WO2017002887A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2017002887A1
WO2017002887A1 PCT/JP2016/069359 JP2016069359W WO2017002887A1 WO 2017002887 A1 WO2017002887 A1 WO 2017002887A1 JP 2016069359 W JP2016069359 W JP 2016069359W WO 2017002887 A1 WO2017002887 A1 WO 2017002887A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
metal foil
transparent electrode
electrode layer
contact
Prior art date
Application number
PCT/JP2016/069359
Other languages
English (en)
French (fr)
Inventor
訓太 吉河
勇人 河▲崎▼
邦裕 中野
徹 寺下
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2017526414A priority Critical patent/JP6684278B2/ja
Priority to CN201680028673.5A priority patent/CN107851678B/zh
Publication of WO2017002887A1 publication Critical patent/WO2017002887A1/ja
Priority to US15/856,877 priority patent/US20180122966A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell module including a crystalline silicon solar cell.
  • a crystalline silicon solar cell using a crystalline silicon substrate has high conversion efficiency and has already been widely put into practical use as a photovoltaic power generation system.
  • a crystalline silicon solar cell in which a silicon-based thin film having a gap different from that of single crystal silicon is provided on the surface of the single crystal silicon substrate to form a junction is called a heterojunction solar cell, and the conversion efficiency is particularly high among the crystalline silicon solar cells.
  • a heterojunction solar cell includes a transparent electrode layer such as a transparent conductive oxide (TCO) between a silicon-based thin film and a metal electrode. Carriers collected by the metal electrode are taken out to the outside through a strip-shaped interconnector connected to the metal electrode.
  • TCO transparent conductive oxide
  • Patent document 1 conveys by attaching a highly rigid metal plate or metal foil via a conductive adhesive on a patterned metal electrode (Ag paste electrode) or transparent electrode layer on the back side of a solar cell. It is disclosed that damage due to external force at the time or stress in the sealing process can be suppressed.
  • Patent Document 2 after connecting the interconnector to the back surface side of the solar cell, the series resistance can be reduced by covering the entire back surface with a conductive sheet, and the thickness of the interconnector can be reduced. It is disclosed that warpage and cracking can be suppressed.
  • the object of the present invention is to provide a solar cell module that is less likely to deteriorate in characteristics due to temperature changes, cell cracking, peeling of an interconnector, and the like, and that is excellent in reliability.
  • the solar cell module of the present invention is disposed between a solar cell in which a conductive silicon layer and a back transparent electrode layer are sequentially provided on the back side of a single crystal silicon substrate, a sealing material, and the solar cell and the sealing material.
  • Flexible metal foil The metal foil is in contact with the back surface transparent electrode layer of the solar cell in an unbonded state. When the solar cell is sealed with the sealing material, the contact state between the metal foil and the back surface transparent electrode layer is maintained.
  • the metal foil it is preferable that at least a portion in contact with the back transparent electrode layer is made of at least one selected from the group consisting of Sn, Ag, Ni, In, and Cu.
  • the thickness of the metal foil is preferably 4 to 190 ⁇ m.
  • the metal foil is preferably provided with a plurality of openings, and the sealing material is in contact with the solar cell through the openings.
  • the diameter of the opening provided in the metal foil is preferably 100 ⁇ m to 2000 ⁇ m, and the distance between the closest openings is preferably 5 mm to 100 mm.
  • a plurality of dot-like buffer electrodes may be present apart from each other on the back transparent electrode layer of the solar cell.
  • the area of the buffer electrode is preferably less than 1% of the area of the region where the back transparent electrode layer is exposed.
  • the metal foil is preferably in contact with and electrically connected to the back surface transparent electrode layer and the buffer electrode in a non-adhesive state.
  • the interconnection is performed by electrically connecting the back surface electrode and the light receiving surface metal electrode of two adjacent solar cells.
  • Two adjacent solar cells are electrically connected by connecting the metal foil in contact with the transparent electrode on the back surface of one solar cell and the metal electrode on the light receiving surface of the other solar cell to the connection member. .
  • the solar cells may be interconnected using a wiring sheet in which a metal foil is fixed on an insulating member.
  • the insulating member preferably has an opening at a position corresponding to the opening of the metal foil.
  • the sealing material is in contact with the solar cell through the opening provided in the insulating member and the opening provided in the metal foil.
  • the diameter of the opening of the insulating member is preferably smaller than the diameter of the opening provided in the metal foil.
  • the solar cell module of the present invention since interconnection is performed via a metal foil that is in contact with the back surface of the solar cell in a non-adhered state, stress strain is hardly generated even when a temperature change occurs, and temperature reliability is excellent. Moreover, since the usage-amount of the metal electrode material of the back side reduces, it contributes also to cost reduction.
  • FIG. 1 is a schematic diagram of a solar cell module structure according to an embodiment of the present invention.
  • a solar cell module (hereinafter sometimes referred to as “module”) has a configuration in which a solar cell (hereinafter sometimes referred to as “cell”) is sealed with a sealing material.
  • the module shown in FIG. 1 includes a light receiving surface protective material 10, a light receiving surface sealing material 11, a connection member 12, a cell 13, a metal foil 14, a back surface sealing material 16, and a back sheet 17 from the light receiving surface side.
  • a resin such as EVA (ethylene vinyl acetate) or polyolefin is used.
  • EVA ethylene vinyl acetate
  • polyolefin polyolefin
  • the light-receiving surface protective material 10 disposed on the light-receiving surface side of the cell is light-transmitting, and examples thereof include a glass substrate (blue plate glass substrate or white plate glass substrate), a polyvinyl fluoride film (for example, a Tedlar film ( Registered film)) and other organic films such as polyethylene terephthalate (PET) film. From the viewpoint of mechanical strength, light transmittance, moisture resistance reliability, cost and the like, a white plate glass substrate is particularly preferable.
  • the back sheet 17 disposed on the back side of the cell may be any of light transmission, light absorption and light reflection.
  • the light-transmitting back sheet those described above as the material for the light-receiving surface protecting material are preferably used.
  • the light-reflecting back sheet those exhibiting a metallic color or white are preferable, and a white resin film, a laminate in which a metal foil such as aluminum is sandwiched between resin films, and the like are preferably used.
  • a sheet including a black resin layer is used as the light-absorbing back sheet.
  • a metal foil 14 is disposed between the cell 13 and the back surface sealing material 16.
  • the metal foil 14 is electrically connected to the cell by contacting the back surface of the cell 13 in a non-adhered state.
  • the cell 13 and the metal foil 14 are in detachable contact, and in the module, the contact state between the metal foil and the cell is maintained by sealing the cell with a sealing material. .
  • FIG. 2 shows a schematic cross-sectional view of a crystalline silicon solar cell.
  • Crystalline silicon solar cell 13 has backside conductive silicon layer 7 and backside transparent electrode layer 8 on the backside of single crystal silicon substrate 5.
  • a back surface intrinsic silicon layer 6 is preferably provided between the single crystal silicon substrate 5 and the back surface conductive silicon layer 7.
  • the light-receiving surface intrinsic silicon layer 4, the light-receiving surface conductive silicon layer 3, and the light-receiving surface transparent electrode layer 2 are preferably formed on the light-receiving surface side of the single crystal silicon substrate 5.
  • the light-receiving surface conductive silicon layer 3 has a conductivity type opposite to that of the back surface conductive silicon layer 7. That is, one of the light-receiving surface conductive silicon layer 3 and the back conductive silicon layer 7 is p-type and the other is n-type.
  • the conductivity type of the single crystal silicon substrate 5 may be p-type or n-type. It is preferable to use an n-type single crystal silicon substrate from the viewpoint of lifetime.
  • the surface of the single crystal silicon substrate 5 is preferably provided with a fine unevenness (texture) structure having a height of about 2 to 10 ⁇ m.
  • a pyramidal concavo-convex structure constituted by a (111) plane of crystalline silicon is formed by anisotropic etching.
  • the uneven structure is preferably formed on both the light receiving surface and the back surface of the solar cell.
  • the metal electrode is not provided on the back transparent electrode layer 8.
  • a patterned metal electrode is provided as the light-receiving surface electrode 1. Since the light-receiving surface metal electrode 1 has a function of transporting current in the in-plane direction of the light-receiving surface of the cell 13, it has a two-dimensional pattern in the in-plane direction of the light-receiving surface. As a two-dimensional pattern in the in-plane direction, as shown in FIG. 3A, a form in which a plurality of finger electrodes 111 extending in parallel is provided, or as shown in FIG. A grid-like pattern including orthogonal bus bar electrodes 112 can be used.
  • the connecting member is disposed so as to cross the plurality of finger electrodes.
  • a connecting member is disposed on the bus bar electrode 112.
  • a flexible metal foil 14 is disposed on the back surface of the cell 13.
  • the metal foil 14 is in non-adhesive contact with the back transparent electrode layer 8 of the cell.
  • “contact in a non-adhered state” between the metal foil and the back surface transparent electrode layer (and the buffer electrode) typically applies physical external force such as pressing and adsorption to bring them into contact with each other. It means the state. Therefore, before sealing with the sealing member, the metal foil and the cell are in contact with each other in a peelable manner.
  • the state in which the two are bonded with an adhesive, molten solder, or the like, or the state in which the metal electrode is formed on the transparent electrode layer by printing, plating, sputtering, or the like does not correspond to “contact in a non-bonded state”.
  • the metal foil 14 may be partially fixed to the back surface of the cell through a conductive adhesive material such as a conductive film, solder, or a conductive paste, or an insulating adhesive material such as an adhesive tape.
  • the partial fixing is temporary fixing for fixing the positional relationship between the cell 13 and the metal foil 14 and does not laminate them closely. Therefore, in a state where the metal foil is partially fixed to the back surface of the cell, the metal foil and the cell are in contact with each other in a non-adhesive state except for the temporarily fixed portion.
  • the metal foil is partially fixed to the back surface of the cell, it is sufficient that there is only one temporary fixing point. In order to suppress problems such as turning up of the metal foil during sealing and the like, it is preferable to temporarily fix at two or more locations.
  • a metal foil may be fixed on an insulating support substrate. In this case, it is not necessary to temporarily fix the cell and the metal foil, and the workability of modularization can be improved.
  • the material of the metal foil 14 a material having a low contact resistance with the back transparent electrode layer or a flexible metal is preferably used.
  • the metal with low contact resistance Ag, Ni, Au and the like are preferable, and as the flexible metal, Sn, Cu, In, Al and the like are preferable.
  • the metal foil 14 may be a single layer or a laminate of a plurality of metal layers. When the metal foil is a single layer, it is preferable to use a metal foil containing at least one metal selected from the group consisting of Sn, Ag, Ni, In and Cu. Among these, it is preferable to use a copper foil as the metal foil 14 from the viewpoint of high reflectance and low cost.
  • the metal foil in which a plurality of metal layers are laminated uses a metal layer composed of at least one selected from the group consisting of Sn, Ag, Ni, In, and Cu on the contact surface with the back transparent electrode layer.
  • a metal layer composed of at least one selected from the group consisting of Sn, Ag, Ni, In, and Cu on the contact surface with the back transparent electrode layer.
  • the thickness of the metal foil 14 is preferably 4 to 190 ⁇ m, more preferably 10 to 100 ⁇ m, and particularly preferably 15 to 50 ⁇ m. If the thickness of the metal foil is 4 ⁇ m or more, an increase in electrical resistance of the metal foil itself can be suppressed. If thickness is 190 micrometers or less, since metal foil has flexibility and can follow the surface shape of a cell, the increase in local resistance can be suppressed. By using the metal foil having the above-mentioned material and thickness range, uniform contact with the back transparent electrode layer and appropriate strength and flexibility of the metal foil can be ensured.
  • the space between the light-receiving surface protection member 10 and the back sheet 17 is filled with the sealing materials 11 and 16.
  • the sealing materials 11 and 16 By sealing the metal foil 14 on the back surface of the cell 13, the contact state between the back transparent electrode layer of the cell and the metal foil is maintained. Further, by fixing the metal foil with an external force from the sealing material, the metal foil and the back transparent electrode layer can be brought into uniform contact. Since the cell and the metal foil are not bonded, the stress at the interface is relaxed. Therefore, characteristic degradation due to cell cracking or distortion is suppressed, and a highly reliable module is obtained.
  • FIG. 4 is an enlarged view of the back surface side of the module in which the metal foil 14 is in contact with the back surface transparent electrode layer 8 of the cell 13 having the unevenness on the back surface of the silicon substrate.
  • the apex portion (convex portion) of the concavo-convex structure comes into contact with the metal foil, and electrical contact is obtained.
  • the metal foil is brought into contact with the apex of the concavo-convex structure and its peripheral back surface transparent electrode layer, it is preferable that the concavo-convex size is small and the number (density) of vertices in a predetermined area is large.
  • the region surrounded by the back transparent electrode layer 8 and the metal foil 14 is not filled with a sealing material but is a void.
  • the gap 18 is filled with gas (air) before sealing, and is in a state close to vacuum after sealing. After sealing, since this void 18 is in a negative pressure state, the contact state between the metal foil 14 and the back surface transparent electrode layer 8 is maintained.
  • single crystal silicon Since single crystal silicon has a small absorption coefficient of near-infrared light, most of the long-wavelength light of 950 nm or more out of the light incident on the cell from the light receiving surface reaches the back side without being absorbed by the single crystal silicon substrate. To do.
