容限度値検討期間中の計測データから鋳型内凝固状態推定量を求め、鋳型内凝固状態評価量の候補も計算して保存しておく。鋳造条件を、同一とみなせる階級幅を決めて層別し、各層をG,・・・、Gで表すことにすると、Gに応じて鋳型内凝固状態評価量も層別し、層別した鋳型内凝固状態評価量のそれぞれに対して、平均値μと標準偏差σを算出する。ここで、k=1,・・・,Nは層別化した各層の添え字を表し、Nは層の総数である。許容限度値検討期間は、層別した鋳造条件Gから計算した統計量が許容できる精度で推定できる程度に長く取ることが望ましい。また、鋳型内凝固状態推定量及び鋳型内凝固状態評価量は、予め定めておいた鋳造条件及び計測値に対する区分に応じて層別される。鋳造条件及び計測値は、鋳造速度、鋳造幅、溶鋼温度、溶鋼温度と液相線温度の差、及び溶鋼温度と固相線温度との差のうち1種以上である。
次に、過去に起きた異常鋳造である偏流起因ブレイクアウトの計測データから逆問題を解いて鋳型内凝固状態推定量を求めて、鋳型内凝固状態評価量を算出しておき、ブレイクアウト発生直前の鋳型内凝固状態評価量が平常時のものから最も大きく乖離するものを鋳造状態判定量として選択する。異常鋳造である偏流起因ブレイクアウト発生直前の鋳型内凝固状態評価量の値をEで表せば、当該ブレイクアウト発生時の鋳造条件が属する層の当該鋳型内凝固状態評価量のμとσに対し、式(55)で与えられる値が最大となる鋳型内凝固状態評価量を選択し、鋳造状態判定量とすればよい。
Figure 2015115651
これは、どの鋳型内凝固状態評価量が感度良く偏流を感知するかは連続鋳造設備に因っているため、鋳造機に応じて鋳型内凝固状態評価量を選択しておく必要があるからである。選択された鋳造状態判定量に対し、許容限度値調整のための正定数をAで表し、各鋳造条件Gにおいて式(56)を満たす時間の総和を算出し、許容限度値検討期間に対する比率を求める。
Figure 2015115651
この比率は、平常鋳造を偏流起因ブレイクアウトが発生する鋳造として見誤る比率にあたり、Aを大きくすれば減少する。このことから、上記比率が許容でき、なおかつ、過去の異常鋳造では、式(56)を満たすような正定数Aを選択しておけば、異常鋳造である偏流起因ブレイクアウトに至る鋳造異常を精度よく検知できる。選択したAに対し、各鋳造条件Gに付随する許容限度値をμ±A・σとするのが、許容限度値の決定方法である。すなわち、許容限度値として、平均値μに標準偏差σの1倍以上の値を加えた値、及び平均値μに標準偏差σの1倍以上の値を減じた値を用いる。
実際にこの許容限度値を適用する場合には、現在の鋳造条件が属するGに対応する鋳型内凝固状態評価量の平均値μと標準偏差σを取り出し、実測して求めた鋳造状態判定量が式(57)を満たしていれば平常鋳造状態と判定し、式(57)を満たさなければ偏流起因ブレイクアウト発生の危険が高い異常鋳造状態と判定する。これが鋳造状態の判定方法である。
Figure 2015115651
以下、図1に示すフローチャートを用いて、本実施形態に係る鋳造状態の判定方法を説明する。
まず、鋳造を行う上で、鋳型4のサイズや物性値、及び、鋳造対象となる溶鋼1の物性値に関し、事前に知ることのできる鋳型熱伝導率λ、鋳型表面からの熱電対埋め込み深さd、熱電対6から冷却水5までの距離d、鋳型冷却水間熱伝達係数h、凝固シェル比熱c、凝固シェル密度ρ、凝固シェル熱伝導率λ、凝固潜熱L、及び凝固温度Tは既知とする。鋳造中に変化する可能性のある溶鋼温度T、冷却水温度T、及び鋳造速度Vに関しては、平均的な値を用いることで既知とできるが、ステップS101で鋳型温度Tと同じく計測することが望ましい。
ステップS101の鋳型温度計測工程では、鋳型温度を計測し補間して熱電対埋め込み深さ位置の鋳型温度Tを求め、鋳造方向の温度分布を求めて、時系列でデータ記憶部に保存する。
ステップS102の熱流束取得工程では、ステップS101で得られた鋳型温度Tから式(48)を用いて鋳型4を通過する熱流束qoutを求める。
ステップS103の鋳型表面温度取得工程では、ステップS101で得られた鋳型温度Tから式(47)を用いて鋳型表面温度Tを求める。
ステップS104の方程式構築工程では、ステップS105の因果関係式構築工程の準備として、式(40)〜(44)で示される熱伝達係数α、熱伝達係数β、凝固シェル厚みs、凝固シェル温度Tを少なくとも含む偏微分方程式であって、凝固シェル2における熱流束の収支を表す時間についての偏微分方程式を構築する。
ステップS105の因果関係式構築工程では、ステップS106の熱伝達係数推定工程の準備として、ステップS104で構築した偏微分方程式を解いて、式(46)及び式(49)で示される、熱伝達係数α、熱伝達係数β、及び鋳型表面温度に対する凝固シェル温度の関係式である凝固シェル温度式と、熱伝達係数α、熱伝達係数β、及び鋳型表面温度に対する凝固シェル厚みの関係式である凝固シェル厚み式と、熱伝達係数α、熱伝達係数β、及び鋳型表面温度に対するモールドフラックス層熱流束の関係式であるモールドフラックス層熱流束式とを因果関係式として構築する。
ステップS106の熱伝達係数推定工程では、ステップS103で得られた鋳型表面温度TをステップS105で得られたモールドフラックス層熱流束式に適用し、モールドフラックス層熱流束式からステップS102で得られた鋳型熱流束qoutを減じた値の二乗の鋳造方向の分布に関し、複数点における値の総和が最小となるように、熱伝達係数αの鋳造方向の分布及び熱伝達係数βの鋳造方向の分布を同時に決定する逆問題である式(50)の最小化問題を解き、熱伝達係数α及び熱伝達係数βを同時に決定する。
ステップS107の凝固シェル推定工程では、ステップS103で得られた鋳型表面温度T、ステップS106で得られた熱伝達係数α及び熱伝達係数βを、ステップS105で得られた凝固シェル温度式及び凝固シェル厚み式、すなわち式(46)のTprof(α、β、T)及びsprof(α、β、T)に適用して、凝固シェル推定温度及び凝固シェル推定厚みを決定する。
ステップS108の鋳型内凝固状態評価工程では、ステップS106で得られた熱伝達係数α及び熱伝達係数β、並びにステップS107で得られた凝固シェル推定温度及び凝固シェル推定厚みから、予め定めておいた演算方法に則って鋳型内凝固状態評価量を算出する。すなわち、ステップS106で得られた熱伝達係数α、熱伝達係数β、ステップS107で得られた凝固シェル推定厚み、凝固シェル推定温度を鋳型内凝固状態推定量と称し、鋳型内凝固状態推定量のうち少なくとも一つ又は複数に対して、予め定めた演算方法を適用して得られる量である鋳型内凝固状態評価量を決定する。
ステップS109の許容限度値有無判定工程では、ステップS113の許容限度値保存工程で求める許容限度値がデータ記憶部に保存されているか否かを判定する。許容限度値が保存されていなければ、許容限度値を求めるための準備工程であるステップS110の時系列データ保存工程に進み、許容限度値が保存されていれば、鋳造状態を判定するステップS114に進む。
ステップS110の時系列データ保存工程では、統計量を算出するために、ステップS108で規定した鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量を時系列データとして、異常鋳造が発生したか否かの情報と併せてデータ記憶部に保存する。
