WO2014192272A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2014192272A1
WO2014192272A1 PCT/JP2014/002734 JP2014002734W WO2014192272A1 WO 2014192272 A1 WO2014192272 A1 WO 2014192272A1 JP 2014002734 W JP2014002734 W JP 2014002734W WO 2014192272 A1 WO2014192272 A1 WO 2014192272A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
surface side
side electrode
back surface
resin adhesive
Prior art date
Application number
PCT/JP2014/002734
Other languages
English (en)
French (fr)
Inventor
知岐 成田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2015519639A priority Critical patent/JP6410106B2/ja
Publication of WO2014192272A1 publication Critical patent/WO2014192272A1/ja
Priority to US14/946,215 priority patent/US20160079459A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module.
  • the solar cell module has a plurality of solar cells. Each of the plurality of solar cells is electrically connected to each other by a wiring material.
  • Wiring material is generally bonded to solar cells by solder.
  • solder the solar cell is heated to a high temperature. For this reason, a large thermal stress is applied to the solar cell due to the difference in thermal expansion coefficient between the solar cell and the wiring material.
  • Japanese Patent Application Laid-Open No. 2012-253062 proposes that a wiring material is bonded to a solar cell by a resin adhesive layer. According to this, it becomes possible to adhere
  • the electrode on the light receiving surface side is required to have a small area so as not to block incident light.
  • the electrode on the back surface side is required to have a larger area than the electrode on the light receiving surface side in order to reduce the surface resistance.
  • the solar cell has a difference in electrode area between the light receiving side and the back side. It tends to warp.
  • the manufacturing cost of the solar cell it is required to reduce the thickness of the solar cell every year. When the thickness of the solar cell is reduced, the solar cell is more likely to warp.
  • the resin adhesive layer is partly peeled off from the solar cell in accordance with the warp, and the wiring material and the solar cell may be electrically non-contact in part. There is sex.
  • the main object of the present invention is to provide a solar cell module having high resistance to warpage of the solar cell.
  • a solar cell module includes a plurality of solar cells including a first solar cell and a second solar cell adjacent to the first solar cell.
  • Each of the plurality of solar cells includes a photoelectric conversion unit, a light receiving surface side electrode disposed on a part of the light receiving surface of the photoelectric conversion unit, and a thin film formed to cover substantially the entire back surface of the photoelectric conversion unit. And a back side electrode having a shape.
  • the solar cell module is arranged between the wiring member that electrically connects the light receiving surface side electrode of the first solar cell and the back surface side electrode of the second solar cell, and between the wiring material and the light receiving surface side electrode.
  • a second resin adhesive layer disposed between the wiring member and the back-side electrode and having a smaller area than the first resin adhesive layer.
  • FIG. 1 is a schematic plan view of a solar cell module according to a first embodiment.
  • FIG. 2 is a schematic cross-sectional view of a part of the solar cell module according to the first embodiment, and is a schematic cross-sectional view along the line AA shown in FIG. 1.
  • FIG. 2 is a schematic cross-sectional view of a part of the solar cell module according to the first embodiment, and is a schematic cross-sectional view along the line BB shown in FIG. 1.
  • It is a schematic plan view by the side of the one light-receiving surface of the solar cell module which concerns on 1st Embodiment.
  • It is a schematic plan view of a part of the back surface side of the solar cell module according to the first embodiment.
  • FIG. 9 is a schematic cross-sectional view of a part of a solar cell module according to a third embodiment, and is a schematic cross-sectional view along the line CC shown in FIG. 7. It is typical sectional drawing of a part of solar cell module which concerns on 4th Embodiment. It is a schematic plan view of a part of the back surface side of the solar cell module according to the fourth embodiment. It is a schematic plan view of a part of the back surface side of the solar cell module according to the fifth embodiment.
  • “upper” used when explaining the arrangement relationship of each member is not intended only when each member is arranged so as to be in direct contact, and other members are interposed between the members. It is intended to include cases of intervention.
  • “the second member is arranged on the first member” is not only the case where the first member and the second member are arranged so as to be in direct contact with each other, It means an arrangement relationship that includes a case where another member intervenes between the second member and the second member.
  • the “light-receiving surface” means a main surface on the side where light mainly enters from the outside of the solar cell module among the main surfaces of each member. For example, more than 50% to 100% of light incident on the solar cell module enters from the light receiving surface side.
  • the “back surface” means a main surface opposite to the light receiving surface among the main surfaces of each member.
  • x direction and y direction mean directions parallel to directions indicated by arrows in each drawing. Although these terms are expressed in a plurality of drawings, these directions are used as being related to each other in each drawing.
  • FIG. 1 is a schematic plan view of a solar cell module 1 according to the first embodiment.
  • the solar cell module 1 includes a plurality of solar cells 3 arranged in the x and y directions, a plurality of wiring members 6 extending with the x direction as a longitudinal direction, and an end in the x direction among the peripheral green portions of the solar cell module 1.
  • a plurality of crossover wirings 10 that are arranged in a peripheral portion near the portion and extend along the y direction.
  • the plurality of solar cells 3 are electrically connected by a plurality of wiring members 6 in one row along the x direction to constitute one solar cell string 2.
  • one solar cell string 2 includes a first solar cell 3a and a second solar cell 3b adjacent to the first solar cell 3a along the x direction.
  • the first and second solar cells 3 a and 3 b are electrically connected to each other by the wiring material 6.
  • the wiring member 6 is electrically connected to the light receiving surface of the first solar cell 3a and electrically connected to the back surface of the second solar cell 3b. This is repeated for each solar cell 3, and in one solar cell string 2, a plurality of solar cells 3 are electrically connected to each other by a plurality of wiring members 6.
  • the plurality of solar cell strings 2 are electrically connected to each other by the crossover wiring 10.
  • the solar cell string 2 includes a solar cell 3c disposed at the end in the x direction.
  • the solar cell 3 c at this end is arranged close to the jumper wiring 10 and is electrically connected to the jumper wiring 10 by the wiring material 6. This is repeated for each solar cell string 2, and in one solar cell module 1, the plurality of solar cell strings 2 are electrically connected to each other via the crossover wiring 10.
  • the plurality of solar cells 3 are electrically connected to each other via the wiring member 6 and the crossover wiring 10.
  • FIG. 2 is a schematic cross-sectional view of the solar cell module 1 according to the first embodiment, and is a schematic cross-sectional view along the line AA shown in FIG.
  • FIG. 3 is a schematic cross-sectional view of the solar cell module 1 according to the first embodiment, and is a schematic cross-sectional view along the line BB shown in FIG.
  • the solar cell module 1 includes the first solar cell 3a, the second solar cell 3b adjacent to the first solar cell 3a along the x direction, and the second solar cell from the light receiving surface of the first solar cell 3a.
  • a wiring member 6 arranged so as to extend on the back surface of the solar cell 3b, a first resin adhesive layer 4 arranged between the light receiving surface of the first solar cell 3a and the wiring member 6, and And a second resin adhesive layer 5 disposed between the back surface of the second solar cell 3 b and the wiring member 6.
  • Each of the first and second solar cells 3 a and 3 b is disposed on the photoelectric conversion unit 31, the light receiving surface side electrode 32 disposed on the light receiving surface of the photoelectric conversion unit 31, and the back surface of the photoelectric conversion unit 31.
  • the back surface side electrode 33 is provided.
  • the photoelectric conversion unit 31 is a member that absorbs incident light and generates photovoltaic power.
  • the structure of the photoelectric conversion unit 31 is not particularly limited.
  • the photoelectric conversion unit 31 is doped with an i-type amorphous silicon layer, boron (B), or the like on the light-receiving surface side of an n-type single crystal silicon substrate.
  • the p-type amorphous silicon layer and the transparent conductive film are provided in this order, and the n-type amorphous silicon layer doped with an i-type amorphous silicon layer, phosphorus (P) or the like on the back side of the substrate , And a transparent conductive film in this order.
  • the light receiving surface side electrode 32 is disposed on a part of the light receiving surface of the photoelectric conversion unit 31.
  • the light receiving surface side electrode 32 is disposed so as to expose a part of the light receiving surface of the photoelectric conversion unit 31 so as not to block light incident on the photoelectric conversion unit 31 from the light receiving surface side.
  • the light-receiving surface side electrode 32 can be comprised with at least 1 type of metals, such as Ag and Cu, for example.
  • the back surface side electrode 33 is arranged on the back surface of the photoelectric conversion unit 31.
  • the back surface side electrode 33 is configured to have a larger area than the light receiving surface side electrode 32.
  • the back surface side electrode 33 is configured by a thin-film planar electrode that covers substantially the entire back surface of the photoelectric conversion unit 31 so that light does not enter the photoelectric conversion unit 31 from the back surface side.
  • the back-side electrode 33 has, for example, a copper (Cu) electrode layer and a tin (Sn) electrode layer or a nickel copper (CuNi) layer that is provided on the copper electrode layer and has substantially the same area as the copper electrode layer. .
  • the wiring member 6 is arranged so as to be connected to the light receiving surface side electrode 32 of the first solar cell 3a and to the back surface side electrode 33 of the second solar cell 3b.
  • the wiring member 6 is an elongated metal foil whose longitudinal direction is the x direction, and is capable of connecting at least the light receiving surface side electrode 32 of the first solar cell 3a and the back surface side electrode 33 of the second solar cell 3b.
  • Have a length of The wiring member 6 is obtained, for example, by plastic processing a silver plated copper wire or an aluminum wire.
