WO2023127382A1 - 太陽電池デバイスおよび太陽電池モジュール - Google Patents

太陽電池デバイスおよび太陽電池モジュール Download PDF

Info

Publication number
WO2023127382A1
WO2023127382A1 PCT/JP2022/044179 JP2022044179W WO2023127382A1 WO 2023127382 A1 WO2023127382 A1 WO 2023127382A1 JP 2022044179 W JP2022044179 W JP 2022044179W WO 2023127382 A1 WO2023127382 A1 WO 2023127382A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
solar
surface side
light
photoelectric conversion
Prior art date
Application number
PCT/JP2022/044179
Other languages
English (en)
French (fr)
Inventor
徹 寺下
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023127382A1 publication Critical patent/WO2023127382A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • H10K39/15Organic photovoltaic [PV] modules; Arrays of single organic PV cells comprising both organic PV cells and inorganic PV cells

Definitions

  • the present invention relates to solar cell devices and solar cell modules.
  • Solar cell devices in which a plurality of solar cells are connected by connecting members such as tabs, and solar cell modules in which the solar cell devices are sealed with a protective member such as glass or transparent resin and a sealing material are known.
  • a protective member such as glass or transparent resin and a sealing material
  • solar cells crystalline silicon solar cells using a crystalline silicon substrate as a photoelectric conversion layer and thin film solar cells using an inorganic thin film such as an amorphous silicon thin film as a photoelectric conversion layer are known.
  • a thin-film solar cell a perovskite thin-film solar cell using a perovskite thin film that is an organic thin film (more specifically, an organic/inorganic hybrid thin film) as a photoelectric conversion layer is known.
  • Patent Document 1 discloses a tandem solar cell including a bottom cell (first photoelectric conversion unit) including a crystalline silicon substrate as a photoelectric conversion layer and a top cell (second photoelectric conversion unit) including a perovskite thin film as a photoelectric conversion layer.
  • first photoelectric conversion unit including a crystalline silicon substrate as a photoelectric conversion layer
  • second photoelectric conversion unit including a perovskite thin film as a photoelectric conversion layer.
  • a battery cell is disclosed.
  • tandem solar cells include a two-terminal type in which a top cell and a bottom cell are connected in series, and a four-terminal type in which electricity is extracted separately from the top and bottom cells.
  • a three-terminal tandem solar cell has been devised that can utilize the advantages of these two-terminal and four-terminal types and has the possibility of further improving the photoelectric conversion efficiency (see, for example, Patent Document 2). ).
  • an amorphous silicon thin film as a photoelectric conversion layer and a conductive amorphous silicon thin film are formed on relatively hard glass or transparent resin.
  • a conductive amorphous silicon thin film is formed on a crystalline silicon substrate as a photoelectric conversion layer without using glass or transparent resin. Therefore, in a tandem solar cell in which a relatively thick perovskite thin film is formed on the light-receiving surface side of a crystalline silicon substrate, the thickness of the layers stacked on the light-receiving surface side of the crystalline silicon substrate and the thickness of the layers stacked on the back surface side of the crystalline silicon substrate are different. Due to the difference in the thickness of the layers, a relatively large amount of warping of the solar cell occurs in the manufacturing process of the solar cell device. As a result, a relatively large amount of warpage occurs in the solar cell device.
  • connection failure such as peeling of connection members such as tabs, cracking of the solar cell, and the like occur, resulting in a decrease in yield.
  • An object of the present invention is to provide a solar cell device and a solar cell module that reduce the warpage of the solar cell device caused by the warpage of the solar cells.
  • a solar cell device includes a plurality of double-sided electrode type solar cells and a plurality of elongated connection members that electrically connect the adjacent solar cells.
  • the solar cell is a tandem solar cell that includes a first photoelectric conversion unit including a crystalline silicon substrate, and a second photoelectric conversion unit that is arranged closer to the light receiving surface than the first photoelectric conversion unit and includes a perovskite thin film. battery cells.
  • the length of the other end of the connection member adhered to the back surface side of the solar cell is longer than the length of the one end of the connection member adhered to the light receiving surface side of the solar cell.
  • the bonding volume of the connecting member on the back surface side of the solar cell is larger than the bonding volume of the connecting member on the light receiving surface side of the solar cell.
  • a solar cell module comprises one or more of the above solar cell devices, a light-receiving side protective member that protects the light-receiving surface side of the solar cell device, and a back side protective member that protects the back side of the solar cell device. and a sealing material disposed between the solar cell device and the light-receiving side protective member and between the solar cell device and the back side protective member to seal the solar cell device.
  • the present invention in a solar cell device and a solar cell module, it is possible to reduce the warpage of the solar cell device caused by the warpage of the solar cells.
  • FIG. 1 is a cross-sectional view of a solar cell device according to this embodiment
  • FIG. FIG. 3 is a view of a portion of the solar cell device shown in FIG. 2 as viewed from the light receiving surface side
  • FIG. 3 is a view of part of the solar cell device shown in FIG. 2 as seen from the back side
  • 1 is a cross-sectional view of a solar cell module according to this embodiment
  • FIG. 1 is a cross-sectional view schematically showing a solar cell according to this embodiment.
  • An XY orthogonal coordinate system is shown in FIG. 1 and the drawings described later.
  • the XY plane is a plane along the light-receiving surface and back surface of the solar cell and the solar cell device and solar cell module described later.
  • a solar cell 2 shown in FIG. is a tandem type (multi-junction type) two-terminal type solar cell.
  • the first photoelectric conversion section 10 (bottom cell B) includes a first semiconductor layer as the photoelectric conversion layer 11 .
  • the first semiconductor layer absorbs light and generates photocarriers.
  • the first semiconductor layer as the photoelectric conversion layer 11 is a crystalline silicon substrate such as monocrystalline silicon or polycrystalline silicon.
  • the first semiconductor layer as the photoelectric conversion layer 11 is a single crystal silicon substrate, as the first photoelectric conversion section 10, a diffusion layer of the second conductivity type is provided on the light receiving surface side of the single crystal silicon substrate of the first conductivity type. and a heterojunction cell in which silicon-based thin films are provided on both sides of a first-conductivity-type single-crystal silicon substrate.
  • the first photoelectric conversion unit 10 receives light from the photoelectric conversion layer 11. It has a conductive silicon-based thin film 14 formed on the surface side and a conductive silicon-based thin film 15 formed on the back surface side of the photoelectric conversion layer 11 .
  • the single crystal silicon substrate may be either p-type or n-type.
  • Conductive silicon thin films 14 and 15 are p-type silicon thin films or n-type silicon thin films.
  • intrinsic silicon thin films 12 and 13 are provided between the single crystal silicon substrate as the photoelectric conversion layer 11 and the conductive silicon thin films 14 and 15 .
  • the intrinsic silicon-based thin film on the surface of the single-crystal silicon substrate, it is possible to effectively perform surface passivation while suppressing diffusion of impurities into the single-crystal silicon substrate.
  • the intrinsic amorphous silicon thin film as the intrinsic silicon thin films 12 and 13 on the surface of the single crystal silicon substrate By providing the intrinsic amorphous silicon thin film as the intrinsic silicon thin films 12 and 13 on the surface of the single crystal silicon substrate, a high passivation effect for the surface of the single crystal silicon substrate can be obtained.
  • the second photoelectric conversion unit 20 (top cell T) includes a thin second semiconductor layer as the photoelectric conversion layer 21 .
  • the second semiconductor layer absorbs light and generates photocarriers.
  • the second semiconductor layer has a bandgap different from that of the first semiconductor layer described above. Therefore, the first semiconductor layer and the second semiconductor layer described above have spectral sensitivity characteristics in different wavelength ranges. Therefore, in the stacked photoelectric conversion unit in which the first photoelectric conversion unit 10 including the first semiconductor layer as the photoelectric conversion layer 11 and the second photoelectric conversion unit 20 including the second semiconductor layer as the photoelectric conversion layer 21 are stacked, the Light with a wide wavelength can contribute to photoelectric conversion.
