JP6995828B2 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
JP6995828B2
JP6995828B2 JP2019502492A JP2019502492A JP6995828B2 JP 6995828 B2 JP6995828 B2 JP 6995828B2 JP 2019502492 A JP2019502492 A JP 2019502492A JP 2019502492 A JP2019502492 A JP 2019502492A JP 6995828 B2 JP6995828 B2 JP 6995828B2
Authority
JP
Japan
Prior art keywords
electrode
wiring material
film
solar cell
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019502492A
Other languages
English (en)
Other versions
JPWO2018159117A1 (ja
Inventor
徹 寺下
訓太 吉河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2018159117A1 publication Critical patent/JPWO2018159117A1/ja
Application granted granted Critical
Publication of JP6995828B2 publication Critical patent/JP6995828B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module

Description

本発明は太陽電池モジュールに関する。
単結晶シリコン基板や多結晶シリコン基板等の結晶半導体基板を用いた結晶系太陽電池は、受光面側にパターン状の金属電極を備える。単面入射型の太陽電池では、半導体基板で吸収されずに裏面に到達した光の有効利用や、キャリア回収効率向上を目的として、セルの裏面側の略全面に金属膜が設けられる。
結晶系太陽電池は1つのセルの面積が小さいため、配線材(インターコネクタ)を介して複数のセルを電気的に接続した太陽電池ストリングを、受光面側のガラス板と裏面側のバックシートとの間に封止することによりモジュール化したものが実用に供される。太陽電池モジュールを屋外で長期使用すると、セルと配線材との寸法変化の相違に起因して、セルからの配線材の剥離や、セルの反り、セルの破損等が生じ、特性が低下する場合がある。
特許文献1では、セルの裏面に設けられたAl膜状電極上に半田等を用いて配線材を接続した後、膜状電極および配線材を覆うように銅箔等の金属箔を設けた太陽電池モジュールが開示されている。このモジュールでは、膜状電極および配線材を覆うように設けられた金属箔が直列抵抗低減に寄与するため、配線材の厚みを小さくできる。そのため、セルと配線材との接続部分の応力を低減可能であり、セルの反りや割れを抑制できる。
特許文献2では、裏面の膜状電極に設けられた開口下にシリコン基板を露出させ、シリコン基板と配線材とを導電性接着剤を介して接続することにより、配線材の接着性を向上している。特許文献3等に開示されているPERC(Passivated Emitter and Rear Cell)構造の太陽電池では、基板裏面のパッシベーション膜上に膜状の金属電極を形成し、この金属電極の開口から露出するように設けられたAg電極を配線材と半田接続することにより、セルと配線材との接着性を高めている。
特開2005-167158号公報 特開2011-228418号公報 特開2016-189433号公報
特許文献2や特許文献3に開示されているように、太陽電池の電極と配線材とを部分的に接続する場合は、接触抵抗が増大する場合がある。一方、配線材の全面を太陽電池と接続すると、応力に起因する配線材の剥がれやセルの破損等が生じやすく、信頼性が低下する場合がある。上記に鑑み、本発明は太陽電池と配線材との接触抵抗が小さく、かつ信頼性に優れる太陽電池モジュールの提供を目的とする。
本発明の太陽電池モジュールは、受光面保護材と裏面保護材との間に、複数の太陽電池が配線材を介して接続された太陽電池ストリングを備える。太陽電池は、光電変換部と、光電変換部の受光面に設けられた受光面電極と、光電変換部の裏面に配置された金属膜とを有する。
金属膜は、配線材との接続領域において、配線材の延在方向に沿って複数の開口を有する。太陽電池の裏面側では、配線材が、金属膜と接着層を介して接続されている。さらに、金属膜の開口から露出した光電変換部または光電変換部上に固定された電極も、接着層を介して配線材と接続されている。金属膜と光電変換部との間には非接合部が存在する。
金属膜は、配線材との接続領域において、配線材の延在方向に沿って、開口が設けられている領域の長さの合計が、開口が設けられていない領域の長さの合計の0.3~3倍であることが好ましい。金属膜は、アルミニウム、銅、および銀からなる群から選択される金属を主成分とするものが好ましい。
