JPWO2014157416A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
JPWO2014157416A1
JPWO2014157416A1 JP2015508631A JP2015508631A JPWO2014157416A1 JP WO2014157416 A1 JPWO2014157416 A1 JP WO2014157416A1 JP 2015508631 A JP2015508631 A JP 2015508631A JP 2015508631 A JP2015508631 A JP 2015508631A JP WO2014157416 A1 JPWO2014157416 A1 JP WO2014157416A1
Authority
JP
Japan
Prior art keywords
active material
negative electrode
material layer
electrode active
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015508631A
Other languages
English (en)
Other versions
JP6079870B2 (ja
Inventor
健史 宮本
健史 宮本
小川 弘志
弘志 小川
本田 崇
崇 本田
康介 萩山
康介 萩山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Application granted granted Critical
Publication of JP6079870B2 publication Critical patent/JP6079870B2/ja
Publication of JPWO2014157416A1 publication Critical patent/JPWO2014157416A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】非水電解質二次電池において、負極活物質層のバインダとして水系バインダを用いた場合に、振動が入力されて電極がずれた際でも、電極とセパレータの摩擦による電極表面からの凝集破壊が抑制され、電池特性を維持することのできる手段を提供する。【解決手段】発電要素が外装体の内部に封入されてなる非水電解質二次電池であって、前記発電要素が、正極集電体の表面に正極活物質層が形成されてなる正極と、負極集電体の表面に水系バインダを含む負極活物質層が形成されてなる負極と、電解液を保持するセパレータと、を有し、前記負極活物質層と前記セパレータとの間の静摩擦係数が0.90以下、動摩擦係数が0.70以下であることを特徴とする非水電解質二次電池。