  • the thin film that constitutes the second semiconductor layer includes an organic semiconductor thin film, more specifically an organic-inorganic hybrid semiconductor thin film.
  • the organic-inorganic hybrid semiconductor thin film includes a perovskite thin film containing a photosensitive material having a perovskite crystal structure.
  • a compound constituting a perovskite crystal material is represented by the general formula R 1 NH 3 M 1 X 3 or HC(NH 2 ) 2 M 1 X 3 .
  • R 1 is an alkyl group, preferably an alkyl group having 1 to 5 carbon atoms, particularly preferably a methyl group.
  • M1 is a divalent metal ion, preferably Pb or Sn.
  • X is halogen and includes F, Cl, Br, and I; The three X's may all be the same halogen element, or a plurality of halogens may be mixed.
  • a preferred example of a compound constituting a perovskite crystal material is a compound represented by the formula CH 3 NH 3 Pb(I 1-x Br x ) 3 (where 0 ⁇ x ⁇ 1).
  • the perovskite material can change the spectral sensitivity characteristics by changing the type and ratio of halogen.
  • the perovskite semiconductor thin film can be formed by various dry processes or solution film formation such as spin coating.
  • the second photoelectric conversion section 20 has charge transport layers 24 and 25 .
  • One of the charge transport layers 24 and 25 is a hole transport layer and the other is an electron transport layer.
  • Materials for the hole transport layer include, for example, poly-3-hexylthiophene (P3HT), polythiophene derivatives such as poly(3,4-ethylenedioxythiophene) (PEDOT), 2,2′,7,7′- Fluorene derivatives such as tetrakis-(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (Spiro-OMeTAD), carbazole derivatives such as polyvinylcarbazole, triphenylamine derivatives, diphenylamine derivatives, polysilanes derivatives, polyaniline derivatives and the like.
  • P3HT poly-3-hexylthiophene
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • Spiro-OMeTAD 2,2′,7,7′- Fluorene derivatives such as tetrakis-(N,N-di-p-methoxyphenylamine)-9
  • Materials for the electron transport layer include, for example, metal oxides such as titanium oxide, zinc oxide, niobium oxide, zirconium oxide, and aluminum oxide.
  • the first photoelectric conversion unit 10 and the second photoelectric conversion unit 20 described above are connected in series.
  • the combination of the charge transport layer 24/charge transport layer 25/conductivity-type semiconductor layer 14/conductivity-type semiconductor layer 15 of the second photoelectric conversion unit 20 (top cell T) and the first photoelectric conversion unit 10 (bottom cell B) is as follows.
  • An intermediate layer (not shown) may be provided between the first photoelectric conversion section 10 and the second photoelectric conversion section 20 .
  • the intermediate layer is provided for purposes such as bandgap adjustment between two stacked photoelectric conversion units, selective movement of carriers, formation of a tunnel junction, wavelength selective reflection, and the like.
  • the configuration of the intermediate layer is selected according to the type and combination of photoelectric conversion units 10 and 20 .
  • the intermediate layer can be omitted by providing the conductive semiconductor layer 14 and the charge transport layer 25 provided at the interface between the first photoelectric conversion section 10 and the second photoelectric conversion section 20 with a function as an intermediate layer. .
  • An electrode 31 for extracting photogenerated carriers is formed on the main surface of the second photoelectric conversion unit 20 opposite to the first photoelectric conversion unit 10, that is, on the light receiving surface side of the solar cell 2.
  • An electrode 32 for extracting photogenerated carriers is formed on the main surface of the first photoelectric conversion unit 10 opposite to the second photoelectric conversion unit 20 , that is, on the back surface side of the solar cell 2 .
  • the electrode 31 may include the transparent electrode 311 and the metal electrode 312, or may include the metal electrode 312 only.
  • the electrode 32 may include the transparent electrode 321 and the metal electrode 322, or may include the metal electrode 322 only.
  • Metal oxides such as ITO, zinc oxide, and tin oxide are preferably used as materials for the transparent electrodes 311 and 321 .
  • Silver, copper, aluminum, or the like is preferably used as the material of the metal electrodes 312 and 322 .
  • FIG. 2 is a cross-sectional view of the solar cell device according to the present embodiment
  • FIG. 3 is a view of part of the solar cell device shown in FIG. 2 as seen from the light receiving surface side
  • FIG. 4 is shown in FIG. It is the figure which looked at a part of solar cell device from the back surface side.
  • the solar battery device 1 includes a plurality of solar battery cells 2 and a plurality of connection members 6.
  • a plurality of solar cells 2 are arranged in the Y direction, for example.
  • the connection member 6 electrically connects adjacent solar cells 2 .
  • the connection member 6 has an elongated shape extending in the Y direction, and one end of the connection member 6 is connected to the electrode 31 on the light receiving surface side of one of the solar cells 2 . 6 is connected to the electrode 32 on the back side of the other solar cell 2 .
  • a plurality of solar cells 2 connected in a string like this is referred to as a solar cell string (solar cell device).
  • connection member 6 a known rectangular, circular or polygonal cross-sectional interconnector such as a tab or wire is used.
  • the connection member 6 may be a ribbon wire made of a copper core coated with a low-melting-point metal or solder, a conductive film made of a thermosetting resin film containing low-melting-point metal particles or metal fine particles, or a plurality of films.
  • a member formed of a knitted or woven fabric knitted from conductive strands for example, see Japanese Patent Application Laid-Open No. 2016-219799 or Japanese Patent Application Laid-Open No. 2014-3161).
  • the connection member 6 and the electrodes 31 and 32 of the solar cell 2 are connected via a conductive adhesive member.
  • the conductive adhesive member includes a conductive film formed of a thermosetting resin film containing low-melting metal particles or metal fine particles, a conductive adhesive formed of low-melting metal fine particles or metal fine particles and a binder, or , a solder paste containing solder particles, or the like is used.
  • the softening temperature of the conductive adhesive member is preferably higher than the softening temperature of the sealing material 5, which will be described later.
  • the metal electrode 312 on the light-receiving surface side of the solar cell 2 has a so-called comb shape, and includes a plurality of finger electrodes 312f corresponding to comb teeth and bus bars corresponding to support portions of the comb teeth. and an electrode 312b.
  • the busbar electrodes 312b extend in the X direction along the ends of the photovoltaic cells 2 intersecting the Y direction (the arrangement direction of the photovoltaic cells).
  • the finger electrodes 312f extend in the Y direction (solar cell arrangement direction) from the busbar electrodes 312b and are arranged in the X direction.
  • the metal electrode 322 on the back side of the solar cell 2 has a so-called stripe shape and has only a plurality of finger electrodes 322f.
  • the finger electrodes 322f extend in the X direction (the direction intersecting the arrangement direction of the solar cells) and are arranged in the Y direction.
  • the finger electrodes 312f on the light receiving surface side of the solar cell 2 and the finger electrodes 322f on the back surface side of the solar cell 2 are formed to intersect at 90 degrees or approximately 90 degrees.
  • the finger electrodes 312f on the light-receiving surface side of the solar cell 2 may be slit-shaped electrodes as described above. It may also be a grid-shaped electrode. Further, the finger electrodes 322f on the back surface side of the solar cell 2 may be slit-shaped (stripe-shaped) electrodes as described above, or the slit-shaped electrodes intersecting the slit-shaped electrodes may be used as described above. Furthermore, it may be a grid-shaped electrode formed. As a result, not only light from the light-receiving surface side but also light from the back surface side can be made incident, and the photoelectric conversion efficiency can be improved.
  • connection members 6 extend in the Y direction (the direction in which the solar cells are arranged) and are arranged in the X direction. As shown in FIG. 3, one end of connecting member 6 extends to busbar electrode 312b at the end of photovoltaic cell 2 on the light receiving surface side, and is adhered to busbar electrode 312b. One end of connecting member 6 does not extend to finger electrode 312f other than the end on the light receiving surface side of solar cell 2, and is not adhered to finger electrode 312f.
  • connection member 6 extends across all of the finger electrodes 322f on the back side of the solar cell 2 and is adhered to all of the finger electrodes 322f.
  • the length of the other end of connecting member 6 adhered to the back surface side of solar cell 2 is longer than the length of the one end of connecting member 6 adhered to the light receiving surface side of solar cell 2 .
