JPWO2014188998A1 - トリフェニルアミン誘導体およびその利用 - Google Patents

トリフェニルアミン誘導体およびその利用 Download PDF

Info

Publication number
JPWO2014188998A1
JPWO2014188998A1 JP2015518233A JP2015518233A JPWO2014188998A1 JP WO2014188998 A1 JPWO2014188998 A1 JP WO2014188998A1 JP 2015518233 A JP2015518233 A JP 2015518233A JP 2015518233 A JP2015518233 A JP 2015518233A JP WO2014188998 A1 JPWO2014188998 A1 JP WO2014188998A1
Authority
JP
Japan
Prior art keywords
group
carbon atoms
bis
charge transporting
optionally substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015518233A
Other languages
English (en)
Other versions
JP6011723B2 (ja
Inventor
直樹 中家
直樹 中家
太一 中澤
太一 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Application granted granted Critical
Publication of JP6011723B2 publication Critical patent/JP6011723B2/ja
Publication of JPWO2014188998A1 publication Critical patent/JPWO2014188998A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

式(1)で表されるトリフェニルアミン誘導体は、有機溶媒への良好な溶解性を示すとともに、薄膜化して正孔注入層に適用した場合に優れた輝度特性を有する有機EL素子を実現できる。(式中、R1〜R17は、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、カルボン酸基等を表し、l、mおよびnは、互いに独立して、1〜5の整数を表す。)