  • the refractive index of the metal oxide material constituting the transparent electrode layer is about 2, whereas the refractive index of the gap is about 1 to 1.05. Therefore, part of the light reaching the back surface of the cell is It is reflected at the back transparent electrode layer / void interface and re-enters the silicon substrate. The remaining light passes through the back transparent electrode layer / void interface, is reflected at the void / metal film interface, passes through the back transparent electrode layer / void interface again, and reenters the cell.
  • a gap exists between the transparent electrode and the metal foil in a region of 80% or more and less than 100% of the projected area of the surface of the back side transparent electrode.
  • the surface of the transparent electrode on the back side means a region where the back transparent electrode is exposed in a state before being brought into contact with the metal foil. That is, it is preferable that 80% or more and less than 100% of the region is a void portion, and the remaining region of greater than 0% and 20% or less is in contact with the metal foil. As described later, when a metal electrode such as a dot-like buffer electrode is provided on the transparent electrode on the back side, the region where the metal electrode is not provided corresponds to the “surface of the transparent electrode on the back side”.
  • One of the effects of the present embodiment is that the plasmon absorption at the transparent electrode layer / metal electrode interface on the back side is reduced because the metal electrode is not directly formed on the back transparent electrode layer. .
  • the thickness of the transparent electrode layer on the back surface side is adjusted to 80 to 100 nm to reduce plasmon absorption at the transparent electrode layer / metal electrode interface on the back surface side.
  • the reflection at the interface of the electrode layer is maximized.
  • a metal electrode physically contacted as a metal electrode on the back side as in this embodiment, plasmon absorption at the interface of the transparent electrode layer / metal electrode on the back side is suppressed, and the back surface is transparent.
  • the film thickness of the electrode layer can be greatly reduced to about 20 nm. By reducing the film thickness of the back surface transparent electrode layer, light absorption by the back surface transparent electrode layer is reduced, so that the light utilization efficiency can be further improved.
  • FIG. 5 is an enlarged view of the back surface of the cell provided with dot-shaped buffer electrodes.
  • the light-receiving surface metal electrode 1 extends in at least one direction in the plane and is provided in a two-dimensional manner, whereas the buffer electrode 9 provided on the back surface supplies current in the in-plane direction on the back surface. Does not require the function of transporting. Therefore, as shown in FIG. 5, the plurality of buffer electrodes 9 are separated from each other. When the metal foil 14 is in contact with the back surface transparent electrode layer 8 and the buffer electrode 9, the back surface transparent electrode layer and the plurality of buffer electrodes are electrically connected via the metal foil.
  • FIG. 6 is a schematic cross section of a module using a cell in which the buffer electrode 9 is provided on the back transparent electrode layer 8.
  • the buffer electrode 9 and the metal foil 14 first contact each other when pressure is applied, and then the metal foil 14 is pressed onto the back transparent electrode layer 8 where the buffer electrode 9 does not exist.
  • the buffer electrode 9 first receives the pressure of the metal foil 14, the contact pressure between the back transparent electrode layer 8 and the metal foil 14 in the region where the buffer electrode 9 is not provided is made uniform. Therefore, it is suppressed that local pressure is applied to the back surface transparent electrode layer 8, and mechanical damage can be reduced.
  • the area of the region where the buffer electrode 9 is provided on the surface on the back side of the cell is preferably less than 1% of the area of the region where the buffer electrode is not provided and the back transparent electrode layer 8 is exposed. That is, when the area of the exposed region of the back transparent electrode layer 8 is A1, and the total area of the dot-shaped buffer electrodes is A2, A2 / A1 is preferably less than 0.01. A2 / A1 is more preferably 0.002 to 0.007. If the formation area of the buffer electrode is within this range, low contact resistance and appropriate pressure dispersion can be expected. In addition, since the amount of electrode material such as Ag paste used is small compared to the case of forming a grid-like metal electrode, the manufacturing cost can be reduced.
  • the height of the buffer electrode is preferably larger than the irregularities on the back surface of the cell, and preferably about 6 to 30 ⁇ m.
  • the height of the buffer electrode 9 is more preferably about 10 to 25 ⁇ m from the balance between the reduction of the material cost and the buffer capacity.
  • the diameter of the buffer electrode is preferably about 10 to 100 ⁇ m, and more preferably about 30 to 60 ⁇ m from the viewpoint of material utilization efficiency and patterning uniformity.
  • the distance d between the nearest buffer electrodes is preferably about 0.5 to 3 mm. If the size and interval of the buffer electrodes are within the above ranges, mechanical damage is reduced, and a decrease in open circuit voltage (Voc) associated with modularization tends to be suppressed. Further, due to the uniform pressure, the contact resistance is also uniformed, the series resistance is lowered, and the module fill factor (FF) tends to be improved.
  • Voc open circuit voltage
  • the buffer electrode As a material of the buffer electrode, for example, a paste or the like in which fine particles made of materials such as Sn, Ag, Ni, Al, Cu, and carbon and a binder such as epoxy and PVDF are mixed can be used to reduce pressure and reduce contact resistance. From the viewpoint, it is preferable to use Sn, Ag, or Ni.
  • the buffer electrode can be formed by, for example, screen printing.
  • the metal foil 14 may be provided with an opening. As shown in FIG. 7, by providing the opening 141 in the metal foil 14, the back surface sealing material 16 flows to the back surface of the cell 13 through the opening 141, so that the adhesion can be improved.
  • the sealing material 16 may flow not only immediately above the opening 141 but also around the opening 141, and the sealing material 165 may flow between the metal foil 14 and the back transparent electrode layer 8 (or the buffer electrode 9). is there.
  • the diameter of the opening 141 of the metal foil 14 is preferably 100 to 2000 ⁇ m, more preferably 200 to 1500 ⁇ m, and still more preferably 400 to 900 ⁇ m. If the diameter of an opening is 100 micrometers or more, since the sealing material 16 can pass an opening easily, adhesiveness with a cell is improved. If the diameter of the opening is 2000 ⁇ m or less, excessive inflow of the sealing material 16 between the metal foil 14 and the cell 13 can be prevented, and the contact area between the metal foil and the back surface of the cell can be maintained.
  • the distance between the closest openings is preferably 5 to 100 mm, more preferably 6 to 26 mm. If the distance between the openings is in the above range, the contact area between the metal foil 14, the back surface transparent electrode layer 8 and the buffer electrode 9 can be secured while maintaining good adhesion between the sealing material 16 and the back surface side of the cell 13. .
  • the metal foil 14 disposed so as to be in contact with the back surface of the cell 13 has a role as a metal electrode for flowing a current in an in-plane direction on the back surface of the solar cell.
  • the metal foil 14 can also be used for interconnection between adjacent cells.
  • connection member 12 such as a tab wire is connected to the light-receiving surface metal electrode 1.
  • the light-receiving surface metal electrode 1 and the connection member 12 can be electrically connected via a solder, a conductive adhesive, a conductive film, or the like.
  • One end of the connection member 12 connected to the light receiving surface metal electrode is connected to a metal foil 14 disposed in contact with an adjacent cell.
  • FIG. 8A is a plan view of the light receiving surface of the solar cell module in which the connecting member 12 connected to the light receiving surface metal electrode 1 is connected to the protruding portion 149 of the metal foil 14 disposed in contact with the adjacent cell.
  • FIG. 8B is a plan view of the back surface of the module.
  • the cells 131 and 132 included in this module have a rectangular shape or a substantially rectangular shape in plan view.
  • the substantially rectangular shape is a shape in which rectangular corners are chamfered, and is also referred to as a semi-square type.
  • the metal foil 14 that is in contact with the back surface of one of the two adjacent cells 131 and 132 is arranged to have a protruding portion 149 that protrudes from the other cell 132 side.
  • the metal foil 14 is only in contact with the back surface of the cell in a non-adhered state, and no adhesive member is used. For this reason, the module characteristics are hardly deteriorated due to the temperature change, and the reliability is excellent. Further, since there is no need to connect an interconnector to the back surface of the cell, the cell interconnection work can be simplified and the module productivity can be improved.
  • the metal foil 14 is disposed on the inner side of the periphery of the cell and is not covered with the metal foil. These cells are preferably exposed. That is, it is preferable that the peripheral edge of the metal foil is present inside the peripheral edge of the cell except for the protruding portion 149 for connection to the adjacent cell.
  • the reflected light can enter the cell from the exposed portion on the back surface of the cell, and the light utilization efficiency of the module is improved.
  • the width W of the exposed portion on the back surface of the cell is preferably about 0.3 to 2 mm, and more preferably about 0.5 to 1.5 mm.
  • modularization is performed by placing a sealing material on both sides of the solar cell string and performing sealing. At the time of interconnection, alignment between each cell and the metal foil and relative alignment between a plurality of cells are performed.
  • FIG. 10A is a plan view of the wiring sheet 150 in which the metal foil 14 is fixed on the sheet-like insulating member 15, and FIG. 10B is a cross-sectional view taken along the line A1-A2.
  • FIG. 11 is a plan view showing a state in which cells are placed on the surface of the metal foil fixed to the wiring sheet on the side opposite to the surface fixed to the insulating member.
  • FIG. 12A is a plan view showing a state in which the light receiving surface metal electrodes (bus bar electrodes) and metal foils of two adjacent cells are interconnected by the connecting member 12.
  • FIG. 12B is a cross-sectional view taken along line B1-B2.
  • FIG. 13 is a schematic cross-sectional view of a module in which cells are interconnected using a wiring sheet.
  • the insulating member 15 can support a metal foil, and its material and thickness are not particularly limited as long as it has heat resistance at the laminating temperature (for example, 120 to 150 ° C.) at the time of sealing.
  • the insulating member 15 may be light transmissive, light absorptive, or light reflective. In the case of using a light-reflecting back sheet, the insulating member 15 preferably has light transmittance. From the viewpoint of transparency and material cost, a PET (polyethylene terephthalate) resin sheet is preferably used as the insulating member 15.
  • a plurality of metal foils 14 corresponding to the number of cells included in one module are fixed on the insulating member 15.
  • the insulating member 15 and the metal foil 14 are not particularly limited, and the metal foil can be fixed by, for example, static electricity, an adhesive, or fusion.
  • the metal foil is preferably fixed on the insulating member with a low-tack adhesive.
  • the insulating member 15 when the opening 141 is provided in the metal foil 14, the insulating member 15 preferably has a first type opening 151 at a position corresponding to the opening of the metal foil.
  • the “position corresponding to the opening of the metal foil” means a position where the opening is provided in the metal foil in contact with the back surface of the cell.
  • the back sheet 17, the back surface sealing material 16, the insulating member 15, the metal foil 14, and the cell 13 are sequentially arranged from the back surface side.
  • the back surface is provided via the first type opening 151 of the insulating member 15 and the opening 141 of the metal foil 14. Since the sealing material 16 flows on the back surface of the cell 13, the adhesion can be improved.
  • the diameter of the first type opening 151 provided in the insulating member 15 is preferably smaller than the diameter of the opening 141 of the metal foil 14.
  • the inflow pressure of the sealing material is relieved at the opening of the metal foil. Therefore, excessive inflow of the sealing material 16 between the metal foil 14 and the cell 13 is suppressed, and the contact area between the metal foil and the back surface of the cell can be maintained. Further, in the region where the opening is provided in the metal foil and the insulating member is not provided with the first type opening, the back surface of the cell 3 and the insulating member 15 are bonded via the sealing material 16.
  • the diameter of the first type opening 151 of the insulating member 15 is more preferably about 30 to 80% of the diameter of the opening 141 of the metal foil 14, and more preferably 30 to 60%.
  • the diameter of the first type opening 151 is preferably 270 to 1000 ⁇ m, more preferably 300 to 700 ⁇ m.
  • the insulating member 15 preferably has a second type opening 152 in a region where the metal foil 14 is not disposed, that is, a position corresponding to a gap between adjacent cells (see FIG. 13).
  • a second type opening 152 in a region where the metal foil 14 is not disposed, that is, a position corresponding to a gap between adjacent cells (see FIG. 13).
  • the diameter of the second type opening 152 of the insulating member 15 provided in the region where the metal foil is not disposed is preferably 270 to 1000 ⁇ m, and more preferably 300 to 700 ⁇ m.
  • the cells are arranged on the metal foil 14 of the wiring sheet.
  • the alignment between the cell 13 and the metal foil 14 and the relative alignment between the plurality of cells are simultaneously performed. Therefore, alignment work can be simplified and module productivity can be improved.
  • no cell is arranged on the metal foil 14 in a portion where interconnection with an adjacent cell is performed. That is, the cells 13 are arranged so that the metal foil 14 has a protruding portion 149 that protrudes from the cell arrangement region.
  • FIGS. 12A and 12B By connecting the connection member 12 to the light-receiving surface metal electrode 1 of the cell 13 and the protrusion 149 of the metal foil 14, a solar cell string in which a plurality of cells are connected in series is formed as shown in FIGS. 12A and 12B. Is done.
  • FIG. 12A three solar cell strings in which three cells are connected in the x direction are arranged in the y direction, and adjacent solar cell strings are connected by lead wires 22.
  • a lead wire 21 for taking out an electric current is connected to the cell at the end.
  • connection member 12 is connected to the bus bar electrode 112 on the light receiving surface.
  • the connection member 12 and the bus bar electrode 112 can be electrically connected using solder, a conductive adhesive, a conductive film, or the like.