  • the adhesion volume of the connection member 6 on the back surface side of the solar cell 2 is larger than the adhesion volume of the connection member 6 on the light receiving surface side of the solar battery cell 2 .
  • FIG. 5 is a cross-sectional view of the solar cell module according to this embodiment. As shown in FIG. 5 , the solar cell module 100 includes one or more solar cell devices 1 .
  • the solar cell device 1 is sandwiched between the light receiving side protective member 3 and the back side protective member 4 .
  • a liquid or solid sealing material 5 is filled between the light-receiving-side protective member 3 and the back-side protective member 4 , thereby sealing the solar cell device 1 .
  • the encapsulant 5 seals and protects the solar battery device 1, that is, the solar battery cell 2, between the light-receiving-side surface of the solar battery cell 2 and the light-receiving-side protective member 3, and between the solar battery cell 2 and the light-receiving side protective member 3. 2 and the back side protection member 4.
  • the shape of the sealing material 5 is not particularly limited, and may be, for example, a sheet shape. This is because the sheet shape facilitates covering the front and back surfaces of the planar solar battery cell 2 .
  • the material of the sealing material 5 is not particularly limited, it is preferable that the material has the property of transmitting light (translucency). Moreover, it is preferable that the material of the encapsulant 5 has adhesiveness to bond the photovoltaic cell 2 , the light-receiving side protective member 3 , and the back side protective member 4 .
  • Examples of such materials include ethylene/vinyl acetate copolymer (EVA), ethylene/ ⁇ -olefin copolymer, ethylene/vinyl acetate/triallyl isocyanurate (EVAT), polyvinyl butyrate (PVB), acrylic Translucent resins such as resins, urethane resins, and silicone resins can be used.
  • the light-receiving-side protective member 3 covers the surface (light-receiving surface) of the solar battery device 1 , that is, the solar battery cell 2 via the sealing material 5 to protect the solar battery cell 2 .
  • the shape of the light-receiving-side protective member 3 is not particularly limited, but a plate-like or sheet-like shape is preferable from the point of indirectly covering the planar light-receiving surface.
  • the material of the light-receiving side protective member 3 is not particularly limited, it is preferable to use a material that has translucency and is resistant to ultraviolet light, similar to the sealing material 5.
  • a material that has translucency and is resistant to ultraviolet light similar to the sealing material 5.
  • glass, or Transparent resins such as acrylic resins and polycarbonate resins can be used.
  • the surface of the light-receiving-side protective member 3 may be processed into an uneven shape, or may be coated with an antireflection coating layer. This is because the light-receiving-side protective member 3 having such a configuration makes it difficult to reflect the received light, and guides more light to the solar cell device 1 .
  • the back side protection member 4 covers the back side of the solar cell device 1 , that is, the solar cell 2 through the encapsulant 5 to protect the solar cell 2 .
  • the shape of the back side protective member 4 is not particularly limited, but like the light-receiving side protective member 3, it is preferably plate-like or sheet-like in that it indirectly covers the planar back side.
  • the material for the back side protection member 4 is not particularly limited, but a material that prevents the infiltration of water or the like (has high water impermeability) is preferable.
  • a resin film such as polyethylene terephthalate (PET), polyethylene (PE), olefin-based resin, fluorine-containing resin, or silicone-containing resin, or a translucent plate-shaped resin member such as glass, polycarbonate, or acrylic,
  • PET polyethylene terephthalate
  • PE polyethylene
  • olefin-based resin fluorine-containing resin
  • silicone-containing resin or a translucent plate-shaped resin member such as glass, polycarbonate, or acrylic
  • a laminate with a metal foil such as an aluminum foil may be mentioned.
  • the light-receiving side protective member 3 and the material of the sealing material 5 described above have optical transparency.
  • the material of the back side protection member 4 is also the above-mentioned material, since the back side protection member 4 also has light transmittance. As a result, not only light from the light-receiving surface side but also light from the back surface side can be made incident, and the photoelectric conversion efficiency can be improved.
  • connection member 6 is adhered to the light receiving surface side of the solar cell 2 and the connection member 6 is adhered to the back surface side of the solar cell 2 by heat treatment.
  • the solar cell 2 may warp.
  • the tandem solar cell 2 in which a relatively thick perovskite thin film is formed on the light-receiving surface side of the crystalline silicon substrate, the thickness of the layers stacked on the light-receiving surface side of the crystalline silicon substrate and the back surface of the crystalline silicon substrate Warpage of the solar cell 2 may occur due to the difference in thickness of the layer laminated on the side. As a result, the solar cell device 1 may warp.
  • connection failure such as peeling of the connecting member 6 and crack failure of the solar cell 2 occur.
  • step (3) the adhesion volume of the connection member 6 is made different between the light receiving surface side and the back surface side of the solar cell 2 .
  • the bonding volume of the connecting member 6 on the back side of the solar cell 2 is equal to the bonding volume of the connecting member 6 on the light receiving surface side of the solar cell 2. bigger than As a result, in the tandem solar cell 2 in which a relatively thick perovskite thin film is formed on the light-receiving surface side of the crystalline silicon substrate, the thickness of the layers stacked on the light-receiving surface side of the crystalline silicon substrate and the thickness of the back surface side of the crystalline silicon substrate Differences in thickness between laminated layers can be reduced.
  • the heat treatment for bonding the connecting members 6 to the solar cells 2, the warping of the solar cells 2 can be reduced. It is possible to reduce the warpage of the solar cell device 1 to be used. As a result, it is possible to reduce poor connection (peel-off) of the connection members 6 caused by the warping of the solar cell 2, in other words, the warping of the solar cell device 1.
  • FIG. 1 in the procedure (7) in the manufacturing process of the solar cell module 100, the heating and pressurizing process at the time of sealing the solar cell device 1, it is possible to reduce connection failure such as peeling of the connecting member 6 and crack failure of the solar cell. can. In this way, defects in the manufacturing process of the solar cell device 1 and the solar cell module 100 can be reduced, and the yield can be improved.
  • the size of solar cells has been increasing. As the size of the solar cell increases, the warping of the solar cell and the warping of the solar cell device tend to increase.
  • the features of the present embodiment are more effective in solar cell devices and solar cell modules that include such large tandem solar cells.
  • the length of the other end portion of the connection member 6 bonded to the back surface side of the solar cell 2 is the length of the one end portion of the connection member 6 bonded to the light receiving surface side of the solar cell 2. Longer than length. More specifically, one end of connecting member 6 extends to busbar electrode 312b at the end of photovoltaic cell 2 on the light-receiving surface side. It does not extend to finger electrode 312 f , and the other end of connection member 6 extends across all of finger electrodes 322 f on the back surface side of solar cell 2 .
  • the softening temperature of the conductive adhesive member is higher than the softening temperature of the sealing material 5 .
  • step (4) in the manufacturing process of the solar cell device 1, step (7) in the manufacturing process of the solar cell module 100, and sealing of the solar cell device 1 after the heat treatment for bonding the connection members 6 to the solar cells 2 are performed.
  • the conductive adhesive member is not softened, and connection failure (peeling) of the connection member 6 can be reduced.
  • the present invention is not limited to the above-described embodiments, and various modifications and variations are possible.
  • a solar cell device and a solar cell module including two-terminal tandem solar cells have been exemplified.
  • the features of the present invention are also applicable to solar devices and modules with four-terminal tandem solar cells, and also to solar devices and modules with three-terminal tandem solar cells. It is also applicable to solar cell modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽電池セルの反りに起因する太陽電池デバイスの反りを低減する太陽電池デバイスを提供する。太陽電池デバイス1は、両面電極型である複数の太陽電池セル2と、隣り合う太陽電池セル2を電気的に接続する長尺形状の複数の接続部材6とを備える。太陽電池セル2は、結晶シリコン基板を含む第1光電変換部と、第1光電変換部よりも受光面側に配置され、ペロブスカイト薄膜を含む第2光電変換部とを含むタンデム型の太陽電池セルである。太陽電池セル2の受光面側に接着された接続部材6の一方端部の長さよりも、太陽電池セル2の裏面側に接着された接続部材6の他方端部の長さが長いことによって、太陽電池セル2の裏面側における接続部材6の接着体積が、太陽電池セル2の受光面側における接続部材6の接着体積よりも大きい。