Description

本発明は、トリフェニルアミン誘導体およびその利用に関し、さらに詳述すると、ジフェニルアミン骨格を繰り返し単位として有するトリフェニルアミン誘導体およびその電荷輸送性物質としての利用に関する。
有機エレクトロルミネッセンス(以下、有機ELという)素子には、発光層や電荷注入層として、有機化合物からなる電荷輸送性薄膜が用いられる。特に、正孔注入層は、陽極と、正孔輸送層あるいは発光層との電荷の授受を担い、有機EL素子の低電圧駆動および高輝度を達成するために重要な機能を果たす。
正孔注入層の形成方法は、蒸着法に代表されるドライプロセスと、スピンコート法に代表されるウェットプロセスとに大別され、これら各プロセスを比べると、ウェットプロセスの方が大面積に平坦性の高い薄膜を効率的に製造できる。それゆえ、有機ELディスプレイの大面積化が進められている現在、ウェットプロセスで形成可能な正孔注入層が望まれている。
このような事情に鑑み、本発明者らは、各種ウェットプロセスに適用可能であるとともに、有機EL素子の正孔注入層に適用した場合に優れたEL素子特性を実現できる薄膜を与える電荷輸送性材料や、それに用いる有機溶媒に対する溶解性の良好な化合物を開発してきている(例えば特許文献1〜4参照)。
国際公開第2008/067276号 国際公開第2008/129947号 国際公開第2006/025342号 国際公開第2010/058777号
本発明も、これまでに開発してきた上記特許文献の技術と同様に、有機溶媒への良好な溶解性を示すとともに、薄膜化して正孔注入層に適用した場合に優れた輝度特性を有する有機EL素子を実現できるトリフェニルアミン誘導体を提供することを目的とする。
本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、ジフェニルアミン骨格を繰り返し単位として有するトリフェニルアミン誘導体が、有機溶媒への高い溶解性を示すとともに、それをドーパント物質とともに有機溶媒へ溶解させて調製したワニスから得られる薄膜が高い電荷輸送性を有し、当該薄膜を有機EL素子の正孔注入層に適用した場合に、優れた輝度特性を実現できることを見出し、本発明を完成させた。
すなわち、本発明は、
1. 式(1)で表されることを特徴とするトリフェニルアミン誘導体、
Figure 2014188998
(式中、R1〜R17は、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、カルボン酸基、Z1で置換されていてもよい炭素数1〜20のアルキル基、Z1で置換されていてもよい炭素数2〜20のアルケニル基、Z1で置換されていてもよい炭素数2〜20のアルキニル基、Z2で置換されていてもよい炭素数6〜20のアリール基、Z2で置換されていてもよい炭素数2〜20のヘテロアリール基、−NHY1、−NY23、−C(O)Y4、−OY5、−SY6、−C(O)OY7、−OC(O)Y8、−C(O)NHY9、または−C(O)NY1011基を表し、Y1〜Y11は、互いに独立して、Z1で置換されていてもよい炭素数1〜20のアルキル基、Z1で置換されていてもよい炭素数2〜20のアルケニル基、Z1で置換されていてもよい炭素数2〜20のアルキニル基、Z2で置換されていてもよい炭素数6〜20のアリール基、またはZ2で置換されていてもよい炭素数2〜20のヘテロアリール基を表し、Z1は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、Z3で置換されていてもよい炭素数6〜20のアリール基、またはZ3で置換されていてもよい炭素数2〜20のヘテロアリール基を表し、Z2は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、Z3で置換されていてもよい炭素数1〜20のアルキル基、Z3で置換されていてもよい炭素数2〜20のアルケニル基、またはZ3で置換されていてもよい炭素数2〜20のアルキニル基を表し、Z3は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、またはカルボン酸基を表し、l、mおよびnは、互いに独立して、1〜5の整数を表す。)
2. 前記R1〜R17が、すべて水素原子である1のトリフェニルアミン誘導体、
3. 1または2のトリフェニルアミン誘導体からなる電荷輸送性物質、
4. 3の電荷輸送性物質を含む電荷輸送性材料、
5. 3の電荷輸送性物質と、ドーパント物質と、有機溶媒とを含む電荷輸送性ワニス、
6. 5の電荷輸送性ワニスを用いて作製される電荷輸送性薄膜、
7. 6の電荷輸送性薄膜を有する電子デバイス、
8. 6の電荷輸送性薄膜を有する有機エレクトロルミネッセンス素子、
9. 5の電荷輸送性ワニスを基材上に塗布し、溶媒を蒸発させることを特徴とする電荷輸送性薄膜の製造方法、
10. 式(2)で表されるトリフェニルアミン化合物と、式(3)〜(5)で表されるジフェニルアミン構造を有する化合物とを、触媒存在下で反応させる1のトリフェニルアミン誘導体の製造方法
Figure 2014188998
(式中、X1〜X3は、互いに独立して、ハロゲン原子または擬ハロゲン基を表し、R1〜R17、l、mおよびnは、前記と同じ意味を示す。)
を提供する。
本発明のトリフェニルアミン誘導体は有機溶媒に溶けやすく、これをドーパント物質とともに有機溶媒へ溶解させて容易に電荷輸送性ワニスを調製することができる。
本発明の電荷輸送性ワニスから作製した薄膜は高い電荷輸送性を示すため、有機EL素子をはじめとした電子デバイス用薄膜として好適に用いることができ、特に、この薄膜を有機EL素子の正孔注入層に適用することで、輝度特性に優れた有機EL素子を得ることができる。
また、本発明の電荷輸送性ワニスは、スピンコート法やスリットコート法など、大面積に成膜可能な各種ウェットプロセスを用いた場合でも、電荷輸送性に優れた薄膜を再現性よく製造できるため、近年の有機EL素子の分野における進展にも十分対応できる。
以下、本発明についてさらに詳しく説明する。
本発明に係るトリフェニルアミン誘導体は、式(1)で表される。
Figure 2014188998
式(1)において、R1〜R17は、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、カルボン酸基、Z1で置換されていてもよい炭素数1〜20のアルキル基、Z1で置換されていてもよい炭素数2〜20のアルケニル基、Z1で置換されていてもよい炭素数2〜20のアルキニル基、Z2で置換されていてもよい炭素数6〜20のアリール基、Z2で置換されていてもよい炭素数2〜20のヘテロアリール基、−NHY1、−NY23、−C(O)Y4、−OY5、−SY6、−C(O)OY7、−OC(O)Y8、−C(O)NHY9、または−C(O)NY1011基を表し、Y1〜Y11は、互いに独立して、Z1で置換されていてもよい炭素数1〜20のアルキル基、Z1で置換されていてもよい炭素数2〜20のアルケニル基、Z1で置換されていてもよい炭素数2〜20のアルキニル基、Z2で置換されていてもよい炭素数6〜20のアリール基、またはZ2で置換されていてもよい炭素数2〜20のヘテロアリール基を表す。
なお、複数存在するRn(n=1〜17)は、すべて同一種でも、それぞれ異種でも、いずれか複数個が同一種で残りが異種でも、いずれか複数個が同一種で残りの複数個がそれとは異なる同一種であってもよい。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
炭素数1〜20のアルキル基としては、直鎖状、分岐鎖状、環状のいずれでもよく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基等の炭素数1〜20の直鎖または分岐鎖状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ビシクロブチル基、ビシクロペンチル基、ビシクロヘキシル基、ビシクロヘプチル基、ビシクロオクチル基、ビシクロノニル基、ビシクロデシル基等の炭素数3〜20の環状アルキル基などが挙げられる。
炭素数2〜20のアルケニル基の具体例としては、エテニル基、n−1−プロペニル基、n−2−プロペニル基、1−メチルエテニル基、n−1−ブテニル基、n−2−ブテニル基、n−3−ブテニル基、2−メチル−1−プロペニル基、2−メチル−2−プロペニル基、1−エチルエテニル基、1−メチル−1−プロペニル基、1−メチル−2−プロペニル基、n−1−ペンテニル基、n−1−デセニル基、n−1−エイコセニル基等が挙げられる。
炭素数2〜20のアルキニル基の具体例としては、エチニル基、n−1−プロピニル基、n−2−プロピニル基、n−1−ブチニル基、n−2−ブチニル基、n−3−ブチニル基、1−メチル−2−プロピニル基、n−1−ペンチニル基、n−2−ペンチニル基、n−3−ペンチニル基、n−4−ペンチニル基、1−メチル−n−ブチニル基、2−メチル−n−ブチニル基、3−メチル−n−ブチニル基、1,1−ジメチル−n−プロピニル基、n−1−ヘキシニル、n−1−デシニル基、n−1−ペンタデシニル基、n−1−エイコシニル基等が挙げられる。
炭素数6〜20のアリール基の具体例としては、フェニル基、1−ナフチル基、2−ナフチル基、1−アントリル基、2−アントリル基、9−アントリル基、1−フェナントリル基、2−フェナントリル基、3−フェナントリル基、4−フェナントリル基、9−フェナントリル基等が挙げられる。
炭素数2〜20のヘテロアリール基の具体例としては、2−チエニル基、3−チエニル基、2−フラニル基、3−フラニル基、2−オキサゾリル基、4−オキサゾリル基、5−オキサゾリル基、3−イソオキサゾリル基、4−イソオキサゾリル基、5−イソオキサゾリル基、2−チアゾリル基、4−チアゾリル基、5−チアゾリル基、3−イソチアゾリル基、4−イソチアゾリル基、5−イソチアゾリル基、2−イミダゾリル基、4−イミダゾリル基、2−ピリジル基、3−ピリジル基、4−ピリジル基等が挙げられる。
これらの中でも、R1〜R17は、水素原子、フッ素原子、シアノ基、Z1で置換されていてもよい炭素数1〜20のアルキル基、Z2で置換されていてもよい炭素数6〜20のアリール基、Y1がZ2で置換されていてもよい炭素数6〜20のアリール基である−NHY1、またはY2およびY3がZ2で置換されていてもよい炭素数6〜20のアリール基−NY23が好ましく、水素原子、フッ素原子、シアノ基、Z1で置換されていてもよい炭素数1〜10のアルキル基、Z2で置換されていてもよいフェニル基、Z2で置換されていてもよいジフェニルアミノ基、Z2で置換されていてもよいフェニルアミノ基がより好ましく、水素原子、フッ素原子、Z2で置換されていてもよいフェニル基、Z2で置換されていてもよいジフェニルアミノ基がより一層好ましく、水素原子が最適である。
l、mおよびnは、互いに独立して1〜5の整数を表すが、有機溶媒への溶解性を考慮すると、3≦l+m+n≦8を満たす整数が好ましく、3≦l+m+n≦6を満たす整数がより好ましく、3≦l+m+n≦4を満たす整数がより一層好ましく、l+m+n=3が最適である。
なお、上記R1〜R17およびY1〜Y11のアルキル基、アルケニル基およびアルキニル基は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、Z3で置換されていてもよい炭素数6〜20のアリール基、またはZ3で置換されていてもよい炭素数2〜20のヘテロアリール基であるZ1で置換されていてもよく、上記R1〜R17およびY1〜Y11のアリール基およびヘテロアリール基は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、Z3で置換されていてもよい炭素数1〜20のアルキル基、Z3で置換されていてもよい炭素数2〜20のアルケニル基、またはZ3で置換されていてもよい炭素数2〜20のアルキニル基であるZ2で置換されていてもよく、これらの基は、さらにハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、またはカルボン酸基であるZ3で置換されていてもよい(ハロゲン原子としては、上記と同様のものが挙げられる。)。
特に、R1〜R17およびY1〜Y11において、置換基Z1は、ハロゲン原子、またはZ3で置換されていてもよい炭素数6〜20のアリール基が好ましく、ハロゲン原子、またはZ3で置換されていてもよいフェニル基がより好ましく、存在しないこと(すなわち、非置換であること)が最適である。
また、置換基Z2は、ハロゲン原子、またはZ3で置換されていてもよい炭素数1〜20のアルキル基が好ましく、ハロゲン原子、またはZ3で置換されていてもよい炭素数1〜4のアルキル基がより好ましく、存在しないこと(すなわち、非置換であること)が最適である。
そして、Z3は、ハロゲン原子が好ましく、フッ素がより好ましく、存在しないこと(すなわち、非置換であること)が最適である。
1〜R17およびY1〜Y11において、アルキル基、アルケニル基およびアルキニル基の炭素数は、好ましくは10以下であり、より好ましくは6以下であり、より一層好ましくは4以下である。
また、アリール基およびヘテロアリール基の炭素数は、好ましくは14以下であり、より好ましくは10以下であり、より一層好ましくは6以下である。
本発明のトリフェニルアミン誘導体は、式(2)で表されるトリフェニルアミン化合物と、式(3)〜(5)で表されるジフェニルアミン構造を有する化合物とを、触媒存在下で反応させて製造できる。
Figure 2014188998
(式中、X1〜X3は、互いに独立して、ハロゲン原子または擬ハロゲン基を表し、R1〜R17、l、mおよびnは、上記と同じ意味を示す。)
ハロゲン原子としては、上記と同様のものが挙げられる。
擬ハロゲン基としては、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、ノナフルオロブタンスルホニルオキシ基等の(フルオロ)アルキルスルホニルオキシ基;ベンゼンスルホニルオキシ基、トルエンスルホニルオキシ基等の芳香族スルホニルオキシ基などが挙げられる。
式(2)で表されるアミン化合物の具体例としては、トリス(4−アミノフェニル)アミン等が挙げられ、式(3)〜(5)で表されるジフェニルアミン構造を有する化合物の具体例としては、4’−ブロモ−N−フェニル−[1,1’−ビフェニル]−4−アミン等が挙げられるが、いずれもこれらに限定されるものではない。
式(2)で表されるトリフェニルアミン化合物と、式(3)〜(5)で表されるジフェニルアミン構造を有する化合物との仕込み比は、トリフェニルアミン化合物1molに対し、式(3)〜(5)で表されるジフェニルアミン構造を有する化合物それぞれを、1当量以上とすることができるが、1〜1.2当量程度が好適である。
上記反応に用いられる触媒としては、例えば、塩化銅、臭化銅、ヨウ化銅等の銅触媒;Pd(PPh34(テトラキス(トリフェニルホスフィン)パラジウム)、Pd(PPh32Cl2(ビス(トリフェニルホスフィン)ジクロロパラジウム)、Pd(dba)2(ビス(ベンジリデンアセトン)パラジウム)、Pd2(dba)3(トリス(ベンジリデンアセトン)ジパラジウム)、Pd(P−t−Bu32(ビス(トリ(t−ブチル)ホスフィン)パラジウム)等のパラジウム触媒などが挙げられる。これらの触媒は、単独で用いてもよく、2種以上組み合わせて用いてもよい。また、これらの触媒は、公知の適切な配位子とともに使用してもよい。
触媒の使用量は、式(2)で表されるトリフェニルアミン化合物1molに対して、0.2mol程度とすることができるが、0.15mol程度が好適である。
また、配位子を用いる場合、その使用量は、使用する金属錯体に対し0.1〜5当量とすることができるが、1〜2当量が好適である。