Description

本発明は、非水電解質二次電池に関する。
近年、環境保護運動の高まりを背景として、電気自動車(EV)、ハイブリッド電気自動車(HEV)、および燃料電池車(FCV)の開発が進められている。これらのモータ駆動用電源としては繰り返し充放電可能な二次電池が適しており、特に高容量、高出力が期待できるリチウムイオン二次電池などの非水電解質二次電池が注目を集めている。
非水電解質二次電池は、集電体表面に形成された正極活物質(たとえば、LiCoO、LiMnO、LiNiO等)を含む正極活物質層を有する。また、非水電解質二次電池は、集電体表面に形成された負極活物質(たとえば、金属リチウム、コークスおよび天然・人造黒鉛等の炭素質材料、Sn、Si等の金属およびその酸化物材料等)を含む負極活物質層を有する。
活物質層に用いられる活物質を結着させるためのバインダは、有機溶媒系バインダ(水に溶解/分散せず、有機溶媒に溶解/分散するバインダ)および水系バインダ(水に溶解/分散するバインダ)に分類される。有機溶媒系バインダは、有機溶剤の材料費、回収費、廃棄処分などに多額のコストがかかり、工業的に不利となる場合がある。一方で、水系バインダは、原料としての水の調達が容易であることに加え、乾燥時に発生するのは水蒸気であるため、製造ラインへの設備投資が大幅に抑制でき、環境負荷の低減を図ることができるという利点がある。さらに水系バインダは、有機溶媒系バインダに比べて少量でも結着効果が大きく、同一体積当たりの活物質比率を高めることができ、負極を高容量化できるという利点がある。
このような利点を有することから、活物質層を形成するバインダとして水系バインダを用いて負極を形成する種々の試みが行われている。例えば、特許文献1では、非水電解質二次電池用負極において、水系バインダであるスチレンブタジエンゴム(SBR)などのラテックス系結着剤とともに、ポリビニルアルコールおよびカルボキシメチルセルロースを負極活物質層に含有させる技術が提案されている。
特開2010−80297号公報
電気自動車等の車両に搭載されて用いられる電池には、民生用の電池よりも高強度の振動が入力されるため、高い耐振動性能が求められる。そして、特に車両搭載用の電池に要求される耐振動性を発揮させようとすると、バインダの添加量を増加させることが避けられない。しかしながら、水系バインダであるSBR等のゴム系高分子結着剤は架橋性高分子のため、バインダの添加量を増やすと、活物質層が全体として硬く脆くなったり、振動が入力されて電極がずれた際に電極の凝集破壊が生じたりして、電池容量が低下するという問題がある。
本発明者らの検討によれば、特許文献1の技術のように水系バインダにゴム系高分子結着剤と共にポリビニルアルコールやカルボキシメチルセルロースを用い、負極活物質層に含有させた場合でも達成される耐振動性は必ずしも十分なものではないことが判明した。
そこで本発明は、非水電解質二次電池において、負極活物質層のバインダとして水系バインダを用いた場合に、振動が入力されて電極がずれた際でも電極とセパレータの摩擦による電極表面からの凝集破壊が抑制され、電池特性(放電容量)を維持できる手段の提供を目的とする。
本発明に係る非水電解質二次電池は、発電要素が外装体の内部に封入されてなる構成を有する。そして、発電要素は、正極集電体の表面に正極活物質層が形成されてなる正極と、負極集電体の表面に負極活物質層が形成されてなる負極と、電解液を保持するセパレータとを有する。また、負極活物質層は水系バインダを含み、前記負極の負極活物質層と前記セパレータとの間の静摩擦係数が0.90以下であり、かつ動摩擦係数が0.70以下である点に特徴がある。
電気デバイスの一実施形態である、扁平型(積層型)の双極型でない非水電解質リチウムイオン二次電池の基本構成を示す断面概略図である。 実施例で用いた加振試験用治具を電池に取り付けた状態を模式的に表した断面概略図である。 図2Aの斜視図である。
本発明の実施形態は、発電要素が外装体の内部に封入されてなる非水電解質二次電池である。また前記発電要素が、正極集電体の表面に正極活物質層が形成されてなる正極と、負極集電体の表面に水系バインダを含む負極活物質層が形成されてなる負極と、電解液を保持するセパレータと、を有する。更に、前記負極活物質層と前記セパレータとの間の静摩擦係数が0.90以下、動摩擦係数が0.70以下であることを特徴とする非水電解質二次電池である。
本実施形態が上記構成を有することにより、水系バインダを負極活物質層に用いる場合において、負極活物質層とセパレータ間の摩擦係数を一定値より低くすることで、電極がずれた際に電極とセパレータ間での密着性を適度に低下させることができる。その結果、電極とセパレータの摩擦による電極表面からの凝集破壊が抑制され、振動が入力されても電池特性を維持することができる。
車両用途の非水電解質二次電池には民生用途よりも高強度の振動が入力されるため、耐振動性が厳しく求められる。特に車両搭載用の電池に要求される耐振動性を発揮させようとすると、バインダの添加量を増加させることが避けられない。活物質層中のバインダ量を増やすと電極集電体と活物質層との間の剥離強度を強くすることができるため、振動による活物質層の剥がれ、欠けを抑制することができる。しかしながらスチレン−ブタジエンゴム(SBR)等のゴム系高分子バインダは、架橋性高分子のためバインダ量を増やすと電極活物質層が硬く脆くなり、電極活物質層の凝集破壊が生じる恐れがある。反面、水系バインダは活物質層を製造する際の溶媒として水を用いることができるため、種々の利点が存在し、また、活物質を結着する結着力も高い。そこで、本発明者らは、負極活物質層における集電体と活物質層との間の剥離強度を強くすべく、水系バインダのバインダ量を増やして用いると、活物質層の凝集破壊が生じるなど電池性能(放電容量等)が十分ではないことを見出したものである。上記知見に加え、更に水系バインダにSBR等のゴム系高分子結着剤と共にポリビニルアルコールやカルボキシメチルセルロースを用い、負極活物質層に含有させたとしても耐振動性は必ずしも十分なものではないことが判明した。即ち、水系バインダにゴム系高分子結着剤と共にポリビニルアルコールやカルボキシメチルセルロースを用いても、剥離強度を強くするには、これら水系バインダのバインダ量を増やして用いる必要がある。そのため、こうした水系バインダを含む負極活物質を用いた電池に対して振動が入力(負荷)されると、電極のずれにより電極が凝集破壊され電池特性(放電容量)が低下してしまうことが判明したのである。かかる知見に基づき、むしろ、振動の入力に対して電極が適度にずれた際に活物質層の凝集破壊が生じない程度の緩やかな結着力で電極とセパレータを密着させることで、上記課題が解消し得ることを知得し得たものである。即ち、振動の入力に対して電極が適度にずれる程度の緩やかな結着力の指標として、電極とセパレータ間の摩擦係数を一定値より低くすることで、振動の入力に対して電極がずれた際に電極とセパレータ間での密着性を適度に低下させることができる。すると電極とセパレータの摩擦による電極表面からの凝集破壊が抑制され、振動が入力されても電池特性が維持されることを見出したものである。上記構成に加えて、車両用途の非水電解質二次電池を積層型電池とすることで、振動の入力に対して電極が適度にずれるため振動をより効果的に吸収することができることも見出し得たものである。更に、車両用途の非水電解質二次電池を大面積電池とすることによっても、同様に振動の入力に対して電極が適度にずれるため振動をより効果的に吸収することができることも見出し得たものである。
上記知見の元に鋭意検討した結果、本発明者らは、水系バインダを負極活物質層に用いる場合において、負極の負極活物質層側とセパレータとの間の静摩擦係数が0.90以下、動摩擦係数が0.70以下に制御することで、上述したように振動の入力に対して電極が適度にずれるため振動をより効果的に吸収できることを見出し、本発明の完成に至ったものである。
以下、非水電解質二次電池の好ましい実施形態として、非水電解質リチウムイオン二次電池について説明するが、以下の実施形態のみには制限されない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
図1は、扁平型(積層型)の双極型ではない非水電解質リチウムイオン二次電池(以下、単に「積層型電池」ともいう)の基本構成を模式的に表した断面概略図である。図1に示すように、本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装体である電池外装体29の内部に封止された構造を有する。ここで、発電要素21は、正極と、セパレータ17と、負極とを積層した構成を有している。なお、セパレータ17は、非水電解質(例えば、液体電解質)を内蔵している。正極は、正極集電体11の両面に正極活物質層13が配置された構造を有する。負極は、負極集電体12の両面に負極活物質層15が配置された構造を有する。具体的には、1つの正極活物質層13とこれに隣接する負極活物質層15とが、セパレータ17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。これにより、隣接する正極、電解質層および負極は、1つの単電池層19を構成する。したがって、図1に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。本実施形態では、積層型電池とすることで、振動の入力に対して電極が適度にずれるため振動を吸収することができる点で優れている。
なお、発電要素21の両最外層に位置する最外層正極集電体には、いずれも片面のみに正極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層負極集電体が位置するようにし、該最外層負極集電体の片面または両面に負極活物質層が配置されているようにしてもよい。
正極集電体11および負極集電体12は、各電極(正極および負極)と導通される正極集電板(タブ)25および負極集電板(タブ)27がそれぞれ取り付けられ、電池外装体29の端部に挟まれるようにして電池外装体29の外部に導出される構造を有している。正極集電板25および負極集電板27はそれぞれ、必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体11および負極集電体12に超音波溶接や抵抗溶接等により取り付けられていてもよい。
なお、図1では、扁平型(積層型)の双極型ではない積層型電池を示したが、集電体の一方の面に電気的に結合した正極活物質層と、集電体の反対側の面に電気的に結合した負極活物質層と、を有する双極型電極を含む双極型電池であってもよい。この場合、一の集電体が正極集電体および負極集電体を兼ねることとなる。
以下、各部材について、さらに詳細に説明する。
[負極活物質層]
負極活物質層は、負極活物質を含む。負極活物質としては、例えば、グラファイト(天然黒鉛、人造黒鉛)、ソフトカーボン、ハードカーボン等の炭素材料、リチウム−遷移金属複合酸化物(例えば、LiTi12)、金属材料、リチウム合金系負極材料などが挙げられる。場合によっては、2種以上の負極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、炭素材料またはリチウム−遷移金属複合酸化物が、負極活物質として用いられる。なお、上記以外の負極活物質が用いられてもよいことは勿論である。
負極活物質層に含まれるそれぞれの活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1〜100μm、より好ましくは1〜30μmである。
負極活物質層は、少なくとも水系バインダを含む。水系バインダは、原料としての水の調達が容易であることに加え、乾燥時に発生するのは水蒸気であるため、製造ラインへの設備投資が大幅に抑制でき、環境負荷の低減を図ることができるという利点がある。
水系バインダとは水を溶媒もしくは分散媒体とするバインダをいい、具体的には熱可塑性樹脂、ゴム弾性を有するポリマー、水溶性高分子など、またはこれらの混合物が該当する。ここで、水を分散媒体とするバインダとは、ラテックスまたはエマルジョンと表現される全てを含み、水と乳化または水に懸濁したポリマーを指し、例えば自己乳化するような系で乳化重合したポリマーラテックス類が挙げられる。