Description

太陽電池デバイスおよび太陽電池モジュール
 本発明は、太陽電池デバイスおよび太陽電池モジュールに関する。
 複数の太陽電池セルを、タブ等の接続部材によって接続した太陽電池デバイス、および、太陽電池デバイスを、ガラスまたは透明樹脂等の保護部材および封止材によって封止した太陽電池モジュールが知られている。太陽電池セルとしては、光電変換層として結晶シリコン基板を用いた結晶シリコン系太陽電池セル、光電変換層としてアモルファスシリコン薄膜等の無機系薄膜を用いた薄膜系太陽電池セルが知られている。また、薄膜系太陽電池として、光電変換層として有機系薄膜(詳細には、有機/無機ハイブリット系薄膜)であるペロブスカイト薄膜を用いたペロブスカイト薄膜系太陽電池セルが知られている。
 また、近年、広波長範囲の光を有効に利用して太陽電池セルの変換効率を高める目的で、バンドギャップが異なる光電変換層を含む2つの光電変換部を積層した多接合(タンデム)型太陽電池セルが知られている。例えば、特許文献1には、光電変換層として結晶シリコン基板を含むボトムセル(第1光電変換部)と、光電変換層としてペロブスカイト薄膜を含むトップセル(第2光電変換部)とを含むタンデム型太陽電池セルが開示されている。
 このようなタンデム型太陽電池セルとして、トップセルとボトムセルが直列に接続された2端子型、トップセルとボトムセルから別々に電気取出しを行う4端子型がある。また、これらの2端子型および4端子型の長所を利用でき、更なる光電変換効率の向上の可能性を有する3端子型のタンデム型太陽電池セルが考案されている(例えば、特許文献2参照)。
特開2018-11058号公報 国際公開2020/196288号
 薄膜系太陽電池セルでは、比較的に硬いガラスまたは透明樹脂の上に、光電変換層としてのアモルファスシリコン薄膜、および導電型アモルファスシリコン薄膜を形成する。一方、結晶シリコン系太陽電池セルでは、ガラスまたは透明樹脂を用いずに、光電変換層としての結晶シリコン基板をベースとして導電型アモルファスシリコン薄膜を形成する。そのため、結晶シリコン基板の受光面側に比較的に厚いペロブスカイト薄膜を形成するタンデム型太陽電池セルでは、結晶シリコン基板の受光面側に積層された層の厚さと結晶シリコン基板の裏面側に積層された層の厚さとの差に起因して、太陽電池デバイスの製造プロセスにおいて、太陽電池セルの反りが比較的に大きく生じてしまう。その結果、太陽電池デバイスの反りが比較的に大きく生じてしまう。
 そのため、太陽電池デバイスを封止する太陽電池モジュールの製造プロセスにおいて、タブ等の接続部材が剥離する接続不良、太陽電池セルの割れなどが生じてしまい、歩留まりが低下してしまう。
 本発明は、太陽電池セルの反りに起因する太陽電池デバイスの反りを低減する太陽電池デバイスおよび太陽電池モジュールを提供することを目的とする。
 本発明に係る太陽電池デバイスは、両面電極型である複数の太陽電池セルと、隣り合う前記太陽電池セルを電気的に接続する長尺形状の複数の接続部材と、を備える。前記太陽電池セルは、結晶シリコン基板を含む第1光電変換部と、前記第1光電変換部よりも受光面側に配置され、ペロブスカイト薄膜を含む第2光電変換部と、を含むタンデム型の太陽電池セルである。前記太陽電池セルの前記受光面側に接着された前記接続部材の一方端部の長さよりも、前記太陽電池セルの裏面側に接着された前記接続部材の他方端部の長さが長いことによって、前記太陽電池セルの前記裏面側における前記接続部材の接着体積が、前記太陽電池セルの前記受光面側における前記接続部材の接着体積よりも大きい。
 本発明に係る太陽電池モジュールは、上記の1または複数の太陽電池デバイスと、前記太陽電池デバイスの受光面側を保護する受光側保護部材と、前記太陽電池デバイスの裏面側を保護する裏側保護部材と、前記太陽電池デバイスと前記受光側保護部材との間、および、前記太陽電池デバイスと前記裏側保護部材との間に配置され、前記太陽電池デバイスを封止する封止材と、を備える。
 本発明によれば、太陽電池デバイスおよび太陽電池モジュールにおいて、太陽電池セルの反りに起因する太陽電池デバイスの反りを低減することができる。
本実施形態に係る太陽電池セルを模式的に示す断面図である。 本実施形態に係る太陽電池デバイスの断面図である。 図2に示す太陽電池デバイスの一部を受光面側からみた図である。 図2に示す太陽電池デバイスの一部を裏面側からみた図である。 本実施形態に係る太陽電池モジュールの断面図である。
 以下、添付の図面を参照して本発明の実施形態の一例について説明する。なお、各図面において同一または相当の部分に対しては同一の符号を附すこととする。また、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。
(太陽電池セル)
 図1は、本実施形態に係る太陽電池セルを模式的に示す断面図である。図1および後述する図面には、XY直交座標系が示されている。XY平面は、太陽電池セルおよび後述する太陽電池デバイスおよび太陽電池モジュールの受光面および裏面に沿う平面である。
 図1に示す太陽電池セル2は、第1光電変換部10(ボトムセルBともいう。)と、第1光電変換部10の受光面側に積層された第2光電変換部20(トップセルTともいう。)とを含むタンデム型(多接合型)であって2端子型の太陽電池セルである。
 第1光電変換部10(ボトムセルB)は、光電変換層11として第1半導体層を含む。第1半導体層は光を吸収して、光キャリアを発生させる。光電変換層11としての第1半導体層は、単結晶シリコンまたは多結晶シリコン等の結晶シリコン基板である。
 光電変換層11としての第1半導体層が単結晶シリコン基板である場合、第1光電変換部10としては、第1導電型単結晶シリコン基板の受光面側に第2導電型の拡散層を設けた拡散型セルや、第1導電型単結晶シリコン基板の両面にシリコン系薄膜を設けたヘテロ接合セル等が挙げられる。
 光電変換層11としての第1半導体層が単結晶シリコン基板であり、単結晶シリコン基板の表裏にシリコン系薄膜を備えるヘテロ接合セルの場合、第1光電変換部10は、光電変換層11の受光面側に形成された導電型シリコン系薄膜14と、光電変換層11の裏面側に形成された導電型シリコン系薄膜15を有する。
 単結晶シリコン基板は、p型でもn型でもよい。正孔と電子とを比較した場合、電子の方が移動度が大きいため、n型単結晶シリコン基板を用いた場合は、特に変換特性に優れる。導電型シリコン系薄膜14,15は、p型シリコン系薄膜またはn型シリコン系薄膜である。