上記反応は溶媒中で行ってもよい。溶媒を使用する場合、その種類は、反応に悪影響を及ぼさないものであれば特に制限はない。具体例としては、脂肪族炭化水素類(ペンタン、n−ヘキサン、n−オクタン、n−デカン、デカリン等)、ハロゲン化脂肪族炭化水素類(クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素等)、芳香族炭化水素類(ベンゼン、ニトロベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、メシチレン等)、ハロゲン化芳香族炭化水素類(クロロベンゼン、ブロモベンゼン、o−ジクロロベンゼン、m−ジクロロベンゼン、p−ジクロロベンゼン等)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、t−ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ−n−ブチルケトン、シクロヘキサノン等)、アミド類(N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、ラクタムおよびラクトン類(N−メチルピロリドン、γ−ブチロラクトン等)、尿素類(N,N−ジメチルイミダゾリジノン、テトラメチルウレア等)、スルホキシド類(ジメチルスルホキシド、スルホラン等)、ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等)などが挙げられ、これらの溶媒は単独で用いても、2種以上混合して用いてもよい。
反応温度は、用いる溶媒の融点から沸点までの範囲で適宜設定すればよいが、特に、0〜200℃程度が好ましく、20〜150℃がより好ましい。
反応終了後は、常法にしたがって後処理をし、目的とするトリフェニルアミン誘導体を得ることができる。
以下、式(1)で表されるトリフェニルアミン誘導体の具体例を挙げるが、これらに限定されるわけではない。
Figure 2014188998
Figure 2014188998
本発明の電荷輸送性ワニスは、式(1)で表されるトリフェニルアミン誘導体からなる電荷輸送性物質と有機溶媒とを含むものであるが、電荷輸送能等を向上させるために、必要に応じてドーパント物質を含んでいてもよい。
ドーパント物質としては、ワニスに使用する少なくとも一種の溶媒に溶解するものであれば特に限定されず、無機系のドーパント物質、有機系のドーパント物質のいずれも使用できる。
無機系のドーパント物質としては、塩化水素、硫酸、硝酸、リン酸等の無機酸;塩化アルミニウム(III)(AlCl3)、四塩化チタン(IV)(TiCl4)、三臭化ホウ素(BBr3)、三フッ化ホウ素エーテル錯体(BF3・OEt2)、塩化鉄(III)(FeCl3)、塩化銅(II)(CuCl2)、五塩化アンチモン(V)(SbCl5)、五フッ化アンチモン(V)(SbF5)、五フッ化砒素(V)(AsF5)、五フッ化リン(PF5)、トリス(4−ブロモフェニル)アルミニウムヘキサクロロアンチモナート(TBPAH)等の金属ハロゲン化物;Cl2、Br2、I2、ICl、ICl3、IBr、IF4等のハロゲン;リンモリブデン酸、リンタングステン酸等のヘテロポリ酸などが挙げられる。
有機系のドーパント物質としては、ベンゼンスルホン酸、トシル酸、p−スチレンスルホン酸、2−ナフタレンスルホン酸、4−ヒドロキシベンゼンスルホン酸、5−スルホサリチル酸、p−ドデシルベンゼンスルホン酸、ジヘキシルベンゼンスルホン酸、2,5−ジヘキシルベンゼンスルホン酸、ジブチルナフタレンスルホン酸、6,7−ジブチル−2−ナフタレンスルホン酸、ドデシルナフタレンスルホン酸、3−ドデシル−2−ナフタレンスルホン酸、ヘキシルナフタレンスルホン酸、4−ヘキシル−1−ナフタレンスルホン酸、オクチルナフタレンスルホン酸、2−オクチル−1−ナフタレンスルホン酸、ヘキシルナフタレンスルホン酸、7−へキシル−1−ナフタレンスルホン酸、6−ヘキシル−2−ナフタレンスルホン酸、ジノニルナフタレンスルホン酸、2,7−ジノニル−4−ナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、2,7−ジノニル−4,5−ナフタレンジスルホン酸、国際公開第2005/000832号記載の1,4−ベンゾジオキサンジスルホン酸化合物、国際公開第2006/025342号記載のアリールスルホン酸化合物、国際公開第2009/096352号記載のアリールスルホン酸化合物、ポリスチレンスルホン酸等のアリールスルホン化合物;10−カンファースルホン酸等の非アリールスルホン化合物;7,7,8,8−テトラシアノキノジメタン(TCNQ)、2,3−ジクロロ−5,6−ジシアノ−1,4−ベンゾキノン(DDQ)等の有機酸化剤が挙げられる。
これら無機系および有機系のドーパント物質は、1種類単独で用いてもよく、2種類以上組み合わせて用いてもよい。
これらのドーパント物質の中でもヘテロポリ酸が好適であり、ドーパント物質としてヘテロポリ酸を用いることで、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極からの高正孔受容能のみならず、アルミニウムに代表される金属陽極からの高正孔受容能を示す電荷輸送性に優れた薄膜を得ることができる。
ヘテロポリ酸とは、代表的に式(B1)で示されるKeggin型あるいは式(B2)で示されるDawson型の化学構造で示される、ヘテロ原子が分子の中心に位置する構造を有し、バナジウム(V)、モリブデン(Mo)、タングステン(W)等の酸素酸であるイソポリ酸と、異種元素の酸素酸とが縮合してなるポリ酸である。このような異種元素の酸素酸としては、主にケイ素(Si)、リン(P)、ヒ素(As)の酸素酸が挙げられる。
Figure 2014188998
ヘテロポリ酸の具体例としては、リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、ケイタングステン酸、リンタングストモリブデン酸等が挙げられ、これらは単独で用いてもよく、2種以上組み合わせて用いてもよい。なお、本発明で用いるヘテロポリ酸は、市販品として入手可能であり、また、公知の方法により合成することもできる。
特に、ドーパント物質が1種類のヘテロポリ酸単独からなる場合、その1種類のヘテロポリ酸は、リンタングステン酸またはリンモリブデン酸が好ましく、リンタングステン酸が最適である。また、ドーパント物質が2種類以上のヘテロポリ酸からなる場合、その2種類以上のヘテロポリ酸の1つは、リンタングステン酸またはリンモリブデン酸が好ましく、リンタングステン酸がより好ましい。
なお、ヘテロポリ酸は、元素分析等の定量分析において、一般式で示される構造から元素の数が多いもの、または少ないものであっても、それが市販品として入手したもの、あるいは、公知の合成方法にしたがって適切に合成したものである限り、本発明において用いることができる。
すなわち、例えば、一般的には、リンタングステン酸は化学式H3(PW1240)・nH2Oで、リンモリブデン酸は化学式H3(PMo1240)・nH2Oでそれぞれ示されるが、定量分析において、この式中のP(リン)、O(酸素)またはW(タングステン)もしくはMo(モリブデン)の数が多いもの、または少ないものであっても、それが市販品として入手したもの、あるいは、公知の合成方法にしたがって適切に合成したものである限り、本発明において用いることができる。この場合、本発明に規定されるヘテロポリ酸の質量とは、合成物や市販品中における純粋なリンタングステン酸の質量(リンタングステン酸含量)ではなく、市販品として入手可能な形態および公知の合成法にて単離可能な形態において、水和水やその他の不純物等を含んだ状態での全質量を意味する。
また、アリールスルホン酸化合物もトーパント物質として好適に使用できる。とりわけ、式(6)または(7)で表されるアリールスルホン酸化合物が好ましい。
Figure 2014188998
1は、OまたはSを表すが、Oが好ましい。
2は、ナフタレン環またはアントラセン環を表すが、ナフタレン環が好ましい。
3は、2〜4価のパーフルオロビフェニル基を表し、pは、A1とA3との結合数を示し、2≦p≦4を満たす整数であるが、A3が2価のパーフルオロビフェニル基であり、かつ、pが2であることが好ましい。
qは、A2に結合するスルホン酸基数を表し、1≦q≦4を満たす整数であるが、2が最適である。
4〜A8は、互いに独立して、水素原子、ハロゲン原子、シアノ基、炭素数1〜20のアルキル基、炭素数1〜20のハロゲン化アルキル基、または炭素数2〜20のハロゲン化アルケニル基を表すが、A4〜A8のうち少なくとも3つは、ハロゲン原子である。
炭素数1〜20のハロゲン化アルキル基としては、トリフルオロメチル基、2,2,2−トリフルオロエチル基、1,1,2,2,2−ペンタフルオロエチル基、3,3,3−トリフルオロプロピル基、2,2,3,3,3−ペンタフルオロプロピル基、1,1,2,2,3,3,3−ヘプタフルオロプロピル基、4,4,4−トリフルオロブチル基、3,3,4,4,4−ペンタフルオロブチル基、2,2,3,3,4,4,4−ヘプタフルオロブチル基、1,1,2,2,3,3,4,4,4−ノナフルオロブチル基等が挙げられる。
炭素数2〜20のハロゲン化アルケニル基としては、パーフルオロビニル基、パーフルオロプロペニル基(アリル基)、パーフルオロブテニル基等が挙げられる。
その他、ハロゲン原子、炭素数1〜20のアルキル基の例としては上記と同様のものが挙げられるが、ハロゲン原子としては、フッ素原子が好ましい。
これらの中でも、A4〜A8は、水素原子、ハロゲン原子、シアノ基、炭素数1〜10のアルキル基、炭素数1〜10のハロゲン化アルキル基、または炭素数2〜10のハロゲン化アルケニル基であり、かつ、A4〜A8のうち少なくとも3つは、フッ素原子であることが好ましく、水素原子、フッ素原子、シアノ基、炭素数1〜5のアルキル基、炭素数1〜5のフッ化アルキル基、または炭素数2〜5のフッ化アルケニル基であり、かつ、A4〜A8のうち少なくとも3つはフッ原子であることがより好ましく、水素原子、フッ素原子、シアノ基、炭素数1〜5のパーフルオロアルキル基、または炭素数1〜5のパーフルオロアルケニル基であり、かつ、A4、A5およびA8がフッ素原子であることより一層好ましい。
なお、パーフルオロアルキル基とは、アルキル基の水素原子全てがフッ素原子に置換された基であり、パーフルオロアルケニル基とは、アルケニル基の水素原子全てがフッ素原子に置換された基である。
rは、ナフタレン環に結合するスルホン酸基数を表し、1≦r≦4を満たす整数であるが、2〜4が好ましく、2が最適である。
ドーパント物質として用いるアリールスルホン酸化合物の分子量は、特に限定されるものではないが、式(1)で表されるトリフェニルアミン誘導体とともに用いた場合の有機溶媒への溶解性を考慮すると、好ましくは2000以下、より好ましくは1500以下である。
以下、本発明において、ドーパント物質として好適なアリールスルホン酸化合物の具体例を挙げるが、これらに限定されるわけではない。
Figure 2014188998
本発明の電荷輸送性ワニスにドーパント物質を含める場合、ドーパント物質の使用量は、ドーパント物質の種類、所望の電荷輸送性の程度等を考慮して適宜決定するため、一概には規定できないが、質量比で、本発明のトリフェニルアミン誘導体からなる電荷輸送性物質(以下、電荷輸送性物質という)1に対して、概ね0.01〜50程度の範囲内である。
特に、ヘテロポリ酸をドーパント物質として用いる場合、ヘテロポリ酸を、質量比で、電荷輸送性物質1に対して0.5〜30.0程度、好ましくは1.0〜20.0程度、より好ましくは2.0〜15.0程度、より一層好ましくは3.0〜12.0程度、さらに好ましくは4.0〜11.0程度とすることで、有機EL素子に用いた場合に高輝度を与える電荷輸送性薄膜を再現性よく得ることができる。すなわち、そのような電荷輸送性ワニスは、電荷輸送性物質の質量(WH)に対するヘテロポリ酸の質量(WD)の比が、0.5≦WD/WH≦30.0、好ましくは1.0≦WD/WH≦20.0、より好ましくは2.0≦WD/WH≦15.0、より一層好ましくは3.0≦WD/WH≦12.0、さらに好ましくは4.0≦WD/WH≦11.0を満たす。
一方、ドーパント物質としてアリールスルホン酸化合物を用いる場合、アリールスルホン酸化合物を、モル比で、電荷輸送性物質1に対して、0.05〜15.0、好ましくは0.10〜10.0、より好ましくは0.25〜7.0、より一層好ましくは0.50〜5.0、さらに好ましくは0.75〜3.0とすることで、有機EL素子に用いた場合に高輝度を与える電荷輸送性薄膜を再現性よく得ることができる。すなわち、そのような電荷輸送性ワニスは、電荷輸送性物質の物質量(MH)に対するアリールスルホン酸化合物の物質量(MA)の比が、0.05≦MA/MH≦15.0、好ましくは0.1≦MA/MH≦10.0、より好ましくは0.25≦MA/MH≦7.0、より一層好ましくは0.50≦MA/MH≦5.0、さらに好ましくは0.75≦MA/MH≦3.0を満たす。
さらに、本発明の電荷輸送性ワニスは、有機シラン化合物を含んでもよい。有機シランを含むことによって、正孔輸送層や発光層といった陽極とは反対側に正孔注入層に接するように積層される層への正孔注入能を高めることができ、その結果、より高い輝度特性を実現できる。
この有機シラン化合物としては、ジアルコキシシラン化合物、トリアルコキシシラン化合物またはテトラアルコキシシラン化合物が挙げられ、これらは単独で用いてもよく、2種以上組み合わせて用いてもよい。
とりわけ、有機シラン化合物としては、ジアルコキシシラン化合物またはトリアルコキシシラン化合物が好ましく、トリアルコキシシラン化合物がより好ましい。
テトラアルコキシシラン化合物、トリアルコキシシラン化合物およびジアルコキシシラン化合物としては、例えば、式(8)〜(10)で示されるものが挙げられる。
Si(OR)4 (8)
SiR′(OR)3 (9)
Si(R′)2(OR)2 (10)
式中、Rは、互いに独立して、Z4で置換されていてもよい炭素数1〜20のアルキル基、Z4で置換されていてもよい炭素数2〜20のアルケニル基、Z4で置換されていてもよい炭素数2〜20のアルキニル基、Z5で置換されていてもよい炭素数6〜20のアリール基、またはZ5で置換されていてもよい炭素数2〜20のヘテロアリール基を表し、R′は、互いに独立して、Z6で置換されていてもよい炭素数1〜20のアルキル基、Z6で置換されていてもよい炭素数2〜20のアルケニル基、Z6で置換されていてもよい炭素数2〜20のアルキニル基、Z7で置換されていてもよい炭素数6〜20のアリール基、またはZ7で置換されていてもよい炭素数2〜20のヘテロアリール基を表す。
4は、ハロゲン原子、Z8で置換されていてもよい炭素数6〜20のアリール基、またはZ8で置換されていてもよい炭素数2〜20のヘテロアリール基を表し、Z5は、ハロゲン原子、Z8で置換されていてもよい炭素数1〜20のアルキル基、Z8で置換されていてもよい炭素数2〜20のアルケニル基、またはZ8で置換されていてもよい炭素数2〜20のアルキニル基を表す。
6は、ハロゲン原子、Z8で置換されていてもよい炭素数6〜20のアリール基、Z8で置換されていてもよい炭素数2〜20のヘテロアリール基、エポキシシクロヘキシル基、グリシドキシ基、メタクリロキシ基、アクリロキシ基、ウレイド基(−NHCONH2)、チオール基、イソシアネート基(−NCO)、アミノ基、−NHY14基、または−NY1516基を表し、Z7は、ハロゲン原子、Z8で置換されていてもよい炭素数1〜20のアルキル基、Z8で置換されていてもよい炭素数2〜20のアルケニル基、Z8で置換されていてもよい炭素数2〜20のアルキニル基、エポキシシクロヘキシル基、グリシドキシ基、メタクリロキシ基、アクリロキシ基、ウレイド基(−NHCONH2)、チオール基、イソシアネート基(−NCO)、アミノ基、−NHY14基、または−NY1516基を表し、Y14〜Y16は、互いに独立して、Z8で置換されていてもよい炭素数1〜20のアルキル基、Z8で置換されていてもよい炭素数2〜20のアルケニル基、Z8で置換されていてもよい炭素数2〜20のアルキニル基、Z8で置換されていてもよい炭素数6〜20のアリール基、またはZ8で置換されていてもよい炭素数2〜20のヘテロアリール基を表す。