水系バインダとしては、具体的にはスチレン系高分子(スチレン−ブタジエンゴム、スチレン−酢酸ビニル共重合体、スチレン−アクリル共重合体等)、アクリロニトリル−ブタジエンゴム、メタクリル酸メチル−ブタジエンゴム、(メタ)アクリル系高分子(ポリエチルアクリレート、ポリエチルメタクリレート、ポリプロピルアクリレート、ポリメチルメタクリレート(メタクリル酸メチルゴム)、ポリプロピルメタクリレート、ポリイソプロピルアクリレート、ポリイソプロピルメタクリレート、ポリブチルアクリレート、ポリブチルメタクリレート、ポリヘキシルアクリレート、ポリヘキシルメタクリレート、ポリエチルヘキシルアクリレート、ポリエチルヘキシルメタクリレート、ポリラウリルアクリレート、ポリラウリルメタクリレート等)、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、ポリブタジエン、ブチルゴム、フッ素ゴム、ポリエチレンオキシド、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリル、ポリスチレン、エチレン−プロピレン−ジエン共重合体、ポリビニルピリジン、クロロスルホン化ポリエチレン、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂;ポリビニルアルコール(平均重合度は、好適には200〜4000、より好適には、1000〜3000、ケン化度は好適には80モル%以上、より好適には90モル%以上)およびその変性体(エチレン/酢酸ビニル=2/98〜30/70モル比の共重合体の酢酸ビニル単位のうちの1〜80モル%ケン化物、ポリビニルアルコールの1〜50モル%部分アセタール化物等)、デンプンおよびその変性体(酸化デンプン、リン酸エステル化デンプン、カチオン化デンプン等)、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、およびこれらの塩等)、ポリビニルピロリドン、ポリアクリル酸(塩)、ポリエチレングリコール、(メタ)アクリルアミドおよび/または(メタ)アクリル酸塩の共重合体[(メタ)アクリルアミド重合体、(メタ)アクリルアミド−(メタ)アクリル酸塩共重合体、(メタ)アクリル酸アルキル(炭素数1〜4)エステル−(メタ)アクリル酸塩共重合体など]、スチレン−マレイン酸塩共重合体、ポリアクリルアミドのマンニッヒ変性体、ホルマリン縮合型樹脂(尿素−ホルマリン樹脂、メラミン−ホルマリン樹脂等)、ポリアミドポリアミンもしくはジアルキルアミン−エピクロルヒドリン共重合体、ポリエチレンイミン、カゼイン、大豆蛋白、合成蛋白、並びにマンナンガラクタン誘導体等の水溶性高分子などが挙げられる。これらの水系バインダは1種単独で用いてもよいし、2種以上併用して用いてもよい。
上記水系バインダは、結着性の観点から、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、メタクリル酸メチル−ブタジエンゴム、およびメタクリル酸メチルゴムからなる群から選択される少なくとも1つのゴム系バインダを含むことが好ましい。さらに、結着性が良好であることから、水系バインダはスチレン−ブタジエンゴムを含むことが好ましい。
水系バインダとしてスチレン−ブタジエンゴムを用いる場合、塗工性向上の観点から、上記水溶性高分子を併用することが好ましい。スチレン−ブタジエンゴムと併用することが好適な水溶性高分子としては、ポリビニルアルコールおよびその変性体、デンプンおよびその変性体、セルロース誘導体(カルボキシメチルセルロース(CMC)、メチルセルロース、ヒドロキシエチルセルロース、およびこれらの塩等)、ポリビニルピロリドン、ポリアクリル酸(塩)、またはポリエチレングリコールが挙げられる。中でも、バインダとして、スチレン−ブタジエンゴムと、カルボキシメチルセルロースとを組み合わせることが好ましい。スチレン−ブタジエンゴムと、水溶性高分子との含有質量比は、特に制限されるものではないが、スチレン−ブタジエンゴム:水溶性高分子=1:0.2〜1、好ましくは1:0.3〜0.7であることが好ましい。上記水溶性高分子は、水系バインダとは別に、増粘剤として分類される場合もある。この場合には、上記スチレン−ブタジエンゴム:水溶性高分子の混合比率は、水系バインダと増粘剤との混合比率と読み替えることができる。
水溶性高分子を増粘剤として分類した場合、当該水溶性高分子(CMCなど)の重量平均分子量は、5000〜1200000、好ましくは6000〜1100000、より好ましくは7000〜1000000の範囲である。水溶性高分子の重量平均分子量が5000以上であれば、水系スラリーの粘度を適度に保つことができるなど、増粘剤を水に溶解した際に、水系スラリーの粘度を適度に保つことができる。その結果、負極の製造段階で増粘剤として有効に利用することができる点で有利である。水溶性高分子の重量平均分子量が1200000以下であれば、増粘剤を水等の水系溶媒に溶解した際にゲル状態となることなく、水系スラリーの粘度を適度に保つことができる。その結果、負極の製造段階で増粘剤として有効に利用することができる点で有利である。水溶性高分子の重量平均分子量の測定方法としては、例えば、金属−アミン錯体および/または金属−アルカリ錯体を含有する溶媒を移動相溶媒としたゲルパーミュエーションクロマトグラフィーを用いて水溶性高分子の分子量分布の測定を行なうことができる。かかる分子量分布から、水溶性高分子の重量平均分子量の分子量を算出することができる。なお、水溶性高分子の重量平均分子量の測定方法としては、上記方法に何ら制限されるものではなく、従来公知の方法により測定、算出することができる。
水溶性高分子を増粘剤として分類した場合、当該水溶性高分子の含有量は、負極活物質層の総量に対して、0.1〜10質量%、好ましくは0.5〜2質量%の範囲である。水溶性高分子の含有量が0.1質量%以上であれば、負極製造過程での増粘効果を十分に発現し、平坦で滑らかな表面の負極活物質層とすることができる。また、得られた負極の初回充電でのガス発生のみならず充放電効率の改善による容量の優れた負極を提供できる。また10質量%以下であれば、優れた増粘効果により水系スラリーの粘度を適当に調整することができ、所望の負極活物質層とすることができる。また、得られた負極の初回充電でのガス発生のみならず充放電効率の改善による容量の優れた負極を提供できる。
負極活物質層に用いられるバインダのうち、水系バインダの含有量は80〜100質量%であることが好ましく、90〜100質量%であることがより好ましく、100質量%であることがさらにより好ましい。水系バインダ以外のバインダとしては、下記正極活物質層に用いられるバインダ(有機溶媒系バインダ)が挙げられる。
負極活物質層中に含まれるバインダ量は、活物質を結着することができる量であれば特に限定されるものではないが、好ましくは活物質層に対して、0.5〜15質量%であり、より好ましくは1〜10質量%であり、さらに好ましくは2〜4質量%である。水系バインダは結着力が高いことから、有機溶媒系バインダと比較して少量の添加で活物質層を形成できる。このことから、水系バインダの活物質層中の含有量は、活物質層に対して、好ましくは0.5〜15質量%であり、より好ましくは1〜10質量%であり、さらに好ましくは2〜4質量%である。特に水系バインダの活物質層中の含有量が2〜4質量%の範囲内であれば、集電体との界面に水系バインダが適度量が存在し得ることができる。そのため、上記した摩擦係数の範囲となり、外部より振動が入力されて活物質層がずれた際に凝集破壊を生じさせることなく、最適な密着性、耐剥離性、耐振動性を発現させることができる点で特に優れている。
負極活物質層は、必要に応じて、導電助剤、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。
導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維などの炭素材料が挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
電解質塩(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。
イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
負極活物質層および後述の正極活物質層中に含まれる成分の配合比は、特に限定されない。配合比は、リチウムイオン二次電池についての公知の知見を適宜参照することにより、調整されうる。各活物質層の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さは、2〜100μm程度である。
本発明において、負極活物質層の密度は、1.35〜1.65g/cmであることが好ましい。ここで一般に、水系バインダを負極活物質層に用いると、従来よく用いられているPVdF等の溶剤系バインダと比較して、電池の初回充電時に発生するガスの量が多くなる現象がある。これに関連して、負極活物質層の密度が1.35g/cm以上であれば、活物質の連通性が確保され、電子伝導性が十分に維持される結果、電池性能がより向上しうる。また、負極活物質層の密度が1.65g/cm以下であれば、発生したガスが発電要素の内部から十分に抜けることができ、長期サイクル特性がより向上しうる。負極活物質層の密度は、本発明の効果がより発揮されることから、1.40〜1.60g/cmであることが好ましく、更に好ましくは1.42〜1.53g/cmである。なお、負極活物質層の密度は、単位体積あたりの活物質層質量を表す。具体的には、電池から負極活物質層を取り出し、電解液中などに存在する溶媒等を除去後、電極体積を長辺、短辺、高さから求め、活物質層の重量を測定後、重量を体積で除することによって求めることができる。
また、本発明において、負極活物質層のセパレータ側表面の中心線平均粗さ(Ra)は0.5〜1.0μmであることが好ましい。負極活物質層の中心線平均粗さ(Ra)が0.5μm以上であれば、長期サイクル特性がより向上しうる。これは、表面粗さが0.5μm以上であれば、発電要素内に発生したガスが系外へ排出されやすいためであると考えられる。また、負極活物質層の中心線平均粗さ(Ra)が1.0μm以下であれば、電池要素内の電子伝導性が十分に確保され、電池特性がより向上しうる。
ここで、中心線平均粗さRaとは、粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜き取り部分の平均線の方向にx軸を、縦倍率の方向にy軸を取り、粗さ曲線をy=f(x)で表したときに、下記の数式1によって求められる値をマイクロメートル(μm)で表したものである(JIS−B0601−1994)。
Raの値は、例えばJIS−B0601−1994等に定められている方法によって、一般的に広く使用されている触針式あるいは非接触式表面粗さ計などを用いて測定される。装置のメーカーや型式には何ら制限は無い。本発明における検討では、SLOAN社製、型番:DEKTAK3030を用い、JIS−B0601に定められている方法に準拠してRaを求めた。接触法(ダイヤモンド針等による触針式)、非接触法(レーザー光等による非接触検出)のどちらでも測定可能であるが、本発明における検討では、接触法により測定した。
また、比較的簡単に計測できることから、本発明に規定する表面粗さRaは、製造過程で集電体上に活物質層が形成された段階で測定する。ただし、電池完成後であっても測定可能であり、製造段階とほぼ同じ結果であることから、電池完成後の表面粗さが、上記Raの範囲を満たすものであればよい。また、負極活物質層の表面粗さは、負極活物質層のセパレータ側のものである。
負極の表面粗さは、負極活物質層に含まれる活物質の形状、粒子径、活物質の配合量等を考慮して、例えば、活物質層形成時のプレス圧を調整するなどして、上記範囲となるように調整することができる。活物質の形状は、その種類や製造方法等によって取り得る形状が異なり、また、粉砕等により形状を制御することができ、例えば、球状(粉末状)、板状、針状、柱状、角状などが挙げられる。したがって、活物質層に用いられる形状を考慮して、表面粗さを調整するために、種々の形状の活物質を組み合わせてもよい。
[正極活物質層]
正極活物質層は活物質を含み、必要に応じて、導電助剤、バインダ、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。
正極活物質層は、正極活物質を含む。正極活物質としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni−Mn−Co)Oおよびこれらの遷移金属の一部が他の元素により置換されたもの等のリチウム−遷移金属複合酸化物、リチウム−遷移金属リン酸化合物、リチウム−遷移金属硫酸化合物などが挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、リチウム−遷移金属複合酸化物が、正極活物質として用いられる。より好ましくは、Li(Ni−Mn−Co)Oおよびこれらの遷移金属の一部が他の元素により置換されたもの(以下、単に「NMC複合酸化物」とも称する)が用いられる。NMC複合酸化物は、リチウム原子層と遷移金属(Mn、NiおよびCoが秩序正しく配置)原子層とが酸素原子層を介して交互に積み重なった層状結晶構造を持ち、遷移金属Mの1原子あたり1個のLi原子が含まれ、取り出せるLi量が、スピネル系リチウムマンガン酸化物の2倍、つまり供給能力が2倍になり、高い容量を持つことができる。
