JPWO2015104793A1 - 太陽電池の製造方法および印刷マスク - Google Patents

太陽電池の製造方法および印刷マスク Download PDF

Info

Publication number
JPWO2015104793A1
JPWO2015104793A1 JP2015556653A JP2015556653A JPWO2015104793A1 JP WO2015104793 A1 JPWO2015104793 A1 JP WO2015104793A1 JP 2015556653 A JP2015556653 A JP 2015556653A JP 2015556653 A JP2015556653 A JP 2015556653A JP WO2015104793 A1 JPWO2015104793 A1 JP WO2015104793A1
Authority
JP
Japan
Prior art keywords
warp
electrode
yarn
weft
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015556653A
Other languages
English (en)
Other versions
JP6141456B2 (ja
Inventor
土井 誠
誠 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2015104793A1 publication Critical patent/JPWO2015104793A1/ja
Application granted granted Critical
Publication of JP6141456B2 publication Critical patent/JP6141456B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/12Stencil printing; Silk-screen printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/24Stencils; Stencil materials; Carriers therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Photovoltaic Devices (AREA)

Abstract

バス電極部とグリッド電極部とを有する電極形状に対応した開口部を有する印刷マスクを介して、電極材料である導電性材料を含むペーストを基板の電極形成面に塗布するスクリーン印刷工程を含む太陽電池の製造方法であって、前記スクリーン印刷工程は、2本の構成糸が撚って編まれた撚り糸を縦糸または横糸の少なくとも一方に使用して製網されたスクリーンメッシュが前記開口部に設けられた前記印刷マスクを使用して前記ペーストを塗布する工程を含む。