8は、ハロゲン原子、アミノ基、ニトロ基、シアノ基、チオール基を表す。
式(8)〜(10)における、ハロゲン原子、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基、炭素数6〜20のアリール基、および炭素数2〜20のヘテロアリール基としては、上記と同様のものが挙げられる。
RおよびR′において、アルキル基、アルケニル基およびアルキニル基の炭素数は、好ましくは10以下であり、より好ましくは6以下であり、より一層好ましくは4以下である。
また、アリール基およびヘテロアリール基の炭素数は、好ましくは14以下であり、より好ましくは10以下であり、より一層好ましくは6以下である。
Rとしては、Z4で置換されていてもよい、炭素数1〜20のアルキル基もしくは炭素数2〜20のアルケニル基、またはZ5で置換されていてもよい炭素数6〜20のアリール基が好ましく、Z4で置換されていてもよい、炭素数1〜6のアルキル基もしくは炭素数2〜6のアルケニル基、またはZ5で置換されていてもよいフェニル基がより好ましく、Z4で置換されていてもよい炭素数1〜4のアルキル基、またはZ5で置換されていてもよいフェニル基がより一層好ましく、Z4で置換されていてもよい、メチル基またはエチル基がさらに好ましい。
また、R′としては、Z6で置換されていてもよい炭素数1〜20のアルキル基、またはZ7で置換されていてもよい炭素数6〜20のアリール基が好ましく、Z6で置換されていてもよい炭素数1〜10のアルキル基、またはZ7で置換されていてもよい炭素数6〜14のアリール基がより好ましく、Z6で置換されていてもよい炭素数1〜6のアルキル基、またはZ7で置換されていてもよい炭素数6〜10のアリール基がより一層好ましく、Z6で置換されていてもよい炭素数1〜4のアルキル基、またはZ7で置換されていてもよいフェニル基がさらに好ましい。
なお、複数のRは、すべて同一でも異なっていてもよく、複数のR′も、すべて同一でも異なっていてもよい。
4としては、ハロゲン原子、またはZ8で置換されていてもよい炭素数6〜20のアリール基が好ましく、フッ素原子、またはZ8で置換されていてもよいフェニル基がより好ましく、存在しないこと(すなわち、非置換であること)が最適である。
また、Z5としては、ハロゲン原子、またはZ8で置換されていてもよい炭素数6〜20のアルキル基が好ましく、フッ素原子、またはZ8で置換されていてもよい炭素数1〜10アルキルがより好ましく、存在しないこと(すなわち、非置換であること)が最適である。
一方、Z6としては、ハロゲン原子、Z8で置換されていてもよいフェニル基、Z8で置換されていてもよいフラニル基、エポキシシクロヘキシル基、グリシドキシ基、メタクリロキシ基、アクリロキシ基、ウレイド基、チオール基、イソシアネート基、アミノ基、Z8で置換されていてもよいフェニルアミノ基、またはZ8で置換されていてもよいジフェニルアミノ基が好ましく、ハロゲン原子がより好ましく、フッ素原子、または存在しないこと(すなわち、非置換であること)がより一層好ましい。
また、Z7としては、ハロゲン原子、Z8で置換されていてもよい炭素数1〜20のアルキル基、Z8で置換されていてもよいフラニル基、エポキシシクロヘキシル基、グリシドキシ基、メタクリロキシ基、アクリロキシ基、ウレイド基、チオール基、イソシアネート基、アミノ基、Z8で置換されていてもよいフェニルアミノ基、またはZ8で置換されていてもよいジフェニルアミノ基が好ましく、ハロゲン原子がより好ましく、フッ素原子、または存在しないこと(すなわち、非置換であること)がより一層好ましい。
そして、Z8としては、ハロゲン原子が好ましく、フッ素原子または存在しないこと(すなわち、非置換であること)がより好ましい。
以下、本発明で使用可能な有機シラン化合物の具体例を挙げるが、これらに限定されるものではない。
ジアルコキシシラン化合物の具体例としては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルエチルジメトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、ジイソプロピルジメトキシシラン、フェニルメチルジメトキシシラン、ビニルメチルジメトキシシラン、3−グリシドキシプロピルメチルジメトキシシシラン、3−グリシドキシプロピルメチルジエトキシシシラン、3−(3,4−エポキシシクロヘキシル)エチルメチルジメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、N−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、3,3,3−トリフルオロプロピルメチルジメトキシシラン等が挙げられる。
トリアルコキシシラン化合物の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ペンチルトリメトキシシラン、ペンチルトリエトキシシラン、ヘプチルトリメトキシシラン、ヘプチルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、ヘキサデシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、トリエトキシ(4−(トリフルオロメチル)フェニル)シラン、ドデシルトリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、(トリエトキシシリル)シクロヘキサン、パーフルオロオクチルエチルトリエトキシシラン、トリエトキシフルオロシラン、トリデカフルオロ−1,1,2,2−テトラヒドロオクチルトリエトキシシラン、ペンタフルオロフェニルトリメトキシシラン、ペンタフルオロフェニルトリエトキシシラン、3−(ヘプタフルオロイソプロポキシ)プロピルトリエトキシシラン、ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシルトリエトキシシラン、トリエトキシ−2−チエニルシラン、3−(トリエトキシシリル)フラン等が挙げられる。
テトラアルコキシシラン化合物の具体例としては、テトラエトキシシラン、テトラメトキシシラン、テトラプロポキシシラン等が挙げられる。
これらの中でも、3,3,3−トリフルオロプロピルメチルジメトキシシラン、トリエトキシ(4−(トリフルオロメチル)フェニル)シラン、3,3,3−トリフルオロプロピルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシランまたはペンタフルオロフェニルトリメトキシシラン、ペンタフルオロフェニルトリエトキシシランが好ましい。
本発明の電荷輸送性ワニスに有機シラン化合物を含める場合、その含有量は、得られる薄膜の高電荷輸送性を維持する点を考慮すると、電荷輸送性物質およびドーパント物質の総質量に対して、通常0.1〜50質量%程度であるが、得られる薄膜の電荷輸送性の低下を抑制し、かつ、正孔輸送層や発光層といった陽極とは反対側に正孔注入層に接するように積層される層への正孔注入能を高めることを考慮すると、好ましくは0.5〜40質量%程度、より好ましくは0.8〜30質量%程度、より一層好ましくは1〜20質量%である。
なお、本発明の電荷輸送性ワニスには、上述したトリフェニルアミン誘導体からなる電荷輸送性物質の他に、公知のその他の電荷輸送性物質を用いることもできる。
電荷輸送性ワニスを調製する際に用いられる有機溶媒としては、電荷輸送性物質およびドーパント物質を良好に溶解し得る高溶解性溶媒を用いることができる。
このような高溶解性溶媒としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジノン、ジエチレングリコールモノメチルエーテル等の有機溶媒を用いることができる。これらの溶媒は1種単独で、または2種以上混合して用いることができ、その使用量は、ワニスに使用する溶媒全体に対して5〜100質量%とすることができる。
なお、電荷輸送性物質およびドーパント物質は、いずれも上記溶媒に完全に溶解しているか、均一に分散している状態となっていることが好ましく、完全に溶解していることがより好ましい。
また、本発明においては、ワニスに、25℃で10〜200mPa・s、特に35〜150mPa・sの粘度を有し、常圧(大気圧)で沸点50〜300℃、特に150〜250℃の高粘度有機溶媒を少なくとも一種類含有させることで、ワニスの粘度の調整が容易になり、その結果、平坦性の高い薄膜を再現性よく与える、用いる塗布方法に応じたワニス調製が可能となる。
高粘度有機溶媒としては、特に限定されるものではなく、例えば、シクロヘキサノール、エチレングリコール、エチレングリコールジグリシジルエーテル、1,3−オクチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、1,3−ブタンジオール、2,3−ブタンジオール、1,4−ブタンジオール、プロピレングリコール、へキシレングリコール等が挙げられる。これらの溶媒は単独で用いてもよく、2種以上混合して用いてもよい。
本発明のワニスに用いられる溶媒全体に対する高粘度有機溶媒の添加割合は、固体が析出しない範囲内であることが好ましく、固体が析出しない限りにおいて、添加割合は、5〜80質量%が好ましい。
さらに、基板に対する濡れ性の向上、溶媒の表面張力の調整、極性の調整、沸点の調整等の目的で、その他の溶媒を、ワニスに使用する溶媒全体に対して1〜90質量%、好ましくは1〜50質量%の割合で混合することもできる。
このような溶媒としては、例えば、プロピレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジアセトンアルコール、γ−ブチロラクトン、エチルラクテート、n−ヘキシルアセテート等が挙げられるが、これらに限定されるものではない。これらの溶媒は1種単独で、または2種以上混合して用いることができる。
本発明のワニスの粘度は、作製する薄膜の厚み等や固形分濃度に応じて適宜設定されるものではあるが、通常、25℃で1〜50mPa・sである。
また、本発明における電荷輸送性ワニスの固形分濃度は、ワニスの粘度および表面張力等や、作製する薄膜の厚み等を勘案して適宜設定されるものではあるが、通常、0.1〜10.0質量%程度であり、ワニスの塗布性を向上させることを考慮すると、好ましくは0.5〜5.0質量%、より好ましくは1.0〜3.0質量%である。
以上で説明した電荷輸送性ワニスを基材上に塗布して焼成することで、基材上に電荷輸送性薄膜を形成させることができる。
ワニスの塗布方法としては、特に限定されるものではなく、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法等が挙げられ、塗布方法に応じてワニスの粘度および表面張力を調節することが好ましい。
また、本発明のワニスを用いる場合、焼成雰囲気も特に限定されるものではなく、大気雰囲気だけでなく、窒素等の不活性ガスや真空中でも均一な成膜面および高い電荷輸送性を有する薄膜を得ることができる。
焼成温度は、得られる薄膜の用途、得られる薄膜に付与する電荷輸送性の程度等を勘案して、100〜260℃程度の範囲内で適宜設定されるものではあるが、得られる薄膜を有機EL素子の正孔注入層として用いる場合、140〜250℃程度が好ましく、145〜240℃程度がより好ましい。
なお、焼成の際、より高い均一成膜性を発現させたり、基材上で反応を進行させたりする目的で、2段階以上の温度変化をつけてもよく、加熱は、例えば、ホットプレートやオーブン等、適当な機器を用いて行えばよい。
電荷輸送性薄膜の膜厚は、特に限定されないが、有機EL素子内で正孔注入層として用いる場合、5〜200nmが好ましい。膜厚を変化させる方法としては、ワニス中の固形分濃度を変化させたり、塗布時の基板上の溶液量を変化させたりする等の方法がある。
本発明の電荷輸送性ワニスを用いてOLED素子を作製する場合の使用材料や、作製方法としては、下記のようなものが挙げられるが、これらに限定されるものではない。
使用する電極基板は、洗剤、アルコール、純水等による液体洗浄を予め行って浄化しておくことが好ましく、例えば、陽極基板では使用直前にUVオゾン処理、酸素−プラズマ処理等の表面処理を行うことが好ましい。ただし陽極材料が有機物を主成分とする場合、表面処理を行わなくともよい。
本発明の電荷輸送性ワニスから得られる薄膜からなる正孔注入層を有するOLED素子の作製方法の例は、以下のとおりである。
上記の方法により、陽極基板上に本発明の電荷輸送性ワニスを塗布して焼成し、電極上に正孔注入層を作製する。これを真空蒸着装置内に導入し、正孔輸送層、発光層、電子輸送層、電子輸送層/ホールブロック層、陰極金属を順次蒸着してOLED素子とする。なお、必要に応じて、発光層と正孔輸送層との間に電子ブロック層を設けてよい。
陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極や、アルミニウムに代表される金属やこれらの合金等から構成される金属陽極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。
なお、金属陽極を構成するその他の金属としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、カドニウム、インジウム、スカンジウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ハフニウム、タリウム、タングステン、レニウム、オスミウム、イリジウム、プラチナ、金、チタン、鉛、ビスマスやこれらの合金等が挙げられるが、これらに限定されるわけではない。
正孔輸送層を形成する材料としては、(トリフェニルアミン)ダイマー誘導体、[(トリフェニルアミン)ダイマー]スピロダイマー、N,N’−ビス(ナフタレン−1−イル)−N,N’−ビス(フェニル)−ベンジジン(α−NPD)、N,N’−ビス(ナフタレン−2−イル)−N,N’−ビス(フェニル)−ベンジジン、N,N’−ビス(3−メチルフェニル)−N,N’−ビス(フェニル)−ベンジジン、N,N’−ビス(3−メチルフェニル)−N,N’−ビス(フェニル)−9,9−スピロビフルオレン、N,N’−ビス(ナフタレン−1−イル)−N,N’−ビス(フェニル)−9,9−スピロビフルオレン、N,N’−ビス(3−メチルフェニル)−N,N’−ビス(フェニル)−9,9−ジメチル−フルオレン、N,N’−ビス(ナフタレン−1−イル)−N,N’−ビス(フェニル)−9,9−ジメチル−フルオレン、N,N’−ビス(3−メチルフェニル)−N,N’−ビス(フェニル)−9,9−ジフェニル−フルオレン、N,N’−ビス(ナフタレン−1−イル)−N,N’−ビス(フェニル)−9,9−ジフェニル−フルオレン、N,N’−ビス(ナフタレン−1−イル)−N,N’−ビス(フェニル)−2,2’−ジメチルベンジジン、2,2’,7,7’−テトラキス(N,N−ジフェニルアミノ)−9,9−スピロビフルオレン、9,9−ビス[4−(N,N−ビス−ビフェニル−4−イル−アミノ)フェニル]−9H−フルオレン、9,9−ビス[4−(N,N−ビス−ナフタレン−2−イル−アミノ)フェニル]−9H−フルオレン、9,9−ビス[4−(N−ナフタレン−1−イル−N−フェニルアミノ)−フェニル]−9H−フルオレン、2,2’,7,7’−テトラキス[N−ナフタレニル(フェニル)−アミノ]−9,9−スピロビフルオレン、N,N’−ビス(フェナントレン−9−イル)−N,N’−ビス(フェニル)−ベンジジン、2,2’−ビス[N,N−ビス(ビフェニル−4−イル)アミノ]−9,9−スピロビフルオレン、2,2’−ビス(N,N−ジフェニルアミノ)−9,9−スピロビフルオレン、ジ−[4−(N,N−ジ(p−トリル)アミノ)−フェニル]シクロヘキサン、2,2’,7,7’−テトラ(N,N−ジ(p−トリル))アミノ−9,9−スピロビフルオレン、N,N,N’,N’−テトラ−ナフタレン−2−イル−ベンジジン、N,N,N’,N’−テトラ−(3−メチルフェニル)−3,3’−ジメチルベンジジン、N,N’−ジ(ナフタレニル)−N,N’−ジ(ナフタレン−2−イル)−ベンジジン、N,N,N’,N’−テトラ(ナフタレニル)−ベンジジン、N,N’−ジ(ナフタレン−2−イル)−N,N’−ジフェニルベンジジン−1,4−ジアミン、N1,N4−ジフェニル−N1,N4−ジ(m−トリル)ベンゼン−1,4−ジアミン、N2,N2,N6,N6−テトラフェニルナフタレン−2,6−ジアミン、トリス(4−(キノリン−8−イル)フェニル)アミン、2,2’−ビス(3−(N,N−ジ(p−トリル)アミノ)フェニル)ビフェニル、4,4’,4”−トリス[3−メチルフェニル(フェニル)アミノ]トリフェニルアミン(m−MTDATA)、4,4’,4”−トリス[1−ナフチル(フェニル)アミノ]トリフェニルアミン(1−TNATA)等のトリアリールアミン類、5,5”−ビス−{4−[ビス(4−メチルフェニル)アミノ]フェニル}−2,2’:5’,2”−ターチオフェン(BMA−3T)等のオリゴチオフェン類などが挙げられる。