NMC複合酸化物は、上述したように、遷移金属元素の一部が他の金属元素により置換されている複合酸化物も含む。その場合の他の元素としては、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Cr、Fe、B、Ga、In、Si、Mo、Y、Sn、V、Cu、Ag、Znなどが挙げられ、好ましくは、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crであり、より好ましくは、Ti、Zr、P、Al、Mg、Crであり、サイクル特性向上の観点から、さらに好ましくは、Ti、Zr、Al、Mg、Crである。
NMC複合酸化物は、理論放電容量が高いことから、好ましくは、一般式(1):LiNiMnCo(但し、式中、a、b、c、d、xは、0.9≦a≦1.2、0<b<1、0<c≦0.5、0<d≦0.5、0≦x≦0.3、b+c+d=1を満たす。MはTi、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crから選ばれる元素で少なくとも1種類である)で表される組成を有する。ここで、aは、Liの原子比を表し、bは、Niの原子比を表し、cは、Mnの原子比を表し、dは、Coの原子比を表し、xは、Mの原子比を表す。サイクル特性の観点からは、一般式(1)において、0.4≦b≦0.6であることが好ましい。なお、各元素の組成は、例えば、誘導結合プラズマ(ICP)発光分析法により測定できる。
一般に、ニッケル(Ni)、コバルト(Co)およびマンガン(Mn)は、材料の純度向上および電子伝導性向上という観点から、容量および出力特性に寄与することが知られている。Ti等は、結晶格子中の遷移金属を一部置換するものである。サイクル特性の観点からは、遷移元素の一部が他の金属元素により置換されていることが好ましく、特に一般式(1)において0<x≦0.3であることが好ましい。Ti、Zr、Nb、W、P、Al、Mg、V、Ca、SrおよびCrからなる群から選ばれる少なくとも1種が固溶することにより結晶構造が安定化されるため、その結果、充放電を繰り返しても電池の容量低下が防止でき、優れたサイクル特性が実現し得ると考えられる。
より好ましい実施形態としては、一般式(1)において、b、cおよびdが、0.44≦b≦0.51、0.27≦c≦0.31、0.19≦d≦0.26であることが、容量と耐久性とのバランスに優れる点で好ましい。
なお、上記以外の正極活物質が用いられてもよいことは勿論である。
正極活物質層に含まれるそれぞれの活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1〜100μm、より好ましくは1〜20μmである。
正極活物質層に用いられるバインダとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル、ポリアクリロニトリル、ポリイミド、ポリアミド、セルロース、カルボキシメチルセルロース(CMC)およびその塩、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。これらのバインダは、単独で用いてもよいし、2種以上を併用してもよい。
正極活物質層中に含まれるバインダ量は、活物質を結着することができる量であれば特に限定されるものではないが、好ましくは活物質層に対して、0.5〜15質量%であり、より好ましくは1〜10質量%である。
バインダ以外のその他の添加剤については、上記負極活物質層の欄と同様のものを用いることができる。
[セパレータ(電解質層)]
セパレータは、電解質を保持して正極と負極との間のリチウムイオン伝導性を確保する機能、および正極と負極との間の隔壁としての機能を有する。
ここで、電池の初回充電時に発生したガスの発電要素からの放出性をより向上させるためには、負極活物質層を抜けてセパレータに達したガスの放出性も考慮することが好ましい。かような観点から、セパレータの透気度ないし空孔率を適切な範囲とすることがより好ましい。
具体的には、セパレータの透気度(ガーレ値)は200(秒/100cc)以下であることが好ましい。セパレータの透気度が200(秒/100cc)以下であることによって発生するガスの抜けが向上し、サイクル後の容量維持率が良好な電池となり、また、セパレータとしての機能である短絡防止や機械的物性も十分なものとなる。透気度の下限は特に限定されるものではないが、通常300(秒/100cc)以上である。セパレータの透気度は、JIS P8117(2009)の測定法による値である。
また、セパレータの空孔率は40〜65%、好ましくは45〜60%、より好ましくは50〜60%であることが好ましい。セパレータの空孔率が40〜65%であることによって、発生するガスの放出性が向上し、長期サイクル特性がより良好な電池となり、また、セパレータとしての機能である短絡防止や機械的物性も十分なものとなる。なお、空孔率は、セパレータの原料である樹脂の密度と最終製品のセパレータの密度から体積比として求められる値を採用する。例えば、原料の樹脂の密度をρ、セパレータのかさ密度をρ’とすると、空孔率=100×(1−ρ’/ρ)で表される。
セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。
ポリマーないし繊維からなる多孔性シートのセパレータとしては、例えば、微多孔質(微多孔膜)を用いることができる。該ポリマーないし繊維からなる多孔性シートの具体的な形態としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;これらを複数積層した積層体(例えば、PP/PE/PPの3層構造をした積層体など)、ポリイミド、アラミド、ポリフッ化ビニリデン−ヘキサフルオロプロピレン(PVdF−HFP)等の炭化水素系樹脂、ガラス繊維などからなる微多孔質(微多孔膜)セパレータが挙げられる。
微多孔質(微多孔膜)セパレータの厚みとして、使用用途により異なることから一義的に規定することはできない。1例を示せば、電気自動車(EV)やハイブリッド電気自動車(HEV)、燃料電池自動車(FCV)などのモータ駆動用二次電池などの用途においては、単層あるいは多層で4〜60μmであることが望ましい。前記微多孔質(微多孔膜)セパレータの微細孔径は、最大で1μm以下(通常、数十nm程度の孔径である)であることが望ましい。
不織布セパレータとしては、綿、レーヨン、アセテート、ナイロン、ポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなど従来公知のものを、単独または混合して用いる。また、不織布のかさ密度は、含浸させた高分子ゲル電解質により十分な電池特性が得られるものであればよく、特に制限されるべきものではない。
前記不織布セパレータの空孔率は50〜90%、好ましくは55〜85%、より好ましくは60〜80%であることが好ましい。さらに、不織布セパレータの厚さは、電解質層と同じであればよく、好ましくは5〜200μmであり、特に好ましくは10〜100μmである。
ここで、セパレータは、樹脂多孔質基体(上記微多孔膜や不織布セパレータ)の少なくとも一方の面に耐熱絶縁層が積層されたセパレータであってもよい。耐熱絶縁層は、無機粒子およびバインダを含むセラミック層である。耐熱絶縁層を有することによって、温度上昇の際に増大するセパレータの内部応力が緩和されるため熱収縮抑制効果が得られうる。また、耐熱絶縁層を有することによって、耐熱絶縁層付セパレータの機械的強度が向上し、セパレータの破膜が起こりにくい。さらに、熱収縮抑制効果および機械的強度の高さから、電気デバイスの製造工程でセパレータがカールしにくくなる。また、上記セラミック層は、発電要素からのガスの放出性を向上させるためのガス放出手段としても機能しうるため、好ましい。
また、本発明において、耐熱絶縁層を有するセパレータの負極活物質層側表面の中心線平均粗さ(Ra)は0.1〜1.2μm、好ましくは0.2〜1.1μm、より好ましくは0.25〜0.9μmであることが好ましい。セパレータの耐熱絶縁層表面の中心線平均粗さ(Ra)が0.1μm以上であれば、電池作製時の電極とセパレータのずれ防止に効果的であるほか、長期サイクル特性がより向上しうる。これは、表面粗さが0.1μm以上であれば、発電要素内に発生したガスが系外へ排出されやすいためであると考えられる。また、セパレータの耐熱絶縁層表面の中心線平均粗さ(Ra)が1.2μm以下であれば、局所的なセパレータ厚みばらつきが抑制できるため、面内でのイオン伝導性が均一になり、電池特性がより向上しうる。なお、中心線平均粗さRaは、上述した負極活物質層の中心線平均粗さ(Ra)で説明した通りであるので、ここでの説明は省略する。
また、上述したように、セパレータは、電解質を含む。電解質としては、かような機能を発揮できるものであれば特に制限されないが、液体電解質またはゲルポリマー電解質が用いられる。
液体電解質は、リチウムイオンのキャリヤーとしての機能を有する。液体電解質は、有機溶媒にリチウム塩が溶解した形態を有する。用いられる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート等のカーボネート類が例示される。また、リチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiCFSO等の電極の活物質層に添加されうる化合物が同様に採用されうる。液体電解質は、上述した成分以外の添加剤をさらに含んでもよい。かような化合物の具体例としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、エチルビニレンカーボネート、ジエチルビニレンカーボネート、ビニルエチレンカーボネート、1,2−ジビニルエチレンカーボネート、1−メチル−1−ビニルエチレンカーボネート、1−メチル−2−ビニルエチレンカーボネート、1−エチル−1−ビニルエチレンカーボネート、1−エチル−2−ビニルエチレンカーボネート、ビニルビニレンカーボネート、アリルエチレンカーボネート、ビニルオキシメチルエチレンカーボネート、アリルオキシメチルエチレンカーボネート、アクリルオキシメチルエチレンカーボネート、メタクリルオキシメチルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、エチニルオキシメチルエチレンカーボネート、プロパルギルオキシエチレンカーボネート、メチレンエチレンカーボネート、1,1−ジメチル−2−メチレンエチレンカーボネートなどが挙げられる。なかでも、ビニレンカーボネート、メチルビニレンカーボネート、ビニルエチレンカーボネートが好ましく、ビニレンカーボネート、ビニルエチレンカーボネートがより好ましい。これらの環式炭酸エステルは、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
ゲルポリマー電解質は、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記の液体電解質が注入されてなる構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導性を遮断することで容易になる点で優れている。マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、およびこれらの共重合体等が挙げられる。かようなポリアルキレンオキシド系ポリマーには、リチウム塩などの電解質塩がよく溶解しうる。
ゲル電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
[集電体]
集電体を構成する材料に特に制限はないが、好適には金属が用いられる。
具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅、その他合金等などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位の観点からは、アルミニウム、ステンレス、銅が好ましい。
集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。集電体の厚さについても特に制限はない。集電体の厚さは、通常は1〜100μm程度である。
[正極集電板および負極集電板] 集電板(25、27)を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板25と負極集電板27とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
[正極リードおよび負極リード]
また、図示は省略するが、集電体11と集電板(25、27)との間を正極リードや負極リードを介して電気的に接続してもよい。正極および負極リードの構成材料としては、公知のリチウムイオン二次電池において用いられる材料が同様に採用されうる。なお、外装から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆することが好ましい。
[電池外装体]