Description

本発明は、太陽電池の製造方法、印刷マスク、太陽電池および太陽電池モジュールに関する。
現在、太陽電池モジュールを構成する太陽電池としては、シリコン等の基板材料の受光面である表面と、その反対側の裏面との各々に電極を備えるものが主流である。近年、その両面のうちの裏面のみに電極が形成された太陽電池も実用化されているが、両面に電極が形成された太陽電池が、依然として多く普及している。
例えば、特許文献1では、太陽電池の製造に際して、次のような手順を採用している。まず、シリコン等の基板材料の表面に、太陽光の基板表面での反射角度を変化させ、反射光を基板内に取り込むためのテクスチャ構造(凹凸)をエッチング等の手法により形成する。次に、拡散等の手法によりpn結合を形成する。次に、当該基板材料の少なくとも一面に、太陽光の反射を光干渉効果により低減するための反射防止膜を窒化シリコン膜等により形成する。次に、反射防止膜上に所望のパターンで金属ペーストを塗布する。次に、金属ペーストを加熱して金属ペーストに含まれたガラスにより反射防止膜を溶融させることにより基板との電気的接合を取るために、焼成を実施し、電極を形成する。さらに、ガラス成分を溶解する性質のエッチング液に基板材料を浸漬させて、電極に含まれるガラス成分を溶解して電極の電気抵抗を低減する。
また、例えば特許文献2および特許文献3には、基板材料の表面側と裏面側の両面に電極を有する太陽電池の製造方法が開示されている。
一般に、太陽電池用電極を形成する手法としては、スクリーン印刷等の簡便な方法が採用されている。スクリーン印刷に用いられる印刷マスクは、金属の糸や化学繊維を製網したスクリーンメッシュと呼ばれる基材をマスクフレームに固定し、金属ペーストを透過させる部分以外を樹脂で固めて成型して、被印刷物のパターニングに使用する。
太陽電池モジュールのコストダウンのためには、価格面で大きな割合を占める太陽電池の構成材料のコストダウン抜きには実現が極めて困難である。例えば、基材である基板材料に始まって、各工程で用いる材料や消耗器具類等に至るまで、ありとあらゆるものの見直しが必要となる。中でも電極材料として使用される金属ペースト材料は、導電性金属として銀を用いることが通例となっているが、価格が非常に高価である。しかしながら、単純に電極材料の使用量を減らすと、電極での抵抗損失が増加し、太陽電池の発電効率が低下する。従って、太陽電池の発電効率を低下させずに、金属ペーストの使用量を減らすことが求められる。
太陽電池の表面側の電流を集電するためのグリッド電極では、グリッド電極が配置されている部分は発電を行わないため、グリッド電極幅は細い方が望ましい。しかしながら、電極幅を細くするだけでは電気抵抗が増加して抵抗損失が増加するため、グリッド電極の厚さは厚い方が望ましい。グリッド電極の厚さを厚くするほど抵抗損失が減って太陽電池の発電効率は向上する。
従来のスクリーン印刷マスクを用いた場合、電極の厚さは、スクリーンメッシュの線径や開口幅等のマスク仕様によって決められる。印刷マスクでは、スクリーンメッシュに使用される1インチ(25.4mm)当たりの糸の本数(以下、メッシュカウントと呼称)とその糸の線径を用いてその仕様を表す。例えば、1インチ当たり200本の糸を配し、線径が40μmの糸を使用したものを「200φ40」と表現する。したがって、本数が多いほど網の目が細かいことを表し、相対的には線径も細くなる。
従来の印刷マスクでは、スクリーンメッシュは、グリッド電極パターンに対してスクリーンメッシュの縦糸または横糸が20〜30度傾斜するようにマスクフレームに貼り付けられる。これは、グリッド電極パターンと糸が平行になると、パターンエッジが糸で覆われることにより、精密な電極パターンが形成できないためである。
太陽電池モジュールでは、太陽電池のバス電極を、隣り合う太陽電池の裏バス電極と半田付き銅線で半田付けして直列に接続する。なお、本明細書では、バス電極とは、表面側のバス電極のことを示す。裏面側のバスの電極は裏バス電極と記述する。
太陽電池同士を半田付き銅線で半田付けして接続するためのバス電極では、半田付けによる接合強度が求められるため、バス電極幅を減少させるのには限度がある。したがって、バス電極での金属ペーストの使用量を減らすためには、バス電極の厚さを薄くする必要がある。
特許第4486622号公報 特許第4319006号公報 特許第4481869号公報
しかしながら、バス電極の厚さは、グリッド電極と同様にスクリーンメッシュの線径や開口幅等のマスク仕様によって決まるので、発電効率を向上させるためにグリッド電極の厚さを厚くすると、バス電極の厚さも厚くなる。なお、バス電極では、集電された電流はバス電極上に半田付けされた半田付き銅線上を流れるため、バス電極の厚さを厚くしても抵抗損失低減効果はなく、発電効率は向上しない。
すなわち、太陽電池の発電効率向上のためにグリッド電極の厚さを厚くするとバス電極の厚さも厚くなり、金属ペーストの使用量が増加するという問題があった。一方、金属ペーストの使用量削減のためにバス電極の厚さを薄くすると、グリッド電極の厚さも薄くなり、太陽電池の発電効率が大幅に低下する、という問題があった。
本発明は、上記に鑑みてなされたものであって、高い発電効率を有する太陽電池を安価に製造可能な太陽電池の製造方法、その製造方法において使用する印刷マスク、その製造方法により製造された電極を備える太陽電池および太陽電池モジュールを得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかる太陽電池の製造方法は、バス電極部とグリッド電極部とを有する電極形状に対応した開口部を有する印刷マスクを介して、電極材料である導電性材料を含むペーストを基板の電極形成面に塗布するスクリーン印刷工程を含む太陽電池の製造方法であって、前記スクリーン印刷工程は、2本の構成糸が撚って編まれた撚り糸を縦糸または横糸の少なくとも一方に使用して製網されたスクリーンメッシュが前記開口部に設けられた前記印刷マスクを使用して前記ペーストを塗布する工程を含むこと、を特徴とする。
本発明によれば、高い発電効率を有する太陽電池を安価に製造できる、という効果を奏する。
図1は、本発明の実施の形態1にかかる太陽電池の製造方法によって形成された電極を備える太陽電池セルの受光面を示す図である。 図2は、図1に示す太陽電池セルの受光面とは反対側の裏面を示す図である。 図3は、本発明の実施の形態1にかかる太陽電池セルの要部断面図であり、図1および図2におけるA−A断面図である。 図4は、電極を形成するためのスクリーン印刷工程において使用する印刷機のうち、ステージ部分の模式断面図である。 図5は、図4の要部拡大説明図である。 図6は、本発明の実施の形態1において電極を形成する基板材料の例を示す平面図である。 図7は、本発明の実施の形態1において電極を形成する基板材料の例を示す平面図である。 図8は、スクリーン印刷工程において使用する印刷マスクを示す上面図である。 図9は、図8におけるB−B部分(グリッド電極対応部)の拡大断面図である。 図10は、図8におけるC−C部分(バス電極対応部)の拡大断面図である。 図11は、本発明の実施の形態1にかかる太陽電池の製造方法に使用する印刷マスクにおいて、電極パターンを形成する前のマスク(ブランク)の模式図である。 図12は、図11の四角部DEFGを拡大した図である。 図13は、本発明の実施の形態1にかかる太陽電池の製造方法に使用する印刷マスクにおいて、感光性乳剤により電極パターンが形成された後の印刷面側を示す模式図である。 図14は、図13の四角部DEFGを拡大した図である。 図15は、一般的な標準印刷マスクにおけるスクリーンメッシュの一部を拡大して示す模式図である。 図16は、本発明の実施の形態1にかかる印刷マスクのスクリーンメッシュの一部を拡大して示す模式図である。 図17は、一般的な標準印刷マスクのグリッド電極開口部における透過厚さの計算例の一覧を示す図表である。 図18は、本発明の実施の形態1にかかる印刷マスクのグリッド電極開口部における透過厚さの計算例の一覧を示す図表である。 図19は、一般的な標準印刷マスクのスクリーンメッシュに対する実施の形態1にかかる印刷マスクのスクリーンメッシュの相対的なペーストの使用比率の一覧を示す図表である。 図20は、本発明の実施の形態2にかかる太陽電池モジュールの製造方法の手順を説明する断面模式図である。 図21は、本発明の実施の形態2にかかる太陽電池モジュールの製造方法の手順を説明する断面模式図である。
以下に、本発明にかかる太陽電池の製造方法、印刷マスク、太陽電池および太陽電池モジュールの実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。また、平面図であっても、図面を見易くするためにハッチングを付す場合がある。
実施の形態1.
図1は、本発明の実施の形態1にかかる太陽電池の製造方法によって形成された電極を備える太陽電池セル1の受光面を示す図である。図2は、図1に示す太陽電池セル1の受光面とは反対側の裏面を示す図である。
太陽電池セル1の受光面には、互いに直交するように配置されたグリッド電極21および表バス電極22からなる受光面側電極が設けられている。図1においては、矢印Xで示した左右方向がグリッド電極21の長手方向であり、矢印Yで示した上下方向が表バス電極22の長手方向である。
太陽電池セル1の裏面には、アルミニウムからなる裏アルミニウム電極23および裏バス電極24が設けられている。図2においては、表バス電極22の長手方向と同じ方向であり矢印Yで示した上下方向が、表バス電極22の長手方向である。
図3は、本発明の実施の形態1にかかる太陽電池セル1の要部断面図であり、図1および図2におけるA−A断面図である。図中、上側が受光面(表面)である。太陽電池セル1においては、p型シリコン基板31の上面にリン拡散によりn型不純物拡散層32が形成されて、pn接合を有する光電変換部が形成されている。n型不純物拡散層32の上側には、反射防止膜33が成膜されている。反射防止膜33の上側には表バス電極22が設けられている。表バス電極22の下の反射防止膜33は焼成によって溶融されており、表バス電極22はn型不純物拡散層32と電気的に接触している。p型シリコン基板31の裏面側には、裏アルミニウム電極23および裏バス電極24が設けられている。なお、図3は、隣接するグリッド電極21間の領域のおけるグリッド電極21の長手方向に沿った断面を示しているため、グリッド電極21は示されていない。