  • solder, a conductive adhesive, a conductive film, or the like can be used for electrical connection between the connection member 12 and the bus bar electrode 112.
  • the metal foil 4 and the connection member 12 are also connected by soldering.
  • the solder fusion part 125 is formed in the connection part (interconnection location) with the connection member on the metal foil 4.
  • the insulating member When the connection member 12 is connected to the metal foil 4 by soldering or the like to perform the interconnection, the insulating member may be melted or deformed by heating.
  • the heating temperature at the time of interconnection exceeds the heat resistance temperature of the insulating member, so that the insulating member is likely to melt and deform.
  • the insulating member 15 is a region including a position corresponding to the interconnection location, that is, a location corresponding to a location where the metal foil 4 and the connection member 12 overlap and its position. It is preferable that a third type opening 153 is provided in the periphery.
  • the third type opening 153 is provided in and around the interconnection location, melting and deformation of the insulating member due to the temperature rise of the insulating member during the interconnection can be prevented.
  • soldering or the like can be performed by heating from the back side through the third type opening.
  • the opening 153 is provided, even if a connection failure location occurs during the interconnection by heating from the light receiving surface side, it is easy to re-solder the connection failure location.
  • the size of the third type opening of the insulating member is not particularly limited, but the opening is preferably larger than the interconnection location.
  • the third type opening 153 is preferably provided so as to straddle a region where the metal foil 4 is disposed and a region where the metal foil is not disposed.
  • 10 to 12 illustrate a circular third type opening, but the shape of the third type opening is not limited to a circle.
  • the third type opening is provided so as to extend in the direction (y direction) orthogonal to the interconnection direction along the end of the region where the metal foil is provided (the protruding portion of the metal foil). May be.
  • thermocompression bonding is performed in a state where a sealing material and a protective material are disposed and laminated on the light receiving surface side and the back surface side of the solar cell string, respectively.
  • the sealing material flows between the cells and also at the end of the module, and sealing is performed. If the insulating member 15 and the metal foil 14 are provided with openings, the sealing material also flows into the back surface of the cell 13 through the openings as shown in FIG. For this reason, the cell and the sealing material are in close contact with each other, and entry of moisture and the like is suppressed. Therefore, a highly reliable solar cell module can be obtained.
  • a 6-inch n-type single crystal silicon substrate having an incident plane of (100) and a thickness of 200 ⁇ m was washed in acetone, and then immersed in a 2 wt% HF aqueous solution for 5 minutes to remove the silicon oxide layer on the surface. Then, rinsing with ultrapure water was performed twice.
  • This substrate was immersed in a 5/15 wt% KOH / isopropyl alcohol aqueous solution maintained at 75 ° C. for 15 minutes. Then, it was immersed in a 2% by weight HF aqueous solution for 5 minutes, rinsed with ultrapure water twice, and dried at room temperature.
  • AFM atomic force microscope
  • the textured single crystal silicon substrate is introduced into a CVD apparatus, an i-type amorphous silicon layer is formed as a light-receiving surface intrinsic silicon layer on the light-receiving surface, and a p-type non-conductive layer is formed thereon as a light-receiving surface conductive silicon layer.
  • a crystalline silicon layer was formed to a thickness of 5 nm.
  • the film formation conditions for the light-receiving surface intrinsic silicon layer were a substrate temperature of 180 ° C., a pressure of 130 Pa, a SiH 4 / H 2 flow rate ratio of 2/10, and an input power density of 0.03 W / cm 2 .
  • the conditions for forming the p-type amorphous silicon layer are as follows: the substrate temperature is 190 ° C., the pressure is 130 Pa, the SiH 4 / H 2 / B 2 H 6 flow rate ratio is 1/10/3, and the input power density is 0.04 W / cm 2 .
  • the B 2 H 6 gas a gas obtained by diluting the B 2 H 6 concentration to 5000 ppm with H 2 was used.
  • the substrate was transferred to the sputtering chamber without being exposed to the atmosphere, and an ITO layer was formed to 120 nm as a light-receiving surface transparent electrode layer on the p-type amorphous silicon layer.
  • an ITO layer was formed to 120 nm as a light-receiving surface transparent electrode layer on the p-type amorphous silicon layer.
  • the sputtering target In 2 O 3 to which 10% of SnO 2 was added was used.
  • the substrate after forming the ITO layer on the light receiving surface was turned over and introduced into a CVD apparatus, and an i-type amorphous silicon layer was formed on the back surface of the silicon substrate as a backside intrinsic silicon layer with a thickness of 5 nm.
  • an n-type amorphous silicon layer having a thickness of 10 nm was formed as a back conductive silicon layer.
  • the film forming conditions for the n-type amorphous silicon layer were as follows: the substrate temperature was 180 ° C., the pressure was 60 Pa, the SiH 4 / PH 3 flow rate ratio was 1/2, and the input power density was 0.02 W / cm 2 .
  • As the PH 3 gas described above using a gas obtained by diluting PH 3 concentration to 5000ppm by H 2.
  • the substrate was transferred to the sputtering chamber without being exposed to the atmosphere, and an ITO layer was formed to a thickness of 100 nm as a back transparent electrode layer on the n-type amorphous silicon layer.
  • a solar cell was produced using the solar cell in-process product obtained as described above, and a plurality of solar cells were connected via an interconnector, and modularization was performed.
  • Example 1 (Formation of metal electrodes) A silver paste was screen-printed on the ITO layer on the light-receiving surface to form a grid-shaped light-receiving surface metal electrode composed of finger electrodes and bus bar electrodes as shown in FIG. 3B.
  • the solar cell was constructed such that the metal electrode was not provided on the back ITO layer, and the back transparent electrode layer was the outermost surface.
  • a metal foil (copper foil having a thickness of 36 ⁇ m) was cut into a rectangle and brought into contact with the ITO layer on the back surface of the solar cell.
  • the metal foil has a protruding portion exposed outside the end of the cell on the side where the interconnection with the adjacent cell is present, and the end of the metal foil is located on the other three sides rather than the end of the solar cell. It arrange
  • connection member in which a strip-shaped copper foil having a width of 1.5 mm and a thickness of 200 ⁇ m was covered with solder was used.
  • Soldering iron heated to 360 ° C. with three connecting members arranged at equal intervals in contact with the bus bar electrode on the light receiving surface and the protruding portion of the metal foil arranged in contact with the back surface of the adjacent cell was pressed to make electrical connection between adjacent cells to form a solar cell string in which nine solar cells were connected in series.
  • Six solar cell strings (total of 54 solar cells) were connected in series to produce a string assembly.
  • Example 2 (Formation of metal electrodes) A grid-like metal electrode was formed on the ITO layer on the light receiving surface in the same manner as in Example 1. Further, a dot-shaped metal electrode (buffer electrode) having a diameter of 30 to 70 ⁇ m was formed on the ITO layer on the back surface by screen printing. The dot-shaped metal electrodes were arranged in a triangular lattice pattern with an interval of 1 mm.
  • Example 3 A wiring sheet in which 54 (9 ⁇ 6) metal foils were arranged and bonded together on a PET film was used.
  • openings were provided in a square lattice pattern with an interval of 25 mm in a region where the PET film and the metal foil overlap.
  • the diameters of the openings provided in the PET film and the metal foil were both 300 ⁇ m.
  • a cell provided with a dot-like buffer electrode on the back surface is disposed in the same manner as in Example 2, and the connection member is soldered to the bus bar electrode on the light receiving surface and the protruding portion of the metal foil, thereby achieving interconnection. Carried out.
  • Example 4 A wiring sheet having a metal foil opening with a diameter of 800 ⁇ m was used. Other than that was carried out similarly to Example 3, and produced the solar cell module.
  • Example 5 In Example 5, in addition to the region where the metal foil is disposed, the PET film of the wiring material is connected to the connection member and the metal foil (interconnection location), and the gap between the cells where the metal foil is not provided. The area also had an opening. The opening of the interconnection location is provided so as to surround the interconnection location, and the opening has reached the outside of the end of the region where the metal foil is disposed. Soldering members were soldered to the metal foil disposed on the opening, and interconnection was performed (see FIG. 13). Other than that was carried out similarly to Example 4, and produced the solar cell module.
  • Example 6 A metal foil cut out in a size larger than that in Example 1 was used. The metal foil was disposed so as to protrude about 0.5 mm outward from the end portion of the cell even in three sides other than the side where the interconnection with the adjacent cell was performed. Other than that was carried out similarly to Example 1, and produced the solar cell module.
  • Example 1 A grid-like metal electrode was formed on the ITO layer on the light receiving surface in the same manner as in Example 1. Further, a grid-like metal electrode was formed on the back ITO layer. The number of bus bar electrodes on the back surface side is the same (three) as that on the light receiving surface side, and the number of finger electrodes is three times that on the light receiving surface side. A metal foil was placed in contact with the back surface of the solar cell, the bus bar electrode of the back surface grid electrode and the metal foil were bonded using a conductive adhesive, and both were fixed. Other than that was carried out similarly to Example 1, and produced the solar cell module.
  • Comparative Example 2 Similarly to Comparative Example 1, grid-like metal electrodes were formed on both the light receiving surface and the back surface. Instead of the conductive adhesive of Comparative Example 1, an epoxy insulating adhesive was used to bond the bus bar electrode on the back surface and the metal foil. An epoxy adhesive was applied to the entire surface of the metal foil other than the protrusions, and the metal electrode was bonded to the metal foil by pressure bonding to the back surface of the solar cell in a heated state of about 150 to 160 ° C. In this example, the metal electrode (bus bar electrode and finger electrode) having a convex structure with respect to the back transparent electrode layer breaks through the epoxy resin layer by pressure bonding, and the surrounding epoxy is in contact with the metal electrode and the metal foil. Since the resin is cured, the metal electrode and the metal foil are bonded together in a contact state.
  • an epoxy insulating adhesive was used to bond the bus bar electrode on the back surface and the metal foil.
  • An epoxy adhesive was applied to the entire surface of the metal foil other than the protrusions, and the metal
  • Comparative Example 3 Similarly to Comparative Example 1, grid-like metal electrodes were formed on both the light receiving surface and the back surface. Without using the metal foil, the bus bar on the light receiving surface and the bus bar on the back surface of the adjacent cell were solder-connected to the connection member to make electrical connection between the adjacent cells. Other than that was carried out similarly to the comparative example 1, and produced the solar cell module.
  • Example 4 A solar cell module was produced in the same manner as in Example 1 except that the back transparent electrode layer and the metal foil were bonded with a conductive adhesive.
  • Example 5 As in Example 2, a dot-like buffer electrode was formed on the back transparent electrode layer, and the back transparent electrode layer, the buffer electrode, and the metal foil were bonded together with a conductive adhesive. Thus, a solar cell module was produced.
  • Examples 1 to 5 showed high initial output and retention after the cycle test.
  • the initial output was improved because the reflectivity was improved due to the presence of the gap between the metal foil and the back transparent electrode, and the current was increased.
  • the back electrode of the cell and the metal foil are in contact with each other in a non-adhered state, no stress is generated at the interface between the cell and the metal foil even when a dimensional change due to a temperature change occurs. It is considered that the retention after the cycle test was improved due to the suppression of the characteristic deterioration.
  • Comparative Example 1 and Comparative Example 2 in which the metal foil and the back surface grid electrode were bonded using an adhesive, the initial output and the retention after the temperature cycle test were lower than those in Comparative Example 3.
  • Comparative Example 1 it is considered that the initial output decreased due to light absorption by the conductive adhesive.
  • Comparative Example 2 the series resistance increased and the fill factor decreased. This is considered to be due to a decrease in the contact area between the back grid electrode and the metal foil due to the presence of the insulating adhesive.
  • Examples 3 to 5 showed a high retention rate after a cycle test. This is because the displacement of the metal foil due to thermal expansion during the temperature cycle test was suppressed by adhering the sealing material to the back transparent electrode layer of the cell through the opening provided in the metal foil and the insulating member. Conceivable.
  • Example 4 and Example 5 showed a high retention rate.
  • This is considered to be related to the fact that the diameter of the opening of the metal foil is larger than the diameter of the opening of the insulating member.
  • the opening of the metal foil is larger than the opening of the insulating layer, there is a region having an insulating member (a region where no opening is provided in the insulating member) under the opening of the metal foil. Therefore, a sealing material can be interposed between the insulating member and the back surface metal electrode layer, and the metal foil sandwiched between the insulating member and the back surface transparent electrode layer is fixed by the sealing material, and displacement is suppressed.
  • Example 6 using a metal foil having a size larger than that of the cell, the initial output was slightly reduced as compared with Example 1. This is because, among the light reflected in the module, the light reflected by the back sheet and reaching the end of the cell is blocked by the metal foil and cannot enter the cell, so the current value has decreased. . In Examples 1 to 5, since the end of the metal foil is arranged so as to be located inside the cell except for the protruding portion for interconnection, light is efficiently collected and the current value is It is considered that the output is relatively high and the output is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽電池モジュールは、太陽電池(13)、封止材(16)、および太陽電池(13)と封止材(16)との間に配置された可撓性の金属箔(14)を備える。太陽電池(13)は、単結晶シリコン基板の裏面側に、導電型シリコン層および裏面透明電極層を備える。金属箔(14)は、太陽電池(13)の裏面透明電極層に非接着状態で接触している。太陽電池モジュールにおいて、太陽電池(13)が封止材(16)により封止されることにより、金属箔(14)と裏面透明電極層との接触状態が保持されている。