電池外装体29は、その内部に発電要素を封入する部材であり、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースなどが用いられうる。該ラミネートフィルムとしては、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。また、外部から掛かる発電要素への群圧を容易に調整することができることから、外装体はアルミニウムを含むラミネートフィルムがより好ましい。
電池外装体29の内容積は発電要素21を封入できるように、発電要素21の容積よりも大きくなるように構成されている。ここで外装体の内容積とは、外装体で封止した後の真空引きを行う前の外装体内の容積を指す。また、発電要素の容積とは、発電要素が空間的に占める部分の容積であり、発電要素内の空孔部を含む。外装体の内容積が発電要素の容積よりも大きいことで、ガスが発生した際にガスを溜めることができる空間が存在する。これにより、発電要素からのガスの放出性が向上し、発生したガスが電池挙動に影響することが少なく、電池特性が向上する。
また、本実施形態においては、発電要素21の有する空孔の体積Vに対する電池外装体29の内部における余剰空間(図1に示す符号31)の体積Vの比の値(V/V)が0.5〜1.0となるように構成するのが好ましい。更に、外装体に注入された電解液の体積Lの外装体の内部における余剰空間の体積Vに対する比の値(L/V)が0.4〜0.7となるように構成するのが好ましい。これにより、外装体の内部に注入された電解液のうちバインダによって吸収されなかった部分を上記余剰空間に確実に存在させることが可能となる。しかも、電池内でのリチウムイオンの移動を確実に担保することもできる。その結果、PVdF等の溶剤系バインダを用いるときと同様の多量の電解液を用いた場合に問題となりうる過剰な電解液の存在に起因する極板間距離の拡がりに伴う不均一反応の発生が防止される。このため、長期サイクル特性(寿命特性)に優れる非水電解質二次電池が提供されうる。
ここで、「発電要素の有する空孔の体積」は、発電要素を構成する各構成部材が有する空孔の総和として算出することができる。また、電池の作製は通常、発電要素を外装体の内部に封入した後に電解液を注入し、外層体の内部を真空引きして封止することにより行われる。この状態で外装体の内部においてガスが発生した場合に、発生したガスが溜まることができる空間が外装体の内部に存在すれば、発生したガスが当該空間に溜まって外装体は膨らむ。このような空間を本明細書では「余剰空間」と定義し、外装体が破裂することなく最大限膨らんだときの余剰空間の体積をVと定義したものである。上述したように、V/Vの値は0.5〜1.0であることが好ましく、より好ましくは0.6〜0.9であり、特に好ましくは0.7〜0.8である。
また、上述したように、本発明では、注入される電解液の体積と、上述した余剰空間の体積との比の値が所定の範囲内の値に制御される。具体的には、外装体に注入された電解液の体積(L)の、外装体の内部における余剰空間の体積Vに対する比の値(L/V)は、0.4〜0.7に制御するのが望ましい。L/Vの値は、より好ましくは0.45〜0.65であり、特に好ましくは0.5〜0.6である。
なお、本実施形態では、外装体の内部に存在する上述の余剰空間は、発電要素の鉛直上方に少なくとも配置されていることが好ましい。かような構成とすることで、発生したガスは余剰空間の存在する発電要素の鉛直上方部に溜まることができる。これにより、発電要素の側方部や下方部に余剰空間が存在する場合と比較して、外装体の内部において発電要素が存在する下方部に電解液が優先的に存在することができる。その結果、発電要素が常により多くの電解液に浸された状態を確保することができ、液枯れに伴う電池性能の低下を最小限に抑えることができる。なお、余剰空間が発電要素の鉛直上方に配置されるようにするための具体的な構成について特に制限はないが、例えば、外装体自体の材質や形状を発電要素の側方部や下方部に向かって膨らまないように構成したり、外装体がその側方部や下方部に向かって膨らむのを防止するような部材を外装体の外部に配置したりすることが挙げられる。
自動車用途などにおいては、昨今、大型化された電池が求められている。そして、振動が入力されて電極がずれた際に電極とセパレータ間での密着性を適度に低下させるという本願発明の効果は、振動が入力されて電極がずれの多い大面積電池の場合に、より効果的にその効果が発揮される。更に上記した負極活物質の表面における被膜(SEI)の不均一な形成を防止する効果は、負極活物質の表面における被膜(SEI)の形成量の多い大面積電池の場合に、より効果的にその効果が発揮される。さらに、水系バインダを負極活物質層に用いる場合において、負極活物質層とセパレータ間の摩擦係数を一定値より低くすることで、電極がずれた際に電極とセパレータ間での密着性を適度に低下させる効果も、大面積電池の場合に、より効果的にその効果が発揮される。即ち、大面積電池の場合に、電極とセパレータの摩擦による電極表面からの凝集破壊がより一層抑制され、振動が入力されても電池特性を維持することができる点で優れている。したがって、本実施形態において、発電要素を外装体で覆った電池構造体が大型であることが本実施形態の効果がより発揮されるという意味で好ましい。具体的には、負極活物質層が長方形状であり、当該長方形の短辺の長さが100mm以上であることが好ましい。かような大型の電池は、車両用途に用いることができる。ここで、負極活物質層の短辺の長さとは、各電極の中で最も長さが短い辺を指す。電池構造体の短辺の長さの上限は特に限定されるものではないが、通常250mm以下である。
また、電極の物理的な大きさの観点とは異なる、大型化電池の観点として、電池面積や電池容量の関係から電池の大型化を規定することもできる。例えば、扁平積層型ラミネート電池の場合には、定格容量に対する電池面積(電池外装体まで含めた電池の投影面積の最大値)の比の値が5cm/Ah以上であり、かつ、定格容量が3Ah以上である電池においては、単位容量当たりの電池面積が大きいため、電極間で発生したガスを除去することが難しくなる。こうしたガス発生により、特に大型の電極間にガス滞留部が存在すると、その部分を起点に不均一反応が進行し易くなる。そのため、SBR等の水系バインダを負極活物質層の形成に用いた大型化電池における電池性能(特に、長期サイクル後の寿命特性)の低下という課題がよりいっそう顕在化しやすい。したがって、本形態に係る非水電解質二次電池は、上述したような大型化された電池であることが、本願発明の作用効果の発現によるメリットがより大きいという点で、好ましい。さらに、矩形状の電極のアスペクト比は1〜3であることが好ましく、1〜2であることがより好ましい。なお、電極のアスペクト比は矩形状の正極活物質層の縦横比として定義される。アスペクト比をかような範囲とすることで、水系バインダの使用を必須とする本発明では、面方向に均一にガスを排出することが可能となり、不均一な被膜の生成をよりいっそう抑制することができるという利点がある。
電池の定格容量は、以下により求められる。
≪定格容量の測定≫
定格容量は、試験用電池について、電解液を注入した後で、10時間程度放置し、初期充電を行う。その後、温度25℃、3.0Vから4.15Vの電圧範囲で、次の手順1〜5によって測定される。
手順1:0.2Cの定電流充電にて4.15Vに到達した後、5分間休止する。
手順2:手順1の後、定電圧充電にて1.5時間充電し、5分間休止する。
手順3:0.2Cの定電流放電によって3.0Vに到達後、定電圧放電にて2時間放電し、その後、10秒間休止する。
手順4:0.2Cの定電流充電によって4.1Vに到達後、定電圧充電にて2.5時間充電し、その後、10秒間休止する。
手順5:0.2Cの定電流放電によって3.0Vに到達後、定電圧放電にて2時間放電し、その後、10秒間停止する。
定格容量:手順5における定電流放電から定電圧放電に至る放電における放電容量(CCCV放電容量)を定格容量とする。
[発電要素に掛かる群圧]
本実施形態において、発電要素に掛かる群圧は、0.07〜0.7kgf/cm(6.86〜68.6kPa)であることが好ましい。群圧を0.07〜0.7kgf/cmとなるように発電要素を加圧することで、極板間の距離の不均一な拡がりを防止することができ、極板間でのリチウムイオンの往来も十分に確保することが可能となる。また、電池の反応に伴って発生したガスの系外への排出が向上し、また、電池中の余剰の電解液が電極間にあまり残らないので、セル抵抗の上昇を抑制することができる。さらに、電池の膨らみが抑制されてセル抵抗および長期サイクル後の容量維持率が良好となる。より好適には、発電要素に掛かる群圧が0.1〜0.7kgf/cm(9.80〜68.6kPa)である。ここで、群圧とは、発電要素に付加された外力を指し、発電要素にかかる群圧は、フィルム式圧力分布計測システムを用いて容易に測定することができ、本明細書においてはTekscan社製フィルム式圧力分布計測システムを用いて測定する値を採用する。
群圧の制御は特に限定されるものではないが、発電要素に物理的に直接または間接的に外力を付加し、該外力を制御することで制御できる。かような外力の付加方法としては、外装体に圧力を付加させる加圧部材を用いることが好ましい。すなわち、本発明の好適な一実施形態は、発電要素に掛かる群圧が0.07〜0.7kgf/cmとなるように外装体に圧力を付加させる加圧部材をさらに有する、非水電解質二次電池である。
図2(A)は、実施例で用いた加振試験用治具を電池に取り付けた状態を模式的に表した断面概略図であり、図2(B)は図2(A)の斜視図であるが、がかる加振試験用治具をそのまま、外装体に圧力を付加させる加圧部材として用いることもできる。この場合、図2(A)は本発明の他の好適な一実施形態である非水電解質二次電池の断面図、図2(B)は図2(A)における斜視図とみなせることができる。発電要素を封入した外装体10は長方形状の扁平な形状を有しており、その側部からは電力を取り出すための電極タブ11、12が引き出されている。発電要素は、電池外装体によって包まれ、その周囲は熱融着されており、発電要素は、電極タブ11、12を外部に引き出した状態で密封されている。ここで、発電要素は、先に説明した図1に示すリチウムイオン二次電池10の発電要素21に相当するものである。図2において、符号2は加圧部材であるSUS板、符号3a、3bは固定部材である固定治具(固定用ボルトナット)、符号11、12は電極タブ(負極タブまたは正極タブ)を表す。加圧部材は、発電要素に掛かる群圧を0.07〜0.7kgf/cmとなるように制御する目的で配置されるものである。加圧部材としては、ウレタンゴムシートなどのゴム材、アルミニウム、SUSなどの金属板、ベークライト、テフロン(登録商標)などの樹脂板などが挙げられる。また、加圧部材が発電要素に対して一定の圧力を継続的に付与できることから、加圧部材を固定するための固定部材をさらに有することが好ましい。また、固定治具の加圧部材への固定を調節することで、発電要素に掛かる群圧を容易に制御できる。
なお、図2に示すタブの取り出しに関しても、特に制限されるものではない。正極タブと負極タブとを両側部から引き出すようにしてもよいし、正極タブと負極タブをそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、図2に示すものに制限されるものではない。
本実施形態の特徴部は、前記負極活物質層と前記セパレータとの間の静摩擦係数が0.90以下、動摩擦係数が0.70以下であることを特徴とするものである。このように、水系バインダを負極活物質層に用いる場合において、負極活物質層とセパレータ間の摩擦係数を一定値より低くすることで、電極がずれた際に電極とセパレータ間での密着性を適度に低下させることができる。その結果、電極とセパレータの摩擦による電極表面からの凝集破壊が抑制され、振動が入力されても電池特性を維持することができる。
ここで、負極活物質層とセパレータとの間の静摩擦係数は、0.90以下、好ましくは0.2〜0.9、より好ましくは0.2〜0.7の範囲である。上記静摩擦係数が0.90以下であれば、上記したように、水系バインダを負極活物質層に用いる場合において、電極がずれた際に電極とセパレータ間での密着性を適度に低下させることができる。その結果、電極とセパレータの摩擦による電極表面からの凝集破壊が抑制され、振動が入力されても電池特性を維持することができる。また上記静摩擦係数が0.2以上であれば、電池組立工程においてセパレータと負極(活物質層)が容易に滑ることもなく、位置がずれて取り扱いが難しくなったり、組み立て後の振動でずれて短絡の恐れもないためである。
また、負極活物質層とセパレータとの間の動摩擦係数は、0.70以下、好ましくは0.1〜0.7、より好ましくは0.1〜0.5の範囲である。上記動摩擦係数が0.70以下であれば、上記したように、水系バインダを負極活物質層に用いる場合において、電極がずれた際に電極とセパレータ間での密着性を適度に低下させることができる。その結果、電極とセパレータの摩擦による電極表面からの凝集破壊が抑制され、振動が入力されても電池特性を維持することができる。また上記動摩擦係数が0.1以上であれば、電池組立工程においてセパレータと負極(活物質層)が容易に滑ることもなく、位置がずれて取り扱いが難しくなったり、組み立て後の振動でずれて短絡の恐れもないためである。