  • the width of the wiring member 6 in the short direction (y direction) is the same along the long direction (x direction).
  • the wiring member 6 includes a first surface region 61 that faces the light receiving surface side electrode 32 and a second surface region 62 that faces the back surface side electrode 33.
  • the wiring member 6 is arranged so that the area of the second surface region 62 is smaller than that of the first surface region 61.
  • the width of the wiring member 6 in the short direction (y direction) is the same along the long direction (x direction). Accordingly, the widths in the short direction (y direction) of the first surface region 61 and the second surface region 62 are also substantially the same. Therefore, the wiring member 6 is arranged such that the length of the second surface region 62 in the longitudinal direction (x direction) is shorter than the length of the first surface region 61 in the longitudinal direction (x direction).
  • the longitudinal direction (x direction) of the first surface region 61 has a length that extends from one end to the other end of the light receiving surface side electrode 32.
  • the longitudinal direction (x direction) of the second surface region 62 has a shorter length than the longitudinal direction (x direction) of the first surface region 61.
  • the longitudinal direction (x direction) of the second surface region 62 can be appropriately shortened based on the surface resistance value of the back surface side electrode 33. For example, when the surface resistance of the back surface side electrode 33 is 0.05 ⁇ / mouth, the longitudinal direction (x direction) of the second surface region 62 is about 0.9 times the longitudinal direction (x direction) of the first surface region 61.
  • the (x direction) of the second surface region 62 is 0.6 in the longitudinal direction (x direction) of the first surface region 61. About twice as long.
  • the surface resistance of the back surface side electrode 33 can be further reduced by forming the back surface side electrode 33 thick using a copper paste.
  • the longitudinal direction (x direction) of the second surface region 62 is set to a length that does not reach the central region 33b from the one end 33a of the back surface side electrode 33. Is also possible.
  • the 1st resin contact bonding layer 4 is distribute
  • the first resin adhesive layer 4 has a function of adhering the light-receiving surface side electrode 32 and the wiring member 6, and uses, for example, an adhesive thermosetting resin material such as an epoxy resin, an acrylic resin, or a urethane resin. .
  • the 1st resin contact bonding layer 4 may be comprised only from an insulating resin material, and may have electroconductivity by disperse
  • the second resin adhesive layer 5 is disposed between the back surface side electrode 33 of the second solar cell 3 b and the second surface region 62 of the wiring member 6.
  • the second resin adhesive layer 5 has a function of adhering the back surface side electrode 33 and the wiring member 6, and similarly to the first resin adhesive layer 4, for example, adhesion of epoxy resin, acrylic resin, urethane resin, or the like.
  • a thermosetting resin material is used.
  • the second resin adhesive layer 5 may be composed only of an insulating resin material, or may have conductivity by dispersing conductive particles 5a (not shown in FIG. 2) and the like in the resin material. .
  • the 2nd resin contact bonding layer 5 may be comprised from the material similar to the 1st resin contact bonding layer 4, and may be comprised from a different material.
  • the second resin adhesive layer 5 is arranged so that the area is smaller than that of the first resin adhesive layer 4. That is, the second resin adhesive layer 5 is disposed so that the adhesive area with the wiring member 6 is smaller than that of the first resin adhesive layer 4.
  • the widths of the first and second resin adhesive layers 4 and 5 in the short direction (y direction) are made the same, and the first resin adhesive layer 4 is arranged on the light receiving surface side electrode 32.
  • the second resin adhesive layer 5 is disposed between the back surface side electrode 33 and the second surface region 62 of the wiring member 6. As described above, the wiring member 6 is arranged so that the area of the second surface region 62 is smaller than that of the first surface region 61.
  • the first resin adhesive layer 4 is disposed between the first surface region 61 of the wiring member 6 and the light receiving surface side electrode 32, and the second resin adhesive layer 5 is connected to the second surface region 62 of the wiring member 6. It arrange
  • FIG. Accordingly, the length of the second resin adhesive layer 5 in the longitudinal direction (x direction) according to the difference in length in the longitudinal direction (x direction) of the first and second surface regions 61 and 62 of the wiring member 6. Is shorter than the length of the first resin adhesive layer 4 in the longitudinal direction (x direction).
  • the second resin adhesive layer 5 has an area larger than that of the first resin adhesive layer 4 in accordance with the difference in length in the longitudinal direction (x direction) of the first and second resin adhesive layers 4 and 5. Becomes smaller.
  • the area of the back surface side electrode 33 is smaller than the area of the light receiving surface side electrode 32, a difference in stress between the light receiving surface and the back surface of the solar cell 3 is generated according to this area difference, and the solar cell 3 is likely to warp.
  • the area of the second resin adhesive layer 5 is made smaller than that of the first resin adhesive layer 4, the warpage of the solar cell 3 can be reduced.
  • the second resin adhesive layer 5 has an area of about 0.6 to 0.9 times that of the first resin adhesive layer 4. Thereby, the curvature of the solar cell 3 can be relieved without increasing the resistance loss of the solar cell 3.
  • the solar cell module 1 includes a light receiving surface side protection member 7 disposed on the light receiving surface side of the plurality of solar cells 3, a back surface side protection member 8 disposed on the back surface side of the plurality of solar cells 3, and between these And a sealing material 9 that is disposed and seals the plurality of solar cells 3.
  • the light-receiving surface side protection member 7 is provided on the light-receiving surface side of the solar cell 3, protects the solar cell 3 from the external environment, and transmits light in a wavelength band that the solar cell 3 absorbs for power generation.
  • the light-receiving surface side protection member 7 can be comprised by a glass plate, a ceramic plate, a resin plate etc., for example.
  • the back surface side protection member 8 can be comprised by the resin sheet, the resin sheet containing the barrier layer which consists of a metal or an inorganic oxide, a glass plate, a resin plate etc., for example.
  • the sealing material 9 can be made of, for example, ethylene / vinyl acetate copolymer (EVA), polyolefin, or the like. You may comprise the sealing material 9 so that it may differ in the light-receiving surface side and back surface side of the some solar cell 3.
  • FIG. For example, by including a pigment or dye that reflects infrared light in a portion of the sealing material 9 that is located on the back side of the plurality of solar cells 3, infrared light that has passed through the plurality of solar cells 3 is reflected.
  • the sealing material 9 can reflect the plurality of solar cells 3.
  • titanium oxide is illustrated as a pigment which reflects infrared light.
  • FIG. 4 is a schematic plan view of a part of the light receiving surface side of the solar cell module 1 according to the first embodiment.
  • the light receiving surface side electrode 32 is arranged so as to expose a part of the light receiving surface of the photoelectric conversion unit 31 so as not to block light incident on the photoelectric conversion unit 31 from the light receiving surface side.
  • the light-receiving surface side electrode 32 includes a plurality of bus bar electrodes 32a disposed at positions overlapping the wiring member 6, and a plurality of finger electrodes 32b disposed so as to be connected to the plurality of bus bar electrodes 32a.
  • Each of the plurality of bus bar electrodes 32 a has a shape extending from one end to the other end on the light receiving surface of the photoelectric conversion unit 31 along the x direction so as to be bonded to the wiring member 6.
  • the bus bar electrode 32a may extend along the x direction as a whole. That is, the bus bar electrode 32a is not limited to extend in a straight line parallel to the x direction, and a plurality of straight lines that are not parallel to the x direction may be connected to each other to extend in a zigzag shape.
  • Each of the plurality of bus bar electrodes 32a is spaced from each other along the y-axis direction. It is desirable that the bus bar electrode 32a is formed so thin that it does not block the light incident on the photoelectric conversion unit 31, and is thickened to some extent so that the power collected from the plurality of finger electrodes 32b can flow efficiently.
  • Each of the plurality of finger electrodes 32b is connected to the bus bar electrode 32a and has a shape extending along the y-axis direction. Each of the plurality of finger electrodes 32b is spaced apart from each other along the x-axis direction. It is desirable that the finger electrode 32b be formed thin so as not to block light incident on the photoelectric conversion unit 31. Further, it is desirable that the finger electrodes 32b be arranged at a predetermined interval so that the generated power can be collected efficiently.
  • the first resin adhesive layer 4 is applied so as to extend from one side of the bus bar electrode 32a to the other side along the x direction so as to cover the entire bus bar electrode 32a.
  • the wiring member 6 is disposed on the first resin adhesive layer 4 and bonded to the bus bar electrode 32a.
  • the wiring member 6 is arranged so as to extend from one end of the first resin adhesive layer 4 to the other end along the x direction.
  • FIG. 5 is a schematic plan view of a part of the back surface side of the solar cell module 1 according to the first embodiment.
  • the back surface side electrode 33 is disposed so as to cover substantially the entire back surface of the photoelectric conversion unit 31 so that light does not enter the photoelectric conversion unit 31 from the back surface side in order to make the area larger than the light receiving surface side electrode 32.
  • the second resin adhesive layer 5 is applied on a part of the back surface side electrode 33 so as to be shorter than the first resin adhesive layer 4 along the x direction.
  • the first and second resin adhesive layers 4 and 5 have the same width. Therefore, the second resin adhesive layer 5 is applied so that the area is smaller than that of the first resin adhesive layer 4.
  • the wiring member 6 is disposed on the second resin adhesive layer 5 and bonded to the back surface side electrode 33.
  • the wiring member 6 is arranged so as to extend from one end of the second resin adhesive layer 5 to the other end along the x direction in accordance with the length of the second resin adhesive layer 5.