ステップS111の統計量算出判定工程では、ステップS110で保存した時系列データが、予め定めておいた期間分に達し、該時系列データの平均及び標準偏差を含む統計量が算出できるか否かを判定する。時系列データの統計量が算出できなければ、データ数を増やすためにステップS101の鋳型温度計測工程に戻り、新たに計測し直す。時系列データの統計量が算出できれば、ステップS112の操業異常時データ有無判定工程に進む。
ステップS112の操業異常時データ有無判定工程は、異常鋳造が発生したときの鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量がデータ記憶部に保存されているか否かを判定する。保存されていれば、許容限度値を定める工程であるステップS113の許容限度値保存工程に進み、保存されていなければ、ステップS101の鋳型温度計測工程に戻り、新たに計測し直す。
ステップS113の許容限度値保存工程は、異常鋳造が発生したときの時系列データ、及びステップS110で得られる時系列データの平均及び標準偏差を含む統計情報を用いて、時系列データで保存されるものから鋳造状態の判定に用いる量である鋳造状態判定量を選択し、該鋳造状態判定量に関し、平常鋳造状態とみなすデータの範囲を規定する許容限度値を決定してデータ記憶部に保存する。許容限度値を決定してデータ記憶部に保存したら、ステップS101の鋳型温度計測工程に戻り、新たに計測し直す。
一方、ステップS114の鋳造状態判定工程は、許容限度値と、ステップS106、S107で得られた鋳型内凝固状態推定量及びステップS108で得られた鋳型内凝固状態評価量のうちステップS113で鋳造状態判定量として選択された量とを比較する。平常鋳造状態であると判定されれば、ステップS101の鋳型温度計測工程に戻り、新たに計測し直す。異常鋳造状態と判定されれば、ステップS115に進む。
ステップS115では、異常鋳造状態から操業異常を防止するため、例えば鋳造速度を落とすといった操業アクションを実施する。どのような操業アクションを実施するかを予め設定しておけばよい。
以上のように、モールドフラックス層3を挟む凝固シェル2と鋳型4との間の単位温度差あたりの熱流束である熱伝達係数α、及び溶鋼1と凝固シェル2との間の熱伝達係数βを逆問題を解くことにより求めて、熱伝達係数α及び熱伝達係数βから凝固シェル2の凝固シェル厚みs、及び凝固シェル温度T分布を推定し、推定した結果を利用して平常鋳造状態であるか、異常鋳造状態であるかを判定する。
図8に、鋳造状態の判定装置として機能する情報処理装置7の構成を示す。
連続鋳造中の熱電対6を用いた鋳型4の温度測定結果が情報処理装置7に入力され、鋳型温度を補間して得られた熱電対埋め込み深さ位置の鋳造方向の温度分布が時系列でデータ記憶部313に保存されるとともに、熱流束取得部301にデータが送られる。
熱流束取得部301では、鋳型温度Tから式(48)を用いて鋳型4を通過する熱流束qoutが求められる。
鋳型表面温度取得部302では、鋳型温度Tから式(47)を用いて鋳型表面温度Tが求められる。
方程式構築部303では、因果関係式構築部304による処理の準備として、式(40)〜(44)で示される熱伝達係数α、熱伝達係数β、凝固シェル厚みs、凝固シェル温度Tを少なくとも含む偏微分方程式であって、凝固シェル2における熱流束の収支を表す時間についての偏微分方程式が構築される。
因果関係式構築部304では、熱伝達係数推定部305による処理の準備として、方程式構築部303で構築した偏微分方程式を解いて、式(46)及び、式(49)で示される、熱伝達係数α、熱伝達係数β、及び鋳型表面温度に対する凝固シェル温度の関係式である凝固シェル温度式と、熱伝達係数α、熱伝達係数β、及び鋳型表面温度に対する凝固シェル厚みの関係式である凝固シェル厚み式と、熱伝達係数α、熱伝達係数β、及び鋳型表面温度に対するモールドフラックス層熱流束の関係式であるモールドフラックス層熱流束式とが因果関係式として構築される。
熱伝達係数推定部305では、鋳型表面温度取得部302で得られた鋳型表面温度Tを因果関係式構築部304で得られたモールドフラックス層熱流束式に適用し、モールドフラックス層熱流束式から熱流束取得部301で得られた鋳型熱流束qoutを減じた値の二乗の鋳造方向の分布に関し、複数点における値の総和が最小となるように、熱伝達係数αの鋳造方向の分布及び熱伝達係数βの鋳造方向の分布を同時に決定する逆問題である式(50)の最小化問題を解き、熱伝達係数α及び熱伝達係数βが同時に決定される。
凝固シェル推定部306では、鋳型表面温度取得部302で得られた鋳型表面温度T、熱伝達係数推定部305で得られた熱伝達係数α及び熱伝達係数βを、因果関係式構築部304で得られた凝固シェル温度式及び凝固シェル厚み式、すなわち式(46)のTprof(α、β、T)及びsprof(α、β、T)に適用して、凝固シェル推定温度及び凝固シェル推定厚みが決定される。
鋳型内凝固状態評価部307では、熱伝達係数推定部305で得られた熱伝達係数α及び熱伝達係数β、並びに凝固シェル推定部306で得られた凝固シェル推定温度及び凝固シェル推定厚みから、予め定めておいた演算方法に則って鋳型内凝固状態評価量が算出される。すなわち、熱伝達係数推定部305で得られた熱伝達係数α、熱伝達係数β、凝固シェル推定部306で得られた凝固シェル推定温度、凝固シェル推定厚みを鋳型内凝固状態推定量と称し、鋳型内凝固状態推定量のうち少なくとも一つ又は複数に対して、予め定めた演算方法を適用して得られる量である鋳型内凝固状態評価量が決定される。
許容限度値有無判定部308では、許容限度値保存部312で求める許容限度値がデータ記憶部313に保存されているか否かを判定する。許容限度値が保存されていなければ、許容限度値を求めるための準備として時系列データ保存部309に処理を行わせ、許容限度値が保存されていれば、鋳造状態判定部314に処理を行わせる。
時系列データ保存部309では、統計量を算出するために、鋳型内凝固状態評価部307で規定した鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量が時系列データとして、異常鋳造が発生したか否かの情報と併せてデータ記憶部313に保存される。
統計量算出判定部310では、時系列データ保存部309で保存した時系列データが、予め定めておいた期間分に達し、該時系列データの平均及び標準偏差を含む統計量が算出できるか否かが判定される。時系列データの統計量が算出できなければ、データ数を増やすために鋳型温度を新たに計測し直す。時系列データの統計量が算出できれば、操業異常時データ有無判定部311に処理を行わせる。
操業異常時データ有無判定部311では、異常鋳造が発生したときの鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量がデータ記憶部313に保存されているか否かが判定される。保存されていれば、許容限度値を定める許容限度値保存部312に処理を行わせ、保存されていなければ、鋳型温度を新たに計測し直す。