負極活物質層とセパレータとの間の静摩擦係数及び動摩擦係数は、負極集電体の表面に水系バインダを含む負極活物質層が形成されてなる負極の一方の面の負極活物質層と、電解液を保持していないセパレータとの間の静摩擦係数及び動摩擦係数を指すものである。電池作成段階では、後述する実施例のように作製した負極と、セパレータを用いて静摩擦係数及び動摩擦係数を測定すればよい。一方、電池を解体して調べる場合には、発電要素を傷つけないように外装体を切断し、発電要素を取り出す。次に上から順に、例えば、正極、セパレータ、負極と順々に電極およびセパレータを傷つけないように慎重に各電極とセパレータを分離する。その後、電極及びセパレータに含浸された電解液を有機溶剤で十分に洗浄し、乾燥を行う。その後、静摩擦係数及び動摩擦係数を測定すればよい。
また、負極活物質層とセパレータとの間の静摩擦係数及び動摩擦係数は、実施例に示すように、JIS K7125−1999の摩擦係数測定法にて行うものとする。詳しくは電解液を保持していない(乾燥状態の)セパレータ上に置いた負極(セパレータと擦れる部分には負極活物質層が位置するように配置する)を、100mm/minの速度で引張試験を行った際の摩擦係数を測定することで求めることができる。
[組電池]
組電池は、電池を複数個接続して構成した物である。詳しくは少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可能になる。
電池が複数、直列に又は並列に接続して装脱着可能な小型の組電池を形成することもできる。そして、この装脱着可能な小型の組電池をさらに複数、直列に又は並列に接続して、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池を形成することもできる。何個の電池を接続して組電池を作製するか、また、何段の小型組電池を積層して大容量の組電池を作製するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めればよい。
[車両]
上記電気デバイスは、出力特性に優れ、また長期使用しても放電容量が維持され、サイクル特性が良好である。電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの車両用途においては、電気・携帯電子機器用途と比較して、高容量、大型化が求められるとともに、長寿命化が必要となる。したがって、上記電気デバイスは、車両用の電源として、例えば、車両駆動用電源や補助電源に好適に利用することができる。
具体的には、電池またはこれらを複数個組み合わせてなる組電池を車両に搭載することができる。本発明では、長期信頼性および出力特性に優れた高寿命の電池を構成できることから、こうした電池を搭載するとEV走行距離の長いプラグインハイブリッド電気自動車や、一充電走行距離の長い電気自動車を構成できる。電池またはこれらを複数個組み合わせてなる組電池を、例えば、自動車ならばハイブリット車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)に用いることにより高寿命で信頼性の高い自動車となるからである。ただし、用途が自動車に限定されるわけではなく、例えば、他の車両、例えば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの載置用電源として利用することも可能である。
以下、実施例および比較例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲は以下の実施例のみに何ら限定されるわけではない。
(実施例1)
1.電解液の作製
エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)の混合溶媒(30:30:40(体積比))を溶媒とした。また1.0MのLiPFをリチウム塩とした。さらに上記溶媒と上記リチウム塩との合計100質量%に対して2質量%のビニレンカーボネートを添加して電解液を作製した。なお、「1.0MのLiPF」とは、当該混合溶媒およびリチウム塩の混合物におけるリチウム塩(LiPF)濃度が1.0Mであるという意味である。
2.正極の作製
正極活物質としてLiMn(平均粒子径:15μm)85質量%、導電助剤としてアセチレンブラック 5質量%、およびバインダとしてPVdF 10質量%からなる固形分を用意した。この固形分に対し、スラリー粘度調整溶媒であるN−メチル−2−ピロリドン(NMP)を適量添加して、正極スラリーを作製した。次に、正極スラリーを、集電体であるアルミニウム箔(厚さ:20μm)の両面に塗布し乾燥・プレスを行い、正極活物質層の片面塗工量18mg/cm,両面厚み157μm(箔込み)の正極を作成した。
3.負極の作製
負極活物質として人造黒鉛(平均粒子径:20μm)95質量%、導電助剤としてアセチレンブラック2質量%、およびバインダとしてSBR2質量%、CMC1質量%からなる固形分を用意した。この固形分に対し、スラリー粘度調整溶媒であるイオン交換水を適量添加して、負極スラリーを作製した。次に、負極スラリーを、集電体である銅箔(厚さ:15μm)の両面に塗布し乾燥・プレスを行い負極活物質層の片面塗工量5.1mg/cm,厚み82μm(箔込み)の負極を作製した。負極活物質層のセパレータ側表面の中心線平均粗さ(Ra)は0.9μmであった。また、負極活物質層の密度は、1.46g/cmであった。
4.単電池の完成工程
上記で作製した正極を210×181mmの長方形状に切断し、負極を215×188mmの長方形状に切断した(正極15枚、負極16枚)。この正極と負極とを219×191mmのセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空隙率46%)を介して交互に積層した。
これらの正極と負極それぞれにタブを溶接し、アルミラミネートフィルムからなる外装体中に電解液とともに密封して非水電解質二次電池(単電池)を完成させた。このように作製された電池の定格容量は14.6Ahであり、定格容量に対する電池面積の比は34.8cm/Ahであった。
(実施例2)
実施例1のセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空隙率46%)をセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空隙率50%)に代えた以外は、実施例1と同様にして非水電解質二次電池(単電池)を完成させた。
(実施例3)
実施例1のセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空隙率46%)を以下のセパレータに代えた以外は、実施例1と同様にして非水電解質二次電池(単電池)を完成させた。
詳しくは、セパレータとして、樹脂多孔質基体(ポリプロピレン製の微多孔膜(フィルム))の両面にセラミック粒子(材質Al;平均粒子径100nm)をコートして耐熱絶縁層を積層したものを使用した。ここで、樹脂多孔質基体(ポリプロピレン製の微多孔膜(フィルム)の厚み;15μm、耐熱絶縁層片面の厚み;5μm、セパレータ全体の空隙率65%であった。また耐熱絶縁層表面の中心線平均粗さ(Ra)は0.3μmであった。
(比較例1)
実施例1の負極に代えて以下の作成方法で得られた負極を用い、更に実施例1のセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空隙率46%)をセパレータ(ポリプロピレン製の微多孔膜、厚さ25μm、空隙率55%)に代えた以外は、実施例1と同様にして非水電解質二次電池(単電池)を完成させた。
(比較例1の負極の作製)
負極活物質として人造黒鉛(平均粒子径:20μm)95.5質量%、導電助剤としてアセチレンブラック2質量%、およびバインダとしてSBR1.5質量%、CMC1質量%からなる固形分を用意した。この固形分に対し、スラリー粘度調整溶媒であるイオン交換水を適量添加して、負極スラリーを作製した。次に、負極スラリーを、集電体である銅箔(厚さ:15μm)の両面に塗布し乾燥・プレスを行い負極活物質層の片面塗工量5.13mg/cm、厚み82μm(箔込み)の負極を作製した。負極活物質層のセパレータ側表面の中心線平均粗さ(Ra)は1.3μmであった。また、負極活物質層の密度は、1.467g/cmであった。
(電池の評価)
1.単電池の初回充放電工程
上記のようにして作製した非水電解質二次電池(単電池)を充放電性能試験により評価した。この充放電性能試験は、25℃に保持した恒温槽において24時間保持し、初回充電を実施した。初回充電は、0.05CAの電流値で4.2Vまで定電流充電(CC)し、その後定電圧(CV)で、あわせて25時間充電した。その後、40℃に保持した恒温槽において96時間保持した。その後、25℃に保持した恒温槽において、1Cの電流レートで2.5Vまで放電を行い、その後に10分間の休止時間を設けた。
2.摩擦係数の測定
静摩擦係数と動摩擦係数はJIS K7125−1999の摩擦係数測定法にて、上記各実施例及び比較例で用いたセパレータ上に置いた、上記各実施例及び比較例で作製した負極を、100mm/minの速度で引張試験を行った際の摩擦係数を測定した。得られた結果を表1に示す。
3.加振試験
図2(A)(B)に示す加振試験用治具1に取り付けた。詳しくは、単電池10の上下平面部を加振試験用治具1のSUS板(挟持部材)2(厚さ10mm)で挟み、該SUS板2の外周部14箇所の設けた固定用ボルトネジ部(図示せず)に固定部材として固定用ボルト3a、ナット3bを取り付けて締め付けることで面圧30kPaで押さえた。この加振試験用治具1に取り付けたサンプル(単電池10)を加振試験機(図示せず)に固定し、周波数は10〜1000Hz、振動時間は、図2(B)に示すX、Y、Zの各方向で30時間、振幅は2.0mm、掃引時間は2時間の条件で加振試験を行った。この加振試験の加振パターンは、JIS D1601−1995 45段階 1種/B種 に基づいて行った。
4.加振試験前後での1C容量確認工程
初回充放電後、加振試験前に、いずれの単電池サンプルについても、電池性能の確認の為、45℃に保持した恒温槽において、電池温度を45℃とした後、電池性能の確認を行った。充電は1Cの電流レートで4.2Vまで定電流充電(CC)し、その後定電圧(CV)で、あわせて2.5時間充電した。その後、10分間休止時間を設けた後、1Cの電流レートで2.5Vまで放電を行い、その後に10分間の休止時間を設けた。これらを1サイクルとして充放電試験を10サイクル実施した。かかる試験により電池が正常に動作することを確認した。
続いて、加振試験前後において、いずれの単電池サンプルについても、25℃に保持した恒温槽において、1Cの電流値で4.2Vまで定電流充電し(CC)、その後低電圧(CV)で合わせて2.5時間充電した。10分間休止した後、1Cの電流値で2.5Vまで放電を行った。得られた結果から加振試験前後での1C[A]容量変化率を求めた。結果を表1に示す。なお、表1に示す加振試験前後での1C[A]容量変化率の値は、加振試験前の1C[A]容量に対する加振試験後の1C[A]容量の変化率(%)である。
本実施例と比較例では共通の正極を用いた。この正極の静摩擦係数は0.61、動摩擦係数は0.42であった。ここで言う静摩擦係数、動摩擦係数は上記実施例の場合と同様に求めた。すなわち、JIS K7125−1999の摩擦係数測定法にて求めた。詳しくは電解液を保持していない(乾燥状態の)セパレータ上に置いた正極(セパレータと擦れる部分には正極活物質層が位置するように配置する)を、100mm/minの速度で引張試験を行った際の摩擦係数を測定することで求めた。表1の結果から、比較例1では、負極とセパレータ間の静摩擦係数、動摩擦係数が実施例1〜3と比較して大きく、加振試験後の容量が加振試験前と比較して1%減少していた。これは、負極とセパレータ間の密着力が強いため振動により合剤層(負極活物質層)の凝集破壊が起こり、一部孤立してしまったためであると推測する。
本出願は、2013年3月26日に出願された日本国特許出願第2013−064396号に基づいており、その開示内容は、参照により全体として引用されている。
1 加振試験用治具、
2 SUS板(挟持部材ないし加圧部材)、
3a 固定部材(固定用ボルト)、
3b 固定部材(固定用ナット)、
10 リチウムイオン二次電池、
11 正極集電体、
12 負極集電体、
13 正極活物質層、
15 負極活物質層、
17 セパレータ、
19 単電池層、
21 発電要素、
25 正極集電板、
27 負極集電板、
29 電池外装体、
31 電池外装体の内部における余剰空間。