  • the length in the longitudinal direction (x direction) of the second surface region 62 facing the back surface side electrode 33 in the wiring material 6 is the first surface region facing the light receiving surface side electrode 32 in the wiring material 6.
  • 61 is shorter than the length in the longitudinal direction (x direction).
  • the wiring member 6 has substantially the same width in the first and second surface regions 61 and 62. Accordingly, the wiring member 6 is disposed on the first and second resin adhesive layers 4 and 5 so that the area of the second surface region 62 is smaller than that of the first surface region 61.
  • the solar cell 3 includes the thin-film planar back surface side electrode 33 having a larger area than the light receiving surface side electrode 32. According to this, the difference in area between the light receiving surface side electrode 32 and the back surface side electrode 33 is large, and the solar cell 3 tends to warp.
  • the second resin adhesive layer 5 disposed between the wiring member 6 and the back surface side electrode 33 is more than the first resin adhesive layer 4 disposed between the wiring member 6 and the light receiving surface side. It is applied to reduce the area. Thereby, the bonding area between the wiring member 6 and the back surface side electrode 33 is smaller than the bonding area between the wiring member 6 and the light receiving surface side electrode 32.
  • the stress generated according to the difference between the bonding area between the wiring material 6 and the back surface side electrode 33 and the bonding area between the wiring material 6 and the light receiving surface side electrode 32 is the area between the light receiving surface side electrode 32 and the back surface side electrode 33. It works in the opposite direction to the stress corresponding to the difference. For this reason, the curvature of the solar cell 1 is suppressed.
  • the wiring member 6 has a smaller area of the second surface region 62 facing the back surface side electrode 33 than the first surface region 61 facing the light receiving surface side electrode 32. Arranged. For this reason, the material cost of the wiring material 6 can be reduced according to the area of the second surface region 6 of the wiring material 6.
  • the wiring member 6 is heated to a high temperature in the process of being bonded to the solar cell 3. Therefore, when the temperature returns to room temperature in this step, the wiring member 6 contracts and stress is generated in the solar cell 3. However, the stress generated in the solar cell 3 can be reduced by reducing the area of the second surface region of the wiring member 6.
  • the solar cell 3 is completed by forming the light receiving surface side and back surface side electrodes 32 and 33 on the light receiving surface and the back surface of the photoelectric conversion unit 31, respectively.
  • the light-receiving surface side electrode 32 can be formed by applying a conductive paste using, for example, a screen printing method. In this case, the conductive paste is applied in accordance with the pattern shape of the bus bar electrode 32a and the finger electrode 32b described above.
  • the back surface side electrode 33 can be formed by, for example, applying copper on substantially the entire back surface of the photoelectric conversion unit 31 and applying tin and copper nickel on the copper by sputtering.
  • the light receiving surface side and back surface side electrodes 32 and 33 can also be formed by other coating methods such as plating and CVD.
  • the first resin adhesive layer 4 is applied along the bus bar electrode 32 a of the light receiving surface side electrode 32.
  • the first resin adhesive layer 4 is applied by applying a paste-like resin adhesive using an application means such as a dispenser or a screen printing method.
  • a first resin adhesive layer 4 is, for example, a resin made into a pace by mixing a solid component with an epoxy resin to which a curing agent is added.
  • the first resin adhesive layer 4 may be applied by attaching a film-like material on the bus bar electrode 32a.
  • the second resin adhesive layer 5 is applied on the back surface side electrode 33.
  • This coating method can be performed by a method similar to that for the light receiving surface side electrode 32.
  • the second resin adhesive layer 5 is applied on the back electrode 33 so as to be shorter than the first resin adhesive layer 4.
  • the second resin adhesive layer 5 is preferably shorter than the first resin adhesive layer 4 by about 0.6 to 0.9 times.
  • the wiring member 6 is disposed on the first resin adhesive layer 4 and the wiring member 6 and the bus bar electrode 32a are pressure-bonded to bond the wiring member 6 and the bus bar electrode 32a.
  • the wiring material 6 is disposed on the second resin adhesive layer 5, the wiring material 6 and the back surface side electrode 33 are pressure-bonded, and the wiring material 6 and the back surface side electrode 33 are bonded.
  • the length of the wiring member 6 in the longitudinal direction (x direction) is shorter in the second surface region 62 facing the electrode on the back surface side than in the first surface region 61 facing the light receiving surface side electrode 32.
  • the second surface region 62 is preferably shorter than the first surface region 61 by about 0.6 to 0.9 times.
  • the light-receiving surface side protection member 7, the resin sheet for constituting the sealing material 9, the solar cell 3, the resin sheet for constituting the sealing material 9 and the back surface side protection member 8 are laminated in this order.
  • the solar cell module 1 can be completed by laminating the obtained laminate.
  • FIG. 6 is a schematic cross-sectional view of a part of the solar cell module 12 according to the second embodiment.
  • the wiring member 6 has an uneven surface 62 a only on the same surface side as the second surface region 62 facing the back surface side electrode 33, and faces the light receiving surface side electrode 32.
  • the same surface side as the first surface region 61 has a flat surface.
  • the back surface side electrode 33 and the uneven surface 62 a of the second surface region 62 face each other, and the bus bar electrode 32 a and the flat surface of the first surface region 61 face each other.
  • the wiring material 6 is disposed. By doing in this way, the light which injects on the wiring material 6 among the light-receiving surface sides can reenter the light-receiving surface of the solar cell 3.
  • the wiring material 6 is provided with a large amount of the second resin adhesive layer 5 in the concave portion of the concavo-convex surface 62a, and the adhesive strength with the back surface side electrode 33 per unit area of the wiring material 6 is increased. For this reason, even if the length of the second surface region 2 of the wiring member 6 disposed on the back surface side electrode 33 is shortened, sufficient adhesion can be realized.
  • FIG. 7 is a schematic plan view of a part of the back surface side of the solar cell module 13 according to the third embodiment.
  • FIG. 8 is a schematic cross-sectional view of a part of the solar cell module 13 according to the third embodiment, and is a schematic cross-sectional view along the line CC shown in FIG.
  • the solar cell module 13 includes a photoelectric conversion unit 31 having a transparent conductive film 310 on the back surface, a back surface side electrode 33 disposed on the transparent conductive film 310, and on the transparent conductive film 310 and the back surface side.
  • a second resin adhesive layer 5 disposed on the electrode 33 and a wiring member 6 disposed on the second resin adhesive 5 layer are provided.
  • the photoelectric conversion unit 31 has a transparent conductive film 310 on substantially the entire back surface.
  • the transparent conductive film 310 is made of, for example, indium oxide or zinc oxide containing a metal dopant.
  • the metal dopant for example, tungsten or tin is preferably used in the case of indium oxide, and gallium or aluminum is preferably used in the case of zinc oxide.
  • the transparent conductive film 310 may contain crystals. That is, the transparent conductive film 310 may be composed of a polycrystalline layer or a single crystal layer of indium oxide or zinc oxide containing a metal dopant.
  • the transparent conductive film 310 may be made of indium oxide or zinc oxide containing hydrogen without containing a metal dopant.
  • the back surface side electrode 33 is disposed so as to cover substantially the entire surface of the transparent conductive film 310 except for the peripheral edge 310 a of the transparent conductive film 310. Thereby, the peripheral edge portion 310 a of the transparent conductive film 310 is exposed from the back surface side electrode 33.
  • the second resin adhesive layer 5 is disposed so as to extend from the portion of the peripheral edge 310 a of the transparent conductive film 310 adjacent to the first solar cell 3 a to the back surface side electrode 33. .
  • the second resin adhesive layer 5 is disposed so as to be shorter than the first resin adhesive layer 4.
  • the wiring member 6 is disposed on the second resin adhesive layer 5 and bonded to the transparent conductive film 310 and the back surface side electrode 33. Similar to the second resin adhesive layer 5, the second surface region 62 of the wiring member 6 is arranged to be shorter than the first surface region 61 of the wiring member 6.
  • the wiring member 6 is directly bonded to the transparent conductive film 310 without passing through the back surface side electrode 33 at the peripheral edge 310 a of the transparent conductive film 310.
  • the wiring material 6 is bent toward the transparent conductive film due to the step at the end of the back surface side electrode 33, and the wiring material 6 is not easily peeled off from the back surface side electrode 33.
  • the wiring member 6 is longer in the longitudinal direction of the second surface region 62 facing the back surface side electrode 33 than in the longitudinal direction (x direction) of the first surface region 61 facing the surface side electrode.
  • An example in which the length in the (x direction) is shorter has been described.
  • the present invention is not limited to this configuration.
  • FIG. 9 is a schematic cross-sectional view of a part of the solar cell module according to the fourth embodiment.
  • FIG. 10 is a schematic plan view of a part of the back surface side of the solar cell module according to the fourth embodiment.
  • the bonding area between the second surface region 62 of the wiring member 6 and the back surface side electrode 33 can be made smaller than the bonding area between the first surface region 61 of the wiring member 6 and the light receiving surface side electrode 32.
  • FIG. 11 is a schematic plan view of a part of the back surface side of the solar cell module according to the fifth embodiment.
  • the width of the second resin adhesive layer 5 smaller than the width of the first resin adhesive layer 4. In this case, even if the lengths in the longitudinal direction (x direction) of the first and second resin adhesive layers 4 and 5 are the same, the adhesion area between the first surface region 61 of the wiring member 6 and the light receiving surface side electrode 32 Also, the adhesion area between the second surface region 62 of the wiring member 6 and the back surface side electrode 33 can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Sustainable Energy (AREA)