許容限度値保存部312では、鋳造状態に異常が発生したときの時系列データ、及び時系列データ保存部309で得られる時系列データの平均及び標準偏差を含む統計情報を用いて、時系列データで保存されるものから鋳造状態の判定に用いる量である鋳造状態判定量を選択し、該鋳造状態判定量に関し、平常鋳造状態とみなすデータの範囲を規定する許容限度値を決定してデータ記憶部313に保存する。許容限度値を決定してデータ記憶部313に保存したら、鋳型温度を新たに計測し直す。
鋳造状態判定部314では、許容限度値と、熱伝達係数推定部305、凝固シェル推定部306で得られた鋳型内凝固状態推定量及び鋳型内凝固状態評価部307で得られた鋳型内凝固状態評価量のうち許容限度値保存部312で鋳造状態判定量として選択された量とを比較する。平常鋳造状態であると判定されれば、鋳型温度を新たに計測し直す。そして、平常鋳造状態及び異常鋳造状態のいずれであるかを判定した結果が出力部315から出力される。
なお、本発明は、コンピュータがプログラムを実行することによって実現することができる。また、このプログラムを記録したコンピュータ読み取り可能な記録媒体及びプログラム等のコンピュータプログラムプロダクトも本発明として適用することができる。記録媒体としては、例えばフレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。
また、以上説明した本発明の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
次に、本発明を適用した実施例を説明する。
[実施例1]
本実施例は、本発明の方法を用いて鋳型内凝固状態の推定を行うに際し、測温手段である熱電対の鋳型内への埋設位置が推定精度へ及ぼす影響を評価したものである。
長さが1090mmの鋳型を用いて、溶鋼湯面が想定湯面位置である鋳型上端から85mmの位置となるように制御しながら、鋳造速度を1.7m/分として連続鋳造を実施した。熱電対を測温手段とし、熱電対の埋設位置は溶鋼湯面下15mmから255mmまで20mm間隔とし、加えて溶鋼湯面下755mm(鋳型下端から250mm)に1点設けて、鋳造中の温度データを採取した。ここで、熱電対の鋳型内への埋設位置については溶鋼湯面からの距離で表すことにしている。温度データの採取はサンプリング間隔を1秒とした。前記複数の熱電対の中から、熱伝達係数β及び凝固シェル厚みsの推定に用いるものを選択し、9水準の異なる選択の仕方で得られる推定結果から推定精度の評価を行った。
各水準のβ及びsの推定に使用した熱電対の埋設位置、β及びsの推定精度評価、総合評価を表1に示す。熱電対の埋設位置については、β及びsの推定に使用したものに○を記している。9水準の中では水準0が最も多くの熱電対を使用しており、β及びsを最も精度良く推定していると考えられる。そこで、水準0の推定結果を基準として、各水準のβ及びsの推定結果の相対差を以て推定精度評価指標とした。すなわち、各水準で同一な1分間の時間帯におけるβ及びsの推定を行い、鋳造方向に配置した各推定位置におけるβ及びsの推定値について時間平均を算出し、β及びsの推定値の時間平均の水準0に対する相対差の全推定位置に渡る2乗平均平方根を指標とした。その結果、β及びsの相対差がいずれも10%以内である場合に、良好な推定精度として総合評価を○とし、それ以外を△とした。
Figure 2015115651
水準0から水準4までは鋳型上方は溶鋼湯面下15mmから255mmまでの範囲の熱電対を選択し、鋳型下方の溶鋼湯面下755mmの熱電対も選択して鋳型内凝固状態推定を実施したものである。鋳型上方の熱電対間隔を水準毎に変えてある。水準0から水準2までのβ及びsの相対差はほぼ0%で、鋳型上方の熱電対間隔が十分に小さいことを示している。また、鋳型上方の熱電対間隔が120mmであれば総合評価は○となった。図9及び図10は、実施形態で説明した典型的な鋳型温度分布と、水準0から水準4に関し、選択した熱電対の埋設位置の温度を用いて線形補間した鋳型温度分布のグラフである。表2は、前記典型的な鋳型温度分布に対する、前記熱電対の埋設位置の温度のみを用いて線形補間した鋳型温度分布との相対差について、鋳造方向の2乗平均平方根を算出したものである。ただし、溶鋼湯面下755mmの位置は、鋳型下端から250mmの位置にあたり、溶鋼湯面下最低温度に達しているため、前記典型的な鋳型温度分布において溶鋼湯面下550mmの位置の温度とした。表1のβの相対差及びsの相対差との高い相関が有ることから、選択した熱電対の温度を用いて線形補間した鋳型温度分布が、本来の鋳型温度分布と大きな差が出ないように、温度勾配が比較的大きい鋳型上方には熱電対を密に埋設するのが好ましいことがわかる。
Figure 2015115651
水準0を基準として、水準5から水準7は鋳型上方の熱電対を、水準8は鋳型下方の熱電対を選択しないで鋳型内凝固状態推定を実施したもので、水準5以外は何れも総合評価は△となった。この結果から、熱電対を密に埋設する範囲の上端を溶鋼湯面下95mm以内にし、溶鋼湯面下の最低温度付近に熱電対を埋設するのが好ましいことがわかる。
[実施例2]
本実施例は、本発明の方法を用いた偏流起因ブレイクアウト検知に関する性能を評価し、従来法との比較を行ったものである。本実施例において、実施例1と同一の鋳型を使用し、鋳型内に埋設した測温手段の位置は実施例1における水準0とし、全ての測温手段から得られた温度データを用いて鋳型内凝固状態の推定を行った。
鋳型内凝固状態評価量の候補として、式(51)〜(54)で与えられるものを採用した。評価時間は、1分、4分、7分、10分とし、評価点は、鋳型上部、中部、下部とした。許容限度値の検討期間を5ヶ月間として鋳型内凝固状態推定量、鋳型内凝固状態評価量の候補、及び鋳造条件を時系列データとして保存した。鋳造条件の層別に関しては、鋳造幅の階級幅を300mm、鋳造速度の階級幅を0.4m/分、スーパーヒートの階級幅を10℃として、鋳造幅、鋳造速度、スーパーヒートの各階級の組み合わせでもって鋳造条件の層別水準G01〜G22とした。表3に詳細を示す。
Figure 2015115651
一方、許容限度値の検討期間よりも過去に発生した異常鋳造である偏流起因ブレイクアウトの計測データから鋳型内状態を推定したところ、ブレイクアウト発生までの時間変化は図11及び図12のようになった。図11は、鋳型上部、中部、下部における熱伝達係数の短辺β差の時間変化を示す。図12は、同位置における凝固シェル厚みの短辺s差の時間変化を示す。
この異常操業事例を用いて鋳型内凝固状態評価量の平常時からの乖離を比較したものを図13及び図14に示す。
図13は、移動平均である式(51)及び式(52)について式(55)で与えられる評価から得られた結果である。鋳型内凝固状態評価量としては、例えば短辺β差及び短辺s差のうち少なくともいずれかの過去1秒間から15分間の移動平均とすればよい。
図14は、式(53)及び式(54)について式(55)による評価した結果である。図14から、10分間を評価時間とした鋳型下部における短辺s差の符号付き最小値を鋳造状態判定量とすれば、平常時からの乖離が最も大きいことが判る。短辺β差の絶対値及び短辺s差の絶対値のうち少なくともいずれかの過去1秒間から15分間の最小値とすればよい。