太陽電池の裏面において配線材の接続には導電性接着フィルムを用いることが好ましい。配線材としては、受光面側の表面に凹凸構造を有するものが好ましく用いられる。
本発明の太陽電池モジュールは、温度変化に伴う特性低下が抑制され、高い信頼性を有する。
一実施形態の太陽電池モジュールの模式的断面図である。 太陽電池の受光面の外観を示す平面図である。 太陽電池の裏面の外観を示す平面図である。 太陽電池の模式断面図である。 配線材が接続された太陽電池の模式断面図である。 太陽電池モジュールの温度サイクル試験結果を表すグラフである。 太陽電池モジュールの温度サイクル試験結果を表すグラフである。
図1は、本発明の一実施形態の太陽電池モジュール(以下、「モジュール」と記載する)の模式的断面図である。モジュール200は、複数の太陽電池101,102,103(以下、「セル」と記載する)を備える。それぞれのセルは、結晶半導体基板1を含む光電変換部50の受光面および裏面に電極を備える。
モジュール200では、隣接するセルが配線材83,84を介して接続されてストリングを形成している。ストリングの受光面側(図1の上側)には、受光面保護材91が設けられ、裏面側(図1の下側)には裏面保護材92が設けられている。モジュール200では、保護材91,92の間に封止材が充填されることにより、ストリングが封止されている。
図2は、一形態のセルの受光面の平面図であり、図3はセルの裏面の平面図である。図4は、図2および図3のA-A線における断面図である。図4に示すセル101はいわゆるPERC構造の太陽電池であり、光電変換部50は、結晶半導体基板としてシリコン基板1を含んでいる。
シリコン基板1は、第一導電型領域11の受光面側表面に第二導電型領域12を有する。第一導電型領域と第二導電型領域とは異なる導電型を有する半導体領域であり、一方がp型、他方がn型である。以下では第一導電型をp型、第二導電型をn型として図3のセルの構成について説明する。
シリコン基板1は単結晶でも多結晶でもよい。シリコン基板1の厚みは100~300μm程度である。p型シリコン基板1の第一導電型領域11には、ドーパントとして、ホウ素、ガリウム等のp型ドーパントが含まれている。第二導電型領域12には、リン等のn型ドーパントが含まれている。シリコン基板1の受光面側の表面には、高さ1~10μm程度の凹凸が形成されていることが好ましい。受光面に凹凸が形成されることにより、受光面積が増大するとともに反射率が低減するため、光閉じ込め効率が高められる。基板の裏面側にもテクスチャ構造が設けられていてもよい。
シリコン基板1の受光面(n型領域12側)には反射防止層3が設けられ、シリコン基板1の裏面(p型領域11側)にはパッシベーション膜2が設けられている。シリコン基板1と、シリコン基板1の表裏に設けられた反射防止層3およびパッシベーション膜2が光電変換部50を構成している。光電変換部50の受光面には、反射防止層3上に受光面電極7が設けられている。光電変換部50の裏面には、パッシベーション膜2上に電極としての金属膜5および裏面バスバー電極6が設けられている。PERC構造のセルでは、これらの電極に加えて、パッシベーション膜2を貫通する貫通電極4が設けられている。
反射防止層3は、セル101の受光面に照射された光の反射率を低減することにより、シリコン基板1への光取り込み量を増大させる作用を有する。反射防止層3は、例えば、屈折率が1.5~2.5程度、厚みが50~120nm程度である。反射防止層3の材料としては、酸化シリコン、窒化シリコン、酸窒化シリコン、酸化アルミニウム、酸窒化アルミニウム、サイアロン等の絶縁材料が用いられる。
シリコン基板1の裏面に設けられたパッシベーション膜2は、シリコン基板1に対するパッシベーション効果をもたらし、キャリア再結合を低減する作用を有する。パッシベーション膜2の厚みは、例えば10~200nm程度である。パッシベーション膜2の材料としては、酸化アルミニウム等の絶縁材料が用いられる。酸化アルミニウム等の負の電荷を有するパッシベーション膜を用いれば、電界効果によって少数キャリアである電子が基板1とパッシベーション膜2との界面から遠ざけられるため、少数キャリアの再結合を低減できる。なお、シリコン基板1の第一導電型領域がn型の場合には、裏面に設けられるパッシベーション膜として窒化シリコン等の正の電荷を有する材料を用いることが好ましい。
受光面電極7は所定のパターン形状を有し、金属電極が設けられていない部分から光を取り込むことができる。金属電極のパターン形状は特に限定されないが、図2に示すように、平行に並んだ複数のフィンガー電極71、およびフィンガー電極に直交して延在するバスバー電極72からなるグリッド状に形成されることが好ましい。