Abstract

 太陽電池モジュール1は、第1の太陽電池3aと、第1の太陽電池3aと隣接する第2の太陽電池3bと、を含む複数の太陽電池3を備える。複数の太陽電池3の各々は、光電変換部31と、光電変換部31の受光面の一部上に配された受光面側電極32と、光電変換部31の裏面の実質的全面を覆うように形成される薄膜形状の裏面側電極33と、を有する。そして、太陽電池モジュール1は、第1の太陽電池3aの受光面側電極32と第2の太陽電池3bの裏面側電極33とを電気的に接続する配線6材と、配線材6と受光面側電極32との間に配された第1の樹脂接着層4と、配線材6と裏面側電極33との間に配され、第1の樹脂接着層4よりも面積の小さい第2の樹脂接着層5と、をさらに備える。

Description

太陽電池モジュール
 本発明は、太陽電池モジュールに関する。
 太陽電池モジュールは、複数の太陽電池を有する。複数の太陽電池の各々は、配線材によって、互いに電気的に接続される。
 配線材は、一般的には半田により太陽電池と接着される。しかし、半田による接着工程では、太陽電池が高温に加熱される。このため、太陽電池と配線材との熱膨張率の差に起因して、太陽電池に大きな熱応力が加わる。
 これに対して、例えば、特開2012-253062号公報では、樹脂接着層により、配線材を太陽電池と接着することが提案されている。これによると、半田による接着工程よりも低い温度で、配線材を太陽電池と接着することが可能となる。これにより、太陽電池に加わる熱応力を低減することができ、太陽電池の反りを抑制することが可能となる。
特開2012-253062号公報
 太陽電池では、受光面側の電極は、入射光の遮光とならないように小面積にすることが求められている。一方、裏面側の電極は、表面抵抗を下げるために受光面側の電極よりも面積を大きくすることが求められている。裏面側の電極の面積を最大化すべく、裏面側の電極を太陽電池の裏面の略全面に形成する薄膜形状とすると、太陽電池は、受光面側及び裏面側の電極面積の差に応じて、反りやすくなる。
 また、太陽電池の製造コストを低減すべく、年々、太陽電池の厚みを薄くすることが求められている。太陽電池の厚みを薄くすると、それだけ太陽電池が反りやすくなる。
 しかし、樹脂接着層により配線材を太陽電池と接着する場合、配線材を太陽電池に熱圧着する工程が必要である。この工程において太陽電池が反っていると、太陽電池の一部に配線材から大きな圧力が加わり、太陽電池にクラックが発生する可能性がある。
 また、太陽電池モジュールにおいて太陽電池に反りが生じていると、その反りに応じて樹脂接着層が太陽電池から一部剥がれ、配線材と太陽電池とが一部において電気的に不接触となる可能性がある。
 本発明の主な目的は、太陽電池の反りに対する耐性が高い太陽電池モジュールを提供することにある。
 ある実施例の太陽電池モジュールは、第1の太陽電池と、第1の太陽電池と隣接する第2の太陽電池と、を含む複数の太陽電池を備える。複数の太陽電池の各々は、光電変換部と、光電変換部の受光面の一部上に配された受光面側電極と、光電変換部の裏面の実質的全面を覆うように形成される薄膜形状の裏面側電極と、を有する。そして、太陽電池モジュールは、第1の太陽電池の受光面側電極と第2の太陽電池の裏面側電極とを電気的に接続する配線材と、配線材と受光面側電極との間に配された第1の樹脂接着層と、配線材と裏面側電極との間に配され、第1の樹脂接着層よりも面積の小さい第2の樹脂接着層と、をさらに備える。
 本発明によれば、太陽電池の反りに対する耐性が高い太陽電池モジュールを提供できる。
第1の実施形態に係る太陽電池モジュールの略図的平面図である。 第1の実施形態に係る太陽電池モジュールの一部の模式的断面図であって、図1に示すA-A線に沿う模式的断面図である。 第1の実施形態に係る太陽電池モジュールの一部の模式的断面図であって、図1に示すB-B線に沿う模式的断面図である。 第1の実施形態に係る太陽電池モジュールの一部の受光面側の略図的平面図である。 第1の実施形態に係る太陽電池モジュールの一部の裏面側の略図的平面図である。 第2の実施形態に係る太陽電池モジュールの一部の略図的断面図である。 第3の実施形態に係る太陽電池モジュールの一部の裏面側の略図的平面図である。 第3の実施形態に係る太陽電池モジュールの一部の模式的断面図であって、図7に示すC-C線に沿う模式的断面図である。 第4の実施形態に係る太陽電池モジュールの一部の模式的断面図である。 第4の実施形態に係る太陽電池モジュールの一部の裏面側の略図的平面図である。 第5の実施形態に係る太陽電池モジュールの一部の裏面側の略図的平面図である。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、各図面は、模式的に記載されたものである。図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
 実施形態の詳細を説明する前に、本明細書で用いる文言のうち特に留意すべき文言について注意を述べる。
 本明細書において、各部材の配置関係を説明する際に用いる「上」とは、各部材が直接接触するように配される場合のみを意図せず、各部材の間に、その他の部材が介入する場合を含むことを意図したものである。例えば、「第1の部材上に第2の部材が配される」とは、第1の部材と第2の部材とが直接接触するように配される場合のみならず、第1の部材と第2の部材との間に他の部材が介入する場合も含むような配置関係を意味する。
 本明細書において、「受光面」とは、各部材の主面のうち、太陽電池モジュールの外部から光が主に入射する側の主面を意味する。例えば、太陽電池モジュールに入射する光のうち50%超過~100%が受光面側から入射する。「裏面」とは、各部材の主面のうち、受光面と反対側の主面を意味する。
 本明細書において、「x方向」及び「y方向」とは、各図中において矢印を用いて示す方向と平行な方向を意味する。これらの文言は、複数の図中で表記されているが、各図面においてこれらの方向は互いに関連したものとして用いる。
 (第1の実施形態)
 図1は、第1の実施形態に係る太陽電池モジュール1の略図的平面図である。
 太陽電池モジュール1は、x及びy方向に配列する複数の太陽電池3と、x方向を長手方向として延在する複数の配線材6と、太陽電池モジュール1の周緑部のうちx方向の端部付近の周縁部に配され、y方向に沿って延在する複数の渡り配線10と、を備える。
 複数の太陽電池3は、x方向に沿った一列において、複数の配線材6によって電気的に接続されて、一の太陽電池ストリング2を構成する。具体的には、一の太陽電池ストリング2は、第1の太陽電池3aと、x方向に沿って第1の太陽電池3aと隣接する第2の太陽電池3bと、を備える。第1及び第2の太陽電池3a、3bは、配線材6によって互いに電気的に接続される。より詳細には、配線材6は、第1の太陽電池3aの受光面と電気的に接続されるとともに、第2の太陽電池3bの裏面と電気的に接続される。これが各々の太陽電池3で繰り返され、一の太陽電池ストリング2において、複数の太陽電池3は、複数の配線材6によって互いに電気的に接続される。
 複数の太陽電池ストリング2は、渡り配線10によって互いに電気的に接続される。具体的には、太陽電池ストリング2は、x方向において最も端に配された太陽電池3cを備える。この端の太陽電池3cは、渡り配線10と近接して配され、配線材6によって渡り配線10と電気的に接続される。これが各々の太陽電池ストリング2で繰り返され、一の太陽電池モジュール1において、複数の太陽電池ストリング2は、渡り配線10を介して互いに電気的に接続される。
 このように、一の太陽電池モジュール1において、複数の太陽電池3は、配線材6及び渡り配線10を介して、互いに電気的に接続される。
 図2は、第1の実施形態に係る太陽電池モジュール1の模式的断面図であって、図1に示すA-A線に沿う模式的断面図である。また、図3は、第1の実施形態に係る太陽電池モジュール1の模式的断面図であって、図1に示すB-B線に沿う模式的断面図である。
 はじめに、図2及び図3に示す太陽電池モジュール1の模式的断面図の構成のうち、図1に示す太陽電池モジュール1の略図的平面図にも示した部分の構成を中心として詳述する。
 太陽電池モジュール1は、第1の太陽電池3aと、x方向に沿って第1の太陽電池3aと隣接する第2の太陽電池3bと、第1の太陽電池3aの受光面上から第2の太陽電池3bの裏面上に延在するように配された配線材6と、第1の太陽電池3aの受光面と配線材6との間に配された第1の樹脂接着層4と、第2の太陽電池3bの裏面と配線材6との間に配された第2の樹脂接着層5と、を備える。
 第1及び第2の太陽電池3a、3bの各々は、光電変換部31と、光電変換部31の受光面上に配された受光面側電極32と、光電変換部31の裏面上に配された裏面側電極33を有する。
 光電変換部31は、入射する光を吸収して光起電力を発生させる部材である。光電変換部31の構造は、特に限定されないが、光電変換部31は、例えば、n型単結晶シリコンの基板の受光面側に、i型非晶質シリコン層、ボロン(B)等がドープされたp型非晶質シリコン層、及び透明導電膜を、この順番に備え、基板の裏面側に、i型非晶質シリコン層、リン(P)等がドープされたn型非晶質シリコン層、及び透明導電膜を、この順に備える。
 受光面側電極32は、光電変換部31の受光面の一部上に配される。受光面側電極32は、光電変換部31に受光面側から入射する光を遮らないように、光電変換部31の受光面の一部を露出するように配される。受光面側電極32は、例えば、Ag,Cuなどの少なくとも一種の金属により構成することができる。
 裏面側電極33は、光電変換部31の裏面上に配される。裏面側電極33は、受光面側電極32よりも面積が大きくなるように構成される。具体的には、裏面側電極33は、光電変換部31に裏面側から光が入射しない程度に、光電変換部31の裏面の実質的全面を覆うような薄膜の面状電極により構成される。これにより、裏面側から入射する光は裏面側電極33により遮られるが、裏面側電極33の表面抵抗が小さくなり、結果的に太陽電池モジュール1の出力が向上する。裏面側電極33は、例えば、銅(Cu)電極層と、銅電極層の上に設けられ、銅電極層と面積が略同じである錫(Sn)電極層やニッケル銅(CuNi)層を有する。
 配線材6は、第1の太陽電池3aの受光面側電極32と接続されるとともに、第2の太陽電池3bの裏面側電極33と接続されるように配される。配線材6は、x方向を長手方向とした細長い金属箔であり、少なくとも、第1の太陽電池3aの受光面側電極32と、第2の太陽電池3bの裏面側電極33とを接続できる程度の長さを有する。配線材6は、例えば、銀メッキ銅線やアルミニウム線を塑性加工することにより得られる。配線材6の短手方向(y方向)の幅は、長手方向(x方向)に沿って同一である。
 配線材6は、受光面側電極32と対向する第1表面領域61と、裏面側電極33と対向する第2表面領域62と、を有する。配線材6は、第1表面領域61よりも第2表面領域62の面積の方が小さくなるように配される。本実施形態では、配線材6の短手方向(y方向)の幅は、長手方向(x方向)に沿って同一である。したがって、第1表面領域61及び第2表面領域62の短手方向(y方向)の幅も略同一となる。したがって、配線材6は、第1表面領域61の長手方向(x方向)の長さよりも第2表面領域62の長手方向(x方向)の長さの方が短くなるように配される。より詳細には、第1表面領域61の長手方向(x方向)は、受光面側電極32の一方端から他方端まで延在する程度の長さを有する。一方、第2表面領域62の長手方向(x方向)は、第1表面領域61の長手方向(x方向)よりも短い長さを有する。第2表面領域62の長手方向(x方向)は、裏面側電極33の表面抵抗の値に基づき適宜短くすることができる。例えば、裏面側電極33の表面抵抗が0.05Ω/口のとき、第2表面領域62の長手方向(x方向)は、第1表面領域61の長手方向(x方向)の0.9倍程度の長さであり、裏面側電極33の表面抵抗が0.01Ω/口のとき、第2表面領域62の(x方向)は、第1表面領域61の長手方向(x方向)の0.6倍程度の長さを有する。また、例えば、銅ペーストを用いて裏面側電極33を厚く形成することにより、裏面側電極33の表面抵抗をさらに小さくすることができる。この場合には、図2に示す例のように、第2表面領域62の長手方向(x方向)を、裏面側電極33の一方端33aから中央領域33bには到達しない程度の長さとすることも可能である。