 光電変換層11としての単結晶シリコン基板と導電型シリコン系薄膜14,15との間には、真性シリコン系薄膜12,13が設けられていることが好ましい。単結晶シリコン基板の表面に真性シリコン系薄膜が設けられることにより、単結晶シリコン基板への不純物の拡散を抑えつつ表面パッシベーションを有効に行うことができる。単結晶シリコン基板の表面に真性シリコン系薄膜12,13として真性非晶質シリコン薄膜が設けられることにより、単結晶シリコン基板の表面に対する高いパッシベーション効果が得られる。
 第2光電変換部20(トップセルT)は、光電変換層21として薄膜の第2半導体層を含む。第2半導体層は光を吸収して、光キャリアを発生させる。第2半導体層は、上述した第1半導体層と異なるバンドギャップを有する。そのため、上述した第1半導体層と第2半導体層とは、異なる波長範囲に分光感度特性を有する。したがって、光電変換層11として第1半導体層を含む第1光電変換部10と、光電変換層21として第2半導体層を含む第2光電変換部20とが積層された積層光電変換部では、より広い波長の光を光電変換に寄与させることができる。
 具体的には、第2半導体層を構成する薄膜としては、有機半導体薄膜、詳細には有機無機ハイブリッド半導体薄膜が挙げられる。有機無機ハイブリッド半導体薄膜としては、ペロブスカイト型結晶構造の感光性材料を含有するペロブスカイト薄膜が挙げられる。
 ペロブスカイト型結晶材料を構成する化合物は、一般式RNHまたはHC(NHで表される。式中、Rはアルキル基であり、炭素数1~5のアルキル基が好ましく、特にメチル基が好ましい。Mは2価の金属イオンであり、PbやSnが好ましい。Xはハロゲンであり、F,Cl,Br,Iが挙げられる。なお、3個のXは、全て同一のハロゲン元素であってもよく、複数のハロゲンが混在していてもよい。
 ペロブスカイト型結晶材料を構成する化合物の好ましい例として、式CHNHPb(I1-xBrで(ただし、0≦x≦1)表される化合物が挙げられる。ペロブスカイト材料は、ハロゲンの種類や比率を変更することにより、分光感度特性を変化させることができる。ペロブスカイト半導体薄膜は、各種のドライプロセスや、スピンコート等の溶液製膜により形成できる。
 光電変換層21がペロブスカイト半導体薄膜を含む場合、第2光電変換部20は、電荷輸送層24,25を有する。電荷輸送層24、25は、一方が正孔輸送層であり、他方が電子輸送層である。
 正孔輸送層の材料としては、例えば、ポリ-3-ヘキシルチオフェン(P3HT)、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)等のポリチオフェン誘導体、2,2’,7,7’-テトラキス-(N,N-ジ-p-メトキシフェニルアミン)-9,9’-スピロビフルオレン(Spiro-OMeTAD)等のフルオレン誘導体、ポリビニルカルバゾール等のカルバゾール誘導体、トリフェニルアミン誘導体、ジフェニルアミン誘導体、ポリシラン誘導体、ポリアニリン誘導体等が挙げられる。
 電子輸送層の材料としては、例えば、酸化チタン、酸化亜鉛、酸化ニオブ、酸化ジルコニウム、酸化アルミニウム等の金属酸化物が挙げられる。
 上述した第1光電変換部10と第2光電変換部20とは、直列接続されている。第2光電変換部20(トップセルT)および第1光電変換部10(ボトムセルB)の電荷輸送層24/電荷輸送層25/導電型半導体層14/導電型半導体層15の組み合わせとしては、以下のような組み合わせが挙げられる。
・正孔輸送層(HTM)/電子輸送層(ETM)/n型アモルファスシリコン半導体層(n-a-Si)/p型アモルファスシリコン半導体層(p-a-Si):pn-np接合型
・電子輸送層(ETM)/正孔輸送層(HTM)/n型アモルファスシリコン半導体層(n-a-Si)/p型アモルファスシリコン半導体層(p-a-Si):np-np接合型
・正孔輸送層(HTM)/電子輸送層(ETM)/p型アモルファスシリコン半導体層(p-a-Si)/n型アモルファスシリコン半導体層(n-a-Si):pn-pn接合型
・電子輸送層(ETM)/正孔輸送層(HTM)/p型アモルファスシリコン半導体層(p-a-Si)/n型アモルファスシリコン半導体層(n-a-Si):np-pn接合型
 第1光電変換部10と第2光電変換部20との間には中間層(図示省略)が設けられてもよい。中間層は、積層された2つの光電変換部間のバンドギャップ調整や、キャリアの選択的移動、トンネル接合の形成、波長選択反射等の目的で設けられる。中間層の構成は、光電変換部10,20の種類や組み合わせ等に応じて選択される。第1光電変換部10と第2光電変換部20との界面に設けられた導電型半導体層14および電荷輸送層25に中間層としての機能を持たせることにより、中間層を省略することもできる。
 第2光電変換部20における第1光電変換部10と反対側の主面、すなわち太陽電池セル2の受光面側には、光生成キャリアを取り出すための電極31が形成されている。第1光電変換部10における第2光電変換部20と反対側の主面、すなわち太陽電池セル2の裏面側には、光生成キャリアを取り出すための電極32が形成されている。
 電極31は、透明電極311と金属電極312とを含んでもよいし、金属電極312のみを含んでもよい。同様に、電極32は、透明電極321と金属電極322とを含んでもよいし、金属電極322のみを含んでもよい。透明電極311,321の材料としては、ITO、酸化亜鉛、酸化スズ等の金属酸化物が好ましく用いられる。金属電極312,322の材料としては、銀、銅、アルミニウム等が好ましく用いられる。
(太陽電池デバイス)
 図2は、本実施形態に係る太陽電池デバイスの断面図であり、図3は、図2に示す太陽電池デバイスの一部を受光面側からみた図であり、図4は、図2に示す太陽電池デバイスの一部を裏面側からみた図である。図2~図4に示すように、太陽電池デバイス1は、複数の太陽電池セル2と複数の接続部材6とを備える。
 複数の太陽電池セル2は、例えばY方向に配列されている。接続部材6は、隣り合う太陽電池セル2を電気的に接続する。具体的には、接続部材6は、Y方向に延在する長尺形状をなし、接続部材6の一方端部は、一方の太陽電池セル2の受光面側の電極31に接続され、接続部材6の他方端部は、他方の太陽電池セル2の裏面側の電極32に接続される。このように、ひも状につながった複数の太陽電池セル2を、太陽電池ストリング(太陽電池デバイス)と称する。
 接続部材6としては、タブ、ワイヤ等の、公知の平角形状、断面円形状または断面多角形状のインターコネクタが用いられる。例えば、接続部材6としては、低融点金属またははんだを被覆した銅芯材からなるリボン線、低融点金属粒子または金属微粒子を内包した熱硬化性樹脂フィルムで形成された導電性フィルム、或いは複数本の導電性の素線を編んだ編物または織った織物により形成された部材(例えば、特開2016-219799号公報または特開2014-3161号公報参照)等が挙げられる。