Description

太陽電池モジュール
 本発明は、結晶シリコン太陽電池を備える太陽電池モジュールに関する。
 結晶シリコン基板を用いた結晶シリコン太陽電池は、変換効率が高く、既に太陽光発電システムとして広く一般に実用化されている。単結晶シリコン基板の表面に、単結晶シリコンとギャップの異なるシリコン系薄膜を設けて接合を形成した結晶シリコン太陽電池はヘテロ接合太陽電池と称され、結晶シリコン太陽電池の中でも特に変換効率が高い。
 結晶シリコン太陽電池では、受光面側および裏面側に設けられた金属電極により、結晶シリコン内で発生したキャリアを収集する。ヘテロ接合太陽電池は、シリコン系薄膜と金属電極の間に、透明導電性酸化物(TCO)等の透明電極層を備える。金属電極で収集されたキャリアは、金属電極に接続された帯状のインターコネクタを介して外部に取り出される。
 特許文献1は、太陽電池の裏面側のパターン状の金属電極(Agペースト電極)または透明電極層上に、導電性接着剤を介して剛性の高い金属板または金属箔を貼り付けることにより、搬送時の外力や封止プロセスにおける応力等による破損を抑制できることを開示している。特許文献2は、太陽電池の裏面側にインターコネクタを接続した後、裏面の全面を導電性シートで覆うことにより、直列抵抗を低減可能であり、インターコネクタの厚みを低減できるために、太陽電池の反りや割れを抑制できることを開示している。
特開2007-201331号公報 特開2005-167158号公報
 結晶シリコン太陽電池の受光面および裏面に、導電性接着剤等を介して剛性部材やインターコネクタ等の金属部材を固定すると、結晶シリコンと金属部材との熱線膨張係数の相違等に起因して、モジュール化の際の加熱や実用時の温度変化等により、接着界面に応力が生じる。特許文献1および特許文献2のようなモジュール構造では、太陽電池の受光面および裏面の両面に金属部材が接着固定されているため、接着界面の応力の大きさや方向が表裏で相違し、セルの歪による反りや割れ、金属部材の剥離等が生じ易い。また、導電性接着剤を用いることによる、生産コストの上昇も問題となる。
 本発明は、温度変化による特性低下、セル割れ、インターコネクタの剥離等が生じ難く、信頼性に優れる太陽電池モジュールの提供を目的とする。
 本発明の太陽電池モジュールは、単結晶シリコン基板の裏面側に導電型シリコン層および裏面透明電極層が順に設けられた太陽電池、封止材、および太陽電池と封止材との間に配置された可撓性の金属箔を備える。金属箔は、太陽電池の裏面透明電極層に非接着状態で接触している。太陽電池が封止材により封止されることにより、金属箔と裏面透明電極層との接触状態が保持されている。
 金属箔は、少なくとも、裏面透明電極層と接触する部分が、Sn、Ag、Ni、InおよびCuからなる群から選択される少なくとも一種から構成されていることが好ましい。金属箔の厚みは、4~190μmが好ましい。
 金属箔には複数の開口が設けられ、封止材が前記開口を介して太陽電池に接していることが好ましい。金属箔に設けられた開口の直径は好ましくは100μm~2000μmであり、最近接の開口同士の間隔は好ましくは5mm~100mmである。
 太陽電池の裏面透明電極層上には、複数のドット状緩衝電極が離間して存在していてもよい。太陽電池の裏面側の表面において、緩衝電極の存在する領域の面積は、裏面透明電極層が露出している領域の面積の1%未満が好ましい。太陽電池の裏面にドット状緩衝電極が設けられている場合、金属箔は、裏面透明電極層および緩衝電極と非接着状態で接触して電気的に接続されていることが好ましい。
 太陽電池が受光面にパターン状の金属電極を備えている場合、隣接する2つの太陽電池の裏面電極と受光面金属電極とを電気的に接続することにより、インターコネクションが行われる。隣接する2つの太陽電池は、一方の太陽電池の裏面透明電極に接する金属箔と、他方の太陽電池の受光面の金属電極とが、接続部材に接続されることにより、電気的に接続される。
 絶縁部材上に金属箔が固定された配線シートを用いて、太陽電池のインターコネクションを行ってもよい。金属箔に複数の開口が設けられている場合、絶縁部材は、金属箔の開口に対応する位置に開口部を有することが好ましい。この形態では、絶縁部材に設けられた開口部および金属箔に設けられた開口を介して、封止材が太陽電池に接していることが好ましい。絶縁部材の開口部の直径は、金属箔に設けられた開口の直径よりも小さいことが好ましい。
 本発明の太陽電池モジュールでは、太陽電池の裏面側に非接着状態で接する金属箔を介してインターコネクションが行われるため、温度変化が生じた場合でも応力歪が生じ難く、温度信頼性に優れる。また、裏面側の金属電極材料の使用量が低減するため、コスト削減にも寄与する。
一実施形態の太陽電池モジュールの断面図である。 一実施形態の太陽電池の断面図である。 受光面金属電極のパターンの一例を示す平面図である。 受光面金属電極のパターンの一例を示す平面図である。 太陽電池の裏面に非接着状態で金属箔が接している状態を表す概念図である。 緩衝電極が設けられた太陽電池の平面図である。 緩衝電極が設けられた太陽電池を備える太陽電池モジュールの断面である。 開口が設けられた金属箔を備える太陽電池モジュールの断面図である。 太陽電池モジュールの受光面の平面図である。 太陽電池モジュールの裏面の平面図である。 太陽電池の裏面からの光取り込みの様子を説明する概念図である。 太陽電池のインターコネクションに用いられる配線シートの平面図である。 太陽電池のインターコネクションに用いられる配線シートの断面図である。 配線シート上に太陽電池が配置された状態を表す断面図である。 配線シートにより接続された太陽電池ストリングの平面図である。 配線シートにより接続された太陽電池ストリングの断面図である。 一実施形態の太陽電池モジュールの断面図である。
 図1は、本発明の一実施形態に係る太陽電池モジュール構造の模式図である。太陽電池モジュール(以下、「モジュール」と記載する場合がある)は、封止材により太陽電池(以下「セル」と記載する場合がある)を封止した構成を有する。図1に示すモジュールは、受光面側から、受光面保護材10、受光面封止材11、接続部材12、セル13、金属箔14、裏面封止材16およびバックシート17を備える。
 封止材11,16としては、EVA(エチレンビニルアセテート)、ポリオレフィン等の樹脂が用いられる。これらの樹脂を加熱溶融させ、流動させることにより、隣接するセル間やモジュールの端部に封止材が流動してモジュール化が行われる。
 セルの受光面側に配置される受光面保護材10は光透過性であり、その材料としては、ガラス基板(青板ガラス基板や、白板ガラス基板)、ポリフッ化ビニルフィルム(例えば、テドラーフィルム(登録商標))等のフッ素樹脂フィルムやポリエチレンテレフタレート(PET)フィルム等の有機フィルムが例示される。機械強度、光線透過率、耐湿信頼性およびコスト等の点から、白板ガラス基板が特に好ましい。
 セルの裏面側に配置されるバックシート17は、光透過性、光吸収性および光反射性のいずれでもよい。光透過性のバックシートとしては、受光面保護材の材料として上述したものが好ましく用いられる。光反射性のバックシートとしては、金属色または白色等を呈するものが好ましく、白色樹脂フィルムや、樹脂フィルム間にアルミニウム等の金属箔を挟持した積層体等が好ましく用いられる。光吸収性のバックシートとしては、例えば、黒色樹脂層を含むものが用いられる。
 セル13の裏面側では、セル13と裏面封止材16との間に、金属箔14が配置されている。金属箔14は、セル13の裏面に非接着状態で接触することにより、セルと電気的に接続されている。モジュール化前はセル13と金属箔14とは着脱可能に接触しており、モジュールにおいては、セルが封止材により封止されることにより、金属箔とセルとの接触状態が保持されている。
 図2に結晶シリコン太陽電池の断面模式図を示す。結晶シリコン太陽電池13は、単結晶シリコン基板5の裏面側に、裏面導電型シリコン層7および裏面透明電極層8を有する。単結晶シリコン基板5と裏面導電型シリコン層7との間には、裏面真性シリコン層6が設けられていることが好ましい。
 単結晶シリコン基板5の受光面側には、受光面真性シリコン層4、受光面導電型シリコン層3、および受光面透明電極層2が形成されていることが好ましい。受光面導電型シリコン層3は、裏面導電型シリコン層7と逆の導電型を有する。すなわち、受光面導電型シリコン層3および裏面導電型シリコン層7は、一方がp型であり、他方がn型である。単結晶シリコン基板5の導電型はp型でもn型でもよい。ライフタイムの観点からn型単結晶シリコン基板を用いることが好ましい。
 単結晶シリコン基板5の表面には、高さ2~10μm程度の微細な凹凸(テクスチャ)構造が設けられることが好ましい。単結晶シリコン基板は、異方性エッチングにより、結晶シリコンの(111)面で構成されるピラミッド状の凹凸構造が形成される。凹凸構造は、太陽電池の受光面および裏面の両面に形成されていることが好ましい。
 図2に示す太陽電池は、裏面透明電極層8上に金属電極が設けられていない。受光面透明電極層2上には、受光面電極1としてパターン状の金属電極が設けられている。受光面金属電極1はセル13の受光面の面内方向に電流を輸送する働きを有するため、受光面の面内方向に二次元のパターンを有する。面内方向の二次元のパターンとしては、図3Aに示すように、平行に延在する複数のフィンガー電極111が設けられている形態や、図3Bに示すように、フィンガー電極111とフィンガー電極に直交するバスバー電極112とからなるグリッド状のパターンが挙げられる。図3Aに示すように、受光面金属電極1がフィンガー電極のみからなる場合、モジュールにおいては複数のフィンガー電極を横断するように接続部材が配置される。図3Bに示すようにバスバー電極を有するグリッド状の受光面金属電極が設けられている場合は、バスバー電極112上に接続部材が配置される。
 セル13の裏面には可撓性の金属箔14が配置される。モジュールにおいて、金属箔14はセルの裏面透明電極層8と非接着状態で接触している。本明細書において、金属箔と裏面透明電極層(および緩衝電極)とが「非接着状態で接触」するとは、典型的には押圧、吸着等の物理的外力を付与して、両者を接触させた状態を意味する。したがって、封止部材による封止前においては、金属箔とセルとは剥離可能に接触している。接着剤や溶融はんだ等により両者を接着させた状態や、印刷、めっき、スパッタ等により金属電極を透明電極層上に形成した状態は、「非接着状態で接触」に該当しない。
 金属箔14は、導電性フィルム、はんだ、導電性ペースト等の導電性接着材料や、粘着テープ等の絶縁性接着材料を介して、部分的にセルの裏面に固定されていてもよい。部分的な固定とは、セル13と金属箔14との位置関係を固定するための仮止めであり、両者を密着積層させるものではない。そのため、金属箔が部分的にセルの裏面に固定された状態では、仮止め箇所以外は金属箔とセルとが非接着状態で接触している。金属箔をセルの裏面に部分的に固定する場合、仮止め箇所は1箇所あればよい。封止等の作業時に金属箔がめくれる等の不具合を抑制するためには、2箇所以上で仮止めを行うことが好ましい。また、後に詳述するように、絶縁性の支持基材上に金属箔を固定してもよい。この場合は、セルと金属箔との仮止めが不要となり、モジュール化の作業性を向上できる。