フィンガー電極71は、シリコン基板1で生成した光キャリアを集めて、バスバー電極72に輸送するための電極である。図4に示すように、フィンガー電極71は、反射防止層3を貫通して、基板1のn型領域12に達するように設けられている。例えば、反射防止層上に銀ペーストを印刷し、加熱を行うことにより、反射防止層を貫通する銀電極を形成できる(ファイアースルー法)。フィンガー電極71の幅は例えば30~200μm程度であり、互いに1~3mm程度の間隔を空けて設けられる。
バスバー電極72は、フィンガー電極から輸送された光キャリアをセルの外部に取り出すための電極であり、モジュールにおいてはバスバー電極72に配線材83が接続される。バスバー電極72の幅は例えば0.3~5mm程度であり、1つのセルに2~5本程度のバスバー電極が設けられる。図4では反射防止層3上にバスバー電極72が設けられているが、バスバー電極は、フィンガー電極と同様に反射防止層を貫通するように設けられていてもよい。
貫通電極4は、パッシベーション膜2を貫通するように設けられる。貫通電極4の一端はシリコン基板1の第一導電型領域11に接しており、他端は膜状電極5と接している。貫通電極4は、平面視ドット状または帯状で、シリコン基板1の裏面の全体に設けられている。パッシベーション膜2を貫通するように孔を設ける方法としては、レーザ加工等により基板1に達するスルーホールを形成する方法や、ファイアースルー法が挙げられる。ファイアースルー法によりアルミニウムを含む貫通電極4を形成すれば、シリコン基板1へのアルミニウムの拡散により、バックサーフェスフィールド(BSF)領域(不図示)を形成できる。貫通電極4の径(幅)は60~500μm程度、ピッチは300~2000μm程度が好ましい。
膜状電極5は、パッシベーション膜2および貫通電極4を覆うように設けられた金属膜であり、貫通電極4からキャリアを回収し、裏面バスバー電極6または配線材84にキャリアを輸送する作用を有する。そのため、膜状電極5は、基板の裏面の略全面を覆い、基板の裏面に設けられた全ての貫通電極4と接触可能に設けられていることが好ましい。膜状電極5の厚みは、例えば3~100μm程度である。
膜状電極5は開口を有しており、開口から裏面バスバー電極6が露出している。複数の裏面バスバー電極6は、図3に示すように一方向に沿って直線状に配置されている。裏面バスバー電極6は、パッシベーション膜2を貫通してシリコン基板1に達するように設けられていてもよい。裏面バスバー電極6の厚みは1~30μm程度であり、幅は0.3~5mm程度である。裏面バスバー電極6は、例えば、銀を主成分とする導電性ペーストをスクリーン印刷等によって所望の形状に塗布した後、焼成することにより形成できる。
図5Aは、配線材83,84が接続されたセルの模式断面図である。図5Bは図5Aの囲み部分の拡大図であり、セルの裏面側における電極の接合状態を示している。図5Aに示すように、受光面のバスバー電極72および裏面の電極5,6に、接着層88,89を介して配線材83,84が接続される。隣接する2つのセルの一方のセルの受光面のバスバー電極72と他方のセルの裏面バスバー電極6とを配線材を介して接続することにより、太陽電池ストリングが形成される。配線材83,84としては銅箔やめっき銅箔等が用いられる。受光面側に凹凸構造を有する配線材(いわゆる光拡散タブ配線)を用いることにより、配線材に入射した光を散乱させ、受光面保護材91での再反射光をセルに取り込むことができ、モジュールの光利用効率が高められる。
セルの裏面では、バスバー電極6が直線状に配置されている領域が配線材84との接続領域となる。この接続領域では、配線材の延在方向(x方向)に沿って、膜状電極5が設けられている領域と、膜状電極5の開口からバスバー電極6が露出している領域とが交互に配置されている。
一般的なPERCセルでは、パッシベーション膜上および貫通電極上に、アルミニウムを主成分とする導電性ペーストをスクリーン印刷等によって塗布し、焼成することにより、バスバー電極形成領域に開口を有する膜状電極が形成される。この膜状電極は、セル裏面のパッシベーション膜および貫通電極と接合状態にあり、かつ裏面バスバー電極に物理的・電気的に接続されている。一般的なPERCセルを用いたモジュールでは、裏面バスバー電極と配線材とが半田接合により電気的に接続され、膜状電極と配線材とは接合されていない。貫通電極から膜状電極に輸送された光キャリアは、膜状電極からバスバー電極を介して配線材に輸送される。
これに対して、本発明のモジュールにおいては、図5Aに示すように、裏面バスバー電極6だけでなく、膜状電極5も接着層89を介して配線材84に接合されている。一方、膜状電極5はセル裏面のパッシベーション膜2および貫通電極4との間に非接合部分を有する。「非接合」とは、典型的には図5Bに示すように、間に空間59が存在する非接触の状態である。また、両者が接触していても、界面で接合しておらず、押圧、吸着、静電気等の物理的外力が付与されていない状態において剥離可能である場合は「非接合」に含まれる。一方、接着剤や半田等の接着層を介して接着されている場合や、印刷、めっき、CVD,スパッタ等により膜が密着形成され接合している場合は、「非接合」には該当しない。