発光層を形成する材料としては、トリス(8−キノリノラート)アルミニウム(III)(Alq3)、ビス(8−キノリノラート)亜鉛(II)(Znq2)、ビス(2−メチル−8−キノリノラート)(p−フェニルフェノラト)アルミニウム(III)(BAlq)、4,4’−ビス(2,2−ジフェニルビニル)ビフェニル、9,10−ジ(ナフタレン−2−イル)アントラセン、2−t−ブチル−9,10−ジ(ナフタレン−2−イル)アントラセン、2,7−ビス[9,9−ジ(4−メチルフェニル)−フルオレン−2−イル]−9,9−ジ(4−メチルフェニル)フルオレン、2−メチル−9,10−ビス(ナフタレン−2−イル)アントラセン、2−(9,9−スピロビフルオレン−2−イル)−9,9−スピロビフルオレン、2,7−ビス(9,9−スピロビフルオレン−2−イル)−9,9−スピロビフルオレン、2−[9,9−ジ(4−メチルフェニル)−フルオレン−2−イル]−9,9−ジ(4−メチルフェニル)フルオレン、2,2’−ジピレニル−9,9−スピロビフルオレン、1,3,5−トリス(ピレン−1−イル)ベンゼン、9,9−ビス[4−(ピレニル)フェニル]−9H−フルオレン、2,2’−ビ(9,10−ジフェニルアントラセン)、2,7−ジピレニル−9,9−スピロビフルオレン、1,4−ジ(ピレン−1−イル)ベンゼン、1,3−ジ(ピレン−1−イル)ベンゼン、6,13−ジ(ビフェニル−4−イル)ペンタセン、3,9−ジ(ナフタレン−2−イル)ペリレン、3,10−ジ(ナフタレン−2−イル)ペリレン、トリス[4−(ピレニル)−フェニル]アミン、10,10’−ジ(ビフェニル−4−イル)−9,9’−ビアントラセン、N,N’−ジ(ナフタレン−1−イル)−N,N’−ジフェニル−[1,1’:4’,1’’:4’’,1’’’−クウォーターフェニル]−4,4’’’−ジアミン、4,4’−ジ[10−(ナフタレン−1−イル)アントラセン−9−イル]ビフェニル、ジベンゾ{[f,f’]−4,4’,7,7’−テトラフェニル}ジインデノ[1,2,3−cd:1’,2’,3’−lm]ペリレン、1−(7−(9,9’−ビアントラセン−10−イル)−9,9−ジメチル−9H−フルオレン−2−イル)ピレン、1−(7−(9,9’−ビアントラセン−10−イル)−9,9−ジヘキシル−9H−フルオレン−2−イル)ピレン、1,3−ビス(カルバゾール−9−イル)ベンゼン、1,3,5−トリス(カルバゾール−9−イル)ベンゼン、4,4’,4”−トリス(カルバゾール−9−イル)トリフェニルアミン、4,4’−ビス(カルバゾール−9−イル)ビフェニル、4,4’−ビス(カルバゾール−9−イル)−2,2’−ジメチルビフェニル、2,7−ビス(カルバゾール−9−イル)−9,9−ジメチルフルオレン、2,2’,7,7’−テトラキス(カルバゾール−9−イル)−9,9−スピロビフルオレン、2,7−ビス(カルバゾール−9−イル)−9,9−ジ(p−トリル)フルオレン、9,9−ビス[4−(カルバゾール−9−イル)−フェニル]フルオレン、2,7−ビス(カルバゾール−9−イル)−9,9−スピロビフルオレン、1,4−ビス(トリフェニルシリル)ベンゼン、1,3−ビス(トリフェニルシリル)ベンゼン、ビス(4−N,N−ジエチルアミノ−2−メチルフェニル)−4−メチルフェニルメタン、2,7−ビス(カルバゾール−9−イル)−9,9−ジオクチルフルオレン、4,4”−ジ(トリフェニルシリル)−p−ターフェニル、4,4’−ジ(トリフェニルシリル)ビフェニル、9−(4−t−ブチルフェニル)−3,6−ビス(トリフェニルシリル)−9H−カルバゾール、9−(4−t−ブチルフェニル)−3,6−ジトリチル−9H−カルバゾール、9−(4−t−ブチルフェニル)−3,6−ビス(9−(4−メトキシフェニル)−9H−フルオレン−9−イル)−9H−カルバゾール、2,6−ビス(3−(9H−カルバゾール−9−イル)フェニル)ピリジン、トリフェニル(4−(9−フェニル−9H−フルオレン−9−イル)フェニル)シラン、9,9−ジメチル−N,N−ジフェニル−7−(4−(1−フェニル−1H−ベンゾ[d]イミダゾール−2−イル)フェニル)−9H−フルオレン−2−アミン、3,5−ビス(3−(9H−カルバゾール−9−イル)フェニル)ピリジン、9,9−スピロビフルオレン−2−イル−ジフェニル−フォスフィン オキサイド、9,9’−(5−(トリフェニルシリル)−1,3−フェニレン)ビス(9H−カルバゾール)、3−(2,7−ビス(ジフェニルフォスフォリル)−9−フェニル−9H−フルオレン−9−イル)−9−フェニル−9H−カルバゾール、4,4,8,8,12,12−ヘキサ(p−トリル)−4H−8H−12H−12C−アザジベンゾ[cd,mn]ピレン、4,7−ジ(9H−カルバゾール−9−イル)−1,10−フェナントロリン、2,2’−ビス(4−(カルバゾール−9−イル)フェニル)ビフェニル、2,8−ビス(ジフェニルフォスフォリル)ジベンゾ[b,d]チオフェン、ビス(2−メチルフェニル)ジフェニルシラン、ビス[3,5−ジ(9H−カルバゾール−9−イル)フェニル]ジフェニルシラン、3,6−ビス(カルバゾール−9−イル)−9−(2−エチル−ヘキシル)−9H−カルバゾール、3−(ジフェニルフォスフォリル)−9−(4−(ジフェニルフォスフォリル)フェニル)−9H−カルバゾール、3,6−ビス[(3,5−ジフェニル)フェニル]−9−フェニルカルバゾール等が挙げられ、発光性ドーパントと共蒸着することによって、発光層を形成してもよい。
発光性ドーパントとしては、3−(2−ベンゾチアゾリル)−7−(ジエチルアミノ)クマリン、2,3,6,7−テトラヒドロ−1,1,7,7−テトラメチル−1H,5H,11H−10−(2−ベンゾチアゾリル)キノリジノ[9,9a,1gh]クマリン、キナクリドン、N,N’−ジメチル−キナクリドン、トリス(2−フェニルピリジン)イリジウム(III)(Ir(ppy)3)、ビス(2−フェニルピリジン)(アセチルアセトネート)イリジウム(III)(Ir(ppy)2(acac))、トリス[2−(p−トリル)ピリジン]イリジウム(III)(Ir(mppy)3)、9,10−ビス[N,N−ジ(p−トリル)アミノ]アントラセン、9,10−ビス[フェニル(m−トリル)アミノ]アントラセン、ビス[2−(2−ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(II)、N10,N10,N10’,N10’−テトラ(p−トリル)−9,9’−ビアントラセン−10,10’−ジアミン、N10,N10,N10’,N10’−テトラフェニル−9,9’ −ビアントラセン−10,10’−ジアミン、N10,N10’−ジフェニル−N10,N10’−ジナフタレニル−9,9’−ビアントラセン−10,10’−ジアミン、4,4’−ビス(9−エチル−3−カルバゾビニレン)−1,1’−ビフェニル、ペリレン、2,5,8,11−テトラ−t−ブチルペリレン、1、4−ビス[2−(3−N−エチルカルバゾリル)ビニル]ベンゼン、4,4’−ビス[4−(ジ−p−トリルアミノ)スチリル]ビフェニル、4−(ジ−p−トリルアミノ)−4’−[(ジ−p−トリルアミノ)スチリル]スチルベン、ビス[3,5−ジフルオロ−2−(2−ピリジル)フェニル−(2−カルボキシピリジル)]イリジウム(III)、4,4’−ビス[4−(ジフェニルアミノ)スチリル]ビフェニル、ビス(2,4−ジフルオロフェニルピリジナト)テトラキス(1−ピラゾリル)ボレートイリジウム(III)、N,N’−ビス(ナフタレン−2−イル)−N,N’−ビス(フェニル)−トリス(9,9−ジメチルフルオレニレン)、2,7−ビス{2−[フェニル(m−トリル)アミノ]−9,9−ジメチル−フルオレン−7−イル}−9,9−ジメチル−フルオレン、N−(4−((E)−2−(6((E)−4−(ジフェニルアミノ)スチリル)ナフタレン−2−イル)ビニル)フェニル)−N−フェニルベンゼンアミン、fac−イリジウム(III)トリス(1−フェニル−3−メチルベンズイミダゾリン−2−イリデン−C,C2’)、mer−イリジウム(III)トリス(1−フェニル−3−メチルベンズイミダゾリン−2−イリデン−C,C2’)、2,7−ビス[4−(ジフェニルアミノ)スチリル]−9,9−スピロビフルオレン、6−メチル−2−(4−(9−(4−(6−メチルベンゾ[d]チアゾール−2−イル)フェニル)アントラセン−10−イル)フェニル)ベンゾ[d]チアゾール、1,4−ジ[4−(N,N−ジフェニル)アミノ]スチリルベンゼン、1,4−ビス(4−(9H−カルバゾール−9−イル)スチリル)ベンゼン、(E)−6−(4−(ジフェニルアミノ)スチリル)−N,N−ジフェニルナフタレン−2−アミン、ビス(2,4−ジフルオロフェニルピリジナト)(5−(ピリジン−2−イル)−1H−テトラゾレート)イリジウム(III)、ビス(3−トリフルオロメチル−5−(2−ピリジル)ピラゾール)((2,4−ジフルオロベンジル)ジフェニルフォスフィネート)イリジウム(III)、ビス(3−トリフルオロメチル−5−(2−ピリジル)ピラゾレート)(ベンジルジフェニルフォスフィネート)イリジウム(III)、ビス(1−(2,4−ジフルオロベンジル)−3−メチルベンズイミダゾリウム)(3−(トリフルオロメチル)−5−(2−ピリジル)−1,2,4−トリアゾレート)イリジウム(III)、ビス(3−トリフルオロメチル−5−(2−ピリジル)ピラゾレート)(4’,6’−ジフルオロフェニルピリジネート)イリジウム(III)、ビス(4’,6’−ジフルオロフェニルピリジナト)(3,5−ビス(トリフルオロメチル)−2−(2’−ピリジル)ピロレート)イリジウム(III)、ビス(4’,6’−ジフルオロフェニルピリジナト)(3−(トリフルオロメチル)−5−(2−ピリジル)−1,2,4−トリアゾレート)イリジウム(III)、(Z)−6−メシチル−N−(6−メシチルキノリン−2(1H)−イリデン)キノリン−2−アミン−BF2、(E)−2−(2−(4−(ジメチルアミノ)スチリル)−6−メチル−4H−ピラン−4−イリデン)マロノニトリル、4−(ジシアノメチレン)−2−メチル−6−ジュロリジル−9−エニル−4H−ピラン、4−(ジシアノメチレン)−2−メチル−6−(1,1,7,7−テトラメチルジュロリジル−9−エニル)−4H−ピラン、4−(ジシアノメチレン)−2−t−ブチル−6−(1,1,7,7−テトラメチルジュロリジン−4−イル−ビニル)−4H−ピラン、トリス(ジベンゾイルメタン)フェナントロリンユーロピウム(III)、5,6,11,12−テトラフェニルナフタセン、ビス(2−ベンゾ[b]チオフェン−2−イル−ピリジン)(アセチルアセトネート)イリジウム(III)、トリス(1−フェニルイソキノリン)イリジウム(III)、ビス(1−フェニルイソキノリン)(アセチルアセトネート)イリジウム(III)、ビス[1−(9,9−ジメチル−9H−フルオレン−2−イル)−イソキノリン](アセチルアセトネート)イリジウム(III)、ビス[2−(9,9−ジメチル−9H−フルオレン−2−イル)キノリン](アセチルアセトネート)イリジウム(III)、トリス[4,4’−ジ−t−ブチル−(2,2’)−ビピリジン]ルテニウム(III)・ビス(ヘキサフルオロフォスフェート)、トリス(2−フェニルキノリン)イリジウム(III)、ビス(2−フェニルキノリン)(アセチルアセトネート)イリジウム(III)、2,8−ジ−t−ブチル−5,11−ビス(4−t−ブチルフェニル)−6,12−ジフェニルテトラセン、ビス(2−フェニルベンゾチアゾラト)(アセチルアセトネート)イリジウム(III)、5,10,15,20−テトラフェニルテトラベンゾポルフィリン白金、オスミウム(II)ビス(3−トリフルオロメチル−5−(2−ピリジン)−ピラゾレート)ジメチルフェニルフォスフィン、オスミウム(II)ビス(3−(トリフルオロメチル)−5−(4−t−ブチルピリジル)−1,2,4−トリアゾレート)ジフェニルメチルフォスフィン、オスミウム(II)ビス(3−(トリフルオロメチル)−5−(2−ピリジル)−1,2,4−トリアゾール)ジメチルフェニルフォスフィン、オスミウム(II)ビス(3−(トリフルオロメチル)−5−(4−t−ブチルピリジル)−1,2,4−トリアゾレート)ジメチルフェニルフォスフィン、ビス[2−(4−n−ヘキシルフェニル)キノリン](アセチルアセトネート)イリジウム(III)、トリス[2−(4−n−ヘキシルフェニル)キノリン]イリジウム(III)、トリス[2−フェニル−4−メチルキノリン]イリジウム(III)、ビス(2−フェニルキノリン)(2−(3−メチルフェニル)ピリジネート)イリジウム(III)、ビス(2−(9,9−ジエチル−フルオレン−2−イル)−1−フェニル−1H−ベンゾ[d]イミダゾラト)(アセチルアセトネート)イリジウム(III)、ビス(2−フェニルピリジン)(3−(ピリジン−2−イル)−2H−クロメン−2−オネート)イリジウム(III)、ビス(2−フェニルキノリン)(2,2,6,6−テトラメチルヘプタン−3,5−ジオネート)イリジウム(III)、ビス(フェニルイソキノリン)(2,2,6,6−テトラメチルヘプタン−3,5−ジオネート)イリジウム(III)、イリジウム(III)ビス(4−フェニルチエノ[3,2−c]ピリジナト−N,C2’)アセチルアセトネート、(E)−2−(2−t−ブチル−6−(2−(2,6,6−トリメチル−2,4,5,6−テトラヒドロ−1H−ピローロ[3,2,1−ij]キノリン−8−イル)ビニル)−4H−ピラン−4−イリデン)マロノニトリル、ビス(3−トリフルオロメチル−5−(1−イソキノリル)ピラゾレート)(メチルジフェニルフォスフィン)ルテニウム、ビス[(4−n−ヘキシルフェニル)イソキノリン](アセチルアセトネート)イリジウム(III)、白金(II)オクタエチルポルフィン、ビス(2−メチルジベンゾ[f,h]キノキサリン)(アセチルアセトネート)イリジウム(III)、トリス[(4−n−ヘキシルフェニル)キソキノリン]イリジウム(III)等が挙げられる。