鋳造条件の層別水準G01〜G22毎の鋳造状態判定量の平均及び標準偏差は、図15及び図16のようになる。鋳造条件の層別に判定を行わなくても、本発明の方法は実施できるが、層によって傾向が異なっていることからも、層別することで精度が向上することが判る。
図17は、許容限度値調整定数Aに対する平常鋳造を異常鋳造と見誤る比率の予測値であり、A=5としておけば、許容率0.2%を下回る。図18は、過去の異常鋳造である偏流起因ブレイクアウトにおいて、上記方法で得られた許容限度値と鋳造状態判定量のグラフであり、ブレイクアウト発生の約30分前に予知できることが判った。
(比較例)
特許文献6に記載の手法を比較例として、連続鋳造における鋳造異常の検出を試みた。
鋳造方向に間隔をおいて鋳型に埋設した温度計測手段(第1温度計測点:鋳型上面から160mm、第2温度計測点:340mm)で鋳型温度を計測し、鋳型温度計測値に基づいて各計測点における鋳型内面での熱流束を伝熱逆問題手法を用いてそれぞれ推定した。
実施例と同様に、偏流起因のブレイクアウトが発生した鋳造の計測データに関し、鋳造経過時間と、破孔側短辺の鋳型計測温度から推測した熱流束との関係を調べたところ、第1温度計測点に関してはブレイクアウト発生の5分前に当該位置の熱流束が2.4×10W/mを超えてブレイクアウト発生まで上昇傾向となり、熱流束が予め設定した限界値以下に低下することはなかった。偏流起因のブレイクアウトでは、局所的に鋳型の冷却能力を超えた熱量が凝固シェルに与えられて凝固成長が阻害され、強度不足の凝固シェルが鋳型外部に引き抜かれて発生することから、ブレイクアウト発生の前に破孔側の短辺熱流束が増加する計算結果になったことは自然な結果と考えられる。しかしながら、特許文献6では、ブレイクアウトは、「鋳型と鋳片の間に噛み込んだ異物や鋳片の割れ等で部分的に鋳片凝固層厚みが薄くなった部位が破損し、溶鋼金属が流出することで発生する」と想定されており、「その原因となる異物または割れの影響で凝固層から鋳型への熱移動が妨げられ、熱流束の低下が起こる」ことを前提としているため、熱流束が低下するもののみが検知対象である。したがって、特許文献6の方法をそのまま適用するだけでは偏流起因のブレイクアウト発生を判定又は予測することはできない。
また、特許文献6の方法からの比較的容易な改良方法として、仮に、熱流束が予め設定した限界値を越えた場合(上昇の場合を含む)にブレイクアウトが発生すると予測する方法が考えられる。そこで、予め設定する限界値として、第1温度計測点に関しては、2.7×10W/mを設定し、第2温度計測点に関しては、1.9×10W/mを設定すれば、第1温度計測点の熱流束に関しては実際のブレイクアウト発生の65秒前に限界値を超え、第2温度計測点の熱流束に関しては、実際のブレイクアウト発生の26秒前に限界値を超えることから、ブレイクアウト発生を予測できる可能性があるように思われた。しかしながら、ブレイクアウト発生の3時間前から1時間前までの2時間の間は、ブレイクアウトに至るほどの偏流は発生していないと考えられ、実際にブレイクアウトが発生していないが、上記条件を満たす時間が、8回に分かれて合計で77秒間あり、誤検知が多い結果となった。したがって、偏流起因ブレイクアウトの発生を適切に予知することは、特許文献6の方法を利用するだけでは困難であることが分かった。
このように、従来法では、ブレイクアウトの発生をある程度検出することはできたが、ブレイクアウトの発生を適切に予知することまではできなかった。
以上に、偏流起因ブレイクアウトの検知方法について説明してきたが、連続鋳造における鋳造状態は様々な物理現象が複雑に影響し合ったものであり、偏流起因ブレイクアウトの検知に適正な鋳造状態判定量は自明でなかった。即ち、凝固シェル厚みが薄くなることにより偏流起因ブレイクアウトが発生すると見られているが、その他にも凝固シェルの内部応力等も影響すると見られており、偏流起因ブレイクアウトの発生メカニズム自体が十分に解明されているとは言い難い。また、計測により得られる情報は限られている。例えば、凝固シェルの内部応力は直接計測することはできなく、計測を基に推定しようとしても凝固シェル形状、凝固シェル内温度分布、鋳型の拘束条件を考慮する必要があるが、オンラインで使用可能な高速に計算する手法は提案されていない。
このような状況で偏流起因ブレイクアウトを精度良く検知するために、発明者らは、本発明の方法で推定した鋳型内凝固状態推定量から算出される様々な指標について評価し、十分な精度で偏流起因ブレイクアウトを検知し得る鋳造状態判定量を見出したものである。
本発明は、溶鋼から鋳型冷却水までの間に凝固シェル、モールドフラックス層、鋳型が存在する連続鋳造における鋳造状態を判定するのに利用することができる。
上述の課題を解決するための本発明の要旨は以下のとおりである。
[1] 溶鋼から鋳型用の冷却水までの間に凝固シェル、モールドフラックス層、鋳型の各熱伝導体が存在する連続鋳造における鋳造状態の判定方法であって、
前記鋳型に鋳造方向に位置をずらして埋設された複数の測温手段からのデータを用いて、前記モールドフラックス層を挟む前記凝固シェルと前記鋳型との間の単位温度差あたりの熱流束である熱伝達係数α、及び前記溶鋼と前記凝固シェルとの間の熱伝達係数βを逆問題を解くことにより求め、熱伝達係数α及び熱伝達係数βから凝固シェル厚み及び凝固シェル温度を推定する第1の工程と、
前記第1の工程で求めた熱伝達係数α、熱伝達係数β、凝固シェル推定厚み、及び凝固シェル推定温度を鋳型内凝固状態推定量とし、前記鋳型内凝固状態推定量から鋳型内凝固状態評価量を得る第2の工程と、
前記第2の工程で得た鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量と、過去に異常鋳造が発生したときの鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量に基づいて求められて、許容限度値記憶手段に保存された許容限度値とを比較することにより、平常鋳造状態であるか、異常鋳造状態であるかを判定する第3の工程とを有し、
前記モールドフラックス層を介して鋳片と接する4面の鋳型表面のうち、隣り合わずに相対する2面の水平方向の幅が等しい鋳型において、
他の2面よりも水平方向の幅が狭い2面を短辺と称し、
該短辺において得られる熱伝達係数βの同じ鋳型高さ位置での差を短辺β差と称し、
該短辺において得られる凝固シェル厚みの同じ鋳型高さ位置での差を短辺シェル厚み差と称し、
前記鋳型内凝固状態評価量が、前記短辺β差及び前記短辺シェル厚み差のうち少なくともいずれかから算出されることを特徴とする鋳造状態の判定方法。
[2] 前記第3の工程では、平常鋳造状態であるか、異常鋳造状態であるかとしてブレイクアウトの発生を判定することを特徴とする[1]に記載の鋳造状態の判定方法。
[3] 前記第2の工程で得た鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量を時系列データとして、異常鋳造が発生したか否かの情報と併せてデータ記憶手段に保存する時系列データ保存工程と、