膜状電極5が、貫通電極4を有する光電変換部50の裏面との間に非接合部を有するため、封止によりモジュール化する前のストリングにおいては、光電変換部50と膜状電極5との電気的接続が十分ではない場合がある。一方で、封止後のモジュールにおいては、封止の圧力によって膜状電極5が光電変換部50の裏面に密着するため、セル裏面の貫通電極4と膜状電極5との電気的接続を確保できる。
本発明のモジュールは、膜状電極5と光電変換部50とが非接合部を有することにより、温度変化に伴うセルや配線材の寸法変化が生じた場合でも、応力の集中を回避でき、セルからの配線材の剥離や、セルの破損等を抑制できる。また、膜状電極5と配線材84とが接着層89を介して接合され電気的に接続されているため、温度変化による配線材の断線等が生じた場合でも、膜状電極5を介してセルの面内でキャリアを輸送でき、抵抗の上昇を抑制できる。そのため、本発明のモジュールは、温度サイクル耐久性に優れ、高い信頼性を有する。
光電変換部50との間に非接触部分を有する膜状電極5としては、例えば金属箔が用いられる。裏面バスバー電極6の形成部分に対応する位置に開口を有する金属箔を光電変換部50上に配置して、金属箔の開口から裏面バスバー電極6を露出させた状態で、導電性接着剤や半田等の導電性材料を介して配線材を接続すれば、裏面バスバー電極6および膜状電極5としての金属箔と配線材84とが接着層89を介して接続される。裏面バスバー電極6は、光電変換部50上に固定されているため、配線材84が裏面バスバー電極6および膜状電極5と接着層89を介して接続されることにより、膜状電極5は、光電変換部50とは非接合の状態で光電変換部の裏面上で位置が固定される。
光電変換部50の裏面に膜状電極5を形成した後、膜状電極を光電変換部から剥離させることにより非接合部を設けてもよい。例えば、一般的なPERCセルと同様に、印刷等により、光電変換部50の裏面(パッシベーション膜2上および貫通電極4上)に膜状電極5を設け、裏面バスバー電極6および膜状電極5と配線材84とを接着層89を介して接続する。配線材84と膜状電極5とが接着層89により強固に接合されている状態で応力が付与されると、光電変換部50と膜状電極5との界面で剥離が生じ、非接合部を形成できる。
接着層として半田を用いて配線材を接続した場合は、アルミニウムを主成分とする膜状電極は半田との接着性が低いため、応力を付与すると膜状電極の半田接続界面で剥離が生じやすい。一方、接着層の材料として導電性接着剤を用いた場合は、膜状電極5と配線材84とが強固に接着するため、膜状電極5と配線材84との間の接着力が、膜状電極5と光電変換部50との接着力よりも大きくなる傾向がある。そのため、界面に応力がかかると、接着層89を介した膜状電極5と配線材84との接合状態が維持され、相対的に接着力が小さい光電変換部50と膜状電極5との界面での剥離が生じやすく、膜状電極5と光電変換部50との間に非接合部を形成できる。
配線材84との接続に伴う応力により、膜状電極5と光電変換部50との間に非接合部を設けるためには、配線材84と膜状電極5との接着力が高いことに加えて、配線材84との接続部分における応力が大きいことが好ましい。例えば、幅や厚みが大きく剛直性の高い配線材を用いれば、接続後の寸法変化に起因するセルの反りが生じやすく、これに伴う応力によって、図5Bに示すように光電変換部50から膜状電極5が剥離して、非接合部としての空間59が生じる。光電変換部から膜状電極が剥離すれば、応力が解放されるため、セルの反りは解消する傾向がある。
配線材の幅を大きくすると、セルと配線材との接触面積が増大して接着性を向上できる反面、受光面における遮光面積の増大に伴うシャドーイングロスの影響が大きくなる。そのため、受光面側に凹凸構造を有する光拡散タブ配線を用いることが好ましい。光拡散タブ配線とセルの裏面との接合には、接着層89として導電性接着フィルムを用いることが好ましい。
膜状電極5と光電変換部50との界面は、全体が非接合状態でもよく、非接合部と接合部とが存在していてもよい。モジュールにおける配線材とセルとの間の応力を低減する観点からは、配線材接続領域における膜状電極5が光電変換部50との間に非接合部を有していることが好ましい。換言すると、配線材84の直下において、膜状電極5と光電変換部50とが非接合状態であることが好ましい。前述のように、配線材84との接続に起因する応力によって、光電変換部50と膜状電極5との界面に剥離を生じさせることにより、配線材84の直下の膜状電極5と光電変換部50とを非接合状態にできる。
セル裏面の配線材接続領域において、配線材の延在方向に沿って開口が設けられている領域の長さWの合計は、開口が設けられていない領域の長さWの合計の0.3~3倍が好ましく、0.5~2倍がより好ましく、0.7~1.5倍がさらに好ましい。W/Wが過度に大きい場合(開口の比率が大きい場合)は、膜状電極の開口から露出した光電変換部または光電変換部上に固定された裏面バスバー電極と配線材との接続面積が大きいため、温度変化に伴うセルや配線材の寸法変化が生じた場合に、応力が散逸し難い。一方、W/Wが過度に小さい場合(開口の比率が小さい場合)は、膜状電極の開口から露出した光電変換部または光電変換部上に固定された裏面バスバー電極と配線材との接続面積が小さく、配線材の接続が不安定となる傾向がある。W/Wが上記範囲であれば、配線材84とセルの固定部分(裏面バスバー電極6)との接合状態を維持しつつ、膜状電極5と配線材84との接続部分で応力を散逸できるため、モジュールの耐久性を向上できる。