 接続部材6と太陽電池セル2の電極31,32とは、導電性接着部材を介して接続されている。導電性接着部材としては、低融点金属粒子または金属微粒子を内包した熱硬化性樹脂フィルムで形成された導電性フィルム、低融点金属微粒子若しくは金属微粒子とバインダーとで形成された導電性接着剤、または、はんだ粒子を含有するはんだペースト等が用いられる。なお、導電性接着部材の軟化温度は、後述する封止材5の軟化温度よりも高いと好ましい。
(太陽電池セルおよび太陽電池デバイスの詳細)
 図3に示すように、太陽電池セル2の受光面側の金属電極312は、いわゆる櫛型の形状をなし、櫛歯に相当する複数のフィンガー電極312fと、櫛歯の支持部に相当するバスバー電極312bとを有する。バスバー電極312bは、太陽電池セル2のY方向(太陽電池セルの配列方向)に交差する端部に沿ってX方向に延在する。フィンガー電極312fは、バスバー電極312bから、Y方向(太陽電池セルの配列方向)に延在し、X方向に並んでいる。
 図4に示すように、太陽電池セル2の裏面側の金属電極322は、いわゆるストライプ形状をなし、複数のフィンガー電極322fのみを有する。フィンガー電極322fは、X方向(太陽電池セルの配列方向に交差する方向)に延在し、Y方向に並んでいる。
 すなわち、太陽電池セル2の受光面側のフィンガー電極312fと、太陽電池セル2の裏面側のフィンガー電極322fとは、90度または略90度で交差するように形成されている。
 なお、太陽電池セル2の受光面側のフィンガー電極312fは、上述したようにスリット形状の電極であってもよいし、上述したようにスリット形状の電極と交差するスリット形状の電極が更に形成されたグリッド形状の電極であってもよい。また、太陽電池セル2の裏面側のフィンガー電極322fは、上述したようにスリット形状(ストライプ形状)の電極であってもよいし、上述したようにスリット形状の電極と交差するスリット形状の電極が更に形成されたグリッド形状の電極であってもよい。これにより、受光面側からの光のみならず、裏面側からの光をも入射させることができ、光電変換効率を向上させることができる。
 接続部材6は、Y方向(太陽電池セルの配列方向)に延在しており、X方向に並んでいる。図3に示すように、接続部材6の一方端部は、太陽電池セル2の受光面側の端部におけるバスバー電極312bまで延在しており、バスバー電極312bに接着されている。接続部材6の一方端部は、太陽電池セル2の受光面側の端部以外におけるフィンガー電極312fまでは延在しておらず、フィンガー電極312fには接着されていない。
 図4に示すように、接続部材6の他方端部は、太陽電池セル2の裏面側のフィンガー電極322fの全てに跨って延在しており、フィンガー電極322fの全てに接着されている。
 すなわち、太陽電池セル2の裏面側に接着された接続部材6の他方端部の長さは、太陽電池セル2の受光面側に接着された接続部材6の一方端部の長さよりも長い。これにより、太陽電池セル2の裏面側における接続部材6の接着体積は、太陽電池セル2の受光面側における接続部材6の接着体積よりも大きい。
(太陽電池モジュール)
 図5は、本実施形態に係る太陽電池モジュールの断面図である。図5に示すように、太陽電池モジュール100は、1または複数の太陽電池デバイス1を含む。
 太陽電池デバイス1は、受光側保護部材3と裏側保護部材4とによって挟み込まれている。受光側保護部材3と裏側保護部材4との間には、液体状または固体状の封止材5が充填されており、これにより、太陽電池デバイス1は封止される。
 封止材5は、太陽電池デバイス1、すなわち太陽電池セル2を封止して保護するもので、太陽電池セル2の受光側の面と受光側保護部材3との間、および、太陽電池セル2の裏側の面と裏側保護部材4との間に介在する。封止材5の形状としては、特に限定されるものではなく、例えばシート状が挙げられる。シート状であれば、面状の太陽電池セル2の表面および裏面を被覆しやすいためである。
 封止材5の材料としては、特に限定されるものではないが、光を透過する特性(透光性)を有すると好ましい。また、封止材5の材料は、太陽電池セル2と受光側保護部材3と裏側保護部材4とを接着させる接着性を有すると好ましい。このような材料としては、例えば、エチレン/酢酸ビニル共重合体(EVA)、エチレン/α-オレフィン共重合体、エチレン/酢酸ビニル/トリアリルイソシアヌレート(EVAT)、ポリビニルブチラート(PVB)、アクリル樹脂、ウレタン樹脂、または、シリコーン樹脂等の透光性樹脂が挙げられる。
 受光側保護部材3は、封止材5を介して、太陽電池デバイス1、すなわち太陽電池セル2の表面(受光面)を覆って、その太陽電池セル2を保護する。受光側保護部材3の形状としては、特に限定されるものではないが、面状の受光面を間接的に覆う点から、板状またはシート状が好ましい。
 受光側保護部材3の材料としては、特に限定されるものではないが、封止材5同様に、透光性を有しつつも紫外光に耐性の有る材料が好ましく、例えば、ガラス、または、アクリル樹脂若しくはポリカーボネート樹脂等の透明樹脂が挙げられる。また、受光側保護部材3の表面は、凹凸状に加工されていても構わないし、反射防止コーティング層で被覆されていても構わない。これらのようになっていると、受光側保護部材3は、受けた光を反射させ難くして、より多くの光を太陽電池デバイス1に導けるためである。
 裏側保護部材4は、封止材5を介して、太陽電池デバイス1、すなわち太陽電池セル2の裏面を覆って、その太陽電池セル2を保護する。裏側保護部材4の形状としては、特に限定されるものではないが、受光側保護部材3同様に、面状の裏面を間接的に覆う点から、板状またはシート状が好ましい。
 裏側保護部材4の材料としては、特に限定されるものではないが、水等の浸入を防止する(遮水性の高い)材料が好ましい。例えば、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、オレフィン系樹脂、含フッ素樹脂、若しくは含シリコーン樹脂等の樹脂フィルム、またはガラス、ポリカーボネート、アクリル等の透光性を有する板状の樹脂部材と、アルミニウム箔等の金属箔との積層体が挙げられる。
 上述した受光側保護部材3の材料および封止材5の材料によれば、受光側保護部材3および封止材5は光透過性を有する。また、裏側保護部材4の材料も上述の材料であると、裏側保護部材4も光透過性を有して好ましい。これにより、受光面側からの光のみならず、裏面側からの光をも入射させることができ、光電変換効率を向上させることができる。