次に、図1〜図3に示す太陽電池セル1を製造するための工程を説明する。なお、ここで説明する工程は、シリコン基板を用いた一般的な太陽電池セルの製造工程と同様であるため、特に図示しない。
まず、p型シリコン基板31を熱酸化炉へ投入し、オキシ塩化リン(POCl)蒸気の存在下で加熱する。これにより、p型シリコン基板31の表面にリンガラスが形成されてp型シリコン基板31中にリンが拡散され、p型シリコン基板31の表層にn型不純物拡散層32が形成される。
次に、フッ酸溶液中でシリコン基板のリンガラス層を除去した後、反射防止膜33としてたとえばプラズマCVD法により窒化シリコン膜(SiN膜)をn型不純物拡散層32上に形成する。反射防止膜33の膜厚および屈折率は、光反射を最も抑制する値に設定する。なお、屈折率の異なる2層以上の膜を積層してもよい。また、反射防止膜33は、スパッタリング法など、異なる成膜方法により形成してもよい。
次に、シリコン基板の受光面に銀の混入した金属ペーストを櫛形にスクリーン印刷にて印刷し、シリコン基板の裏面にアルミニウムの混入した金属ペーストを全面にスクリーン印刷にて印刷した後、焼成処理を実施して受光面側電極と裏面電極とを形成する。シリコン基板の受光面では、受光面側電極の下の反射防止膜33は焼成によって溶融され、受光面側電極はn型不純物拡散層32と電気的に接触する。以上のようにして、図1〜図3に示す太陽電池が作製される。
次に、本実施の形態にかかる太陽電池セルの製造方法における電極形成方法について説明する。図4は、電極を形成するためのスクリーン印刷工程において使用する印刷機のうち、ステージ部分の模式断面図である。スクリーン印刷工程では、印刷マスク2を介して、基板材料3の電極形成面に金属ペースト5を塗布する。図5は、図4の要部拡大説明図である。
図4および図5に示す印刷機は基板材料3を設置するステージ4を備え、ステージ4には基板材料3を固定するための吸引機構7を備える。吸引機構7はステージ4におけるエアーの吸引によって、基板材料3をステージ4に固定する。
印刷マスク2は、マスクフレーム6と、縦糸11および横糸12を有してマスクフレーム6の印刷面側に貼り付けられたスクリーンメッシュ9と、感光性乳剤10とを備える。図5は、ステージ4およびマスクフレーム6を省略して描いたものである。
図6および図7は、実施の形態1において電極を形成する基板材料の例を示す平面図である。基板材料3としては、例えば、図6に示されるように正方形形状の基板、図7に示されるように正方形の四隅を円弧状とした角丸四角形形状の基板を使用する。図6に示される正方形形状における一辺の幅M、図7に示される角丸四角形形状における一辺相当の幅M’は、例えば156mmとされる。
基板材料3としては、例えば薄板状のシリコンであるシリコンウェハを使用する。上述した太陽電池セル1を製造するための工程においては、たとえば反射防止膜33が形成された状態のシリコン基板が用いられる。なお、基板材料3は、スクリーン印刷工程によって電極を形成することが可能であれば、いずれの材質のものであってもよいものとする。
金属ペースト5は、電極材料である導電性材料を含み、所望の粘度を保つように成分が調整されている。金属ペースト5に使用される代表的な導電性材料としては、金、銀、銅、白金およびパラジウム等があげられる。金属ペースト5は、これらの導電性材料の一つあるいは複数を含む。
印刷機は、金属ペースト5が載せられた状態の印刷マスク2上にてスキージ8を走査させることで、印刷マスク2を介して、基板材料3の電極形成面に金属ペースト5を塗布する。印刷マスク2のうち感光性乳剤10でカバーされた部分では金属ペースト5を通過させず、スクリーンメッシュ9を露出させた部分で金属ペースト5を通過させることで、印刷機は、印刷マスク2の印刷パターンを電極形成面上に転写する。
スクリーン印刷により基板材料3に塗布された金属ペースト5は、一般に焼成と称される処理によって電極となる。焼成工程では、焼成炉においてピーク温度を900度以下の温度、好ましくは750度から800度の温度とする加熱処理を実施する。焼成炉での加熱処理の時間は、概ね2分以内とする。
スクリーン印刷による電極の形成より以前にp型電極とn型電極との分離(以下、pn分離と称する)を行っている場合、電極材料の付着によるリーク電流の発生を抑制させるために、基板材料3の外縁側面13への金属ペースト5の付着を抑制し、かつ図1に示すような余白14を設ける必要がある。そのためには、印刷マスク2の周縁部を感光性乳剤10で覆うよう、パターン形成を行うことが望ましい。また、電極形成後にレーザー加工等によるpn分離を行う場合も、リーク電流の発生を抑制させるためには、基板材料3の外縁側面13への金属ペースト5の付着を抑制し、かつ余白14を設けることが望ましい。
以上のような工程により、太陽電池用電極が形成される。なお、太陽電池用電極の形成方法以外は、上述したような一般的な製造方法により、太陽電池セルが製造される。
次に、実施の形態1にかかる太陽電池セル1の受光面側電極の電極形成に使用する印刷マスク2について詳細に説明する。図8は、スクリーン印刷工程において使用する印刷マスク2を示す上面図である。図9は、図8におけるB−B部分(グリッド電極対応部)の拡大断面図である。図9は、横糸12に平行な角度での断面図である。図8の矢印Xで示した左右方向がグリッド電極21の長手方向に対応する。図8の矢印Yで示した上下方向が表バス電極22の長手方向に対応する。スクリーンメッシュ9は、縦糸11と横糸12と感光性乳剤10とを有する。感光性乳剤10には、図9に示されるように、スクリーンメッシュ9を露出させた部分である開口部20の一部としてグリッド電極開口部41が設けられている。
図10は、図8におけるC−C部分(バス電極対応部)の拡大断面図である。図10は横糸12に平行な角度での断面図である。感光性乳剤10には、図10に示されるように、開口部20の一部としてバス電極開口部42が設けられている。実施の形態1にかかる印刷マスク2は、金属ペースト5を保持するためのスクリーンメッシュ9が、2本の構成糸が撚って編まれた撚り糸を縦糸および横糸に使用して一般的なスクリーンメッシュと同様の平織りにより製網したことを特徴とする。なお、図9および図10においては、撚り糸を単純化し、単線として描画している。
図11は、実施の形態1にかかる太陽電池の製造方法に使用する印刷マスク2において、電極パターンを形成する前のマスク(ブランク)の模式図である。図12は、図11の四角部DEFGを拡大した図である。図11の四角部DEFGと図12の外周角部DEFGが対応する。図11において矢印Xで示した上下方向が、グリッド電極21の長手方向となる方向である。図11において矢印Yで示した水平方向が、表バス電極22の長手方向となる方向である。図11は、図8を時計回りに90度回転させた配置図となっている。マスク(ブランク)は、スクリーンメッシュ9とマスクフレーム6とによって構成される。マスクフレーム6の印刷面側に、スクリーンメッシュ9が貼り付けられる。
また、図12は、スクリーンメッシュ9の製網方法を示した平面図でもある。スクリーンメッシュ9は、縦糸111〜113、横糸121〜123を有する。図中、縦糸と横糸とを明確にするために、縦糸のみにハッチングを入れてある。
実施の形態1のスクリーンメッシュ9では、縦糸と横糸とが交互に上下を入れ替えるように製網される。すなわち、横糸121は、縦糸111の下、縦糸112の上、縦糸113の下を通るように製網される。横糸122は、縦糸111の上、縦糸112の下、縦糸113の上を通るように製網される。横糸123は、縦糸111の下、縦糸112の上、縦糸113の下を通るように製網される。
ここで、実施の形態1のスクリーンメッシュ9では、縦糸と横糸とが各々1本ずつではなく、予め2本の構成糸が撚って編まれた撚り糸を縦糸および横糸に使用して製網される。2本の構成糸は、該2本の構成糸の間を金属ペースト5が通過しないように、極力隙間が空かないようにきつく編まれている。なお、実施の形態1にかかる印刷マスク2において、スクリーンメッシュ9の構成は、2本の構成糸が撚って編まれた撚り糸を縦糸および横糸に使用していること以外は、一般的な標準印刷マスクのスクリーンメッシュの構成と同じである。
図13は、実施の形態1にかかる太陽電池の製造方法に使用する印刷マスク2において、感光性乳剤10により電極パターン(開口部)が形成された後の印刷面側を示す模式図である。図14は、図13の四角部DEFGを拡大した図である。図13の四角部DEFGと図14の外周角部DEFGが対応する。また、図13の四角部DEFGと図11の外周角部DEFGとが対応し、図14の四角部DEFGと図12の外周角部DEFGとが対応する。図13において矢印Xで示した上下方向が、グリッド電極21の長手方向となる方向である。図13において矢印Yで示した左右方向が、表バス電極22の長手方向となる方向である。
印刷マスク2は、図13および図14に示されるように、感光性乳剤10のパターンをスクリーンメッシュ9に塗布形成したものであり、スクリーンメッシュ9と、スクリーンメッシュ9の一部を覆う感光性乳剤10と、マスクフレーム6とを備える。感光性乳剤10は、グリッド電極開口部41とバス電極開口部42とからなる開口部20を有する。グリッド電極開口部41は、図13および図14において矢印Xで示した上下方向が長手方向となるように配置される。バス電極開口部42は、図13および図14において矢印Yで示した左右方向が長手方向となるように配置される。
印刷マスク2によれば、図5に示すように感光性乳剤10で覆われた部分では印刷面側への金属ペースト5の通過が阻止され、スクリーンメッシュ9を露出させた部分、すなわち開口部20では印刷面側へ金属ペースト5を通過させる。マスクフレーム6は、感光性乳剤10およびスクリーンメッシュ9を保持する。