太陽電池ストリングの受光面側および裏面側に封止材を配置し、受光面保護材91と裏面保護材92との間で封止することにより、モジュールが得られる。封止材としては、オレフィン系エラストマーを主成分とするポリエチレン系樹脂組成物、ポリプロピレン、エチレン/α‐オレフィン共重合体、エチレン/酢酸ビニル共重合体(EVA)、エチレン/酢酸ビニル/トリアリルイソシアヌレート(EVAT)、ポリビニルブチラート(PVB)、シリコン、ウレタン、アクリル、エポキシ等の透明樹脂を用いることが好ましい。受光面側と裏面側の封止材の材料は、同一でも異なっていてもよい。
受光面保護材91は光透過性であり、ガラスや透明プラスチック等が用いられる。裏面保護材92としては、光反射性のフィルムが好ましく用いられる。光反射性の裏面保護材としては、金属色または白色等を呈するものが好ましく、白色樹脂フィルムや、樹脂フィルム間にアルミニウム等の金属箔を挟持した積層体等が好ましく用いられる。
太陽電池ストリングの受光面側および裏面側のそれぞれに封止材および保護材を配置して積層した状態で、加熱圧着することにより、セル間やモジュールの端部にも封止材が流動してモジュール化が行われる。モジュール化の際の圧力により、膜状電極5が、光電変換部50の裏面に密着するため、貫通電極4と膜状電極5との電気的接続を確保できる。
PERC構造のセルを用いたモジュールについて説明したが、本発明の太陽電池モジュールに含まれるセルは、半導体基板を含む光電変換部の裏面に開口を有する金属膜が設けられていれば、その構成は特に限定されない。金属膜としては、アルミニウムの他に、銅や銀等を主成分とするものが好ましく用いられる。これらの金属は導電性に優れるとともに、長波長光の反射率が高いため、半導体基板で吸収されずにセルの裏面に到達した赤外光を反射して半導体基板に再入射させ、光利用効率を向上できる。
光電変換部の裏面にはバスバー電極が設けられていなくてもよい。バスバー電極が設けられていない場合は、金属膜の開口下に露出した光電変換部と配線材とを導電性接着剤等により接合すればよい。
以下では、実施例に基づいて本発明をより詳細に説明するが、本発明は下記の実施例に限定されるものではない。
[太陽電池の準備]
単結晶シリコン基板を用いたセルとして、PERCセルを準備した。PERCセルは、受光面にピラミッド状の凹凸が設けられた厚み200μmの6インチp型単結晶シリコン基板(1辺の長さが156nmのセミスクエア型)の受光面側にリンがドープされたn型半導体領域を有し、その表面に窒化シリコン反射防止層が設けられていた。反射防止層上には、バスバー電極とフィンガー電極とからなるグリッド状の銀ペースト電極が設けられていた。シリコン基板の裏面側には、酸化アルミニウムパッシベーション膜が設けられ、パッシベーション膜を貫通するようにアルミニウム貫通電極が設けられており、パッシベーション膜および貫通電極に接するようにアルミニウム膜状電極が設けられていた。図3に示すように、膜状電極には開口が設けられており、開口下にAgペーストの印刷および焼成により形成された裏面バスバー電極が露出していた。バスバー電極の延在方向に沿って、膜状電極が設けられている領域の長さWの合計と、開口が形成されている領域の長さWの合計との比W/Wは、約0.7であった。受光面および裏面ともにバスバー電極の数は3本であり、受光面のバスバー電極の幅はそれぞれ1.5mm、裏面のバスバー電極の幅はそれぞれ3mmであった。
[ストリングの形成による膜剥がれ有無の検証]
上記のPERCセルに、表1に示す幅および厚みを有する銅配線材を接続し、9つのセルが直列に接続されたストリングを作製した。水準1~3および水準5では、配線材として、表裏が平面状で凹凸を有していないリボン状の半田めっき銅箔を用いた。水準4では、受光面側に凹凸構造を有する銅箔の表面に銀を被覆した光拡散タブ配線を用いた。
受光面は、バスバー電極上の全面を配線材と半田により接続した。水準1~4では、配線材接続領域のバスバー電極上および膜状電極上の全面に導電性接着フィルム(CF)を配置してセル裏面側の配線材の接続を行った。水準5では、バスバー電極上への半田接続により、セル裏面側の配線材の接続を行った。CFを用いた配線材の接続は、200℃で実施し、その後室温まで放冷した。配線材を接続後のセルの裏面の膜状電極の剥がれの有無を目視にて確認した。結果を表1に示す。
Figure 0006995828000001