異常鋳造が発生したときの時系列データ、並びに該時系列データの平均及び標準偏差を含む統計情報に基づいて、平常鋳造状態とみなす範囲を規定する許容限度値を決定して前記許容限度値記憶手段に保存する許容限度値保存工程とを有することを特徴とする[1]又は[2]に記載の鋳造状態の判定方法。
[4] 前記鋳型内凝固状態評価量が、短辺β差及び短辺シェル厚み差のうち少なくともいずれかの過去1秒間から15分間の移動平均であることを特徴とする[1]乃至[3]のいずれか一つに記載の鋳造状態の判定方法。
[5] 前記鋳型内凝固状態評価量が、短辺β差の絶対値及び短辺シェル厚み差の絶対値のうち少なくともいずれかの過去1秒間から15分間の最小値であることを特徴とする[1]乃至[3]のいずれか一つに記載の鋳造状態判定方法。
[6] 前記統計情報は、予め定めておいた鋳造条件及び計測値に対する区分に応じて、鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量を層別し、各層別集団における前記平均及び前記標準偏差のうち少なくともいずれかであることを特徴とする[3]に記載の鋳造状態の判定方法。
[7] 前記鋳造条件及び前記計測値は、鋳造速度、鋳造幅、溶鋼温度、溶鋼温度と液相線温度の差、及び溶鋼温度と固相線温度との差のうち1種以上であることを特徴とする[6]に記載の鋳造状態の判定方法。
[8] 前記許容限度値として、前記平均に前記標準偏差の1倍以上の値を加えた値、及び前記平均に前記標準偏差の1倍以上の値を減じた値を用いることを特徴とする[3]に記載の鋳造状態の判定方法。
[9] 前記測温手段の埋設位置を、鋳型の想定している溶鋼湯面位置から下方に0mm以上95mm以下の任意の位置をP1とし、溶鋼湯面位置から下方に220mm以上400mm以下の任意の位置をP2とし、P1からP2までの範囲に120mm以下の間隔で設け、かつ、鋳型下端からの距離が300mm以内の位置に少なくとも1点設けることを特徴とする[1]乃至[8]のいずれか一つに記載の鋳造状態の判定方法。
[10] 溶鋼から鋳型用の冷却水までの間に凝固シェル、モールドフラックス層、鋳型の各熱伝導体が存在する連続鋳造における鋳造状態の判定装置であって、
前記鋳型に鋳造方向に位置をずらして埋設された複数の測温手段からのデータを用いて、前記モールドフラックス層を挟む前記凝固シェルと前記鋳型との間の単位温度差あたりの熱流束である熱伝達係数α、及び前記溶鋼と前記凝固シェルとの間の熱伝達係数βを逆問題を解くことにより求め、熱伝達係数α及び熱伝達係数βから凝固シェル厚み及び凝固シェル温度を推定する推定手段と、
前記推定手段で求めた熱伝達係数α、熱伝達係数β、凝固シェル推定厚み、及び凝固シェル推定温度を鋳型内凝固状態推定量とし、前記鋳型内凝固状態推定量から鋳型内凝固状態評価量を得る演算手段と、
前記演算手段で得た鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量と、過去に異常鋳造が発生したときの鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量に基づいて求められて、許容限度値記憶手段に保存された許容限度値とを比較することにより、平常鋳造状態であるか、異常鋳造状態であるかを判定する判定手段とを備え、
前記モールドフラックス層を介して鋳片と接する4面の鋳型表面のうち、隣り合わずに相対する2面の水平方向の幅が等しい鋳型において、
他の2面よりも水平方向の幅が狭い2面を短辺と称し、
該短辺において得られる熱伝達係数βの同じ鋳型高さ位置での差を短辺β差と称し、
該短辺において得られる凝固シェル厚みの同じ鋳型高さ位置での差を短辺シェル厚み差と称し、
前記鋳型内凝固状態評価量が、前記短辺β差及び前記短辺シェル厚み差のうち少なくともいずれかから算出されることを特徴とする鋳造状態の判定装置。
[11] 前記測温手段の埋設位置を、鋳型上端から120mm以上175mm以下の任意の位置をP1とし、鋳型上端から340mm以上480mm以下の任意の位置をP2とし、P1からP2までの範囲に120mm以下の間隔で設け、かつ、鋳型下端からの距離が300mm以内の位置に少なくとも1点設けることを特徴とする[10]に記載の鋳造状態の判定装置。
[12] 溶鋼から鋳型用の冷却水までの間に凝固シェル、モールドフラックス層、鋳型の各熱伝導体が存在する連続鋳造における鋳造状態を判定するためのプログラムであって、
前記鋳型に鋳造方向に位置をずらして埋設された複数の測温手段からのデータを用いて、前記モールドフラックス層を挟む前記凝固シェルと前記鋳型との間の単位温度差あたりの熱流束である熱伝達係数α、及び前記溶鋼と前記凝固シェルとの間の熱伝達係数βを逆問題を解くことにより求め、熱伝達係数α及び熱伝達係数βから凝固シェル厚み及び凝固シェル温度を推定する第1の処理と、
前記第1の処理で求めた熱伝達係数α、熱伝達係数β、凝固シェル推定厚み、及び凝固シェル推定温度を鋳型内凝固状態推定量とし、前記鋳型内凝固状態推定量から鋳型内凝固状態評価量を得る第2の処理と、
前記第2の処理で得た鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量と、過去に異常鋳造が発生したときの鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量に基づいて求められて、許容限度値記憶手段に保存された許容限度値とを比較することにより、平常鋳造状態であるか、異常鋳造状態であるかを判定する第3の処理とをコンピュータに実行させ、
前記モールドフラックス層を介して鋳片と接する4面の鋳型表面のうち、隣り合わずに相対する2面の水平方向の幅が等しい鋳型において、
他の2面よりも水平方向の幅が狭い2面を短辺と称し、
該短辺において得られる熱伝達係数βの同じ鋳型高さ位置での差を短辺β差と称し、
該短辺において得られる凝固シェル厚みの同じ鋳型高さ位置での差を短辺シェル厚み差と称し、
前記鋳型内凝固状態評価量が、前記短辺β差及び前記短辺シェル厚み差のうち少なくともいずれかから算出されることを特徴とするプログラム。
次に、逆問題としての定式化とその解法について説明する。逆問題は、結果から原因を推定する問題の総称である。この鋳型内の凝固伝熱現象を表す数理モデルの枠組みの中では、次のようになる。λm、d1、d2、hw、cs、ρs、λs、L、T0、Ts、Tw、及びVcを既知とし、z1∈(0,ze に対し、t1−z1/Vcが鋳造時間中になるような(t1,z1)において、t0=t1−z1/Vcとし、η∈(0,z1/Vc)に対し鋳型4に埋設された熱電対6による計測値をt=t0+η、z=Vc・η上で補間したTcが得られているとき、式(7)及び式(8)から鋳型表面温度及び鋳型を通過する熱流束である式(47)及び式(48)は直ちに計算できる。

Claims (12)

  1. 溶鋼から鋳型用の冷却水までの間に凝固シェル、モールドフラックス層、鋳型の各熱伝導体が存在する連続鋳造における鋳造状態の判定方法であって、
    前記鋳型に鋳造方向に位置をずらして埋設された複数の測温手段からのデータを用いて、前記モールドフラックス層を挟む前記凝固シェルと前記鋳型との間の単位温度差あたりの熱流束である熱伝達係数α、及び前記溶鋼と前記凝固シェルとの間の熱伝達係数βを逆問題を解くことにより求め、熱伝達係数α及び熱伝達係数βから凝固シェル厚み及び凝固シェル温度を推定する第1の工程と、