Claims (8)

  1. 発電要素が外装体の内部に封入されてなる非水電解質二次電池であって、
    前記発電要素が、
    正極集電体の表面に正極活物質層が形成されてなる正極と、
    負極集電体の表面に水系バインダを含む負極活物質層が形成されてなる負極と、
    電解液を保持するセパレータと、を有し、
    前記負極活物質層と前記セパレータとの間の静摩擦係数が0.90以下、動摩擦係数が0.70以下であることを特徴とする非水電解質二次電池。
  2. 前記負極活物質層と前記セパレータとの間の静摩擦係数が0.2〜0.90の範囲、動摩擦係数が0.1〜0.70の範囲であることを特徴とする請求項1に記載の非水電解質二次電池。
  3. 前記負極活物質層中に占める前記水系バインダの割合は、2〜4質量%であることを特徴とする請求項1または2に記載の非水電解質二次電池。
  4. 前記水系バインダは、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、メタクリル酸メチル−ブタジエンゴム、およびメタクリル酸メチルゴムからなる群から選択される少なくとも1つのゴム系バインダを含む、請求項1〜3のいずれか1項に記載の非水電解質二次電池。
  5. 前記水系バインダは、スチレン−ブタジエンゴムを含む、請求項4に記載の非水電解質二次電池。
  6. 前記負極活物質層が長方形状であり、前記長方形の短辺の長さが100mm以上であることを特徴とする請求項1〜5のいずれか1項に記載の非水電解質二次電池。
  7. 定格容量に対する電池面積(電池外装体まで含めた電池の投影面積)の比の値が5cm/Ah以上であり、かつ、定格容量が3Ah以上であることを特徴とする請求項1〜6のいずれか1項に記載の非水電解質二次電池。
  8. 矩形状の正極活物質層の縦横比として定義される電極のアスペクト比が1〜3であることを特徴とする請求項1〜7のいずれか1項に記載の非水電解質二次電池。
JP2015508631A 2013-03-26 2014-03-26 非水電解質二次電池 Active JP6079870B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013064396 2013-03-26
JP2013064396 2013-03-26
PCT/JP2014/058684 WO2014157416A1 (ja) 2013-03-26 2014-03-26 非水電解質二次電池