CFを用いて配線材の全面をセルの裏面と接続した水準1~4では、配線材の断面積の増大に伴って、裏面のAl膜状電極が剥離する傾向がみられた。配線材の断面積が大きい場合には、加熱環境下での接着後の温度変化に伴うセルと配線材との接続界面の応力が大きいため、相対的に接着性の小さいセル裏面と膜状電極との界面で剥離が生じたと考えられる。一方、水準5では、水準4と略同一の断面積を有する配線材を用いたが、セルの裏面ではAl膜状電極と配線材とが接続されていないため、Al膜状電極の剥離が生じなかったと考えられる。
[モジュールの作製および温度サイクル試験]
裏面膜状電極の剥がれが生じていた水準4のストリング、および裏面膜状電極の剥がれが生じていなかった水準5のストリングを用い、太陽電池モジュールを作製した。受光面側保護材としての白板ガラス上にEVAシートを載置し、その上に上記の太陽電池ストリングを、隣接するストリング間の距離が2mmとなるように6列配置し、ストリングの端部で隣接するストリング間の電気接続を行い、計54個の太陽電池を直列接続した。その上に裏面側封止材としてEVAシートを載置し、その上に裏面保護材として基材PETフィルム上に白色樹脂層を設けた白色の光反射性バックシートを載置した。大気圧での加熱圧着を5分間行った後、150℃で60分間保持してEVAを架橋させ、太陽電池モジュールを得た。
太陽電池モジュールの初期発電特性(短絡電流Isc、開放電圧Voc、曲線因子FFおよび最大出力Pmax)を測定した後、IEC61215に準じて温度サイクル試験を実施した。温度サイクルは、試験槽に太陽電池モジュールを導入した後、85℃で10分保持、100℃/時間で-40℃まで降温、-40℃で10分間保持、および100℃/時間で85℃まで昇温、を1サイクルとした。100サイクル、200サイクル、300サイクル、400サイクル、500サイクル、600サイクル、800サイクル、1100サイクルおよび1300サイクル後に太陽電池モジュールの出力を測定し、太陽電池モジュールの初期発電特性に対する発電特性の比率(保持率)求めた。PmaxおよびFFの保持率を図6に示す。
[参考例:ヘテロ接合セルを用いたモジュールの評価]
単結晶シリコン基板を用いたセルとして、ヘテロ接合セルを用い、上記のPERCセルと同様に、モジュール化およびサイクル試験を実施した。ヘテロ接合セルは、表裏にピラミッド状の凹凸が設けられた厚み160μmの6インチn型単結晶シリコン基板の受光面側に、真性非晶質シリコン層、p型非晶質シリコン層およびITO透明電極層を備え、シリコン基板の裏面側に真性非晶質シリコン層、n型非晶質シリコン層およびITO透明電極層を備える。受光面および裏面のそれぞれには、バスバー電極とフィンガー電極とからなるグリッド状の銅メッキ電極が設けられていた。受光面および裏面ともに、バスバー電極の数は3本であり、それぞれの幅は1.5mmであった。
上記のヘテロ接合セルに、表1に示す幅および厚みを有する銅配線材を接続し、9つのセルが直列に接続されたストリングを作製した。水準6では、水準4と同一の配線材を用い、受光面はバスバー電極上の全面を配線材と半田により接続し、裏面はバスバー電極上の全面を配線材とCFにより接続した。水準7では、水準5と同一の配線材を用い、受光面および裏面のバスバー電極上の全面を配線材と半田により接続した。得られたストリングを用い、水準4,5と同様にして、54個のセルが直列接続された太陽電池モジュールを作製し、温度サイクル試験を実施した。900サイクルまでの100サイクルごとのPmaxおよびFFの保持率を図7に示す。
ヘテロ接合セルを用いて評価を行った結果を示す図7では、セルの裏面にCFを用いて拡散配線材を接続した水準6と、半田を用いて凹凸のない配線材を接続した水準7の間に、保持率の差はみられなかった。この結果から、配線材の形状および接着層の種類は保持率に大きな影響を与えないと考えられる。
一方、PERCセルを用いて評価を行った結果を示す図6では、半田を用いてバスバー領域上にのみ配線材を接続した水準5に比べて、CFを用いて光拡散配線材を接続することにより裏面膜状電極の剥がれが生じていた水準4が高い保持率を示した。前述のように、配線材の形状および接着層の種類は保持率に大きな影響を与えないことから、水準4では、セル裏面の膜状Al電極が剥がれて非接合状態となっていることが、水準5に比べて高い保持率を示す要因であるといえる。水準4および水準5のいずれにおいても、最大出力Pmaxの保持率が曲線因子FFの保持率と連動していることから、配線材の接着力低下等に伴う抵抗の増加が保持率低下の原因であると考えられる。
以上の結果から、水準4では、セル裏面の膜状Al電極が導電性接着フィルムを介して配線材と接続され光電変換部から剥離して非接合部を形成していることにより、温度変化に伴う寸法変化が生じた場合でも、配線材の接合界面への応力が生じ難く、配線材の接着力が維持されるために温度サイクル耐久性が高いことが分かる。
200 太陽電池モジュール
101~103 太陽電池
50 光電変換部
1 シリコン基板(結晶半導体基板)
2 パッシベーション膜
3 反射防止層
4 貫通電極
5 膜状電極(金属膜)
6 裏面バスバー電極
70 受光面電極
71 フィンガー電極
72 バスバー電極
83,84 配線材
88,89 接着層
91 受光面保護材
92 裏面保護材