 第1の樹脂接着層4は、第1の太陽電池3aの受光面側電極32と、配線材6の第1表面領域61と、の間を含んで配される。第1の樹脂接着層4は、受光面側電極32と配線材6とを接着する機能を有し、例えば、エポキシ樹脂やアクリル樹脂、ウレタン樹脂などの接着性の熱硬化性の樹脂材料を用いる。第1の樹脂接着層4は、絶縁性の樹脂材料のみから構成されてもよいし、樹脂材料に導電性粒子4a(図2では省略)を分散させることにより導電性を有してもよい。
 第2の樹脂接着層5は、第2の太陽電池3bの裏面側電極33と、配線材6の第2表面領域62と、の間に配される。第2の樹脂接着層5は、裏面側電極33と配線材6とを接着する機能を有し、第1の樹脂接着層4と同様に、例えば、エポキシ樹脂やアクリル樹脂、ウレタン樹脂などの接着性の熱硬化性の樹脂材料を用いる。第2の樹脂接着層5は、絶縁性の樹脂材料のみから構成されてもよいし、樹脂材料に導電性粒子5a(図2では省略)などを分散させることにより導電性を有してもよい。第2の樹脂接着層5は、第1の樹脂接着層4と同様の材料から構成されてもよいし、異なる材料から構成されてもよい。
 第2の樹脂接着層5は、第1の樹脂接着層4よりも面積が小さくなるように配される。すなわち、第2の樹脂接着層5は、第1の樹脂接着層4よりも、配線材6との接着面積が小さくなるように配される。この具体的手段として、本実施形態では、第1及び第2の樹脂接着層4、5の短手方向(y方向)の幅を同一とし、第1の樹脂接着層4を受光面側電極32と配線材6の第1表面領域61との間に配置させ、第2の樹脂接着層5を裏面側電極33と配線材6の第2表面領域62との間に配置させる。上述したとおり、配線材6は、第1表面領域61よりも第2表面領域62の面積が小さくなるように配されている。第1の樹脂接着層4は、配線材6の第1表面領域61と受光面側電極32との間に配され、第2の樹脂接着層5は、配線材6の第2表面領域62と裏面側電極33との間に配される。これにより、配線材6の第1及び第2表面領域61、62の長手方向(x方向)の長さの差に応じて、第2の樹脂接着層5の長手方向(x方向)の長さは、第1の樹脂接着層4の長手方向(x方向)の長さよりも短くなる。この結果、第1及び第2の樹脂接着層4、5の長手方向(x方向)の長さの差に応じて、第2の樹脂接着層5は、第1の樹脂接着層4よりも面積が小さくなる。
 裏面側電極33の面積が受光面側電極32の面積よりも小さいと、この面積差に応じて、太陽電池3の受光面と裏面との応力差が生じ、太陽電池3が反りやすくなる。しかし、第2の樹脂接着層5を第1の樹脂接着層4より面積を小さくすることにより、太陽電池3の反りを緩和することができる。例えば、第2の樹脂接着層5は、第1の樹脂接着層4の0.6倍から0.9倍程度の面積とする。これにより、太陽電池3の抵抗損失を増加させること無く、太陽電池3の反りを緩和することができる。
 続いて、図2及び図3に示す太陽電池モジュール1の模式的断面図の構成のうち、図1に示す太陽電池モジュール1の模式的平面図には示さなかった部分の構成を中心として詳述する。
 太陽電池モジュール1は、複数の太陽電池3の受光面側に配された受光面側保護部材7と、複数の太陽電池3の裏面側に配された裏面側保護部材8と、これらの間に配されて複数の太陽電池3を封止する封止材9と、をさらに備える。
 受光面側保護部材7は、太陽電池3の受光面側に設けられ、太陽電池3を外部環境から保護するとともに、太陽電池3が発電のために吸収する波長帯域の光を透過する。受光面側保護部材7は、例えば、ガラス板、セラミック板、樹脂板等により構成することができる。