    前記第1の工程で求めた熱伝達係数α、熱伝達係数β、凝固シェル推定厚み、及び凝固シェル推定温度を鋳型内凝固状態推定量とし、前記鋳型内凝固状態推定量から鋳型内凝固状態評価量を得る第2の工程と、
    前記第2の工程で得た鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量と、過去に異常鋳造が発生したときの鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量に基づいて求められて、許容限度値記憶手段に保存された許容限度値とを比較することにより、平常鋳造状態であるか、異常鋳造状態であるかを判定する第3の工程とを有し、
    前記モールドフラックス層を介して鋳片と接する4面の鋳型表面のうち、隣り合わずに相対する2面の水平方向の幅が等しい鋳型において、
    他の2面よりも水平方向の幅が狭い2面を短辺と称し、
    該短辺において得られる熱伝達係数βの同じ鋳型高さ位置での差を短辺β差と称し、
    該短辺において得られる判定シェル厚みの同じ鋳型高さ位置での差を短辺シェル厚み差と称し、
    前記鋳型内凝固状態評価量が、前記短辺β差及び前記短辺シェル厚み差のうち少なくともいずれかから算出されることを特徴とする鋳造状態の判定方法。
  2. 前記第3の工程では、平常鋳造状態であるか、異常鋳造状態であるかとしてブレイクアウトの発生を判定することを特徴とする請求項1に記載の鋳造状態の判定方法。
  3. 前記第2の工程で得た鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量を時系列データとして、異常鋳造が発生したか否かの情報と併せてデータ記憶手段に保存する時系列データ保存工程と、
    異常鋳造が発生したときの時系列データ、並びに該時系列データの平均及び標準偏差を含む統計情報に基づいて、平常鋳造状態とみなす範囲を規定する許容限度値を決定して前記許容限度値記憶手段に保存する許容限度値保存工程とを有することを特徴とする請求項1又は2に記載の鋳造状態の判定方法。
  4. 前記鋳型内凝固状態評価量が、短辺β差及び短辺シェル厚み差のうち少なくともいずれかの過去1秒間から15分間の移動平均であることを特徴とする請求項1乃至3のいずれか1項に記載の鋳造状態の判定方法。
  5. 前記鋳型内凝固状態評価量が、短辺β差の絶対値及び短辺シェル厚み差の絶対値のうち少なくともいずれかの過去1秒間から15分間の最小値であることを特徴とする請求項1乃至3のいずれか1項に記載の鋳造状態の判定方法。
  6. 前記統計情報は、予め定めておいた鋳造条件及び計測値に対する区分に応じて、鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量を層別し、各層別集団における前記平均及び前記標準偏差のうち少なくともいずれかであることを特徴とする請求項3に記載の鋳造状態の判定方法。
  7. 前記鋳造条件及び前記計測値は、鋳造速度、鋳造幅、溶鋼温度、溶鋼温度と液相線温度の差、及び溶鋼温度と固相線温度との差のうち1種以上であることを特徴とする請求項6に記載の鋳造状態の判定方法。
  8. 前記許容限度値として、前記平均に前記標準偏差の1倍以上の値を加えた値、及び前記平均に前記標準偏差の1倍以上の値を減じた値を用いることを特徴とする請求項3に記載の鋳造状態の判定方法。
  9. 前記測温手段の埋設位置を、鋳型の想定している溶鋼湯面位置から下方に0mm以上95mm以下の任意の位置をPとし、溶鋼湯面位置から下方に220mm以上400mm以下の任意の位置をPとし、PからPまでの範囲に120mm以下の間隔で設け、かつ、鋳型下端からの距離が300mm以内の位置に少なくとも1点設けることを特徴とする請求項1乃至8のいずれか1項に記載の鋳造状態の判定方法。
  10. 溶鋼から鋳型用の冷却水までの間に凝固シェル、モールドフラックス層、鋳型の各熱伝導体が存在する連続鋳造における鋳造状態の判定装置であって、
    前記鋳型に鋳造方向に位置をずらして埋設された複数の測温手段からのデータを用いて、前記モールドフラックス層を挟む前記凝固シェルと前記鋳型との間の単位温度差あたりの熱流束である熱伝達係数α、及び前記溶鋼と前記凝固シェルとの間の熱伝達係数βを逆問題を解くことにより求め、熱伝達係数α及び熱伝達係数βから凝固シェル厚み及び凝固シェル温度を推定する推定手段と、
    前記推定手段で求めた熱伝達係数α、熱伝達係数β、凝固シェル推定厚み、及び凝固シェル推定温度を鋳型内凝固状態推定量とし、前記鋳型内凝固状態推定量から鋳型内凝固状態評価量を得る演算手段と、
    前記演算手段で得た鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量と、過去に異常鋳造が発生したときの鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量に基づいて求められて、許容限度値記憶手段に保存された許容限度値とを比較することにより、平常鋳造状態であるか、異常鋳造状態であるかを判定する判定手段とを備え、
    前記モールドフラックス層を介して鋳片と接する4面の鋳型表面のうち、隣り合わずに相対する2面の水平方向の幅が等しい鋳型において、
    他の2面よりも水平方向の幅が狭い2面を短辺と称し、
    該短辺において得られる熱伝達係数βの同じ鋳型高さ位置での差を短辺β差と称し、
    該短辺において得られる判定シェル厚みの同じ鋳型高さ位置での差を短辺シェル厚み差と称し、
    前記鋳型内凝固状態評価量が、前記短辺β差及び前記短辺シェル厚み差のうち少なくともいずれかから算出されることを特徴とする鋳造状態の判定装置。
  11. 前記測温手段の埋設位置を、鋳型上端から120mm以上175mm以下の任意の位置をPとし、鋳型上端から340mm以上480mm以下の任意の位置をPとし、PからPまでの範囲に120mm以下の間隔で設け、かつ、鋳型下端からの距離が300mm以内の位置に少なくとも1点設けることを特徴とする請求項10に記載の鋳造状態の判定装置。
  12. 溶鋼から鋳型用の冷却水までの間に凝固シェル、モールドフラックス層、鋳型の各熱伝導体が存在する連続鋳造における鋳造状態を判定するためのプログラムであって、
    前記鋳型に鋳造方向に位置をずらして埋設された複数の測温手段からのデータを用いて、前記モールドフラックス層を挟む前記凝固シェルと前記鋳型との間の単位温度差あたりの熱流束である熱伝達係数α、及び前記溶鋼と前記凝固シェルとの間の熱伝達係数βを逆問題を解くことにより求め、熱伝達係数α及び熱伝達係数βから凝固シェル厚み及び凝固シェル温度を推定する第1の処理と、
    前記第1の処理で求めた熱伝達係数α、熱伝達係数β、凝固シェル推定厚み、及び凝固シェル推定温度を鋳型内凝固状態推定量とし、前記鋳型内凝固状態推定量から鋳型内凝固状態評価量を得る第2の処理と、