印刷マスク2は、電極形成のためのスクリーン印刷に適する特性を備えるものであれば、構成を適宜変更してもよい。例えば、印刷マスク2では、スクリーンメッシュの材料として一般的にはステンレスが使用される。しかし、これに限定されず、印刷マスク2は、ステンレスに代えて、合成繊維系材料からなるスクリーンメッシュや、ステンレス以外の他の金属材料からなるスクリーンメッシュを使用するものであってもよい。また、印刷マスク2は、感光性乳剤10に代えて、金属部材のパターンをスクリーンメッシュに貼着して使用するものとしてもよい。
次に、実施の形態1にかかる印刷マスク2におけるスクリーンメッシュ9を通過する金属ペーストの吐出量について、1本の縦糸と1本の横糸とが製網された一般的な標準印刷マスクのスクリーンメッシュと比較して説明する。図15は、一般的な標準印刷マスクにおけるスクリーンメッシュの一部を拡大して示す模式図である。図16は、実施の形態1にかかる印刷マスク2のスクリーンメッシュ9の一部を拡大して示す模式図である。図中、縦糸と横糸とを明確にするために、縦糸のみにハッチングを入れてある。
まず、一般的な標準印刷マスクにおけるスクリーンメッシュについて図15を参照して説明する。一般的な標準印刷マスクにおけるスクリーンメッシュは、1本の縦糸と1本の横糸とが交互に上下を入れ替えるように製網されている。
縦糸201および縦糸202は、縦糸線径D1で形成される。横糸203および横糸204は、横糸線径D2で形成される。隣り合う縦糸同士は、縦糸開口幅W1の間隔を空けて配置される。隣り合う横糸同士は、横糸開口幅W2の間隔を空けて配置される。縦糸配置ピッチP1は、縦糸開口幅W1と縦糸線径D1との合計値である。横糸配置ピッチP2は、横糸開口幅W2と横糸線径D2との合計値である。配置ピッチは、隣り合う糸の中心軸間の距離の相当する。
横糸は、ある縦糸の下側を通る場合には、該縦糸に隣接する縦糸の上側を通る。また、横糸は、ある縦糸の上側を通る場合には、該縦糸に隣接する縦糸の下側を通る。このような製網パターンを繰り返して縦糸と横糸とが平織りで製網されることによって、スクリーンメッシュが構成される。一般的には、縦糸線径D1と横糸線径D2とは同じであり、縦糸開口幅W1と横糸開口幅W2も同じである。
スクリーンメッシュからの金属ペースト5の吐出量を示す指標として、透過厚さTという指標が用いられる。図15に基づいて、透過厚さTについて説明する。スクリーンメッシュの開口部にスクリーンメッシュの厚さ(以下、紗厚と呼称)だけ充填された金属ペーストは、印刷操作が行われ、スクリーンメッシュが取り除かれた際、該開口部への充填量の全てが吐出される訳ではない。すなわち、スクリーンメッシュの開口部内に充填された金属ペーストのうち、表面張力によって一部の金属ペーストが留まる。
このため、印刷された金属ペーストの厚さは、開口部内に留まった金属ペーストの分だけ厚さが紗厚より薄くなる。そして、印刷操作が行われ、スクリーンメッシュが取り除かれた後に、基板上に金属ペースト5が広がったときの高さが透過厚さTである。スクリーンメッシュからの金属ペースト5の吐出量は、一般的には透過容積または透過体積と呼ばれている指標であるが、長さの次元を持った指標であるので、本明細書では透過厚さと呼ぶ。また、開口率Kは、印刷マスクを上面から見てメッシュ(縦糸、横糸)がない部分の面積の、スクリーンメッシュ全体に対する割合である。図15に示される一般的な標準印刷マスクにおける透過厚さTAおよび開口率Kは、以下の式で示される。
透過厚さT=(開口面積×紗厚)/(縦糸配置ピッチ×横糸配置ピッチ)
開口率K=開口面積/(縦糸配置ピッチ×横糸配置ピッチ)
開口面積=縦糸開口幅W1×横糸開口幅W2
縦糸配置ピッチP1=縦糸開口幅W1+縦糸線径D1
横糸配置ピッチP2=横糸開口幅W2+横糸線径D2
通常の場合、W1=W2、D1=D2、P1=P2である。紗厚は、一般的には縦糸線径と横糸線径とを足し合わせた値と同一である。糸を編んだ後、押しつぶすような加工(以下、カレンダー加工と呼称)を行ったスクリーンメッシュでは、紗厚が(縦糸線径+横糸線径)の50%程度のものまで使用可能である。
図17は、一般的な標準印刷マスクのグリッド電極開口部(実施の形態1にかかる印刷マスク2におけるグリッド電極開口部41に対応)における透過厚さTAの計算例の一覧を示す図表である。図17においては、サンプルA1〜サンプルA4の4種類のサンプルについて透過厚さTAの計算例を示す。ここでは、縦糸開口幅W1と横糸開口幅W2とを同一とし(W1=W2)、縦糸線径D1と横糸線径D2とを同一とし(D1=D2)、縦糸配置ピッチP1と横糸配置ピッチP2とを同一(P1=P2)とした。
サンプルA1は、1インチ当たり200本の糸を配し、線径が40μmの糸を使用した「200φ40」である。サンプルA1では、25.4mm当たり200本の糸が並ぶので、糸の配置ピッチは25.4mm/200本=127μmとなる。開口幅は、配置ピッチから糸の線径を引いた値と等しい。サンプルA1では、糸の線径が40μmであるので、開口幅は87μmとなる。紗厚は、カレンダー加工を施した一般的なスクリーンメッシュの紗厚と等しいものとした。図17に記載した紗厚は、一般的なスクリーンメッシュの紗厚の値である。このような条件のサンプルA1では、開口率KAは46.9%、透過厚さTAは29.6μmである。
サンプルA2は、1インチ当たり250本の糸を配し、線径が30μmの糸を使用した「250φ30」である。サンプルA2では、糸の配置ピッチは25.4mm/250本=102μmとなる。開口幅は、配置ピッチから糸の線径を引いた値と等しい。サンプルA2では、糸の線径が30μmであるので、開口幅は72μmとなる。紗厚は、カレンダー加工を施した一般的なスクリーンメッシュの紗厚と等しいものとした。図17に記載した紗厚は、一般的なスクリーンメッシュの紗厚の値である。このような条件のサンプルA2では、開口率KAは49.7%、透過厚さTAは22.8μmである。
サンプルA3は、1インチ当たり290本の糸を配し、線径が20μmの糸を使用した「290φ20」である。サンプルA3では、糸の配置ピッチは25.4mm/290本=88μmとなる。開口幅は、配置ピッチから糸の線径を引いた値と等しい。サンプルA3では、糸の線径が20μmであるので、開口幅は68μmとなる。紗厚は、カレンダー加工を施した一般的なスクリーンメッシュの紗厚と等しいものとした。図17に記載した紗厚は、一般的なスクリーンメッシュの紗厚の値である。このような条件のサンプルA3では、開口率KAは59.5%、透過厚さTAは20.8μmである。
サンプルA4は、1インチ当たり360本の糸を配し、線径が16μmの糸を使用した「360φ16」である。サンプルA4では、糸の配置ピッチは25.4mm/360本=71μmとなる。開口幅は、配置ピッチから糸の線径を引いた値と等しい。サンプルA4では、糸の線径が16μmであるので、開口幅は55μmとなる。紗厚は、カレンダー加工を施した一般的なスクリーンメッシュの紗厚と等しいものとした。図17に記載した紗厚は、一般的なスクリーンメッシュの紗厚の値である。このような条件のサンプルA4では、開口率KAは59.8%、透過厚さTAは16.7μmである。
次に、実施の形態1にかかる印刷マスク2におけるスクリーンメッシュ9について図16を参照して説明する。実施の形態1にかかる印刷マスク2におけるスクリーンメッシュ9の構成は、2本の構成糸が撚って編まれた撚り糸を縦糸および横糸に使用していること以外は、一般的な標準印刷マスクのスクリーンメッシュの構成と同じである。印刷マスク2におけるにおけるスクリーンメッシュ9は、1本の縦糸(撚り糸)と1本の横糸(撚り糸)とが交互に上下を入れ替えるように平織りで製網されている。
縦糸111、縦糸112および縦糸113は、それぞれ縦糸線径D3の構成糸131と縦糸線径D4の構成糸132とが撚って編まれた撚り糸によって構成されている。横糸121、横糸122および横糸123は、それぞれ横糸線径D5の構成糸133と横糸線径D6の構成糸134とが撚って編まれた撚り糸によって構成されている。隣り合う縦糸同士は、縦糸開口幅W3の間隔を空けて配置される。隣り合う横糸同士は、横糸開口幅W4の間隔を空けて配置される。縦糸配置ピッチP3は、縦糸開口幅W3と縦糸線径D3と縦糸線径D4との合計値である。横糸配置ピッチP4は、横糸開口幅W4と横糸線径D5と横糸線径D6との合計値である。配置ピッチは、隣り合う糸の中心軸間の距離に相当する。
横糸は、ある縦糸の下側を通る場合には、該縦糸に隣接する縦糸の上側を通る。また、横糸は、ある縦糸の上側を通る場合には、該縦糸に隣接する縦糸の下側を通る。このような製網パターンを繰り返して縦糸と横糸とが平織りで製網されることによって、スクリーンメッシュ9が構成されている。図16に示される印刷マスク2における透過厚さTBおよび開口率KBは、以下の式で示される。
透過厚さTB=(開口面積×紗厚)/(縦糸配置ピッチ×横糸配置ピッチ)
開口率KB=開口面積/(縦糸配置ピッチ×横糸配置ピッチ)
開口面積=縦糸開口幅W3×横糸開口幅W4
縦糸配置ピッチP3=縦糸開口幅W3+縦糸線径D3+縦糸線径D4
横糸配置ピッチP4=横糸開口幅W4+横糸線径D5+横糸線径D6
一例として、W3=W4、D3=D4=D5=D6、P3=P4である。紗厚は、一例として、縦糸線径と横糸線径とを足し合わせた値と同一である。糸を編んだ後、カレンダー加工を行ったスクリーンメッシュ9では、紗厚が(縦糸線径+横糸線径)の50%程度のものまで使用可能である。
図18は、実施の形態1にかかる印刷マスク2のグリッド電極開口部41における透過厚さTBの計算例の一覧を示す図表である。図18においては、サンプルB1〜サンプルB4の4種類のサンプルについて透過厚さTBの計算例を示す。ここでは、縦糸開口幅W3と横糸開口幅W4とを同一とし(W3=W4)、縦糸線径D3と縦糸線径D4と横糸線径D5と横糸線径D6とを同一とし(D3=D4=D5=D6)、縦糸配置ピッチP3と横糸配置ピッチP4とを同一とした(P3=P4)。また、縦糸配置ピッチP3および横糸配置ピッチP4は、比較例である一般的な標準印刷のスクリーンメッシュの縦糸配置ピッチP1と同じとした。