電子輸送層/ホールブロック層を形成する材料としては、8−ヒドロキシキノリノレート−リチウム、2,2’,2”−(1,3,5−ベンジントリル)−トリス(1−フェニル−1−H−ベンズイミダゾール)、2−(4−ビフェニル)5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン、4,7−ジフェニル−1,10−フェナントロリン、ビス(2−メチル−8−キノリノレート)−4−(フェニルフェノラト)アルミニウム、1,3−ビス[2−(2,2’−ビピリジン−6−イル)−1,3,4−オキサジアゾ−5−イル]ベンゼン、6,6’−ビス[5−(ビフェニル−4−イル)−1,3,4−オキサジアゾ−2−イル]−2,2’−ビピリジン、3−(4−ビフェニル)−4−フェニル−5−t−ブチルフェニル−1,2,4−トリアゾール、4−(ナフタレン−1−イル)−3,5−ジフェニル−4H−1,2,4−トリアゾール、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン、2,7−ビス[2−(2,2’−ビピリジン−6−イル)−1,3,4−オキサジアゾ−5−イル]−9,9−ジメチルフルオレン、1,3−ビス[2−(4−t−ブチルフェニル)−1,3,4−オキサジアゾ−5−イル]ベンゼン、トリス(2,4,6−トリメチル−3−(ピリジン−3−イル)フェニル)ボラン、1−メチル−2−(4−(ナフタレン−2−イル)フェニル)−1H−イミダゾ[4,5f][1,10]フェナントロリン、2−(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン、フェニル−ジピレニルフォスフィンオキサイド、3,3’,5,5’−テトラ[(m−ピリジル)−フェン−3−イル]ビフェニル、1,3,5−トリス[(3−ピリジル)−フェン−3−イル]ベンゼン、4,4’−ビス(4,6−ジフェニル−1,3,5−トリアジン−2−イル)ビフェニル、1,3−ビス[3,5−ジ(ピリジン−3−イル)フェニル]ベンゼン、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム、ジフェニルビス(4−(ピリジン−3−イル)フェニル)シラン、3,5−ジ(ピレン−1−イル)ピリジン等が挙げられる。
電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al23)、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化マグネシウム(MgF2)、フッ化セシウム(CsF)、フッ化ストロンチウム(SrF2)、三酸化モリブデン(MoO3)、アルミニウム、Li(acac)、酢酸リチウム、安息香酸リチウム等が挙げられる。
陰極材料としては、アルミニウム、マグネシウム−銀合金、アルミニウム−リチウム合金、リチウム、ナトリウム、カリウム、セシウム等が挙げられる。
電子ブロック層を形成する材料としては、トリス(フェニルピラゾール)イリジウム等が挙げられる。
本発明の電荷輸送性ワニスを用いたPLED素子の作製方法は、特に限定されないが、以下の方法が挙げられる。
上記OLED素子作製において、正孔輸送層、発光層、電子輸送層、電子注入層の真空蒸着操作を行う代わりに、正孔輸送性高分子層、発光性高分子層を順次形成することによって本発明の電荷輸送性ワニスによって形成される電荷輸送性薄膜を有するPLED素子を作製することができる。
具体的には、陽極基板上に本発明の電荷輸送性ワニスを塗布して上記の方法により正孔注入層を作製し、その上に正孔輸送性高分子層、発光性高分子層を順次形成し、さらに陰極電極を蒸着してPLED素子とする。
使用する陰極および陽極材料としては、上記OLED素子作製時と同様のものが使用でき、同様の洗浄処理、表面処理を行うことができる。
正孔輸送性高分子層および発光性高分子層の形成法としては、正孔輸送性高分子材料もしくは発光性高分子材料、またはこれらにドーパント物質を加えた材料に溶媒を加えて溶解するか、均一に分散し、正孔注入層または正孔輸送性高分子層の上に塗布した後、それぞれ焼成することで成膜する方法が挙げられる。
正孔輸送性高分子材料としては、ポリ[(9,9−ジヘキシルフルオレニル−2,7−ジイル)−co−(N,N’−ビス{p−ブチルフェニル}−1,4−ジアミノフェニレン)]、ポリ[(9,9−ジオクチルフルオレニル−2,7−ジイル)−co−(N,N’−ビス{p−ブチルフェニル}−1,1’−ビフェニレン−4,4−ジアミン)]、ポリ[(9,9−ビス{1’−ペンテン−5’−イル}フルオレニル−2,7−ジイル)−co−(N,N’−ビス{p−ブチルフェニル}−1,4−ジアミノフェニレン)]、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)−ベンジジン]−エンドキャップド ウィズ ポリシルシスキノキサン、ポリ[(9,9−ジジオクチルフルオレニル−2,7−ジイル)−co−(4,4’−(N−(p−ブチルフェニル))ジフェニルアミン)]等が挙げられる。
発光性高分子材料としては、ポリ(9,9−ジアルキルフルオレン)(PDAF)等のポリフルオレン誘導体、ポリ(2−メトキシ−5−(2’−エチルヘキソキシ)−1,4−フェニレンビニレン)(MEH−PPV)等のポリフェニレンビニレン誘導体、ポリ(3−アルキルチオフェン)(PAT)等のポリチオフェン誘導体、ポリビニルカルバゾール(PVCz)等が挙げられる。
溶媒としては、トルエン、キシレン、クロロホルム等を挙げることができ、溶解または均一分散法としては撹拌、加熱撹拌、超音波分散等の方法が挙げられる。
塗布方法としては、特に限定されるものではなく、インクジェット法、スプレー法、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り等が挙げられる。なお、塗布は、窒素、アルゴン等の不活性ガス下で行うことが好ましい。
焼成する方法としては、不活性ガス下または真空中、オーブンまたはホットプレートで加熱する方法が挙げられる。
なお、上記説明した電荷輸送性ワニスから得られる電荷輸送性薄膜だけでなく、本発明のトリフェニルアミン誘導体から得られる蒸着膜も電荷輸送性に優れることから、用途によっては、蒸着法により得られる電荷輸送性薄膜を用いてもよい。
以下、合成例および実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、使用した装置は以下のとおりである。
(1)1H−NMR測定:日本電子(株)製 JNM−ECP300 FT NMR SYSTEM
(2)基板洗浄:長州産業(株)製 基板洗浄装置(減圧プラズマ方式)
(3)ワニスの塗布:ミカサ(株)製 スピンコーターMS−A100
(4)膜厚測定:(株)小坂研究所製 微細形状測定機サーフコーダET−4000
(5)EL素子の作製:長州産業(株)製 多機能蒸着装置システムC−E2L1G1−N
(6)EL素子の輝度等の測定:(有)テック・ワールド製 I−V−L測定システム
(7)EL素子の寿命測定(半減期の測定):(株)イーエッチシー製 有機EL輝度寿命評価システムPEL−105S
[1]化合物の合成
[合成例1]アリールスルホン酸化合物Aの合成
実施例において使用するアリールスルホン酸化合物A(式(11))を、国際公開第2006/025342号の記載に基づき、下記反応式にしたがって合成した。
Figure 2014188998
よく乾燥させた1−ナフトール−3,6−ジスルホン酸ナトリウム11g(31.59mmol)に、窒素雰囲気下で、パーフルオロビフェニル4.797g(14.36mol)、炭酸カリウム4.167g(30.15mol)、およびN,N−ジメチルホルムアミド100mLを順次加え、反応系を窒素置換した後、内温100℃で6時間撹拌した。
室温まで放冷後、反応後に析出しているアリールスルホン酸化合物Aを再溶解させるために、N,N−ジメチルホルムアミドをさらに500mL加え、室温で90分撹拌した。室温撹拌後、この溶液をろ過して炭酸カリウム残渣を除去し、減圧濃縮した。さらに、残存している不純物を除去するために、残渣にメタノール100mLを加え、室温撹拌を行った。室温で30分間撹拌後、懸濁溶液をろ過し、ろ物を得た。ろ物に超純水300mLを加えて溶解し、陽イオン交換樹脂ダウエックス650C(ダウ・ケミカル社製、Hタイプ約200mL、留出溶媒:超純水)を用いたカラムクロマトグラフィーによりイオン交換した。
pH1以下の分画を減圧下で濃縮乾固し、残渣を減圧下で乾固して黄色粉末11gを得た(収率85%)。
1H−NMR(300MHz,DMSO−d6):δ7.18(1H,s,Ar−H),7.89(1H,d,Ar−H),8.01(1H,s,Ar−H),8.23(1H,s,Ar−H),8.28(1H,d,Ar−H).
[合成例2]
合成例3で使用する4’−ブロモ−N−フェニル−[1,1’−ビフェニル]−4−アミン(式(12))を、下記反応式にしたがって合成した。
Figure 2014188998
フラスコ内に、4−ブロモ−4’−ヨード−1,1’−ビフェニル20g、テトラキス(トリフェニルホスフィン)パラジウム3.2g、およびナトリウムt−ブトキシド6.4gを入れて窒素置換した後、トルエン200mL、アニリン6.1gを入れて還流条件下で6.5時間撹拌した。室温まで放冷した後、イオン交換水およびクロロホルムを加えて分液した。得られた有機層を硫酸ナトリウムにて乾燥後、濃縮した。得られた残渣にクロロホルムを加えて溶解させ、カラムクロマトグラフィーにより分離精製し、目的物を含むフラクションを集めて濃縮した。得られた粉末を再結晶し、4’−ブロモ−N−フェニル−[1,1’−ビフェニル]−4−アミン11gを得た。
1H−NMR(300MHz,CDCl3):δ7.53−7.40(m,6H),7.32−7.26(m,2H),7.11(d,d=8.6Hz,4H),6.99−6.94(t,d=7.4Hz,1H),5.78(s,1H).
[合成例3]
実施例において使用するトリフェニルアミン誘導体B(式(13))を、下記反応式にしたがって合成した。
Figure 2014188998
フラスコ内に、トリス(4−アミノフェニル)アミン0.81g、4’−ブロモ−N−フェニル−[1,1’−ビフェニル]−4−アミン3.0g、ビス(ジベンジリデンアセトン)パラジウム0.24g、1,1’−ビス(ジフェニルホスフィノ)フェロセン(DPPF)0.35gおよびナトリウムt−ブトキシド1.1gを入れて窒素置換した後、トルエン73mLを加え、80℃で5時間撹拌した。反応液を室温まで放冷し、ろ過した。得られたろ物をTHFに溶解させ、ろ過にて不溶物を除去し、得られたろ液を濃縮した。残渣に対してTHFを15mL加えて溶解させ、再沈殿により目的とするトリフェニルアミン誘導体を2.6g得た。
1H−NMR(300MHz,DMSO−d6):δ8.18(s,3H),8.09(s,3H),7.49−7.45(m,12H),7.25−7.20(m,6H),7.12−7.04(m,24H),6.94(d,d=8.6,6H),6.81(t,d=7.1Hz,3H).
[2]電荷輸送性ワニスの調製
[実施例1−1]
トリフェニルアミン誘導体B0.074gと、リンタングステン酸(以下、PTAと略す。)0.297gを、窒素雰囲気下で1,3−ジメチル−2−イミダゾリジノン(以下、DMIと略す。)4gに溶解させた。得られた溶液に、シクロヘキサノール(以下、CHAと略す。)6gおよびプロピレングリコール(以下、PGと略す。)2gを加えて撹拌し、電荷輸送性ワニスを調製した。
[実施例1−2〜1−4]
トリフェニルアミン誘導体Bの使用量およびPTAの使用量を、それぞれ、0.620gおよび0.309g(実施例1−2)、0.053gおよび0.318g(実施例1−3)、0.034gおよび0.337g(実施例1−4)とした以外は、実施例1−1と同様の方法で電荷輸送性ワニスを調製した。
[実施例1−5]
トリフェニルアミン誘導体B0.210gと、アリールスルホン酸化合物A0.279gを、窒素雰囲気下でDMI8gに溶解させた。得られた溶液に、CHA12gおよびPG4gを加えて撹拌し、電荷輸送性ワニスを調製した。
[実施例1−6]
トリフェニルアミン誘導体B0.123gと、アリールスルホン酸化合物A0.245gを、窒素雰囲気下でDMI6gに溶解させた。得られた溶液に、CHA9gおよびPG3gを加えて撹拌し、電荷輸送性ワニスを調製した。
[実施例1−7〜1−8]
トリフェニルアミン誘導体Bの使用量およびアリールスルホン酸化合物Aの使用量を、それぞれ、0.101gおよび0.267g(実施例1−7)、0.085gおよび0.282g(実施例1−8)とした以外は実施例1−6と同様の方法で電荷輸送性ワニスを調製した。
[実施例1−9]
トリフェニルアミン誘導体B0.124gと、PTA0.619gを、窒素雰囲気下でDMI8gに溶解させた。得られた溶液に、CHA12gおよびPG4gを加えて撹拌し、そこへペンタフルオロフェニルトリエトキシシラン0.022gを加えてさらに撹拌し、電荷輸送性ワニスを調製した。
[実施例1−10]
ペンタフェニルトリエトキシシラン0.022gの代わりに、3,3,3−トリフルオロプロピルトリメトキシシラン0.025gおよびフェニルトリメトキシシラン0.049gを用いた以外は、実施例1−9と同様の方法で電荷輸送性ワニスを調製した。
[3]有機EL素子の製造および特性評価
[実施例2−1]
実施例1−1で得られたワニスを、スピンコーターを用いてITO基板に塗布した後、50℃で5分間乾燥し、さらに、大気雰囲気下、230℃で10分間焼成し、ITO基板上に30nmの均一な薄膜を形成した。ITO基板としては、インジウム錫酸化物(ITO)が表面上に膜厚150nmでパターニングされた25mm×25mm×0.7tのガラス基板を用い、使用前にO2プラズマ洗浄装置(150W、30秒間)によって表面上の不純物を除却した。
次いで、薄膜を形成したITO基板に対し、蒸着装置(真空度1.0×10-5Pa)を用いてN,N’−ジ(1−ナフチル)−N,N’−ジフェニルベンジジン(α−NPD)、トリス(8−キノリノラート)アルミニウム(III)(Alq3)、フッ化リチウム、およびアルミニウムの薄膜を順次積層し、有機EL素子を得た。この際、蒸着レートは、α−NPD,Alq3およびアルミニウムについては0.2nm/秒、フッ化リチウムについては0.02nm/秒の条件でそれぞれ行い、膜厚は、それぞれ30nm、40nm、0.5nmおよび120nmとした。
なお、空気中の酸素、水等の影響による特性劣化を防止するため、有機EL素子は封止基板により封止した後、その特性を評価した。封止は、以下の手順で行った。
酸素濃度2ppm以下、露点−85℃以下の窒素雰囲気中で、有機EL素子を封止基板の間に収め、封止基板を接着材(ナガセケムテックス(株)製,XNR5516Z−B1)により貼り合わせた。この際、捕水剤(ダイニック(株)製,HD−071010W−40)を有機EL素子と共に封止基板内に収めた。
貼り合わせた封止基板に対し、UV光を照射(波長:365nm,照射量:6000mJ/cm2)した後、80℃で1時間、アニーリング処理して接着材を硬化させた。
[実施例2−2〜2−8]
実施例1−1で得られたワニスの代わりに、それぞれ、実施例1〜2〜1−8で得られたワニスを用いた以外は、実施例2−1と同様の方法で有機EL素子を作製した。
[実施例2−9]
230℃で10分間焼成する代わりに、150℃で10分間焼成した以外は、実施例2−1と同様の方法で有機EL素子を作製した。
[実施例2−10〜2−13]
実施例1−1で得られたワニスの代わりに、それぞれ、実施例1−2,1−3,1−9,1−10で得られた電荷輸送性ワニスを用いた以外は、実施例2−9と同様の方法で有機EL素子を作製した。
上記各実施例で作製した素子について、駆動電圧5Vにおける電流密度および輝度を測定した。結果を表1にまとめて示す。表1に示されるように、本発明の電荷輸送性ワニスを用いた場合、230℃という比較的高い温度のみならず、150℃程度の比較的低い温度で焼成したときでも優れた輝度特性を有するEL素子が得られることがわかる。
Figure 2014188998
実施例2−1〜2−6,2−9で得られた素子の耐久性試験(寿命測定)を行った。輝度の半減期(初期輝度5000cd/m2)を表2に示す。表2に示されるように、本発明の電荷輸送性ワニスから得られた電荷輸送性薄膜を備える有機EL素子は、耐久性に優れていることがわかる。
Figure 2014188998