    前記第2の処理で得た鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量と、過去に異常鋳造が発生したときの鋳型内凝固状態推定量及び鋳型内凝固状態評価量に含まれる少なくとも一種以上の量に基づいて求められて、許容限度値記憶手段に保存された許容限度値とを比較することにより、平常鋳造状態であるか、異常鋳造状態であるかを判定する第3の処理とをコンピュータに実行させ、
    前記モールドフラックス層を介して鋳片と接する4面の鋳型表面のうち、隣り合わずに相対する2面の水平方向の幅が等しい鋳型において、
    他の2面よりも水平方向の幅が狭い2面を短辺と称し、
    該短辺において得られる熱伝達係数βの同じ鋳型高さ位置での差を短辺β差と称し、
    該短辺において得られる判定シェル厚みの同じ鋳型高さ位置での差を短辺シェル厚み差と称し、
    前記鋳型内凝固状態評価量が、前記短辺β差及び前記短辺シェル厚み差のうち少なくともいずれかから算出されることを特徴とするプログラム。
JP2015560070A 2014-01-31 2015-02-02 連続鋳造における鋳造状態の判定方法、装置及びプログラム Active JP6274226B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014017443 2014-01-31
JP2014017443 2014-01-31
PCT/JP2015/052884 WO2015115651A1 (ja) 2014-01-31 2015-02-02 連続鋳造における鋳造状態の判定方法、装置及びプログラム

Publications (2)

Publication Number Publication Date
JPWO2015115651A1 true JPWO2015115651A1 (ja) 2017-03-23
JP6274226B2 JP6274226B2 (ja) 2018-02-07

Family

ID=53757216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015560070A Active JP6274226B2 (ja) 2014-01-31 2015-02-02 連続鋳造における鋳造状態の判定方法、装置及びプログラム

Country Status (7)

Country Link
US (2) US10286447B2 (ja)
EP (1) EP3100802B1 (ja)
JP (1) JP6274226B2 (ja)
KR (3) KR20190105670A (ja)
CN (1) CN106413942B (ja)
CA (1) CA2937228C (ja)
WO (1) WO2015115651A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3379217A1 (en) * 2017-03-21 2018-09-26 ABB Schweiz AG Method and device for determining a temperature distribution in a mould plate for a metal-making process
DE102017221086A1 (de) * 2017-11-24 2019-05-29 Sms Group Gmbh Verfahren zur Analyse von Fehlerursachen beim Stranggießen
TWI670460B (zh) * 2017-12-21 2019-09-01 日商日本製鐵股份有限公司 電爐之耐火材料損耗管理裝置、電爐之耐火材料損耗管理系統、電爐之耐火材料損耗管理方法、及電腦可讀取之記憶媒體
JP7091901B2 (ja) * 2018-07-17 2022-06-28 日本製鉄株式会社 鋳造状態判定装置、鋳造状態判定方法、およびプログラム
JP7135728B2 (ja) * 2018-10-30 2022-09-13 日本製鉄株式会社 鋳片品質推定方法、鋼材の製造方法、鋳片品質推定装置、およびプログラム
WO2020179698A1 (ja) * 2019-03-06 2020-09-10 Jfeスチール株式会社 スラブ鋳片の連続鋳造方法
JP6835297B1 (ja) * 2019-03-22 2021-02-24 Jfeスチール株式会社 鋳型内凝固シェル厚推定装置及び鋳型内凝固シェル厚推定方法
JP2020157333A (ja) * 2019-03-26 2020-10-01 日本製鉄株式会社 学習モデル作成装置、鋳片品質推定装置、学習モデル作成方法、鋳片品質推定方法、およびプログラム
KR102606935B1 (ko) * 2019-10-03 2023-11-29 제이에프이 스틸 가부시키가이샤 주형내 응고 셸 두께 추정 장치, 주형내 응고 셸 두께 추정 방법 및 강의 연속 주조 방법
JP2021102223A (ja) * 2019-12-25 2021-07-15 日本製鉄株式会社 鋳造制御システム、鋳造制御方法、およびプログラム
JP2021102224A (ja) * 2019-12-25 2021-07-15 日本製鉄株式会社 情報処理システム、情報処理方法、およびプログラム
JP2021102221A (ja) * 2019-12-25 2021-07-15 日本製鉄株式会社 連続鋳造鋳型内可視化装置、方法、およびプログラム
CN112536425B (zh) * 2020-12-03 2022-04-22 中南大学 一种连铸漏斗形结晶器钢液凝固与铸坯模拟装置及其使用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252158A (ja) * 1988-08-11 1990-02-21 Nippon Steel Corp 偏流性ブレークアウトの防止方法
JP2011251302A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251308A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929353B2 (ja) 1981-03-18 1984-07-19 川崎製鉄株式会社 ブレイクアウト予知方法
WO2000051762A1 (fr) 1999-03-02 2000-09-08 Nkk Corporation Procede et dispositif permettant, en coulee continue, de predire et de reguler la configuration d'ecoulement de l'acier en fusion
JP4105839B2 (ja) 2000-02-28 2008-06-25 新日本製鐵株式会社 連続鋳造における鋳型内鋳造異常検出方法
US20040256080A1 (en) * 2001-10-18 2004-12-23 Werner Rahmfeld Method and device for optimizing the cooling capacity of a continuous casting mold for liquid metals, particularly for liquid steel