 裏面側保護部材8は、例えば、樹脂シート、金属や無機酸化物からなるバリア層を含む樹脂シート、ガラス板、樹脂板等により構成することができる。
 封止材9は、例えば、エチレン・酢酸ビニル共重合体(EVA)やポリオレフィン等により構成することができる。封止材9は、複数の太陽電池3の受光面側と裏面側とで異なる様に構成してもよい。例えば、封止材9のうち、複数の太陽電池3の裏面側に位置する部分に、赤外光を反射させる顔料や染料を含ませることにより、複数の太陽電池3を透過した赤外光を封止材9によって複数の太陽電池3側に反射させることができる。なお、赤外光を反射させる顔料としては、酸化チタンが例示される。
 次に、図4及び図5を参照しながら、受光面及び裏面側電極32、33、第1及び第2の樹脂接着層4、5、および配線材6の構成のうち、平面図から把握できる構成について詳述する。
 図4は、第1の実施形態に係る太陽電池モジュール1の一部の受光面側の略図的平面図である。
 受光面側電極32は、光電変換部31に受光面側から入射する光を遮らないように、光電変換部31の受光面の一部を露出するように配される。受光面側電極32は、配線材6と重なる位置に配された複数のバスバー電極32aと、複数のバスバー電極32aと接続されるように配された複数のフィンガー電極32bと、を有する。
 複数のバスバー電極32aの各々は、配線材6と接着されるように、x方向に沿って光電変換部31の受光面において一方端から他方端まで延在する形状を有する。ここで、バスバー電極32aは、全体としてx方向に沿って延在すればよい。すなわち、バスバー電極32aは、x方向と平行な一直線状に延びることに限定されず、x方向と平行ではない複数の直線が互いに繋ぎ合わされてジグザグ状に延びてもよい。そして、複数のバスバー電極32aの各々は、y軸方向に沿って相互に間隔をおいて配される。バスバー電極32aは、光電変換部31に入射する光を遮らない程度に細く形成するとともに、複数のフィンガー電極32bから集電した電力を効率的に流せるよう、ある程度太くすることが望ましい。
 複数のフィンガー電極32bの各々は、バスバー電極32aと接続されるとともにy軸方向に沿って延在する形状を有する。複数のフィンガー電極32bの各々は、x軸方向に沿って相互に間隔をおいて配される。フィンガー電極32bは、光電変換部31に入射する光を遮らないように細く形成することが望ましい。また、フィンガー電極32bは、発電した電力を効率的に集電できるよう所定の間隔で配置することが望ましい。
 第1の樹脂接着層4は、バスバー電極32a上を全て覆うように、x方向に沿って、バスバー電極32aの一方側から他方側まで延在するように塗布される。
 配線材6は、第1の樹脂接着層4上に配されるとともに、バスバー電極32aと接着される。配線材6は、x方向に沿って、第1の樹脂接着層4の一方端から他方端まで延在するように配される。
 図5は、第1の実施形態に係る太陽電池モジュール1の一部の裏面側の略図的平面図である。
 裏面側電極33は、受光面側電極32よりも面積を大きくすべく、光電変換部31に裏面側から光が入射しない程度に、光電変換部31の裏面の実質的全面を覆うように配される。これにより、太陽電池モジュール1の裏面側から入射する光は裏面側電極33により遮られるが、裏面側電極33の表面抵抗が小さくなり、結果的に太陽電池モジュール1の出力が向上する。
 第2の樹脂接着層5は、裏面側電極33の一部上において、x方向に沿って第1の樹脂接着層4よりも短くなるように塗布される。本実施形態では、第1及び第2の樹脂接着層4,5は、同一の幅である。したがって、第2の樹脂接着層5は、第1の樹脂接着層4よりも面積が小さくなるように塗布される。
 配線材6は、第2の樹脂接着層5上に配されるとともに、裏面側電極33と接着される。配線材6は、第2の樹脂接着層5の長さに合わせて、x方向に沿って第2の樹脂接着層5の一方端から他方端まで延在するように配される。これによると、配線材6のうち裏面側電極33と対向する第2表面領域62の長手方向(x方向)の長さは、配線材6のうち受光面側電極32と対向する第1表面領域61の長手方向(x方向)の長さよりも短い。本実施形態では、配線材6は、第1及び第2表面領域61、62で略同一の幅である。したがって、第2表面領域62が第1表面領域61よりも面積が小さくなるように、配線材6は、第1及び第2の樹脂接着層4、5上に配される。
 以上説明したとおり、本実施形態に係る太陽電池モジュール1では、太陽電池3は、受光面側電極32よりも面積が大きい薄膜の面状の裏面側電極33を有する。これによると、受光面側電極32と裏面側電極33との面積の差が大きく、太陽電池3が反りやすくなる。しかしながら、配線材6と裏面側電極33との間に配された第2の樹脂接着層5は、配線材6と受光面側との間に配された第1の樹脂接着層4よりも、面積が小さくなるように塗布される。これにより、配線材6と裏面側電極33との接着面積は、配線材6と受光面側電極32との接着面積よりも小さくなる。配線材6と裏面側電極33との接着面積と、配線材6と受光面側電極32との接着面積との差に応じて生じる応力は、受光面側電極32と裏面側電極33との面積差に応じた応力と逆方向に働く。このため、太陽電池1の反りが抑制される。
 また、本実施形態に係る太陽電池モジュール1では、配線材6は、受光面側電極32と対向する第1表面領域61よりも裏面側電極33と対向する第2表面領域62の面積が小さくなるように配される。このため、配線材6の第2表面領域6の面積に応じて、配線材6の材料費を低減することができる。また、配線材6は、太陽電池3と接着される工程において高温に熱せられる。したがって、この工程の室温に戻ったとき、配線材6は収縮し、太陽電池3に応力が発生する。しかし、配線材6の第2表面領域の面積を小さくすることによって、太陽電池3に発生する応力を低減することができる。
 以下、太陽電池モジュール1の製造方法の一例について説明する。
 まず、光電変換部31の受光面及び裏面上の各々に、受光面側及び裏面側電極32、33を形成することにより、太陽電池3を完成させる。受光面側電極32は、例えば、スクリーン印刷法を用いて、導電性ペーストを塗布することにより形成することができる。この場合、導電性ペーストは、上述したバスバー電極32a及びフィンガー電極32bのパターン形状に合わせて塗布される。裏面側電極33は、例えば、スパッタリング法により、光電変換部31の裏面上の実質的略全面に銅を塗布するとともに、銅上に錫、銅ニッケルを塗布することにより形成することができる。受光面側及び裏面側電極32、33は、メッキ、CVD法等の他の塗布方法により形成することもできる。
 次に、受光面側電極32のうちバスバー電極32aに沿って第1の樹脂接着層4を塗布する。第1の樹脂接着層4は、ディスペンサ、スクリーン印刷法などの塗布手段を用いて、ペースト状の樹脂接着剤を塗布することにより塗布される。このような第1の樹脂接着層4は、例えば、硬化剤を加えたエポキシ樹脂に固形成分を混合させることでペース状とした樹脂である。また、第1の樹脂接着層4は、フィルム状のものをバスバー電極32a上に貼り付けて塗布してもよい。
 次に、裏面側電極33上に第2の樹脂接着層5を塗布する。この塗布方法は、受光面側電極32と同様の手法によって可能である。ただし、裏面側電極33上には、第1の樹脂接着層4よりも短くなるように第2の樹脂接着層5を塗布する。例えば、第2の樹脂接着層5は、第1の樹脂接着層4よりも、0.6倍~0.9倍程度短いことが好ましい。
 次に、第1の樹脂接着層4上に配線材6を配して、配線材6とバスバー電極32aとを圧着して、配線材6とバスバー電極32aとを接着する。同様に、第2の樹脂接着層5上に配線材6を配して、配線材6と裏面側電極33とを圧着して、配線材6と裏面側電極33とを接着する。このとき、配線材6は、受光面側電極32と対向する第1表面領域61よりも裏面側で電極と対向する第2表面領域62のほうが、長手方向(x方向)の長さが短くなるように配される。例えば、第2表面領域62は、第1表面領域61よりも、0.6倍~0.9倍程度短いことが好ましい。
 次に、受光面側保護部材7、封止材9を構成するための樹脂シート、太陽電池3、封止材9を構成するための樹脂シート及び裏面側保護部材8をこの順番で積層する。得られた積層体をラミネートすることにより太陽電池モジュール1を完成させることができる。
 以下、本発明の好ましい実施形態の他の例について説明する。以下の説明において、第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。
 (第2の実施形態)
 第1の実施形態では、平板形状の配線材6を用いた例について説明した。但し、本発明は、この構成に限定されない。
 図6は、第2の実施形態に係る太陽電池モジュール12の一部の略図的断面図である。
 第2の実施形態に係る太陽電池モジュール12では、配線材6は、裏面側電極33と対向する第2表面領域62と同じ表面側のみ凹凸面62aを有し、受光面側電極32と対向する第1表面領域61と同じ表面側は平らな表面を有する。このような配線材6を用いて、裏面側電極33と第2表面領域62の凹凸面62aとが対向するとともに、バスバー電極32aと第1表面領域61の平らな面とが対向するように、配線材6を配する。このようにすることにより、受光面側のうち配線材6上に入射する光を太陽電池3の受光面に再入射するようにできる。また、配線材6は、凹凸面62aの凹部分に第2の樹脂接着層5が多く配されるようになり、配線材6の単位面積あたりの裏面側電極33との接着力が高まる。このため、裏面側電極33上に配される配線材6の第2表面領域2の長さを短くしても、十分な接着を実現することができる。
 (第3の実施形態)
 第1の実施形態では、第2の樹脂接着層5を裏面側電極33上にのみ配した例について説明した。但し、本発明は、この構成に限定されない。
 図7は、第3の実施形態に係る太陽電池モジュール13の一部の裏面側の略図的平面図である。また、図8は、第3の実施形態に係る太陽電池モジュール13の一部の模式的断面図であって、図7に示すC-C線に沿う模式的断面図である。