Claims (6)

  1. 複数の太陽電池が配線材を介して接続された太陽電池ストリング、前記太陽電池ストリングの受光面側に配置された光透過性の受光面保護材、および前記太陽電池ストリングの裏面側に配置された裏面保護材、を備える太陽電池モジュールであって、
    前記太陽電池は、光電変換部と、前記光電変換部の受光面に設けられた受光面電極と、前記光電変換部の裏面に配置された金属膜とを有し、
    前記金属膜は、前記配線材との接続領域において、配線材の延在方向に沿って複数の開口を有し、
    前記配線材は、前記金属膜、および前記金属膜の前記複数の開口のそれぞれから露出した光電変換部または光電変換部上に固定された電極と、接着層を介して接続されており、
    前記金属膜と前記配線材との接続領域において、前記配線材の延在方向に沿った前記複数の開口と開口の間の部分の前記金属膜と前記光電変換部との間には非接合部が存在する、太陽電池モジュール。
  2. 前記配線材と前記金属膜との間に設けられた接着層が導電性接着フィルムである、請求項1に記載の太陽電池モジュール。
  3. 前記配線材と前記金属膜の開口から露出した光電変換部または光電変換部上に固定された電極との間に設けられた接着層が導電性接着フィルムである、請求項1または2に記載の太陽電池モジュール。
  4. 前記金属膜は、前記配線材との接続領域において、配線材の延在方向に沿って、開口が設けられている領域の長さの合計が、開口が設けられていない領域の長さの合計の0.3~3倍である、請求項1~3のいずれか1項に記載の太陽電池モジュール。
  5. 前記金属膜は、アルミニウム、銅、および銀からなる群から選択される金属を主成分とする、請求項1~4のいずれか1項に記載の太陽電池モジュール。
  6. 前記配線材が受光面側の表面に凹凸構造を有する、請求項1~5のいずれか1項に記載の太陽電池モジュール。
JP2019502492A 2017-03-03 2018-01-15 太陽電池モジュール Active JP6995828B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017041159 2017-03-03
JP2017041159 2017-03-03
PCT/JP2018/000885 WO2018159117A1 (ja) 2017-03-03 2018-01-15 太陽電池モジュール