Publications (2)

Publication Number Publication Date
JP6079870B2 JP6079870B2 (ja) 2017-02-15
JPWO2014157416A1 true JPWO2014157416A1 (ja) 2017-02-16

Family

ID=51624379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015508631A Active JP6079870B2 (ja) 2013-03-26 2014-03-26 非水電解質二次電池

Country Status (2)

Country Link
JP (1) JP6079870B2 (ja)
WO (1) WO2014157416A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6952036B2 (ja) * 2016-08-05 2021-10-20 株式会社エンビジョンAescジャパン 電池、電池モジュール
WO2019082696A1 (ja) * 2017-10-25 2019-05-02 Necエナジーデバイス株式会社 セパレータ、袋状セパレータ、袋詰電極およびリチウムイオン二次電池
JP6928872B2 (ja) * 2017-11-07 2021-09-01 トヨタ自動車株式会社 非水系二次電池
JP7280914B2 (ja) * 2021-04-26 2023-05-24 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池
KR20240039536A (ko) * 2022-09-19 2024-03-26 주식회사 엘지에너지솔루션 전극조립체, 그의 제조방법 및 이차전지

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005149891A (ja) * 2003-11-14 2005-06-09 Nissan Motor Co Ltd バイポーラ電池、及びそれを用いた組電池
CN101558513B (zh) * 2006-11-20 2011-12-14 帝人株式会社 非水系二次电池用隔板、其制造方法及非水系二次电池
JP2010061819A (ja) * 2008-09-01 2010-03-18 Panasonic Corp 非水系二次電池
JP5509561B2 (ja) * 2008-09-17 2014-06-04 日産自動車株式会社 非水電解質二次電池
JP5546144B2 (ja) * 2009-03-05 2014-07-09 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜
JP5420938B2 (ja) * 2009-03-13 2014-02-19 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
JP5830953B2 (ja) * 2010-11-17 2015-12-09 ソニー株式会社 二次電池、バッテリユニットおよびバッテリモジュール

Also Published As

Publication number Publication date
WO2014157416A1 (ja) 2014-10-02
JP6079870B2 (ja) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6056958B2 (ja) 非水電解質二次電池
JP6076464B2 (ja) 非水電解質二次電池
JP6164289B2 (ja) 非水電解質二次電池
JP6112204B2 (ja) 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
JP6242860B2 (ja) 非水電解質二次電池
JP6120950B2 (ja) 非水電解質二次電池
JP6007315B2 (ja) 非水電解質二次電池
JP2010009856A (ja) リチウムイオン二次電池用負極
WO2015076099A1 (ja) 非水電解質二次電池用負極の製造方法
JP6079870B2 (ja) 非水電解質二次電池
JP6777737B2 (ja) 非水電解質二次電池
JP6282263B2 (ja) 非水電解質二次電池
WO2014157413A1 (ja) 非水電解質二次電池
JP6004088B2 (ja) 非水電解質二次電池
JP2014192042A (ja) レート特性に優れた電解液およびそれを用いた二次電池
JP6755311B2 (ja) 非水電解質二次電池
WO2014157422A1 (ja) 非水電解質二次電池
JP6585842B2 (ja) 非水電解質二次電池
JP6585843B2 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170102

R151 Written notification of patent or utility model registration

Ref document number: 6079870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250