 第3の実施形態に係る太陽電池モジュール13は、裏面に透明導電膜310を有する光電変換部31と、透明導電膜310上に配される裏面側電極33と、透明導電膜310上及び裏面側電極33上に配される第2の樹脂接着層5と、第2の樹脂接着5層上に配される配線材6と、を備える。
 光電変換部31は、裏面の実質的略全面に透明導電膜310を有する。透明導電膜310は、例えば、金属ドーパントを含む酸化インジウムや酸化亜鉛からなる。金属ドーパントとしては、例えば、酸化インジウムの場合、タングステンや錫などが、酸化亜鉛の場合、ガリウムやアルミニウムなどが好ましく用いられる。透明導電膜310は、結晶を含んでいてもよい。すなわち、透明導電膜310は、金属ドーパントを含む酸化インジウムや酸化亜鉛の多結晶層または単結晶層により構成されていてもよい。また、透明導電膜310は、金属ドーパントを含まず、水素を含む酸化インジウムや酸化亜鉛から構成されてもよい。
 裏面側電極33は、透明導電膜310の周縁部310aを除いて、透明導電膜310の実質的全面を覆うように配される。これにより、透明導電膜310の周縁部310aは、裏面側電極33から露出する。
 第2の樹脂接着層5は、透明導電膜310の周縁部310aのうち第1の太陽電池3aに隣接する部分の透明導電膜310上から裏面側電極33上まで延在するように配される。第2の樹脂接着層5は、第1の樹脂接着層4よりも短くなるように配される。
 配線材6は、第2の樹脂接着層5上に配されるとともに、透明導電膜310及び裏面側電極33と接着される。配線材6の第2表面領域62は、第2の樹脂接着層5と同様に、配線材6の第1表面領域61よりも短くなるように配される。
 このため、透明導電膜310の周縁部310aでは、配線材6が裏面側電極33を経ずに、透明導電膜310と直接接着される。これにより、裏面側電極33の端部の段差により、配線材6は透明導電膜側に曲げられ、配線材6は裏面側電極33から剥がれにくくなる。
 (第4の実施形態)
 第1の実施形態では、配線材6は、表面側電極と対向する第1表面領域61の長手方向(x方向)の長さよりも、裏面側電極33と対向する第2表面領域62の長手方向(x方向)の長さの方が短い例について説明した。但し、本発明は、この構成に限定されない。
 図9は、第4の実施形態に係る太陽電池モジュールの一部の模式的断面図である。また、図10は、第4の実施形態に係る太陽電池モジュールの一部の裏面側の略図的平面図である。
 配線材6の第1及び第2表面領域61、62の長手方向(x方向)の長さが同一であっても、第1及び第2の樹脂接着層4,5の面積を変えることによって、配線材6の第1表面領域61と受光面側電極32との接着面積よりも配線材6の第2表面領域62と裏面側電極33との接着面積を小さくすることができる。
 (第5の実施形態)
 第1の実施形態では、第1及び第2の樹脂接着層4,5の幅が同一である例について説明した。但し、本発明は、この構成に限定されない。


 図11は、第5の実施形態に係る太陽電池モジュールの一部の裏面側の略図的平面図である。
 第2の樹脂接着層5の幅を第1の樹脂接着層4の幅よりも小さくすることが可能である。この場合、第1及び第2の樹脂接着層4,5の長手方向(x方向)の長さが同一としても、配線材6の第1表面領域61と受光面側電極32との接着面積よりも配線材6の第2表面領域62と裏面側電極33との接着面積を小さくすることができる。
 本発明は実施形態に記載された以外にも趣旨を逸脱しない他の実施形態をも包含する。実施形態は発明の説明をするものであって、その範囲を限定するものではない。発明の範囲は、クレームの記載によって示されるものであって、明細書の記載によって示されるものではない。従って、発明は、クレームの均等の範囲内における意味や範囲を含む総ての形態を包含する。
1…太陽電池モジュール
2…太陽電池ストリング
3…太陽電池
3a…第1の太陽電池
3b…第2の太陽電池
3c…端の太陽電池
31…光電変換部
310…透明導電膜
310a…周緑部
32…受光面側電極
32a…バスバー電極
32b…フィンガー電極
33…裏面側電極
33a…一方端
33b…中央領域
4…第1の樹脂接着層
5…第2の樹脂接着層
5a…導電性粒子
6…配線材
61…第1表面領域
62…第2表面領域
62a…凹凸面
7…受光面側保護部材
8…裏面側保護部材
9…封止材
10…渡り配線

Claims (7)

  1.  第1の太陽電池と、前記第1の太陽電池と隣接する第2の太陽電池と、を含む複数の太陽電池を備え、
     前記複数の太陽電池の各々は、
     光電変換部と、
     前記光電変換部の受光面の一部上に配された受光面側電極と、
     前記光電変換部の裏面の実質的全面を覆うように形成される薄膜形状の裏面側電極と、
     を有し、
     前記第1の太陽電池の前記受光面側電極と前記第2の太陽電池の前記裏面側電極とを電気的に接続する配線材と、
     前記配線材と前記受光面側電極との間に配された第1の樹脂接着層と、
     前記配線材と前記裏面側電極との間に配され、前記第1の樹脂接着層よりも面積の小さい第2の樹脂接着層と、をさらに備える太陽電池モジュール。
  2.  前記配線材は、
     前記受光面側電極と対向する第1表面領域と、
     前記裏面側電極と対向し、前記第1表面領域よりも面積が小さくなるように配された第2表面領域と、を有する、請求項1に記載の太陽電池モジュール。
  3.  前記配線材の前記第2表面領域は、前記第1表面領域と比べて段差の大きい凹凸面を有する、請求項1または2に記載の太陽電池モジュール。
  4.  前記光電変換部は、裏面の実質的全面を覆う透明導電膜をさらに有し、
     前記裏面側電極は、前記透明導電膜の周緑部を露出するよう配される、請求項1~3のいずれか一項に記載の太陽電池モジュール。
  5.  前記第2の樹脂接着層は、前記透明導電膜の前記周縁部において、前記透明導電膜と前記配線材とを接着するように配される、請求項4に記載の太陽電池モジュール。
  6.  前記第1及び前記第2の樹脂接着層のうち少なくとも一方は、導電性粒子を有する、請求項1~5のいずれか一項に記載の太陽電池モジュール。
  7.  前記受光面側電極は、
     前記第1の太陽電池及び前記第2の太陽電池の配列方向に沿って延在するバスバー電極と、
     前記配列方向と直交する方向に延在するともに、前記バスバー電極と接続される複数のフィンガー電極と、を有し、
     前記第1の樹脂接着層は、前記バスバー電極と前記配線材との間に配される、請求項1~6のいずれか一項に記載の太陽電池モジュール。
PCT/JP2014/002734 2013-05-28 2014-05-23 太陽電池モジュール WO2014192272A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015519639A JP6410106B2 (ja) 2013-05-28 2014-05-23 太陽電池モジュール
US14/946,215 US20160079459A1 (en) 2013-05-28 2015-11-19 Solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-111739 2013-05-28
JP2013111739 2013-05-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/946,215 Continuation US20160079459A1 (en) 2013-05-28 2015-11-19 Solar cell module

Publications (1)

Publication Number Publication Date
WO2014192272A1 true WO2014192272A1 (ja) 2014-12-04

Family

ID=51988324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002734 WO2014192272A1 (ja) 2013-05-28 2014-05-23 太陽電池モジュール

Country Status (3)