 金属箔14の材料としては、裏面透明電極層との接触抵抗が低い材料、または柔軟な金属が好ましく用いられる。接触抵抗が低い金属としては、Ag、Ni、Au等が好ましく、柔軟な金属としてはSn、Cu、In、Al等が好ましい。金属箔14は、単層でもよく、複数の金属層が積層されたものでもよい。金属箔が単層である場合は、Sn,Ag,Ni,InおよびCuからなる群から選択される少なくとも一種の金属を含む金属箔を用いることが好ましい。中でも、反射率が高く、低コストである点から、金属箔14として銅箔を使用することが好ましい。複数の金属層が積層された金属箔は、裏面透明電極層との接触面に、Sn、Ag、Ni、InおよびCuからなる群から選択される少なくとも一種から構成される金属層を用いることが好ましい。例えば、銅箔の表面に、裏面透明電極層とのコンタクト層として、Ag等の接触抵抗の低い金属層を設けた金属箔を用いてもよい。
 金属箔14の厚みは、4~190μmが好ましく、10~100μmがより好ましく、15~50μmが特に好ましい。金属箔の厚みが4μm以上であれば、金属箔自身の電気抵抗の上昇を抑制できる。厚みが190μm以下であれば、金属箔が可撓性を有し、セルの表面形状に追随できるため、局所的な抵抗の増大を抑制できる。上記の材料および厚み範囲の金属箔を使用することにより、裏面透明電極層との均一な接触ならびに金属箔の適度な強度および可撓性を確保できる。
 図1のモジュールでは、受光面保護材10とバックシート17の間の空間が、封止材11、16で満たされている。セル13の裏面に金属箔14を配置した状態で封止を行うことにより、セルの裏面透明電極層と金属箔との接触状態が保持される。また、封止材からの外力によって、金属箔を固定することにより、金属箔と裏面透明電極層とを均一に接触させることができる。セルと金属箔とが非接着状態であるため、界面での応力が緩和される。そのため、セル割れや歪による特性低下が抑制され、信頼性の高いモジュールが得られる。
 金属箔と透明電極とを接触させた状態において、裏面側表面の一部には、金属箔と透明電極との間に空隙部が存在してもよい。図4は、シリコン基板の裏面に凹凸が設けられたセル13の裏面透明電極層8上に、非接着状態で金属箔14が接しているモジュールの裏面側の拡大図である。
 セルの裏面側に凹凸構造が設けられている場合、凹凸構造の頂点部分(凸部)が金属箔と接触して、電気的なコンタクトが得られる。凹凸構造の頂点およびその周辺の裏面透明電極層と金属箔とをコンタクトさせる場合、凹凸サイズが小さく、所定面積における頂点の数(密度)が大きいことが好ましい。
 セルの裏面に凹凸構造が設けられている場合、裏面透明電極層8と金属箔14で囲まれた領域は、封止材が充填されずに空隙となっている。この空隙部18は、封止前は気体(空気)が充填され、封止後は真空に近い状態となっている。封止後は、この空隙部18は負圧状態であるため、金属箔14と裏面透明電極層8との接触状態が保持される。
 単結晶シリコンは近赤外光の吸光係数が小さいため、受光面からセルに入射した光のうち950nm以上の長波長光の大部分は、単結晶シリコン基板では吸収されずに、裏面側に到達する。透明電極層を構成する金属酸化物材料の屈折率は2程度であるのに対して、空隙部の屈折率は1~1.05程度であるため、セルの裏面に到達した光の一部は裏面透明電極層/空隙の界面で反射され、シリコン基板に再入射する。残りの光は裏面透明電極層/空隙の界面を透過し、空隙/金属膜の界面で反射され、再度、裏面透明電極層/空隙の界面を通過し、セルに再入射する。
 裏面側透明電極の表面の投影面積の80%以上100%未満の領域において、透明電極と金属箔との間に空隙部が存在していることが好ましい。中でも裏面側での反射率を最大限に確保しつつ、金属箔との導電性を確保する観点から、裏面側透明電極の表面の投影面積の85%以上100%未満の領域に空隙部が存在していることがより好ましく、90%以上100%未満の領域に空隙部が存在していることが特に好ましい。
 「裏面側の透明電極の表面」とは、金属箔と接触させる前の状態で裏面透明電極が露出している領域を意味する。すなわち、該領域の80%以上100%未満が空隙部であり、残りの0%より大きく20%以下の領域が金属箔と接していることが好ましい。後述のように裏面側の透明電極上にドット状緩衝電極等の金属電極が設けられる場合は、金属電極が設けられていない領域が「裏面側の透明電極の表面」に該当する。
 本実施形態の効果の一つとして、裏面透明電極層上に金属電極が直接製膜されていないため、裏面側の透明電極層/金属電極の界面でのプラズモン吸収が低減されることが挙げられる。
 一般的はヘテロ接合太陽電池では、裏面側の透明電極層/金属電極の界面におけるプラズモン吸収を低減するために、裏面側の透明電極層の膜厚を80~100nmに調整し、シリコン/裏面透明電極層の界面での反射を最大化している。一方、本実施形態のように裏面側の金属電極として金属箔を物理的に接触させたものを使用することにより、裏面側の透明電極層/金属電極の界面におけるプラズモン吸収を抑制し、裏面透明電極層の膜厚を20nm程度にまで大幅に低減できる。裏面透明電極層の膜厚を小さくすることにより、裏面透明電極層による光吸収が低減するため、光利用効率をさらに向上できる。
 裏面透明電極層の膜厚が小さい場合は、凹凸の頂点への機械的ダメージが生じ易くなる傾向がある。セルへの機械的ダメージを抑制するために、ドット状の緩衝電極9を裏面透明電極層8上に設けてもよい。図5は、ドット状の緩衝電極が設けられたセルの裏面の拡大図である。前述のように、受光面金属電極1は、面内の少なくとも一方向に延在して二次元状に設けられるのに対して、裏面に設けられる緩衝電極9は裏面の面内方向に電流を輸送する機能を必要としない。そのため、図5に示すように、複数の緩衝電極9は離間して存在している。金属箔14が、裏面透明電極層8および緩衝電極9と接触することにより、金属箔を介して、裏面透明電極層および複数の緩衝電極が電気的に接続される。
 図6は裏面透明電極層8上に緩衝電極9が設けられたセルを用いたモジュールの模式断面である。緩衝電極9を配置することにより、圧力を掛けた際に緩衝電極9と金属箔14とが最初に接触し、その後、緩衝電極9が存在しない裏面透明電極層8上に金属箔14が押し付けられる。最初に緩衝電極9が金属箔14の圧力を受け止めるため、緩衝電極9が設けられていない領域における、裏面透明電極層8と金属箔14との接触圧力が均一化される。そのため、裏面透明電極層8へ局所的な圧力が加わることが抑制され、機械的なダメージを低減できる。
 セルの裏面側の表面において、緩衝電極9が設けられた領域の面積は、緩衝電極が設けられずに裏面透明電極層8が露出している領域の面積の1%未満であることが好ましい。すなわち、裏面透明電極層8の露出領域の面積をA1、ドット状の緩衝電極の総面積をA2としたとき、A2/A1は0.01未満が好ましい。A2/A1は、0.002~0.007がより好ましい。緩衝電極の形成面積がこの範囲であれば、低いコンタクト抵抗と適度な圧力分散が期待できる。また、グリッド状の金属電極を形成する場合に比べて、Agペースト等の電極材料の使用量が少ないため、製造コストを削減できる。
 緩衝電極の高さは、セルの裏面の凹凸よりも大きいことが好ましく、6~30μm程度が好ましい。材料コストの低減と緩衝能力とのバランスから、緩衝電極9の高さは、10~25μm程度がより好ましい。緩衝電極の直径は10~100μm程度が好ましく、材料の利用効率およびパターニング均一性の観点から30~60μm程度がより好ましい。最近接の緩衝電極間の間隔dは0.5~3mm程度が好ましい。緩衝電極のサイズや間隔が上記範囲であれば、機械的ダメージが低減され、モジュール化に伴う開放電圧(Voc)の低下が抑制される傾向がある。また、圧力が均一化されることに起因して接触抵抗も均一化され、直列抵抗が低下し、モジュールの曲線因子(FF)が向上する傾向がある。
 緩衝電極の材料としては、例えば、Sn、Ag、Ni、Al、Cu、カーボン等の材料からなる微粒子とエポキシ、PVDF等のバインダーとを混合したペースト等を使用でき、圧力緩和および接触抵抗低減の観点から、Sn、Ag、またはNiを用いることが好ましい。緩衝電極は、例えば、スクリーン印刷等により形成できる。
 金属箔14には開口が設けられていてもよい。図7に示すように、金属箔14に開口141を設けることにより、開口141を介して裏面封止材16がセル13の裏面に流動するため、密着性を向上できる。封止材16は、開口141の直上だけでなく、その周囲にも流動して、金属箔14と裏面透明電極層8(または緩衝電極9)との間に封止材165が流入する場合がある。
 金属箔14の開口141の直径は、100~2000μmが好ましく、200~1500μmがより好ましく、400~900μmがさらに好ましい。開口の直径が100μm以上であれば、封止材16が開口を容易に通過できるため、セルとの密着性が高められる。開口の直径が2000μm以下であれば、金属箔14とセル13との間への封止材16の過度の流入を防止し、金属箔とセルの裏面との接触面積を維持できる。
 最近接の開口同士の間隔は、5~100mmが好ましく、6~26mmがより好ましい。開口の間隔が上記範囲であれば、封止材16とセル13の裏面側の密着性を良好に保ちつつ、金属箔14と、裏面透明電極層8および緩衝電極9との接触面積を確保できる。
 上記の様に、セル13の裏面に接触するように配置された金属箔14は、太陽電池の裏面の面内方向に電流を流す金属電極としての役割を有している。金属箔14を、隣接するセル間のインターコネクションに利用することもできる。
 図1に示すモジュールでは、受光面金属電極1に、タブ線等の接続部材(インターコネクタ)12が接続されている。受光面金属電極1と接続部材12とは、はんだ、導電性接着剤、導電性フィルム等を介して電気的に接続可能である。受光面金属電極と接続された接続部材12の一端は、隣接するセルに接して配置された金属箔14に接続されている。
 図8Aは、受光面金属電極1に接続された接続部材12が、隣接するセルに接して配置された金属箔14の突出部149と接続された太陽電池モジュールの受光面の平面図である。図8Bはモジュールの裏面の平面図である。
 このモジュールに含まれるセル131,132は、平面視矩形状または略矩形状である。略矩形状とは、矩形の角が面取りされた形状であり、セミスクエア型とも称される。隣接する2つのセル131,132のうちの一方のセル131の裏面に接する金属箔14は、他方のセル132側に金属箔がはみ出している突出部149を有するように配置される。セル132の受光面に接続された接続部材12を、セル131の裏面に接する金属箔14の突出部149と接続することにより、2つのセルが電気的に接続される。