(太陽電池デバイスの製造方法)
 次に、本実施形態に係る太陽電池デバイスの製造方法について説明する。
(1)まず、太陽電池セル2を配列する。
(2)次に、太陽電池セル2の電極31,32上に導電性接着剤を配置する。
(3)次に、太陽電池セル2の電極31,32上に接続部材6を配置する。
なお、(1)~(3)の手順は、入れ替わってもよい。
 (4)次に、加熱処理により、接続部材6が太陽電池セル2の受光面側に接着され、接続部材6が太陽電池セル2の裏面側に接着される。
(太陽電池モジュールの製造方法)
 次に、本実施形態に係る太陽電池モジュールの製造方法について説明する。
(5)太陽電池デバイス、渡り配線、引き出し配線を配置して、太陽電池ストリング同士を接続する。
(6)次に、受光側保護部材、封止材、太陽電池デバイス、封止材、裏側保護部材をこの順で配置する。
(7)次に、公知の加熱加圧処理を行う。これにより、太陽電池デバイス1が受光側保護部材3、裏側保護部材4および封止材5によって封止された太陽電池モジュール100が得られる。
 上述した太陽電池デバイス1の製造プロセスにおける手順(4)、接続部材6を太陽電池セル2に接着する熱処理において、太陽電池セル2の反りが生じることがある。具体的には、結晶シリコン基板の受光面側に比較的に厚いペロブスカイト薄膜を形成するタンデム型太陽電池セル2では、結晶シリコン基板の受光面側に積層された層の厚さと結晶シリコン基板の裏面側に積層された層の厚さとの差に起因して、太陽電池セル2の反りが生じることがある。その結果、太陽電池デバイス1の反りが生じることがある。
 そのため、上述した太陽電池モジュール100の製造プロセスにおける手順(7)、太陽電池デバイス1の封止時の加熱加圧処理において、接続部材6が剥離する接続不良、太陽電池セル2の割れ不良が生じることがある。
 この点に関し、本実施形態では、手順(3)において、接続部材6の接着体積を、太陽電池セル2の受光面側と裏面側とで異ならせる。
 すなわち、本実施形態の太陽電池デバイス1および太陽電池モジュール100によれば、太陽電池セル2の裏面側における接続部材6の接着体積が、太陽電池セル2の受光面側における接続部材6の接着体積よりも大きい。これにより、結晶シリコン基板の受光面側に比較的に厚いペロブスカイト薄膜を形成するタンデム型太陽電池セル2において、結晶シリコン基板の受光面側に積層された層の厚さと結晶シリコン基板の裏面側に積層された層の厚さとの差を低減することができる。そのため、太陽電池デバイス1の製造プロセスにおける手順(4)、接続部材6を太陽電池セル2に接着する熱処理において、太陽電池セル2の反りを低減することができ、太陽電池セル2の反りに起因する太陽電池デバイス1の反りを低減することができる。その結果、太陽電池セル2の反り、換言すれば太陽電池デバイス1の反り、に起因する接続部材6の接続不良(剥がれ)を低減することができる。また、太陽電池モジュール100の製造プロセスにおける手順(7)、太陽電池デバイス1の封止時の加熱加圧処理において、接続部材6が剥離する接続不良、太陽電池セルの割れ不良を低減することができる。このように、太陽電池デバイス1および太陽電池モジュール100の製造プロセスにおける不良を低減することができ、歩留まりを向上することができる。
 ところで、近年、太陽電池セルサイズの大型化が進んでいる。太陽電池セルが大型化すると、太陽電池セルの反りおよび太陽電池デバイスの反りが大きくなる傾向がある。本実施形態の特徴は、このような大型のタンデム型太陽電池セルを備える太陽電池デバイスおよび太陽電池モジュールにおいてより効果を奏する。
 また、近年、両面受光タイプの太陽電池セルがある。このような両面受光タイプの太陽電池セルにおいて、裏面側の金属電極をグリッド化またはスリット化すると、太陽電池セルの反りおよび太陽電池デバイスの反りが大きくなる傾向がある。このような両面電極タイプの、すなわちグリッド状またはスリット状の裏面金属電極を有する、タンデム型太陽電池セルを備える太陽電池デバイスおよび太陽電池モジュールにおいて効果を奏する。
 また、本実施形態では、太陽電池セル2の裏面側に接着された接続部材6の他方端部の長さは、太陽電池セル2の受光面側に接着された接続部材6の一方端部の長さよりも長い。より具体的には、接続部材6の一方端部は、太陽電池セル2の受光面側の端部におけるバスバー電極312bまで延在しており、太陽電池セル2の受光面側の端部以外におけるフィンガー電極312fまでは延在しておらず、接続部材6の他方端部は、太陽電池セル2の裏面側のフィンガー電極322fの全てに跨って延在している。これにより、太陽電池セル2の受光面側において、接続部材6による遮光ロスを低減することができ(光電変換効率向上)、接続部材6による反射光を低減することができる(意匠性向上)。
 また、本実施形態では、導電性接着部材の軟化温度は、封止材5の軟化温度よりも高い。これにより、太陽電池デバイス1の製造プロセスにおける手順(4)、接続部材6を太陽電池セル2に接着する熱処理後、太陽電池モジュール100の製造プロセスにおける手順(7)、太陽電池デバイス1の封止時の加熱加圧処理において、導電性接着部材が軟化することがなく、接続部材6の接続不良(剥がれ)を低減することができる。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更および変形が可能である。例えば、上述した実施形態および変形例では、2端子型のタンデム型太陽電池セルを備える太陽電池デバイスおよび太陽電池モジュールを例示した。しかし、本発明の特徴は、4端子型のタンデム型太陽電池セルを備える太陽電池デバイスおよび太陽電池モジュールにも適用可能であり、また、3端子型のタンデム型太陽電池セルを備える太陽電池デバイスおよび太陽電池モジュールにも適用可能である。
 1 太陽電池デバイス
 2 太陽電池セル
 3 受光側保護部材
 4 裏側保護部材
 5 封止材
 6 接続部材
 10,B 第1光電変換部(ボトムセル)
 11 光電変換層(第1半導体層)
 12,13 真性半導体層(真性シリコン系薄膜)
 14,15 導電型半導体層(導電型シリコン系薄膜)
 20,T 第2光電変換部(トップセル)
 21 光電変換層(第2半導体層)
 24,25 電荷輸送層
 31,32 電極
 311,321 透明電極
 312,322 金属電極
 312f,322f フィンガー電極
 312b バスバー電極
 100 太陽電池モジュール