JP4244675B2 (ja) * 2003-03-28 2009-03-25 Jfeスチール株式会社 連続鋳造鋳型内溶鋼流速の幅方向分布検出方法
CN101332499B (zh) * 2007-06-28 2011-01-19 上海梅山钢铁股份有限公司 一种板坯连铸漏钢预报控制方法
CN101934353A (zh) * 2009-06-30 2011-01-05 上海宝信软件股份有限公司 预报板坯连铸过程中漏钢的装置及方法
JP5505086B2 (ja) 2010-05-26 2014-05-28 新日鐵住金株式会社 連続鋳造における鋳型内状態の推定方法、装置及びプログラム
CN101879583A (zh) 2010-05-31 2010-11-10 北京科技大学 结晶器铜管传热对称性的在线热监测系统及方法
JP5387507B2 (ja) 2010-06-01 2014-01-15 新日鐵住金株式会社 連続鋳造方法、連続鋳造の制御装置及びプログラム
KR101456453B1 (ko) * 2012-07-24 2014-10-31 주식회사 포스코 주편 품질 예측 장치 및 그 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252158A (ja) * 1988-08-11 1990-02-21 Nippon Steel Corp 偏流性ブレークアウトの防止方法
JP2011251302A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251308A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム

Also Published As

Publication number Publication date
US10286447B2 (en) 2019-05-14
EP3100802A4 (en) 2017-10-18
WO2015115651A1 (ja) 2015-08-06
CN106413942A (zh) 2017-02-15
EP3100802A1 (en) 2016-12-07
CA2937228C (en) 2019-11-19
US20190193146A1 (en) 2019-06-27
KR20190105670A (ko) 2019-09-17
CA2937228A1 (en) 2015-08-06
KR20160102043A (ko) 2016-08-26
JP6274226B2 (ja) 2018-02-07
US20160332221A1 (en) 2016-11-17
CN106413942B (zh) 2020-03-10
KR20180082632A (ko) 2018-07-18
EP3100802B1 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
JP6274226B2 (ja) 連続鋳造における鋳造状態の判定方法、装置及びプログラム
JP4579820B2 (ja) 鋳型または金型の稼動面の操業状態判定装置および判定方法、鋳型または金型の操業方法、コンピュータプログラム、並びにコンピュータ読み取り可能な記録媒体。
CA2727558C (en) Method for predicting the occurrence of longitudinal cracks in continuous casting
JP4692402B2 (ja) 鋳造シミュレーション方法、その装置、そのプログラム、及び当該プログラムを記録した記録媒体、並びに鋳造方法
CN102151814B (zh) 连铸生产中的粘结报警方法和系统
JP7091901B2 (ja) 鋳造状態判定装置、鋳造状態判定方法、およびプログラム
CN109929955A (zh) 一种高炉炉缸侵蚀状况的检测方法
JP2020157333A (ja) 学習モデル作成装置、鋳片品質推定装置、学習モデル作成方法、鋳片品質推定方法、およびプログラム
JP5387508B2 (ja) 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP4952442B2 (ja) 金型温度解析方法
JP7115240B2 (ja) 連続鋳造におけるブレークアウト予知方法
JP2019217510A (ja) 連続鋳造鋳型内可視化装置、方法、およびプログラム
JP6358199B2 (ja) 連続鋳造スラブの表面欠陥判定方法及び装置、該表面欠陥判定方法を用いた鋼鋳片の製造方法
Camisani-Calzolari, FR*, Craig, IK* & Pistorius Quality prediction in continuous casting of stainless steel slabs
JP2007275938A (ja) スラグ流出検知方法、溶融金属の注入制御方法、スラグ流出検知装置、溶融金属の注入制御装置、プログラム及びコンピュータ読み取り可能な記録媒体
JPH06154982A (ja) 連続鋳造の鋳型温度監視方法および装置
JP2019098388A (ja) 温度推定方法および温度推定装置
JP7014203B2 (ja) 連続鋳造における鋳造鋳片のクレータエンド位置の推定方法およびその装置
EP4442387A1 (en) Continuous casting start timing determination method, continuous casting facility operation method, slab manufacturing method, determining device, continuous casting start determination system, and display terminal device
JP2020069494A (ja) 鋳片品質推定方法、鋼材の製造方法、鋳片品質推定装置、およびプログラム
Gunnewiek et al. Developing a tapblock diagnostic system
Bergeron et al. Experimental determination of interfacial heat transfer coefficient for Az91e castings
Garzinová et al. Modelling the crystallizer’s mold state depending on its wear
JP2013158814A (ja) 金型寿命予測方法及びその装置
JP2004181466A (ja) 連続鋳造鋳片の表面欠陥検知方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171225

R151 Written notification of patent or utility model registration

Ref document number: 6274226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350