Claims (10)

  1. 式(1)で表されることを特徴とするトリフェニルアミン誘導体。
    Figure 2014188998
    (式中、R1〜R17は、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、カルボン酸基、Z1で置換されていてもよい炭素数1〜20のアルキル基、Z1で置換されていてもよい炭素数2〜20のアルケニル基、Z1で置換されていてもよい炭素数2〜20のアルキニル基、Z2で置換されていてもよい炭素数6〜20のアリール基、Z2で置換されていてもよい炭素数2〜20のヘテロアリール基、−NHY1、−NY23、−C(O)Y4、−OY5、−SY6、−C(O)OY7、−OC(O)Y8、−C(O)NHY9、または−C(O)NY1011基を表し、
    1〜Y11は、互いに独立して、Z1で置換されていてもよい炭素数1〜20のアルキル基、Z1で置換されていてもよい炭素数2〜20のアルケニル基、Z1で置換されていてもよい炭素数2〜20のアルキニル基、Z2で置換されていてもよい炭素数6〜20のアリール基、またはZ2で置換されていてもよい炭素数2〜20のヘテロアリール基を表し、
    1は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、Z3で置換されていてもよい炭素数6〜20のアリール基、またはZ3で置換されていてもよい炭素数2〜20のヘテロアリール基を表し、
    2は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、Z3で置換されていてもよい炭素数1〜20のアルキル基、Z3で置換されていてもよい炭素数2〜20のアルケニル基、またはZ3で置換されていてもよい炭素数2〜20のアルキニル基を表し、
    3は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、またはカルボン酸基を表し、
    l、mおよびnは、互いに独立して、1〜5の整数を表す。)
  2. 前記R1〜R17が、すべて水素原子である請求項1記載のトリフェニルアミン誘導体。
  3. 請求項1または2記載のトリフェニルアミン誘導体からなる電荷輸送性物質。
  4. 請求項3記載の電荷輸送性物質を含む電荷輸送性材料。
  5. 請求項3記載の電荷輸送性物質と、ドーパント物質と、有機溶媒とを含む電荷輸送性ワニス。
  6. 請求項5記載の電荷輸送性ワニスを用いて作製される電荷輸送性薄膜。
  7. 請求項6記載の電荷輸送性薄膜を有する電子デバイス。
  8. 請求項6記載の電荷輸送性薄膜を有する有機エレクトロルミネッセンス素子。
  9. 請求項5記載の電荷輸送性ワニスを基材上に塗布し、溶媒を蒸発させることを特徴とする電荷輸送性薄膜の製造方法。
  10. 式(2)で表されるトリフェニルアミン化合物と、式(3)〜(5)で表されるジフェニルアミン構造を有する化合物とを、触媒存在下で反応させる請求項1記載のトリフェニルアミン誘導体の製造方法。
    Figure 2014188998
    (式中、X1〜X3は、互いに独立して、ハロゲン原子または擬ハロゲン基を表し、R1〜R17、l、mおよびnは、前記と同じ意味を示す。)
JP2015518233A 2013-05-20 2014-05-19 トリフェニルアミン誘導体およびその利用 Active JP6011723B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013105854 2013-05-20
JP2013105854 2013-05-20
PCT/JP2014/063198 WO2014188998A1 (ja) 2013-05-20 2014-05-19 トリフェニルアミン誘導体およびその利用