Country Link
US (1) US20160079459A1 (ja)
JP (1) JP6410106B2 (ja)
WO (1) WO2014192272A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882504A (zh) * 2015-06-17 2015-09-02 浙江晶科能源有限公司 一种太阳能组件结构
US9356184B2 (en) 2014-05-27 2016-05-31 Sunpower Corporation Shingled solar cell module
US9947820B2 (en) 2014-05-27 2018-04-17 Sunpower Corporation Shingled solar cell panel employing hidden taps
US10084104B2 (en) 2015-08-18 2018-09-25 Sunpower Corporation Solar panel
US10090430B2 (en) 2014-05-27 2018-10-02 Sunpower Corporation System for manufacturing a shingled solar cell module
US10673379B2 (en) 2016-06-08 2020-06-02 Sunpower Corporation Systems and methods for reworking shingled solar cell modules
USD896747S1 (en) 2014-10-15 2020-09-22 Sunpower Corporation Solar panel
US10861999B2 (en) 2015-04-21 2020-12-08 Sunpower Corporation Shingled solar cell module comprising hidden tap interconnects
USD913210S1 (en) 2014-10-15 2021-03-16 Sunpower Corporation Solar panel
USD933585S1 (en) 2014-10-15 2021-10-19 Sunpower Corporation Solar panel
USD933584S1 (en) 2012-11-08 2021-10-19 Sunpower Corporation Solar panel
US11482639B2 (en) 2014-05-27 2022-10-25 Sunpower Corporation Shingled solar cell module
USD977413S1 (en) 2014-10-15 2023-02-07 Sunpower Corporation Solar panel
US11595000B2 (en) 2012-11-08 2023-02-28 Maxeon Solar Pte. Ltd. High efficiency configuration for solar cell string
WO2023127382A1 (ja) * 2021-12-28 2023-07-06 株式会社カネカ 太陽電池デバイスおよび太陽電池モジュール
USD999723S1 (en) 2014-10-15 2023-09-26 Sunpower Corporation Solar panel
US11942561B2 (en) 2014-05-27 2024-03-26 Maxeon Solar Pte. Ltd. Shingled solar cell module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229089A (ja) * 2004-01-13 2005-08-25 Sanyo Electric Co Ltd 光起電力装置
WO2011021655A1 (ja) * 2009-08-19 2011-02-24 三洋電機株式会社 太陽電池、太陽電池モジュールおよび太陽電池システム
JP2013016531A (ja) * 2011-06-30 2013-01-24 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法
JP2013055262A (ja) * 2011-09-05 2013-03-21 Dexerials Corp 太陽電池モジュールの製造方法、太陽電池モジュール及びタブ線の接続方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3853953B2 (ja) * 1998-01-29 2006-12-06 京セラ株式会社 太陽電池装置
JP4080414B2 (ja) * 2003-11-05 2008-04-23 シャープ株式会社 インターコネクタ、インターコネクタ付き太陽電池セル、太陽電池ストリング、太陽電池モジュール、太陽電池ストリングの製造方法
JP2007149871A (ja) * 2005-11-25 2007-06-14 Sharp Corp インターコネクタ、インターコネクタの接続方法、太陽電池ストリング、太陽電池ストリングの製造方法および太陽電池モジュール
JP4040662B1 (ja) * 2006-07-13 2008-01-30 シャープ株式会社 太陽電池、太陽電池ストリングおよび太陽電池モジュール
CN101779298B (zh) * 2007-08-09 2012-02-01 三菱电机株式会社 太阳能电池板
JP2012019047A (ja) * 2010-07-07 2012-01-26 Mitsubishi Electric Corp 太陽電池セル及びそのリード線接合方法
KR101110826B1 (ko) * 2010-08-17 2012-02-24 엘지전자 주식회사 태양전지 패널
EP2657981A4 (en) * 2011-01-31 2014-02-26 Sanyo Electric Co PHOTOELECTRIC TRANSFORMER AND PHOTOELECTRIC CONVERSION MODULE
JP2013051339A (ja) * 2011-08-31 2013-03-14 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法
JP6249304B2 (ja) * 2013-02-26 2017-12-20 パナソニックIpマネジメント株式会社 太陽電池モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229089A (ja) * 2004-01-13 2005-08-25 Sanyo Electric Co Ltd 光起電力装置
WO2011021655A1 (ja) * 2009-08-19 2011-02-24 三洋電機株式会社 太陽電池、太陽電池モジュールおよび太陽電池システム
JP2013016531A (ja) * 2011-06-30 2013-01-24 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法
JP2013055262A (ja) * 2011-09-05 2013-03-21 Dexerials Corp 太陽電池モジュールの製造方法、太陽電池モジュール及びタブ線の接続方法

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD933584S1 (en) 2012-11-08 2021-10-19 Sunpower Corporation Solar panel
US11595000B2 (en) 2012-11-08 2023-02-28 Maxeon Solar Pte. Ltd. High efficiency configuration for solar cell string
US11038072B2 (en) 2014-05-27 2021-06-15 Sunpower Corporation Shingled solar cell module
US9484484B2 (en) 2014-05-27 2016-11-01 Sunpower Corporation Shingled solar cell module
US11942561B2 (en) 2014-05-27 2024-03-26 Maxeon Solar Pte. Ltd. Shingled solar cell module
US9780253B2 (en) 2014-05-27 2017-10-03 Sunpower Corporation Shingled solar cell module
US9876132B2 (en) 2014-05-27 2018-01-23 Sunpower Corporation Shingled solar cell module
US9882077B2 (en) 2014-05-27 2018-01-30 Sunpower Corporation Shingled solar cell module
US9947820B2 (en) 2014-05-27 2018-04-17 Sunpower Corporation Shingled solar cell panel employing hidden taps
US9356184B2 (en) 2014-05-27 2016-05-31 Sunpower Corporation Shingled solar cell module
US10090430B2 (en) 2014-05-27 2018-10-02 Sunpower Corporation System for manufacturing a shingled solar cell module
US11482639B2 (en) 2014-05-27 2022-10-25 Sunpower Corporation Shingled solar cell module
US9397252B2 (en) 2014-05-27 2016-07-19 Sunpower Corporation Shingled solar cell module
US9401451B2 (en) 2014-05-27 2016-07-26 Sunpower Corporation Shingled solar cell module
US11949026B2 (en) 2014-05-27 2024-04-02 Maxeon Solar Pte. Ltd. Shingled solar cell module
USD913210S1 (en) 2014-10-15 2021-03-16 Sunpower Corporation Solar panel
USD896747S1 (en) 2014-10-15 2020-09-22 Sunpower Corporation Solar panel
USD916651S1 (en) 2014-10-15 2021-04-20 Sunpower Corporation Solar panel
USD933585S1 (en) 2014-10-15 2021-10-19 Sunpower Corporation Solar panel
USD977413S1 (en) 2014-10-15 2023-02-07 Sunpower Corporation Solar panel
USD934158S1 (en) 2014-10-15 2021-10-26 Sunpower Corporation Solar panel
USD1013619S1 (en) 2014-10-15 2024-02-06 Maxeon Solar Pte. Ltd. Solar panel
USD999723S1 (en) 2014-10-15 2023-09-26 Sunpower Corporation Solar panel
USD1012832S1 (en) 2014-10-15 2024-01-30 Maxeon Solar Pte. Ltd. Solar panel
USD1009775S1 (en) 2014-10-15 2024-01-02 Maxeon Solar Pte. Ltd. Solar panel
US10861999B2 (en) 2015-04-21 2020-12-08 Sunpower Corporation Shingled solar cell module comprising hidden tap interconnects
CN104882504A (zh) * 2015-06-17 2015-09-02 浙江晶科能源有限公司 一种太阳能组件结构
US11804565B2 (en) 2015-08-18 2023-10-31 Maxeon Solar Pte. Ltd. Solar panel
US10084104B2 (en) 2015-08-18 2018-09-25 Sunpower Corporation Solar panel
US10673379B2 (en) 2016-06-08 2020-06-02 Sunpower Corporation Systems and methods for reworking shingled solar cell modules
US11070167B2 (en) 2016-06-08 2021-07-20 Sunpower Corporation Systems and methods for reworking shingled solar cell modules
WO2023127382A1 (ja) * 2021-12-28 2023-07-06 株式会社カネカ 太陽電池デバイスおよび太陽電池モジュール

Also Published As

Publication number Publication date
JP6410106B2 (ja) 2018-10-24
JPWO2014192272A1 (ja) 2017-02-23
US20160079459A1 (en) 2016-03-17

Similar Documents

Publication Publication Date Title
JP6410106B2 (ja) 太陽電池モジュール
US10276733B2 (en) Solar cell and solar cell module
JP5687506B2 (ja) 太陽電池及び太陽電池モジュール
US10014426B2 (en) Solar cell and solar cell module
KR102107209B1 (ko) 인터커넥터 및 이를 구비한 태양전지 모듈
KR101045860B1 (ko) 태양전지 패널
KR20130036326A (ko) 태양 전지 모듈, 태양 전지 모듈의 제조 방법
US20130312826A1 (en) Photovoltaic device and photovoltaic module
US20140238462A1 (en) Solar cell module
US20190379321A1 (en) Solar roof tile connectors
US9437765B2 (en) Solar cell module and solar cell module manufacturing method
JP6249368B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
WO2019003892A1 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP2017069442A (ja) 太陽電池モジュール
JP5906422B2 (ja) 太陽電池及び太陽電池モジュール
JP6032572B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
US9853170B2 (en) Solar cell module manufacturing method
JP2017069291A (ja) 太陽電池モジュール
WO2017056483A1 (ja) 太陽電池モジュール
WO2014155415A1 (ja) 太陽電池モジュール
KR20120043242A (ko) 태양전지 패널 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519639

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804439

Country of ref document: EP

Kind code of ref document: A1