Publications (2)

Publication Number Publication Date
JPWO2018159117A1 JPWO2018159117A1 (ja) 2019-12-26
JP6995828B2 true JP6995828B2 (ja) 2022-01-17

Family

ID=63370311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019502492A Active JP6995828B2 (ja) 2017-03-03 2018-01-15 太陽電池モジュール

Country Status (4)

Country Link
US (1) US11063160B2 (ja)
JP (1) JP6995828B2 (ja)
CN (1) CN110313074B (ja)
WO (1) WO2018159117A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117280478A (zh) * 2021-02-22 2023-12-22 新南创新私人有限公司 硅太阳能电池单元的金属化
CN115241298B (zh) * 2022-02-25 2023-10-31 浙江晶科能源有限公司 太阳能电池及其制备方法、光伏组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120103385A1 (en) 2010-10-28 2012-05-03 Jongkyoung Hong Solar cell panel and method for manufacturing the same
WO2014112053A1 (ja) 2013-01-16 2014-07-24 三菱電機株式会社 太陽電池セルおよびその製造方法
WO2015098872A1 (ja) 2013-12-26 2015-07-02 株式会社カネカ 太陽電池のi‐v測定方法、太陽電池のi‐v測定装置、太陽電池の製造方法、太陽電池モジュールの製造方法、および太陽電池モジュール
JP2016167641A (ja) 2016-06-20 2016-09-15 デクセリアルズ株式会社 太陽電池モジュール及び太陽電池モジュールの製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951786A (en) * 1997-12-19 1999-09-14 Sandia Corporation Laminated photovoltaic modules using back-contact solar cells
DE102004013833B4 (de) * 2003-03-17 2010-12-02 Kyocera Corp. Verfahren zur Herstellung eines Solarzellenmoduls
JP4059842B2 (ja) 2003-12-05 2008-03-12 シャープ株式会社 太陽電池セルおよび太陽電池モジュール
EP1763086A1 (en) * 2005-09-09 2007-03-14 Interuniversitair Micro-Elektronica Centrum Photovoltaic cell with thick silicon oxide and silicon nitride passivation and fabrication method
US20090277491A1 (en) * 2005-10-14 2009-11-12 Sharp Kabushiki Kaisha Solar Cell, Interconnector-Equipped Solar Cell, Solar Cell String And Solar Cell Module
WO2007043562A1 (ja) * 2005-10-14 2007-04-19 Sharp Kabushiki Kaisha インターコネクタ、それを用いる太陽電池ストリングおよびその製造方法、ならびに、その太陽電池ストリングを用いる太陽電池モジュール
US8049099B2 (en) * 2006-03-01 2011-11-01 Sanyo Electric Co., Ltd. Solar cell and solar cell module including the same
JPWO2008078741A1 (ja) * 2006-12-26 2010-04-30 京セラ株式会社 太陽電池モジュール
WO2008139994A1 (ja) * 2007-05-09 2008-11-20 Hitachi Chemical Company, Ltd. 導電体接続用部材、接続構造及び太陽電池モジュール
JP2008282926A (ja) * 2007-05-09 2008-11-20 Sanyo Electric Co Ltd 太陽電池モジュール
US20090050190A1 (en) * 2007-08-24 2009-02-26 Sanyo Electric Co., Ltd. Solar cell and solar cell module
JP5306112B2 (ja) * 2009-02-17 2013-10-02 三洋電機株式会社 太陽電池及び太陽電池モジュール
JP5515367B2 (ja) * 2009-03-31 2014-06-11 三洋電機株式会社 太陽電池セル、太陽電池モジュールおよび太陽電池システム
KR101679452B1 (ko) * 2009-08-19 2016-11-24 파나소닉 아이피 매니지먼트 가부시키가이샤 태양 전지, 태양 전지 모듈 및 태양 전지 시스템
JP5318815B2 (ja) 2010-04-19 2013-10-16 デクセリアルズ株式会社 太陽電池モジュール、太陽電池モジュールの製造方法
JP5676944B2 (ja) * 2010-07-08 2015-02-25 デクセリアルズ株式会社 太陽電池モジュール、太陽電池モジュールの製造方法
WO2014097741A1 (ja) * 2012-12-20 2014-06-26 株式会社カネカ 太陽電池およびその製造方法、ならびに太陽電池モジュール
JP6495713B2 (ja) 2015-03-30 2019-04-03 京セラ株式会社 太陽電池素子およびその製造方法
JP2016189439A (ja) * 2015-03-30 2016-11-04 京セラ株式会社 太陽電池素子およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120103385A1 (en) 2010-10-28 2012-05-03 Jongkyoung Hong Solar cell panel and method for manufacturing the same
WO2014112053A1 (ja) 2013-01-16 2014-07-24 三菱電機株式会社 太陽電池セルおよびその製造方法
WO2015098872A1 (ja) 2013-12-26 2015-07-02 株式会社カネカ 太陽電池のi‐v測定方法、太陽電池のi‐v測定装置、太陽電池の製造方法、太陽電池モジュールの製造方法、および太陽電池モジュール
JP2016167641A (ja) 2016-06-20 2016-09-15 デクセリアルズ株式会社 太陽電池モジュール及び太陽電池モジュールの製造方法

Also Published As

Publication number Publication date
CN110313074B (zh) 2022-07-26
WO2018159117A1 (ja) 2018-09-07
JPWO2018159117A1 (ja) 2019-12-26
US20190393369A1 (en) 2019-12-26
CN110313074A (zh) 2019-10-08
US11063160B2 (en) 2021-07-13

Similar Documents

Publication Publication Date Title
CN111615752B (zh) 太阳能电池模块
KR101841865B1 (ko) 낮은 비저항 전극들을 갖는 태양 전지들의 모듈 제조
KR101890324B1 (ko) 태양 전지 모듈 및 이에 적용되는 리본 결합체
KR102018652B1 (ko) 태양 전지
JP6046658B2 (ja) 太陽電池
KR101997921B1 (ko) 태양전지 모듈
KR101757875B1 (ko) 양면 수광형 태양전지 모듈
JP6788657B2 (ja) 太陽電池モジュール
US20190044001A1 (en) Solar cell wiring member and solar cell module
KR20140110231A (ko) 태양 전지 및 이의 제조 방법
JP6995828B2 (ja) 太陽電池モジュール
WO2015098872A1 (ja) 太陽電池のi‐v測定方法、太陽電池のi‐v測定装置、太陽電池の製造方法、太陽電池モジュールの製造方法、および太陽電池モジュール
WO2014050193A1 (ja) 光電変換モジュール
KR101747344B1 (ko) 태양전지 모듈
CN111630666B (zh) 用于太阳能电池单元的连接部件组、以及使用该连接部件组的太阳能电池串和太阳能电池模块
JP6684278B2 (ja) 太陽電池モジュール
KR101685350B1 (ko) 태양 전지 모듈
WO2023037885A1 (ja) 太陽電池デバイスおよび太陽電池モジュール
WO2023127382A1 (ja) 太陽電池デバイスおよび太陽電池モジュール
WO2021106417A1 (ja) 太陽電池、太陽電池モジュール及び太陽電池の製造方法
JP2022134495A (ja) 結晶シリコン系太陽電池セル、太陽電池デバイスおよび太陽電池モジュール
CN117957933A (en) Solar cell device and solar cell module

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200721

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211215

R150 Certificate of patent or registration of utility model

Ref document number: 6995828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150