 シリコン基板とは熱膨張係数の異なる金属からなるインターコネクタがはんだや接着剤等を介してセルに固定されていると、温度変化等に起因して接着界面に応力が生じる。セルの両面にインターコネクタが接続されている場合は、応力の大きさや方向が表裏で異なるために歪が生じやすく、歪によるVocの低下、インターコネクタの剥離、応力によるセル割れ等が生じる場合がある。
 これに対して、図8Aおよび図8Bに示す形態では、セルの裏面側には金属箔14が非接着状態で接触しているのみであり、接着部材が用いられていない。そのため、温度変化に起因するモジュール特性の低下が生じ難く、信頼性に優れる。また、セルの裏面にインターコネクタを接続する必要がないため、セルのインターコネクション作業を簡素化して、モジュールの生産性を向上できる。
 矩形または略矩形のセルの4辺のうち、金属箔の突出部149存在する辺以外の3辺では、金属箔14がセルの周縁よりも内側に配置され、金属箔に覆われていない端部のセルが露出していることが好ましい。すなわち、金属箔の周縁は、隣接するセルとの接続のための突出部149以外は、セルの周縁よりも内側に存在することが好ましい。
 セル裏面の周縁部に、金属箔14が設けられていない露出部が存在する場合、図9に模式的に示すように、隣接するセル間の隙間に入射した光Lのバックシート17での反射光を、セル裏面の露出部からセル内に入射させることができ、モジュールの光利用効率が高められる。セル裏面の露出部の幅Wは、0.3~2mm程度が好ましく、0.5~1.5mm程度がより好ましい。
 複数のセルをインターコネクションして太陽電池ストリングを形成した後、太陽電池ストリングの両面に封止材を配置して封止を行うことにより、モジュール化が行われる。インターコネクションの際には、それぞれのセルと金属箔との位置合わせ、および複数のセルの相対的な位置合わせが行われる。
 複数の金属箔が絶縁性の支持体上に固定された配線シート150を用いることにより、位置合わせ作業を簡略化できる。図10Aは、シート状の絶縁部材15上に金属箔14が固定された配線シート150の平面図であり、図10Bは、A1‐A2線における断面図である。図11は、配線シートに固定された金属箔の、絶縁部材との固定面の反対側の面にセルを載置した状態を表す平面図である。図12Aは、隣接する2つのセルの受光面金属電極(バスバー電極)と金属箔とを接続部材12によりインターコネクションした状態を表す平面図である。図12Bは、B1‐B2線における断面図である。図13は、配線シートを用いてセルのインターコネクションを行ったモジュールの模式的断面図である。
 絶縁部材15は、金属箔を支持可能であり、封止時のラミネート温度(例えば120~150℃)での耐熱性を有するのであればその材料や厚みは特に限定されない。絶縁部材15は、光透過性、光吸収性および光反射性のいずれでもよい。光反射性のバックシートを用いる場合、絶縁部材15は光透過性を有することが好ましい。透明性および材料コストの観点から、絶縁部材15としては、PET(ポリエチレンテレフタレート)樹脂シートが好ましく用いられる。
 絶縁部材15上には、1つのモジュールに含まれるセルの数に対応する複数の金属箔14が固定されている。例えば、図10Aでは、1枚の絶縁部材15上に、9枚(3×3)の金属箔14が離間して配置されている。絶縁部材15と金属箔14との固定方法は特に限定されず、例えば、静電気、接着剤、融着等により金属箔を固定できる。特に、低粘着性の接着剤により、絶縁部材上に金属箔が固定されていることが好ましい。
 図10Aに示すように、金属箔14に開口141が設けられている場合、絶縁部材15は、金属箔の開口に対応する位置に、第一種開口部151を有することが好ましい。「金属箔の開口に対応する位置」とは、セルの裏面に接する金属箔に開口が設けられている位置を意味する。封止後のモジュールでは、図13に示すように、裏面側から、バックシート17、裏面封止材16、絶縁部材15、金属箔14およびセル13が順に配置されている。金属箔14の開口141に対応する位置に、絶縁部材15の第一種開口部151が設けられていれば、絶縁部材15の第一種開口部151および金属箔14の開口141を介して裏面封止材16がセル13の裏面に流動するため、密着性を向上できる。
 絶縁部材15に設けられた第一種開口部151の直径は、金属箔14の開口141の直径よりも小さいことが好ましい。絶縁部材の開口部よりも、金属箔の開口の方が大きい場合は、封止材の流入の圧力が金属箔の開口において緩和される。そのため、金属箔14とセル13との間への封止材16の過度の流入が抑制され、金属箔とセルの裏面との接触面積を維持できる。また、金属箔に開口が設けられ絶縁部材には第一種開口部が設けられていない領域では、セル3の裏面と絶縁部材15とが封止材16を介して接着される。これにより、絶縁部材とセルとの間の金属箔14が挟持して固定され、より確実に、セル3と金属箔14とを接触させることが可能となる。絶縁部材15の第一種開口部151の直径は、金属箔14の開口141の直径の30~80%程度がより好ましく、30~60%の直径がさらに好ましい。第一種開口部151の直径は、270~1000μmが好ましく、300~700μmがより好ましい。
 絶縁部材15は、金属箔14が配置されていない領域、すなわち隣接するセル間の隙間に対応する位置に第二種開口部152を有していることが好ましい(図13参照)。隣接するセル間の隙間に対応する位置に開口部が設けられていることにより、セルの裏面だけでなくセルの側面やセル間の隙間にも封止材が流入しやすく、より確実に封止を実施できる。金属箔が配置されていない領域に設けられる絶縁部材15の第二種開口部152の直径は、270~1000μmが好ましく、300~700μmがより好ましい。
 図11に示すように、配線シートの金属箔14上にセルを配置する。この作業により、セル13と金属箔14との位置合わせ、および複数のセルの相対的な位置合わせが同時に行われる。そのため、位置合わせ作業を簡略化し、モジュールの生産性を向上できる。
 図11では、隣接するセルとのインターコネクションが行われる部分では、金属箔14上にセルが配置されていない。すなわち、金属箔14がセル配置領域からはみ出している突出部149を有するように、セル13が配置されている。
 接続部材12を、セル13の受光面金属電極1および金属箔14の突出部149に接続することにより、図12Aおよび図12Bに示すように、複数のセルが直列接続された太陽電池ストリングが形成される。図12Aでは、x方向に3つのセルが接続された太陽電池ストリングがy方向に3つ並んでおり、隣接する太陽電池ストリング間はリード線22により接続されている。端部のセルには外部に電流を取り出すためのリード線21が接続されている。
 図12Bに示すように、接続部材12は、受光面のバスバー電極112と接続されている。前述のように、接続部材12とバスバー電極112(受光面金属電極)とは、はんだ、導電性接着剤、導電性フィルム等を用いて電気的に接続可能である。接続部材12とバスバー電極112との電気的接続にも、はんだ、導電性接着剤、導電性フィルム等を使用できる。接続作業を容易とするためには、金属箔と接続部材との接続を、受光面金属電極と接続部材との接続と同一の手法により実施することが好ましい。例えば、受光面金属電極1と接続部材12とをはんだ付けする場合は、金属箔4と接続部材12との接続もはんだ付けにより行うことが好ましい。図12Bでは、金属箔4上の接続部材との接続部分(インターコネクション箇所)に、はんだ融着部125が形成されている。
 金属箔4上にはんだ付け等により接続部材12を接続してインターコネクションを行う場合、加熱により絶縁部材の溶融や変形が生じる場合がある。特に、絶縁部材としてPET等の樹脂フィルムを用いる場合、インターコネクション時の加熱温度が、絶縁部材の耐熱温度を上回るため、絶縁部材の溶融や変形が生じやすい。インターコネクション時の熱に起因する不具合を防止するために、絶縁部材15は、インターコネクション箇所に対応する位置を含む領域、すなわち、金属箔4と接続部材12とが重なる箇所に対応する位置およびその周辺に、第三種種開口部153が設けられていることが好ましい。
 インターコネクション箇所およびその周辺に第三種開口部153が設けられていれば、インターコネクション時の絶縁部材の温度上昇に起因する絶縁部材の溶融や変形を防止できる。絶縁部材15に第三種開口部が設けられている場合は、第三種開口部を介して、裏面側から加熱することにより、はんだ付け等を実施できる。また、開口部153が設けられていれば、受光面側からの加熱によるインターコネクションの際に接続不良箇所が生じた場合でも、接続不良箇所の再はんだ作業が容易である。
 絶縁部材の第三種開口部の大きさは特に限定されないが、インターコネクション箇所よりも、開口が大きいことが好ましい。第三種種開口部153は、金属箔4が配置されている領域と金属箔が配置されていない領域に跨るように設けられていることが好ましい。図10~12では、円形状の第三種開口部が図示されているが、第三種開口部の形状は円形に限定されない。例えば、金属箔が設けられている領域(金属箔の突出部)の端部に沿って、インターコネクション方向と直交する方向(y方向)に延在するように第三種開口部が設けられていてもよい。
 配線シート上で複数のセルを接続して太陽電池ストリングを形成した後、太陽電池ストリングの受光面側および裏面側のそれぞれに封止材および保護材を配置して積層した状態で加熱圧着することにより、セル間やモジュールの端部にも封止材が流動して、封止が行われる。絶縁部材15および金属箔14に開口が設けられていれば、図12に示すように、開口を介してセル13の裏面にも封止材が流入する。そのため、セルと封止材が密着し、水分等の侵入が抑制される。そのため、信頼性の高い太陽電池モジュールが得られる。
 以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[ヘテロ接合太陽電池の作製]
 入射面の面方位が(100)で、厚みが200μmの6インチn型単結晶シリコン基板をアセトン中で洗浄した後、2重量%のHF水溶液に5分間浸漬して表面の酸化シリコン層を除去し、超純水によるリンスを2回行った。この基板を、75℃に保持した5/15重量%のKOH/イソプロピルアルコール水溶液に15分間浸漬した。その後、2重量%のHF水溶液に5分間浸漬し、超純水によるリンスを2回行い、常温で乾燥させた。原子間力顕微鏡(AFM)により単結晶シリコン基板の表面観察を行ったところ、両面に四角錐状のテクスチャ構造が形成されており、その算術平均粗さは2100nmであった。
 テクスチャ形成後の単結晶シリコン基板をCVD装置へ導入し、受光面に受光面真性シリコン層としてi型非晶質シリコン層を4nm製膜し、その上に受光面導電型シリコン層としてp型非晶質シリコン層を5nm製膜した。受光面真性シリコン層の製膜条件は、基板温度が180℃、圧力が130Pa、SiH/H流量比が2/10、投入パワー密度が0.03W/cmであった。p型非晶質シリコン層の製膜条件は、基板温度が190℃、圧力が130Pa、SiH/H/B流量比が1/10/3、投入パワー密度が0.04W/cmであった。上記のBガスとしては、HによりB濃度を5000ppmに希釈したガスを用いた。