サンプルB1は、1インチ当たり200本の糸を配し、線径が40μmの2本の糸が撚って編まれた撚り糸を縦糸および横糸として使用した「200φ40ダブル」である。ここでの200本は、撚り糸が200本の意味である。サンプルB1では、25.4mm当たり200本の撚り糸が並ぶので、撚り糸の配置ピッチは25.4mm/200本=127μmとなる。開口幅は、配置ピッチから撚り糸の線径を引いた値と等しい。サンプルB1では縦糸線径D3と縦糸線径D4とが40μmであり、撚り糸の見かけの線径は2倍の80μmとなる(図18における線径の欄の()内)。しかし、一般的な標準印刷と同程度のカレンダー加工を行うことによって、撚り糸の見かけの線径Daは63μmとなる。したがって、サンプルB1では、開口幅は配置ピッチから撚り糸の見かけの線径Daを引いた値である64μmとなる。紗厚は、撚り糸を単純に編んだ値(撚り糸の見かけの線径Daの2倍)とした。このような条件のサンプルB1では、開口率KBは25.4%、透過厚さTBは32.0μmである。
サンプルB2は、1インチ当たり250本の糸を配し、線径が30μmの2本の糸が撚って編まれた撚り糸を縦糸および横糸として使用した「250φ30ダブル」である。ここでの250本は、撚り糸が250本の意味である。サンプルB2では、25.4mm当たり250本の撚り糸が並ぶので、撚り糸の配置ピッチは25.4mm/250本=102μmとなる。開口幅は、配置ピッチから撚り糸の線径を引いた値と等しい。サンプルB2では縦糸線径D3と縦糸線径D4とが30μmであり、撚り糸の見かけの線径は2倍の60μmとなる(図18における線径の欄の()内)。しかし、一般的な標準印刷と同程度のカレンダー加工を行うことによって、撚り糸の見かけの線径Daは46μmとなる。したがって、サンプルB2では、開口幅は配置ピッチから撚り糸の見かけの線径Daを引いた値である56μmとなる。紗厚は、撚り糸を単純に編んだ値(撚り糸の見かけの線径Daの2倍)とした。このような条件のサンプルB2では、開口率KBは30.1%、透過厚さTBは27.7μmである。
サンプルB3は、1インチ当たり290本の糸を配し、線径が20μmの2本の糸が撚って編まれた撚り糸を縦糸および横糸として使用した「290φ20ダブル」である。ここでの290本は、撚り糸が290本の意味である。サンプルB3では、25.4mm当たり290本の撚り糸が並ぶので、撚り糸の配置ピッチは25.4mm/290本=88μmとなる。開口幅は、配置ピッチから撚り糸の線径を引いた値と等しい。サンプルB3では縦糸線径D3と縦糸線径D4とが20μmであり、撚り糸の見かけの線径は2倍の40μmとなる(図18における線径の欄の()内)。しかし、一般的な標準印刷と同程度のカレンダー加工を行うことによって、撚り糸の見かけの線径Daは35μmとなる。したがって、サンプルB3では、開口幅は配置ピッチから撚り糸の見かけの線径Daを引いた値である53μmとなる。紗厚は、撚り糸を単純に編んだ値(撚り糸の見かけの線径Daの2倍)とした。このような条件のサンプルB3では、開口率KBは36.3%、透過厚さTBは25.4μmである。
サンプルB4は、1インチ当たり360本の糸を配し、線径が16μmの2本の糸が撚って編まれた撚り糸を縦糸および横糸として使用した「360φ16ダブル」である。ここでの360本は、撚り糸が360本の意味である。サンプルB4では、25.4mm当たり360本の撚り糸が並ぶので、撚り糸の配置ピッチは25.4mm/360本=71μmとなる。開口幅は、配置ピッチから撚り糸の線径を引いた値と等しい。サンプルB4では縦糸線径D3と縦糸線径D4とが16μmであり、撚り糸の見かけの線径は2倍の32μmとなる(図18における線径の欄の()内)。しかし、一般的な標準印刷と同程度のカレンダー加工を行うことによって、撚り糸の見かけの線径Daは28μmとなる。したがって、サンプルB4では、開口幅は配置ピッチから撚り糸の見かけの線径Daを引いた値である43μmとなる。紗厚は、撚り糸を単純に編んだ値(撚り糸の見かけの線径Daの2倍)とした。このような条件のサンプルB4では、開口率KBは36.7%、透過厚さTBは20.5μmである。
図19は、一般的な標準印刷マスクのスクリーンメッシュに対する実施の形態1にかかる印刷マスクのスクリーンメッシュの相対的なペーストの使用比率の一覧を示す図表である。図19は、図17と図18とに基づいて求めている。
例えば、実施の形態1にかかる印刷マスク2のサンプルB1:「200φ40ダブル」は、一般的な標準印刷マスクのサンプルA1:「200φ40」と比較すると、配置ピッチは同じ127μmであるが、開口幅が87μmから64μmへ小さくなるため開口率は46.9%から25.4%に下がる。その一方で、透過厚さは29.6μmから32.0μmへと増加する。そして、透過厚さと開口率を乗じた値は、13.9から8.1に減少しており、その比率は58.6%である。
すなわち、一般的な標準印刷マスクのサンプルA1:「200φ40」のスクリーンメッシュに包含される金属ペーストの量を1とすると、実施の形態1にかかる印刷マスク2のサンプルB1:「200φ40ダブル」のスクリーンメッシュ9に包含される金属ペーストの量は0.586となる。同様に、サンプルA2:「250φ30」のスクリーンメッシュに包含される金属ペーストの量を1とすると、サンプルB2:「250φ30ダブル」のスクリーンメッシュ9に包含される金属ペーストの量は0.737となる。
同様に、サンプルA3:「290φ20」のスクリーンメッシュに包含される金属ペーストの量を1とすると、サンプルB3:「290φ20ダブル」のスクリーンメッシュ9に包含される金属ペーストの量は0.742となる。同様に、サンプルA4:「360φ16」のスクリーンメッシュに包含される金属ペーストの量を1とすると、サンプルB4:「360φ16ダブル」のスクリーンメッシュ9に包含される金属ペーストの量は0.753となる。
このようなスクリーンメッシュ9では、スクリーンメッシュ9を上面から見た場合の撚り糸による遮蔽部の1辺において、構成糸が1本の部分と2本の部分とが交互に配置される。このため、配置ピッチが同じ場合でも1本の糸を平織りする場合よりも開口幅が狭くなり、開口率が小さくなる。一方、スクリーンメッシュ9では、撚り糸は2本の構成糸を撚って編まれているため、印刷マスク2の紗厚は、1本の糸を平織りする場合よりも高くなる。例えば、カレンダー加工の程度にもよるが、構成糸2本分よりは高く、4本分よりは低く、平均的には構成糸3本分程度の高さとすることが可能である。すなわち、スクリーンメッシュ9では、構成糸の線径とカレンダー加工の加工程度を調整することにより、開口率を低減するとともに紗厚を増大させることができる。
このように、実施の形態1にかかる印刷マスク2を用いてグリッド電極のスクリーン印刷を行うことにより、開口率を抑えて精細な細線電極パターンを描画して印刷しつつ、透過厚さを増やすことができる。したがって、実施の形態1にかかる印刷マスク2を用いてグリッド電極のスクリーン印刷を行うことにより、グリッド電極の幅を細くしながらグリッド電極の厚さを厚く確保し、細線電極が断線し難くい厚みを実現することができる。これにより、太陽電池の受光面側におけるシャドーロスを低減するとともに電極の電気抵抗を低減して抵抗損失を低減することができ、太陽電池の発電効率を向上させることができる。
また、実施の形態1にかかる印刷マスク2を用いてバス電極のスクリーン印刷を行うことにより、スクリーンメッシュ9に包含されるペースト量自体を少なく抑えることができる。したがって、バス電極に使用されるペースト量を抑制することができ、電極印刷全体としてペースト使用量を抑制することができる。これにより、電極のコストを低減でき、太陽電池の製造コストを低減できる。
すなわち、2本の構成糸が撚って編まれた糸で製網したスクリーンメッシュ9を用いた印刷マスク2を使用してスクリーン印刷を行うことにより、受光面側電極の印刷に必要な金属ペースト5全体の使用量を抑制しながら、厚みの厚いグリッド電極21を描画するために十分な金属ペースト5を供給することができる。これにより、太陽電池の発電効率を向上させるとともに、太陽電池の製造コストを下げることができる。
なお、上記においては、縦糸と横糸との両方に撚り糸を用いる場合について説明したが、縦糸と横糸とのうち少なくとも一方に撚り糸を用いてもよい。ただし、十分な効果を得るには、縦糸と横糸との両方に撚り糸を用いることが好ましい。
また、上記においては、縦糸(撚り糸)の線径と横糸(撚り糸)の線径とが同じ場合の効果について説明したが、縦糸(撚り糸)の線径と横糸(撚り糸)の線径とを異なる線径に変えた場合においても、上記と同様の効果が得られる。また、上記においては、縦糸(撚り糸)を構成する2本の構成糸の線径が同じ場合の効果について説明したが、縦糸(撚り糸)を構成する2本の構成糸の線径をそれぞれ異なる線径に変えた場合においても、上記と同様の効果が得られる。各々の線径を変えても構わない。同様に、横糸(撚り糸)を構成する2本の構成糸の線径をそれぞれ異なる線径に変えた場合においても、上記と同様の効果が得られる。また、縦糸や横糸を構成する各々2本ずつの構成糸、すなわち4本の構成糸の全てが異なった線径でも上記と同様の効果が得られる。このように構成糸の線径を調製して撚り糸の構成を変えることにより、隣り合う縦糸同士の間隔または縦糸の配置ピッチを自由に変えることができる。また、隣り合う横糸同士の間隔または横糸の配置ピッチを自由に変えることができる。これにより、電極パターンに応じて開口率および透過厚さを適切な値に調整することが可能である。
また、実施の形態1にかかる印刷マスク2を使用することにより、一般的な印刷機を使用しても、電極の印刷に使用される金属ペーストの使用量を削減することができる。このため、印刷マスクとして実施の形態1にかかる印刷マスク2を用いること以外は一般的なスクリーン印刷方法により、厚みの厚い細線グリッド電極を描画しつつ、電極全体としての金属ペーストの使用量の削減が可能となる。また、一般的な印刷機において印刷マスクを実施の形態1にかかる印刷マスク2に変更するだけで、上述したスクリーン印刷を容易に実施することができ、汎用性に優れる。このような実施の形態1にかかる印刷マスク2は、太陽電池の受光面側電極の形成に、特に有用である。
なお、配置ピッチを同じにして、2本の構成糸を横に配列した2本構成の縦糸(横糸)を用いた場合には、上述したような効果は得られない。すなわち、単に2本の構成糸を横に配列して縦糸(横糸)を構成した場合には、開口率を低減することはできるが、紗厚を稼ぐことができない。