Publications (2)

Publication Number Publication Date
JP6011723B2 JP6011723B2 (ja) 2016-10-19
JPWO2014188998A1 true JPWO2014188998A1 (ja) 2017-02-23

Family

ID=51933551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015518233A Active JP6011723B2 (ja) 2013-05-20 2014-05-19 トリフェニルアミン誘導体およびその利用

Country Status (7)

Country Link
US (1) US9780309B2 (ja)
EP (1) EP3000804B1 (ja)
JP (1) JP6011723B2 (ja)
KR (1) KR102226126B1 (ja)
CN (1) CN105392771B (ja)
TW (1) TWI626228B (ja)
WO (1) WO2014188998A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111512459A (zh) * 2017-12-20 2020-08-07 日产化学株式会社 电荷传输性清漆
CN108461752B (zh) * 2018-03-12 2020-07-03 华南师范大学 一种侧链带有共轭羰基化合物的三苯胺聚合物及制备与应用
CN110350193B (zh) * 2019-07-02 2022-09-06 华南师范大学 一种双离子嵌入型交联网状三苯胺聚合物锂离子电池正极材料及其制备方法
CN117532894B (zh) * 2023-12-05 2024-06-14 东莞美泰电子有限公司 一种用于保护零件的pu皮革热压贴皮工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007625A (ja) * 1998-06-18 2000-01-11 Sharp Corp トリス(p−N−エナミン置換−アミノフェニル)アミン化合物及び有機電界発光素子
JP2002151256A (ja) * 2000-11-13 2002-05-24 Ricoh Co Ltd 有機電界発光素子、その製造方法、及びこれを用いた表示素子
JP2012505168A (ja) * 2008-10-08 2012-03-01 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンスデバイス用の物質
KR20120054938A (ko) * 2010-11-22 2012-05-31 엘지디스플레이 주식회사 정공 수송 물질 및 이를 이용한 유기전계발광소자

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149728A (ja) * 1987-12-04 1989-06-12 Fujisawa Pharmaceut Co Ltd 抗潰瘍剤
JP3871405B2 (ja) * 1997-08-07 2007-01-24 三井化学株式会社 4,4’,4’’−トリス(n,n−ジアリールアミノ)トリフェニルアミン類の製造方法及び4,4’,4’’−トリス(n−アリールアミノ)トリフェニルアミン類
JP4081869B2 (ja) * 1998-08-17 2008-04-30 コニカミノルタホールディングス株式会社 新規アミノ化合物を使用した有機エレクトロルミネッセンス素子
EP1640372B1 (en) 2003-06-25 2012-08-01 Nissan Chemical Industries, Ltd. 1,4-benzodioxane sulfonic acid compound and use thereof as electron-acceptor material
EP1785413B1 (en) 2004-08-31 2014-01-22 Nissan Chemical Industries, Ltd. Arylsulfonic acid compound and use thereof as electron-acceptor material
WO2008067276A1 (en) 2006-11-27 2008-06-05 Continental Automotive Systems Us, Inc. Key fob assembly
CN104789111B (zh) * 2007-04-12 2018-05-01 日产化学工业株式会社 低聚苯胺化合物
TWI447099B (zh) 2008-01-29 2014-08-01 Nissan Chemical Ind Ltd Aryl sulfonic acid compounds and the use of electron acceptables
WO2009139172A1 (ja) * 2008-05-15 2009-11-19 株式会社デンソー 有機発光素子とその製造方法
JP5488473B2 (ja) 2008-11-19 2014-05-14 日産化学工業株式会社 電荷輸送性ワニス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007625A (ja) * 1998-06-18 2000-01-11 Sharp Corp トリス(p−N−エナミン置換−アミノフェニル)アミン化合物及び有機電界発光素子
JP2002151256A (ja) * 2000-11-13 2002-05-24 Ricoh Co Ltd 有機電界発光素子、その製造方法、及びこれを用いた表示素子
JP2012505168A (ja) * 2008-10-08 2012-03-01 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンスデバイス用の物質
KR20120054938A (ko) * 2010-11-22 2012-05-31 엘지디스플레이 주식회사 정공 수송 물질 및 이를 이용한 유기전계발광소자

Also Published As

Publication number Publication date
TW201512153A (zh) 2015-04-01
CN105392771B (zh) 2019-01-15
EP3000804B1 (en) 2018-04-25
KR102226126B1 (ko) 2021-03-10
US20160087220A1 (en) 2016-03-24
KR20160008240A (ko) 2016-01-21
TWI626228B (zh) 2018-06-11
WO2014188998A1 (ja) 2014-11-27
JP6011723B2 (ja) 2016-10-19
EP3000804A1 (en) 2016-03-30
CN105392771A (zh) 2016-03-09
EP3000804A4 (en) 2017-03-01
US9780309B2 (en) 2017-10-03

Similar Documents

Publication Publication Date Title
JP6414213B2 (ja) 有機エレクトロルミネッセンス素子の正孔注入層形成用ワニス
JP6597597B2 (ja) アニリン誘導体およびその利用
JP6459350B2 (ja) 電荷輸送性ワニス、電荷輸送性薄膜及び有機エレクトロルミネッセンス素子
JP6760455B2 (ja) アニリン誘導体およびその製造方法
JP6011723B2 (ja) トリフェニルアミン誘導体およびその利用
WO2015141585A1 (ja) オリゴアニリン誘導体、電荷輸送性ワニス及び有機エレクトロルミネッセンス素子
JP6601390B2 (ja) アニリン誘導体およびその利用
JP6593334B2 (ja) 電荷輸送性ワニス
JP6061034B2 (ja) アニリン誘導体、電荷輸送性ワニス及び有機エレクトロルミネッセンス素子
JP6402724B2 (ja) アリールスルホン酸化合物及びその利用
JP6551395B2 (ja) アニリン誘導体およびその利用
JP6558373B2 (ja) 電荷輸送性ワニス
JP2015092559A (ja) 電荷輸送性ワニス、電荷輸送性薄膜及び有機エレクトロルミネッセンス素子
JP6601405B2 (ja) 電荷輸送性ワニス
JP6132016B2 (ja) 電荷輸送性ワニス

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160905

R151 Written notification of patent or utility model registration

Ref document number: 6011723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350