 次に、基板を大気暴露することなくスパッタ室へ移送し、p型非晶質シリコン層上に受光面透明電極層としてITO層を120nm製膜した。スパッタリングターゲットはInへSnOを10%添加したものを用いた。
 受光面にITO層を製膜後の基板を裏返して、CVD装置へ導入し、シリコン基板の裏面に裏面真性シリコン層として、i型非晶質シリコン層を5nm製膜した。その上に、裏面導電型シリコン層としてn型非晶質シリコン層を10nm製膜した。n型非晶質シリコン層の製膜条件は、基板温度が180℃、圧力が60Pa、SiH/PH流量比が1/2、投入パワー密度が0.02W/cmであった。なお、上記のPHガスとしては、HによりPH濃度を5000ppmまで希釈したガスを用いた。
 次に、基板を大気暴露することなくスパッタ室へ移送し、n型非晶質シリコン層上に裏面透明電極層としてITO層を100nm製膜した。
 以下の実施例および比較例では、上記により得られた太陽電池仕掛品を用いて太陽電池を作製し、インターコネクタを介して複数の太陽電池を接続して、モジュール化を行った。
[実施例1]
(金属電極の形成)
 受光面のITO層上に、銀ペーストをスクリーン印刷し、図3Bに示すように、フィンガー電極およびバスバー電極からなるグリッド状の受光面金属電極を形成した。裏面のITO層上には金属電極を設けず、裏面透明電極層が最表面となるように太陽電池を構成した。
(インターコネクション)
 金属箔(厚さ36μmの銅箔)を矩形に切り出し、太陽電池の裏面のITO層に接触させた。金属箔は、隣接するセルとのインターコネクションを行う辺ではセルの端部よりも外側に露出した突出部が存在し、他の3辺では、太陽電池の端部よりも金属箔の端部が0.5mm内側に位置するように配置した。
 隣接するセル間のインターコネクションには、幅1.5mm、厚み200μmの帯状の銅箔をはんだで覆った接続部材を用いた。受光面のバスバー電極、および隣接するセルの裏面に接して配置された金属箔の突出部に、等間隔で配置した3本の接続部材を当接させた状態で360℃に加熱したはんだごてを押し当てることにより、隣接するセル間の電気的接続を行い、9枚の太陽電池が直列接続された太陽電池ストリングを形成した。6本の太陽電池ストリング(計54枚の太陽電池)を直列接続してストリング集合体を作製した。
(封止)
 受光面保護材として厚さ4mmの白板ガラス、受光面封止材および裏面封止材として厚さ400μmのEVAシート、バックシートとしてPETフィルムを準備し、2枚のEVAシートの間にストリング集合体を挟持して、150℃で20分間ラミネートを実施し、太陽電池モジュールを得た。
[実施例2]
(金属電極の形成)
 受光面のITO層上に、実施例1と同様にグリッド状の金属電極を形成した。さらに、裏面のITO層上に、スクリーン印刷により、直径30~70μmのドット状の金属電極(緩衝電極)を形成した。ドット状金属電極は、1mm間隔で三角格子状に配置した。
(インターコネクションおよび封止)
 実施例1と同様に、太陽電池の裏面に金属箔を配置してインターコネクションを行い、ストリング集合体を作製し、封止を行った。封止後のモジュールの断面を確認したところ、緩衝電極の配置周期で金属箔に変形が確認された。緩衝電極の周囲200μm~300μm以内の領域では、金属箔は裏面透明電極層に接触しておらず、それより離れた領域では、金属箔と裏面透明電極層との物理的接触が確認された。
[実施例3]
 PETフィルム上に54枚(9×6)の金属箔を並べて貼り合わせた配線シートを用いた。配線シートのPETフィルムおよび金属箔には、PETフィルムと金属箔とが重なる領域において、25mm間隔の正方格子状に開口が設けられていた。PETフィルムおよび金属箔に設けられた開口の直径は、いずれも300μmであった。この配線シート上に、実施例2と同様に裏面にドット状緩衝電極を設けたセルを配置して、受光面のバスバー電極および金属箔の突出部に接続部材をはんだ付けすることにより、インターコネクションを実施した。
[実施例4]
 金属箔の開口の直径が800μmである配線シートを用いた。それ以外は実施例3と同様にして太陽電池モジュールを作製した。
[実施例5]
 実施例5では、配線材のPETフィルムが、金属箔が配置された領域に加えて、接続部材と金属箔の接続箇所(インターコネクション箇所)、および金属箔が設けられていないセル間の隙間の領域にも開口部を有していた。インターコネクション箇所の開口部は、インターコネクション箇所を囲むように設けられており、金属箔が配置された領域の端部より外側に開口が達していた。この開口部上に配置された金属箔に、絶族部材をはんだ付けしてインターコネクションを実施した(図13参照)。それ以外は、実施例4と同様にして太陽電池モジュールを作製した。
[実施例6]
 実施例1よりも大きなサイズで切り出された金属箔を用いた。金属箔は、隣接するセルとのインターコネクションを行う辺以外の3辺においても、セルの端部よりも外側に約0.5mmはみ出して配置されていた。それ以外は実施例1と同様にして、太陽電池モジュールを作製した。
[比較例1]
 受光面のITO層上に、実施例1と同様にグリッド状の金属電極を形成した。さらに、裏面のITO層上もグリッド状の金属電極を形成した。裏面側のバスバー電極の本数は受光面側と同一(3本)であり、フィンガー電極の本数は受光面側の3倍とした。太陽電池の裏面に接するように金属箔を配置し、裏面グリッド電極のバスバー電極と金属箔とを導電性接着剤を用いて接着し、両者を固定した。それ以外は実施例1と同様にして太陽電池モジュールを作製した。
[比較例2]
 比較例1と同様に、受光面および裏面の両面にグリッド状の金属電極を形成した。比較例1の導電性接着剤に代えて、エポキシ系の絶縁性接着剤を用いて裏面のバスバー電極と金属箔とを接着した。突出部以外の金属箔の全面にエポキシ系接着剤を塗布し、150~160℃程度の加熱状態で太陽電池の裏面に圧着することにより、金属電極と金属箔とを接着した。この例では、裏面透明電極層に対して凸構造となっている金属電極(バスバー電極およびフィンガー電極)が、圧着によりエポキシ樹脂層を突き破り、金属電極と金属箔とが接触した状態で周囲のエポキシ樹脂が硬化するため、金属電極と金属箔とが接触状態で両者が接着される。
[比較例3]
 比較例1と同様に、受光面および裏面の両面にグリッド状の金属電極を形成した。金属箔を用いずに、受光面のバスバーと、隣接するセルの裏面のバスバーとを、接続部材にはんだ接続して、隣接するセル間の電気的接続を行った。それ以外は比較例1と同様にして、太陽電池モジュールを作製した。
[比較例4]
 裏面透明電極層と金属箔とを導電性接着剤により接着したこと以外は、実施例1と同様にして太陽電池モジュールを作製した。
[比較例5]
 実施例2と同様に、裏面透明電極層上にドット状緩衝電極を形成し、裏面透明電極層および緩衝電極と金属箔とを導電性接着剤により接着したこと以外は、実施例2と同様にして太陽電池モジュールを作製した。
[評価]
 実施例および比較例の太陽電池モジュールの初期出力特性を測定した後、JIS C8917に準じて温度サイクル試験を実施した。温度サイクルは、試験槽に太陽電池モジュールを導入した後、85℃で10分保持、80℃/分で-40℃まで降温、-40℃で10分間保持、および80℃/分で85℃まで昇温、を1サイクルとして、200サイクルを実施した。温度サイクル試験後の太陽電池モジュールの出力を測定し、太陽電池モジュールの初期出力に対する温度サイクル試験後の出力の比率(保持率)求めた。太陽電池モジュールの構成、初期発電特性、および温度サイクル試験後の保持率を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 金属部材を用いずに表裏の金属電極を接続部材により接続した比較例3と対比して、実施例1~5は、高い初期出力およびサイクル試験後保持率を示した。実施例1~5において、初期出力が向上したのは、金属箔と裏面透明電極との間の空隙の存在により反射率が向上し、電流が増大したことに起因すると考えられる。また、セルの裏面電極と金属箔とが非接着状態で接触しているため、温度変化による寸法変化が生じた場合でも、セルと金属箔との界面に応力が生じず、応力歪等に起因する特性低下が抑制されたことにより、サイクル試験後保持率が向上したと考えられる。
 一方、接着剤を用いて金属箔と裏面グリッド電極とを接着した比較例1および比較例2では、比較例3に比べて初期出力および温度サイクル試験後保持率が低い結果となっていた。比較例1では、導電性接着剤による光吸収が原因で、初期出力が低下したと考えられる。比較例2では、直列抵抗が増大しており、曲線因子が低下していた。これは、絶縁性接着剤が介在するために、裏面グリッド電極と金属箔の接触面積が減少したことに起因すると考えられる。
 表1にはデータを示していないが、比較例1および比較例2では、サイクル試験後に直列抵抗の上昇が確認された。これは接着剤によって熱膨張係数の異なる金属箔と太陽電池を接着したことにより、界面での応力が緩和されずに、局所的な剥離が生じたためと考えられる。
 実施例の中でも、実施例3~5は高いサイクル試験後保持率を示した。これは、金属箔および絶縁部材に設けられた開口を介して、封止材がセルの裏面透明電極層に接着することにより、温度サイクル試験中の熱膨張による金属箔の変位が抑制されたためと考えられる。
 特に実施例4および実施例5は高い保持率を示していた。これは金属箔の開口の直径が絶縁部材の開口の直径よりも大きいことに関連していると考えられる。金属箔の開口が絶縁層の開口よりも大きい場合は、金属箔の開口下に絶縁部材を有する領域(絶縁部材に開口が設けられていない領域)が存在する。そのため、絶縁部材と裏面金属電極層との間に封止材が介在可能であり、絶縁部材と裏面透明電極層との間に挟まれた金属箔が封止材により固定され、変位が抑制されることが一因として挙げられる。すなわち、実施例4および5では、封止材の介在により、セルと金属箔との相対的な位置を固定しつつ、セルと金属箔とは非接着状態で接触しているために、サイクル試験後保持率が向上したと考えられる。
 セルよりも大きいサイズの金属箔を使用した実施例6では、実施例1に比べて僅かに初期出力が低下していた。これは、モジュール内を反射する光のうち、バックシートで反射してセルの端部に到達する光が、金属箔で遮られてセルに入射できないために、電流値が低下したことに起因する。実施例1~5では、インターコネクションのための突出部以外では、金属箔の端部がセルの内側に位置するように配置されているため、光の回収が効率的に行われ、電流値が相対的に高くなり、出力が向上したと考えられる。
 1   受光面金属電極
 2   受光面透明電極層
 3   受光面導電型シリコン層
 4   受光面真性シリコン層
 5   単結晶シリコン基板
 6   裏面真性シリコン層
 7   裏面導電型シリコン層
 8   裏面透明電極層
 9   緩衝電極
 10  受光面保護材
 11  受光面封止材
 12  接続部材
 13  太陽電池
 14  金属箔
   141  開口
 15  絶縁部材
   151,152,153  開口部
 16  裏面封止材
 17.バックシート