上述したように、実施の形態1では、電極のスクリーン印刷において、2本の構成糸が撚って編まれた撚り糸を用いて製網したスクリーンメッシュを用いた印刷マスクを使用する。これにより、細線化したグリッド電極の印刷においても断線し難い電極高さを有する電極を形成できる。また、バス電極の印刷においては、金属ペーストの使用量を低減することができる。したがって、実施の形態1によれば、太陽電池の発電効率を向上させるとともに、太陽電池の製造コストを低減することができる。以上のように、実施の形態1にかかる太陽電池の製造方法、印刷マスクおよび太陽電池は、太陽電池の低コスト化に有用である。
実施の形態2.
次に、実施の形態1にかかる太陽電池の製造方法により作製された太陽電池セル1を用いた太陽電池モジュールについて説明する。図20および図21は、実施の形態2にかかる太陽電池モジュールの製造方法の手順を説明する断面模式図である。図20および図21においては上側が受光面(表面)として設置されている状態を示しているが、太陽電池モジュールの組立時には、図20および図21において上下を反転した状態で組み立てが行われる。
まず、透光性基板51の上に透光性樹脂部材52を設置する。次に、透光性樹脂部材52の上に配線付き太陽電池53を設置する。配線付き太陽電池53は、実施の形態1にかかる太陽電池の製造方法を用いて作製された所定の枚数の太陽電池セル1(図1〜図3参照)を並列させて、隣り合う太陽電池セル1の表バス電極22同士を接続部材である半田付き銅線等により接続することにより電気的に直列に配線接合して形成されている。なお、配線に使用する材料は、半田付き銅線以外にも、導電性のある材料であれば構わない。配線付き太陽電池53は、各太陽電池セル1の裏面を上にして、透光性樹脂部材52の上に設置される。
次に、配線付き太陽電池53の上に透光性樹脂部材52および裏面シート54をこの順で設置する。図20では、図の上部から順に、透光性基板51、透光性樹脂部材52、配線付き太陽電池53、透光性樹脂部材52および裏面シート54を重ね合わせた状態を示している。
これらの部材を圧着させた状態で加熱処理を施すことにより、図21に示すように、配線付き太陽電池53が封止された透光性樹脂層55と、透光性基板51と、裏面シート54とが一体化された太陽電池モジュールが作製される。実施の形態1にかかる太陽電池の形成方法により形成された電極を備える太陽電池セル1を用いることにより、発電効率の高い太陽電池を、低い製造コストで作製することができる。
太陽電池モジュールの作製における加熱および圧着の処理には、ラミネータと称される真空加熱圧着装置を使用することが望ましい。ラミネータは、透光性樹脂部材52や裏面シート54を加熱変形させ、さらにこれらを熱硬化させることにより一体化させるとともに透光性樹脂層55に太陽電池を封止する。
真空加熱圧着装置は、減圧環境下において、各部材を加熱および圧着させる。これにより、透光性基板51および透光性樹脂部材52間、透光性樹脂部材52および配線付き太陽電池53間、配線付き太陽電池53および透光性樹脂部材52間、透光性樹脂部材52および裏面シート54間のいずれについても、空隙や気泡の残留を防ぎ、各部材を均一な圧力で圧着させることができる。
真空加熱圧着装置での加熱および圧着の処理は、200度以下、望ましくは150度から200度の温度下で実施する。加熱および圧着の処理における温度は、透光性樹脂部材52の材質等により適宜変更可能であるものとする。
透光性基板51としては、例えばガラス基板を使用する。透光性基板51は、太陽光を透過可能であればよく、ガラス以外の材質からなるものとしてもよい。透光性樹脂部材52は、エチレンビニルアセテート系、ポリビニルブチラール系、エポキシ系、アクリル系、ウレタン系、オレフィン系、ポリエステル系、シリコン系、ポリスチレン系、ポリカーボネート系およびゴム系等の樹脂のうちの一つあるいは複数を含む。透光性樹脂部材52は、太陽光を透過可能であれば、ここで挙げる以外のいずれの材質を使用するものであってもよいものとする。
裏面シート54としては、ポリエステル系、ポリビニル系、ポリカーボネート系およびポリイミド系等の樹脂のうちの一つあるいは複数からなるシートを使用する。裏面シート54は、太陽電池モジュールの保護に十分な強度、耐湿性および耐候性を有するものであれば、ここで挙げる以外のいずれの材質からなるものであってもよい。裏面シート54は、強度、耐湿性および耐候性を向上させるために、樹脂材料のみならず、金属箔材料を貼り合わせた複合材料からなるものとしてもよい。また、裏面シート54は、高い光反射率を持つ金属材料や、高い屈折率を持つ透明部材を、蒸着等により樹脂材料に貼り合わせたものとしてもよい。
太陽電池モジュールの端面は、ラミネート加工の密着性を向上させ、外部からの水分等の浸入を防ぐために、ゴム系樹脂部材等からなるテープにより保護することとしてもよい。ゴム系樹脂部材としては、例えば、ブチルゴム等を使用する。さらに、太陽電池モジュールは、構造体としての取り扱い易さに鑑み、外周を囲うフレームを設けることとしてもよい。フレームは、例えば、アルミニウムや、アルミニウム合金等の金属部材を用いて構成する。
実施の形態2によれば、実施の形態1にかかる太陽電池の製造方法により作製された太陽電池セル1を用いて、太陽電池モジュールを作製する。これにより、一般的な太陽電池モジュールの作製方法に変更を加えることなく、簡便な手法により発電効率が高く安価な太陽電池モジュールを得ることができる。したがって、実施の形態1にかかる太陽電池の製造方法および実施の形態2にかかる太陽電池モジュールの製造方法は、工業上非常に有用である。
以上のように、本発明にかかる太陽電池の製造方法は、発電効率の高い太陽電池の製造に有用である。
1 太陽電池セル、2 印刷マスク、3 基板材料、4 ステージ、5 金属ペースト、6 マスクフレーム、7 吸引機構、8 スキージ、9 スクリーンメッシュ、10 感光性乳剤、11 縦糸、12 横糸、13 外縁側面、14 余白、20 開口部、21 グリッド電極、22 表バス電極、23 裏アルミニウム電極、24 裏バス電極、31 p型シリコン基板、32 n型不純物拡散層、33 反射防止膜、41 グリッド電極開口部、42 バス電極開口部、51 透光性基板、52 透光性樹脂部材、53 太陽電池、54 裏面シート、55 透光性樹脂層、111,112,113 縦糸、121,122,123 横糸、131,132,133,134 構成糸、201,202 縦糸、203,204 横糸、D1,D3,D4 縦糸線径、D2,D5,D6 横糸線径、Da 撚り糸の見かけの線径、M 正方形形状における一辺の幅、M’ 角丸四角形形状における一辺相当の幅、P1,P3 縦糸配置ピッチ、P2,P4 横糸配置ピッチ、W1,W3 縦糸開口幅、W2,W4 横糸開口幅。
図3は、本発明の実施の形態1にかかる太陽電池セル1の要部断面図であり、図1および図2におけるA−A断面図である。図中、上側が受光面(表面)である。太陽電池セル1においては、p型シリコン基板31の上面にリン拡散によりn型不純物拡散層32が形成されて、pn接合を有する光電変換部が形成されている。n型不純物拡散層32の上側には、反射防止膜33が成膜されている。反射防止膜33の上側には表バス電極22が設けられている。表バス電極22の下の反射防止膜33は焼成によって溶融されており、表バス電極22はn型不純物拡散層32と電気的に接触している。p型シリコン基板31の裏面側には、裏アルミニウム電極23および裏バス電極24が設けられている。なお、図3は、隣接するグリッド電極21間の領域おけるグリッド電極21の長手方向に沿った断面を示しているため、グリッド電極21は示されていない。
縦糸201および縦糸202は、縦糸線径D1で形成される。横糸203および横糸204は、横糸線径D2で形成される。隣り合う縦糸同士は、縦糸開口幅W1の間隔を空けて配置される。隣り合う横糸同士は、横糸開口幅W2の間隔を空けて配置される。縦糸配置ピッチP1は、縦糸開口幅W1と縦糸線径D1との合計値である。横糸配置ピッチP2は、横糸開口幅W2と横糸線径D2との合計値である。配置ピッチは、隣り合う糸の中心軸間の距離相当する。
このため、印刷された金属ペーストの厚さは、開口部内に留まった金属ペーストの分だけ厚さが紗厚より薄くなる。そして、印刷操作が行われ、スクリーンメッシュが取り除かれた後に、基板上に金属ペースト5が広がったときの高さが透過厚さTである。スクリーンメッシュからの金属ペースト5の吐出量は、一般的には透過容積または透過体積と呼ばれている指標であるが、長さの次元を持った指標であるので、本明細書では透過厚さと呼ぶ。また、開口率Kは、印刷マスクを上面から見てメッシュ(縦糸、横糸)がない部分の面積の、スクリーンメッシュ全体に対する割合である。図15に示される一般的な標準印刷マスクにおける透過厚さTAおよび開口率Kは、以下の式で示される。
透過厚さT=(開口面積×紗厚)/(縦糸配置ピッチ×横糸配置ピッチ)
開口率K=開口面積/(縦糸配置ピッチ×横糸配置ピッチ)
開口面積=縦糸開口幅W1×横糸開口幅W2
縦糸配置ピッチP1=縦糸開口幅W1+縦糸線径D1
横糸配置ピッチP2=横糸開口幅W2+横糸線径D2
次に、実施の形態1にかかる印刷マスク2におけるスクリーンメッシュ9について図16を参照して説明する。実施の形態1にかかる印刷マスク2におけるスクリーンメッシュ9の構成は、2本の構成糸が撚って編まれた撚り糸を縦糸および横糸に使用していること以外は、一般的な標準印刷マスクのスクリーンメッシュの構成と同じである。印刷マスク2におけるスクリーンメッシュ9は、1本の縦糸(撚り糸)と1本の横糸(撚り糸)とが交互に上下を入れ替えるように平織りで製網されている。
上述した課題を解決し、目的を達成するために、本発明にかかる太陽電池の製造方法は、バス電極部とグリッド電極部とを有する電極形状に対応した開口部を有する印刷マスクを介して、電極材料である導電性材料を含むペーストを基板の電極形成面に塗布するスクリーン印刷工程を含む太陽電池の製造方法であって、前記スクリーン印刷工程は、金属材料からなる2本の構成糸が撚って編まれた撚り糸を縦糸または横糸の少なくとも一方に使用して製網されたスクリーンメッシュが前記開口部に設けられた前記印刷マスクを使用して前記ペーストを塗布する工程を含むこと、を特徴とする。