Claims (3)

  1.  両面電極型である複数の太陽電池セルと、
     隣り合う前記太陽電池セルを電気的に接続する長尺形状の複数の接続部材と、
    を備え、
     前記太陽電池セルは、
      結晶シリコン基板を含む第1光電変換部と、
      前記第1光電変換部よりも受光面側に配置され、ペロブスカイト薄膜を含む第2光電変換部と、
    を含むタンデム型の太陽電池セルであり、
     前記太陽電池セルの前記受光面側に接着された前記接続部材の一方端部の長さよりも、前記太陽電池セルの裏面側に接着された前記接続部材の他方端部の長さが長いことによって、前記太陽電池セルの前記裏面側における前記接続部材の接着体積が、前記太陽電池セルの前記受光面側における前記接続部材の接着体積よりも大きい、
    太陽電池デバイス。
  2.  前記太陽電池セルの前記受光面側の電極は、前記太陽電池セルの配列方向に延在する複数のフィンガー電極と、前記太陽電池セルの前記配列方向に交差する端部に沿って延在するバスバー電極とを有し、
     前記太陽電池セルの前記裏面側の電極は、前記配列方向に交差する方向に延在する複数のフィンガー電極を有し、
     前記接続部材は、前記配列方向に延在しており、
     前記接続部材の一方端部は、前記太陽電池セルの前記受光面側の前記端部における前記バスバー電極まで延在しており、前記太陽電池セルの前記受光面側の前記端部以外における前記フィンガー電極までは延在しておらず、
     前記接続部材の他方端部は、前記太陽電池セルの前記裏面側の前記フィンガー電極の全てに跨って延在している、
    請求項1に記載の太陽電池デバイス。
  3.  請求項1または2に記載の1または複数の太陽電池デバイスと、
     前記太陽電池デバイスの受光面側を保護する受光側保護部材と、
     前記太陽電池デバイスの裏面側を保護する裏側保護部材と、
     前記太陽電池デバイスと前記受光側保護部材との間、および、前記太陽電池デバイスと前記裏側保護部材との間に配置され、前記太陽電池デバイスを封止する封止材と、
    を備える、太陽電池モジュール。
PCT/JP2022/044179 2021-12-28 2022-11-30 太陽電池デバイスおよび太陽電池モジュール WO2023127382A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-214508 2021-12-28
JP2021214508 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127382A1 true WO2023127382A1 (ja) 2023-07-06

Family

ID=86998540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044179 WO2023127382A1 (ja) 2021-12-28 2022-11-30 太陽電池デバイスおよび太陽電池モジュール

Country Status (1)

Country Link
WO (1) WO2023127382A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192272A1 (ja) * 2013-05-28 2014-12-04 三洋電機株式会社 太陽電池モジュール
JP2015207598A (ja) * 2014-04-17 2015-11-19 三菱電機株式会社 太陽電池モジュール、太陽電池およびこれに用いられる素子間接続体
JP2019087641A (ja) * 2017-11-07 2019-06-06 株式会社カネカ 積層型光電変換装置および積層型光電変換装置モジュールの製造方法
US20200295205A1 (en) * 2017-12-07 2020-09-17 Hyundai Energy Solutions Co., Ltd. Solar cell having edge collection electrode and solar cell module comprising same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192272A1 (ja) * 2013-05-28 2014-12-04 三洋電機株式会社 太陽電池モジュール
JP2015207598A (ja) * 2014-04-17 2015-11-19 三菱電機株式会社 太陽電池モジュール、太陽電池およびこれに用いられる素子間接続体
JP2019087641A (ja) * 2017-11-07 2019-06-06 株式会社カネカ 積層型光電変換装置および積層型光電変換装置モジュールの製造方法
US20200295205A1 (en) * 2017-12-07 2020-09-17 Hyundai Energy Solutions Co., Ltd. Solar cell having edge collection electrode and solar cell module comprising same

Similar Documents

Publication Publication Date Title
KR102580567B1 (ko) 태양 전지 및 이를 포함하는 태양 전지 패널
US9947822B2 (en) Bifacial photovoltaic module using heterojunction solar cells
KR101890324B1 (ko) 태양 전지 모듈 및 이에 적용되는 리본 결합체
CN111615752B (zh) 太阳能电池模块
KR101923658B1 (ko) 태양전지 모듈
WO2020054130A1 (ja) 太陽電池モジュール
KR20140095658A (ko) 태양 전지
WO2023181733A1 (ja) スタック型太陽電池ストリング、太陽電池モジュール、および、太陽電池モジュールの製造方法
KR102339975B1 (ko) 정션 박스 및 이를 포함하는 태양 전지 모듈
JP6995828B2 (ja) 太陽電池モジュール
KR102196929B1 (ko) 태양 전지 모듈 및 이에 사용되는 후면 기판
JP2006278695A (ja) 太陽電池モジュール
WO2023127382A1 (ja) 太陽電池デバイスおよび太陽電池モジュール
TW201931613A (zh) 雙面電極型太陽電池及太陽電池模組
JP2016025119A (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
WO2023037885A1 (ja) 太陽電池デバイスおよび太陽電池モジュール
KR102243640B1 (ko) 태양 전지 모듈
KR102000063B1 (ko) 태양 전지 모듈
KR101685350B1 (ko) 태양 전지 모듈
KR20190136445A (ko) 페로브스카이트 태양전지를 포함하는 태양전지 모듈 및 그 제조 방법
KR20150062731A (ko) 리본 및 이를 포함하는 태양 전지 모듈
KR20150043872A (ko) 태양 전지 모듈
WO2024157831A1 (ja) 太陽電池セルおよび太陽電池モジュール
WO2024071284A1 (ja) 太陽電池モジュールの製造方法、および、太陽電池モジュール
WO2022030471A1 (ja) 太陽電池セル及び太陽電池セル製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915613

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023570745

Country of ref document: JP