 

Claims (15)

  1.  単結晶シリコン基板と、前記単結晶シリコン基板の裏面側に順に設けられた導電型シリコン層および裏面透明電極層とを備える太陽電池;
     前記太陽電池を封止する封止材;ならびに
     前記太陽電池の裏面透明電極層と前記封止材との間に配置された可撓性の金属箔、
     を備え、
     前記金属箔は、前記裏面透明電極層に非接着状態で接触しており、
     前記太陽電池が前記封止材により封止されることにより、前記金属箔と前記裏面透明電極層との接触状態が保持されている、太陽電池モジュール。
  2.  前記金属箔は、少なくとも、前記裏面透明電極層と接触する部分が、Sn、Ag、Ni、InおよびCuからなる群から選択される少なくとも一種から構成されている、請求項1に記載の太陽電池モジュール。
  3.  前記金属箔の厚みが、4~190μmである、請求項1または2に記載の太陽電池モジュール。
  4.  前記太陽電池の前記裏面透明電極層上に、複数のドット状緩衝電極が離間して存在しており、
     前記金属箔は、前記裏面透明電極層および前記緩衝電極と非接着状態で接触して電気的に接続されている、請求項1~3のいずれか1項に記載の太陽電池モジュール。
  5.  前記太陽電池の裏面側の表面において、前記緩衝電極の存在する領域の面積が、前記裏面透明電極層が露出している領域の面積の1%未満である、請求項4に記載の太陽電池モジュール。
  6.  前記金属箔に複数の開口が設けられており、
     前記封止材が前記開口を介して、前記太陽電池に接している、請求項1~5のいずれか1項に記載の太陽電池モジュール。
  7.  前記金属箔に設けられた開口の直径が100μm~2000μmであり、最近接の開口同士の間隔が5mm~100mmである、請求項6に記載の太陽電池モジュール。
  8.  前記金属箔が絶縁部材上に固定されており、金属箔の絶縁部材との固定面の反対側の面に、前記太陽電池の前記裏面透明電極層が非接着状態で接触している、請求項1~7のいずれか1項に記載の太陽電池モジュール。
  9.  前記金属箔に複数の開口が設けられており、
     前記絶縁部材は、前記金属箔の開口に対応する位置に第一種開口部を有し、
     前記封止材が絶縁部材に設けられた第一種開口部および前記金属箔に設けられた開口を介して、前記太陽電池の裏面に接している、請求項8に記載の太陽電池モジュール。
  10.  前記第一種開口部の直径が、前記金属箔に設けられた開口の直径よりも小さい、請求項9に記載の太陽電池モジュール。
  11.  前記絶縁部材は、前記金属箔が配置されていない領域に第二種開口部を有し、
     前記封止材が絶縁部材に設けられた第二種開口部を介して、前記太陽電池の側面に接している、請求項8~10のいずれか1項に記載の太陽電池モジュール。
  12.  前記太陽電池は、受光面にパターン状の金属電極を備え、
     隣接する2つの太陽電池は、一方の太陽電池の裏面透明電極に接する金属箔と、他方の太陽電池の受光面の金属電極とが、接続部材と接続されることにより、電気的に接続されている、請求項1~11のいずれか1項に記載の太陽電池モジュール。
  13.  前記一方の太陽電池の裏面透明電極に接する金属箔は、前記太陽電池の周縁よりも外側に突出部を有するように配置されており、
     前記金属箔の突出部に、前記接続部材が接続されている、請求項12に記載の太陽電池モジュール。
  14.  太陽電池は平面視矩形状または略矩形状であり、
     前記一方の太陽電池の前記他方の太陽電池と隣接する辺に、前記金属箔の突出部が設けられており、前記金属箔は、
     前記一方の太陽電池の他の3辺では、前記金属箔が太陽電池の周縁よりも内側に配置されている、請求項13に記載の太陽電池モジュール。
  15.  前記金属箔が絶縁部材上に固定されており、金属箔の絶縁部材との固定面の反対側の面に、前記太陽電池の前記裏面透明電極層が非接着状態で接触しており、
     前記絶縁部材は、前記金属箔の突出部と前記接続部材との接続部分に対応する位置を含む領域に第三種開口部を有する、請求項13または14に記載の太陽電池モジュール。

     
PCT/JP2016/069359 2015-06-30 2016-06-29 太陽電池モジュール WO2017002887A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017526414A JP6684278B2 (ja) 2015-06-30 2016-06-29 太陽電池モジュール
CN201680028673.5A CN107851678B (zh) 2015-06-30 2016-06-29 太阳能电池模块
US15/856,877 US20180122966A1 (en) 2015-06-30 2017-12-28 Solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015131637 2015-06-30
JP2015-131637 2015-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/856,877 Continuation US20180122966A1 (en) 2015-06-30 2017-12-28 Solar cell module

Publications (1)

Publication Number Publication Date
WO2017002887A1 true WO2017002887A1 (ja) 2017-01-05

Family

ID=57608234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069359 WO2017002887A1 (ja) 2015-06-30 2016-06-29 太陽電池モジュール

Country Status (4)

Country Link
US (1) US20180122966A1 (ja)
JP (1) JP6684278B2 (ja)
CN (1) CN107851678B (ja)
WO (1) WO2017002887A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112510106B (zh) * 2020-12-18 2021-08-03 中山德华芯片技术有限公司 一种柔性太阳能电池组件的制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157414A (ja) * 2012-01-30 2013-08-15 Fuji Electric Co Ltd 太陽電池およびその製造方法
JP2014110330A (ja) * 2012-12-03 2014-06-12 Mitsubishi Electric Corp 太陽電池モジュール
WO2014155418A1 (ja) * 2013-03-28 2014-10-02 三洋電機株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4301322A (en) * 1980-04-03 1981-11-17 Exxon Research & Engineering Co. Solar cell with corrugated bus
JPS604270A (ja) * 1983-06-22 1985-01-10 Hitachi Ltd 太陽電池の製造方法
US5281283A (en) * 1987-03-26 1994-01-25 Canon Kabushiki Kaisha Group III-V compound crystal article using selective epitaxial growth
EP0440869A1 (de) * 1990-02-09 1991-08-14 Bio-Photonics, Inc. Photovoltaisches Bauelement zur Umwandlung des Sonnenlichts in elektrischen Strom und photoelektrische Batterie
JP3349308B2 (ja) * 1995-10-26 2002-11-25 三洋電機株式会社 光起電力素子
JP2004127987A (ja) * 2002-09-30 2004-04-22 Sharp Corp 太陽電池セルおよびその製造方法
CN102593237A (zh) * 2006-02-23 2012-07-18 纳米太阳能公司 从金属间微米薄片颗粒的半导体前体层的高生产量印刷
KR100976454B1 (ko) * 2008-03-04 2010-08-17 삼성에스디아이 주식회사 태양 전지 및 이의 제조 방법
CN102113130A (zh) * 2008-04-29 2011-06-29 应用材料股份有限公司 使用单石模块组合技术制造的光伏打模块
CN102356470B (zh) * 2009-03-18 2014-07-02 三菱电机株式会社 光电转换装置
CN102465393A (zh) * 2010-11-08 2012-05-23 慧濠光电科技股份有限公司 一种软性基板的制作方法以及太阳能电池及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157414A (ja) * 2012-01-30 2013-08-15 Fuji Electric Co Ltd 太陽電池およびその製造方法
JP2014110330A (ja) * 2012-12-03 2014-06-12 Mitsubishi Electric Corp 太陽電池モジュール
WO2014155418A1 (ja) * 2013-03-28 2014-10-02 三洋電機株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法

Also Published As

Publication number Publication date
JP6684278B2 (ja) 2020-04-22
US20180122966A1 (en) 2018-05-03
CN107851678A (zh) 2018-03-27
CN107851678B (zh) 2019-10-11
JPWO2017002887A1 (ja) 2018-04-26

Similar Documents

Publication Publication Date Title
JP6220979B2 (ja) 低抵抗率電極を備えた太陽電池のモジュール製作
JP5687506B2 (ja) 太陽電池及び太陽電池モジュール
US5679176A (en) Group of solar cell elements, and solar cell module and production method thereof
JP6697456B2 (ja) 結晶シリコン太陽電池モジュールおよびその製造方法
TWI413266B (zh) 太陽能電池模組
JP5874011B2 (ja) 太陽電池及び太陽電池モジュール
CN111615752B (zh) 太阳能电池模块
JP6280692B2 (ja) 太陽電池モジュール、及び結晶系太陽電池モジュールの製造方法
JP2008135654A (ja) 太陽電池モジュール
JP2007201331A (ja) 光起電力モジュール
WO2016111339A1 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
JP5203176B2 (ja) 配線シート、配線シート付き太陽電池セルおよび太陽電池モジュール
JP2014103259A (ja) 太陽電池、太陽電池モジュールおよびその製造方法
JP6656225B2 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
JP6431486B2 (ja) 太陽電池のi‐v測定方法、太陽電池のi‐v測定装置、太陽電池の製造方法、太陽電池モジュールの製造方法、および太陽電池モジュール
JP6995828B2 (ja) 太陽電池モジュール
JP6684278B2 (ja) 太陽電池モジュール
JP2012253062A (ja) 太陽電池モジュール及びその製造方法
WO2014050193A1 (ja) 光電変換モジュール
CN111630666B (zh) 用于太阳能电池单元的连接部件组、以及使用该连接部件组的太阳能电池串和太阳能电池模块
JP5942136B2 (ja) 太陽電池モジュール及びその製造方法
JP5906422B2 (ja) 太陽電池及び太陽電池モジュール
JP2014072276A (ja) 光起電力装置
JP2016122733A (ja) 太陽電池モジュール
JP2011223046A (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526414

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817995

Country of ref document: EP

Kind code of ref document: A1