Claims (5)

  1. バス電極部とグリッド電極部とを有する電極形状に対応した開口部を有する印刷マスクを介して、電極材料である導電性材料を含むペーストを基板の電極形成面に塗布するスクリーン印刷工程を含む太陽電池の製造方法であって、
    前記スクリーン印刷工程は、2本の構成糸が撚って編まれた撚り糸を縦糸または横糸の少なくとも一方に使用して製網されたスクリーンメッシュが前記開口部に設けられた前記印刷マスクを使用して前記ペーストを塗布する工程を含むこと、
    を特徴とする太陽電池の製造方法。
  2. 前記撚り糸は、線径が異なる前記2本の構成糸が撚って編まれていること、
    を特徴とする請求項1に記載の太陽電池の製造方法。
  3. 電極材料である導電性材料を含むペーストを基板の電極形成面にスクリーン印刷により塗布する際に使用される印刷マスクであって、
    前記ペーストを保持するためのスクリーンメッシュが、2本の構成糸が撚って編まれた撚り糸を縦糸または横糸の少なくとも一方に使用して製網されていること、
    を特徴とする印刷マスク。
  4. 請求項1または2に記載の太陽電池の製造方法を用いて形成されたこと、
    を特徴とする太陽電池。
  5. 請求項4に記載の太陽電池が複数配列され、隣り合う前記太陽電池における前記印刷マスクにより形成されたバス電極同士が接続部材により電気的に接続されていること、
    を特徴とする太陽電池モジュール。
JP2015556653A 2014-01-07 2014-01-07 太陽電池の製造方法および印刷マスク Expired - Fee Related JP6141456B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050084 WO2015104793A1 (ja) 2014-01-07 2014-01-07 太陽電池の製造方法、印刷マスク、太陽電池および太陽電池モジュール

Publications (2)

Publication Number Publication Date
JPWO2015104793A1 true JPWO2015104793A1 (ja) 2017-03-23
JP6141456B2 JP6141456B2 (ja) 2017-06-07

Family

ID=53523646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015556653A Expired - Fee Related JP6141456B2 (ja) 2014-01-07 2014-01-07 太陽電池の製造方法および印刷マスク

Country Status (4)

Country Link
JP (1) JP6141456B2 (ja)
CN (1) CN105900250B (ja)
TW (1) TWI565093B (ja)
WO (1) WO2015104793A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017064818A1 (ja) * 2015-10-16 2017-04-20 三菱電機株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP6467671B2 (ja) * 2015-11-11 2019-02-13 株式会社アイティー・コーポレーション スクリーン製版およびスクリーン製版の製造方法
KR20180046810A (ko) * 2016-10-28 2018-05-09 삼성에스디아이 주식회사 태양전지용 핑거 전극 및 이의 제조방법
KR20180046809A (ko) * 2016-10-28 2018-05-09 삼성에스디아이 주식회사 태양전지용 핑거 전극의 제조방법
KR20180063750A (ko) * 2016-12-02 2018-06-12 삼성에스디아이 주식회사 태양전지용 핑거 전극의 제조방법
KR20180090669A (ko) 2017-02-03 2018-08-13 삼성에스디아이 주식회사 태양전지용 핑거 전극의 제조방법 및 이에 의해 제조된 태양전지용 핑거 전극
WO2018150598A1 (ja) * 2017-02-16 2018-08-23 三菱電機株式会社 太陽電池セルの製造方法および太陽電池セル

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299966A (ja) * 1994-05-09 1995-11-14 Toray Ind Inc 感熱孔版印刷用原紙
JPH10331048A (ja) * 1997-05-30 1998-12-15 Kuraray Co Ltd 織 物
JP2000118164A (ja) * 1998-10-14 2000-04-25 Kinyosha Co Ltd オフセット印刷用ブランケット及びその製造方法
JP2002019324A (ja) * 2000-07-11 2002-01-23 Kuraray Co Ltd ブランケット用基布及びその製造方法
JP2002301880A (ja) * 2001-04-03 2002-10-15 Sumitomo Rubber Ind Ltd 印刷用ブランケット
JP2002337471A (ja) * 2001-05-17 2002-11-27 Teijin Ltd スクリーン紗
JP2004014566A (ja) * 2002-06-03 2004-01-15 Sharp Corp 太陽電池およびその製造方法
JP2008074073A (ja) * 2006-09-25 2008-04-03 Nbc Inc 薄膜印刷用スクリーン、その製造方法及び薄膜印刷用スクリーン版

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070090045A1 (en) * 2005-10-25 2007-04-26 Bakula John J Multidiameter wire cloth
JP5904881B2 (ja) * 2012-06-04 2016-04-20 三菱電機株式会社 太陽電池の製造方法、および印刷マスク

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299966A (ja) * 1994-05-09 1995-11-14 Toray Ind Inc 感熱孔版印刷用原紙
JPH10331048A (ja) * 1997-05-30 1998-12-15 Kuraray Co Ltd 織 物
JP2000118164A (ja) * 1998-10-14 2000-04-25 Kinyosha Co Ltd オフセット印刷用ブランケット及びその製造方法
JP2002019324A (ja) * 2000-07-11 2002-01-23 Kuraray Co Ltd ブランケット用基布及びその製造方法
JP2002301880A (ja) * 2001-04-03 2002-10-15 Sumitomo Rubber Ind Ltd 印刷用ブランケット
JP2002337471A (ja) * 2001-05-17 2002-11-27 Teijin Ltd スクリーン紗
JP2004014566A (ja) * 2002-06-03 2004-01-15 Sharp Corp 太陽電池およびその製造方法
JP2008074073A (ja) * 2006-09-25 2008-04-03 Nbc Inc 薄膜印刷用スクリーン、その製造方法及び薄膜印刷用スクリーン版

Also Published As

Publication number Publication date
WO2015104793A1 (ja) 2015-07-16
TWI565093B (zh) 2017-01-01
JP6141456B2 (ja) 2017-06-07
CN105900250B (zh) 2017-12-19
TW201528537A (zh) 2015-07-16
CN105900250A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP6141456B2 (ja) 太陽電池の製造方法および印刷マスク
JP5820278B2 (ja) 太陽電池及び太陽電池の製造方法
EP2704202B1 (en) Solar cell
JP4646558B2 (ja) 太陽電池モジュール
WO2014080894A1 (ja) 光発電装置
JP2011077362A (ja) 太陽電池セル及び太陽電池モジュール
JP2011044750A (ja) 太陽電池モジュール
US20200098943A1 (en) Solar cell module and manufacturing method thereof
CN109888033A (zh) 太阳电池组件
JP2006165149A (ja) 光起電力素子、光起電力素子集合体、光起電力素子モジュール、及び、それらの製造方法
CN110024138B (zh) 太阳能电池模块
JP2014216388A (ja) 太陽電池モジュール及び太陽電池セル
WO2017002287A1 (ja) 太陽電池モジュール
JP5904881B2 (ja) 太陽電池の製造方法、および印刷マスク
CN109904261A (zh) 太阳电池组件
WO2019114242A1 (zh) 柔性太阳能电池组件
JP5866029B2 (ja) 太陽電池の製造方法および印刷マスク
JP2010272897A (ja) 太陽電池モジュール
CN209981238U (zh) 太阳电池组件
JP2017228629A (ja) 太陽電池モジュール
JP6735894B2 (ja) 太陽電池セルの製造方法および太陽電池セル
JP6455099B2 (ja) 太陽電池ユニット及び太陽電池ユニットの製造方法
WO2017002887A1 (ja) 太陽電池モジュール
JP2006165148A (ja) 光起電力素子、光起電力素子集合体、光起電力素子モジュール、及び、それらの製造方法
JPWO2017119036A1 (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170502

R150 Certificate of patent or registration of utility model

Ref document number: 6141456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees