JPWO2014103755A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
JPWO2014103755A1
JPWO2014103755A1 JP2014554318A JP2014554318A JPWO2014103755A1 JP WO2014103755 A1 JPWO2014103755 A1 JP WO2014103755A1 JP 2014554318 A JP2014554318 A JP 2014554318A JP 2014554318 A JP2014554318 A JP 2014554318A JP WO2014103755 A1 JPWO2014103755 A1 JP WO2014103755A1
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
heat
nickel
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014554318A
Other languages
English (en)
Inventor
悠起 武井
悠起 武井
山田 將之
將之 山田
至 御書
至 御書
三谷 勝哉
勝哉 三谷
聡 河野
聡 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Publication of JPWO2014103755A1 publication Critical patent/JPWO2014103755A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本発明の非水電解質二次電池は、正極、負極、非水電解質およびセパレータを含む非水電解質二次電池であって、前記正極は、集電体と、前記集電体の上に形成された正極合剤層とを含み、前記正極合剤層は、正極活物質と、バインダとを含み、前記正極活物質は、ニッケルと、コバルトおよびマンガンから選ばれる少なくとも一つとを含むリチウム・ニッケル含有複合酸化物を含み、前記リチウム・ニッケル含有複合酸化物は、リチウムと酸素以外の元素の量を100mol%としたときに、ニッケルの割合が30mol%以上であり、前記バインダは、フッ化ビニリデン−クロロトリフルオロエチレン共重合体を含み、前記正極と前記負極との間には、耐熱性無機微粒子とバインダとを含む耐熱性微粒子層が配置され、充電の上限電圧が4.3V以上に設定されていることを特徴とする。

Description

本発明は、高容量であり、充放電サイクル特性および高温貯蔵特性が良好な非水電解質二次電池に関するものである。
携帯電話、ノート型パーソナルコンピュータなどの携帯型電子機器の小型化・軽量化と高性能化に伴い、電源となるリチウムイオン二次電池などの非水電解質二次電池の高容量化、高性能化および高安全性化への期待は大きい。また、近年では電気自動車用や電動式自転車用のような大型および中型の非水電解質二次電池の需要も増える傾向にあり、それと共に非水電解質二次電池への高容量化などの要請は益々高まっている。
非水電解質二次電池で使用されている正極は、例えば、正極活物質、導電助剤およびバインダにN−メチル−2−ピロリドンなどの有機溶剤を加えて混合することにより、ペースト状やスラリー状などの正極合剤層形成用組成物を調製し、この正極合剤層形成用組成物を集電体となる導電性基体の表面に塗布し、溶剤を乾燥・除去して正極合剤層を形成する工程を経て作製される。そして、正極活物質にはLiCoO2が汎用されており、正極のバインダにはポリフッ化ビニリデンが汎用されている。
このような非水電解質二次電池の高容量化を図るに当たっては、例えば、従来から汎用されているLiCoO2よりも容量の大きなNiを含有するリチウム・ニッケル含有複合酸化物を、正極活物質に使用する方法が検討されている。
ところが、リチウム・ニッケル含有複合酸化物のNi含有率を高めると、リチウム・ニッケル含有複合酸化物にその合成時の不純物として水酸化リチウムや炭酸リチウムといったアルカリが混入しやすく、このようなリチウム・ニッケル含有複合酸化物を用いて正極合剤層形成用組成物を調製すると、バインダであるポリフッ化ビニリデンとアルカリとの反応によって正極合剤層形成用組成物が増粘してしまう。そして、増粘した正極合剤層形成用組成物を用いて正極を作製すると、正極の特性が設計通りに発現しないため、充放電サイクル特性などの電池特性に悪影響を及ぼすことがある。
更に、電池を形成した後もポリフッ化ビニリデンから脱フッ素が起こり、これが電池内に不可避的に混入する水分と反応してフッ化水素が発生し、フッ化水素による正極活物質の腐食により、正極活物質からCoやMnなどの金属イオンの溶出が起こることがある。これもまた、充放電サイクル特性などの電池特性に悪影響を及ぼすことがある。
従来より正極合剤層形成用組成物中でのポリフッ化ビニリデンの反応による増粘の問題の解決を図った技術の提案がなされている。例えば、特許文献1には、正極や負極のバインダとして、フッ化ビニリデンとクロロトリフルオロエチレンとの共重合体を使用する技術が提案されている。この技術を用いれば、ポリフッ化ビニリデンを含む正極合剤層形成用組成物の増粘の問題を解決できると共に、フッ化ビニリデンとクロロトリフルオロエチレンとの共重合体は、ポリフッ化ビニリデンに比べて脱フッ素が起こり難いことから、正極活物質からの金属イオンの溶出もある程度防ぐことができると考えられる。
特開平11−195419号公報
近年、Niの含有率の高いリチウム・ニッケル含有複合酸化物を正極活物質に使用するのと同時に、電池の充電上限電圧を従来よりも高く、例えば4.3V以上に設定することで、更なる高容量化を実現しようとしている。しかし、電池の充電電圧が高ければ高いほど、正極活物質の結晶安定性が低下し、前述のフッ化水素が電池内に発生しなかったとしても、正極活物質に含まれるCoやMnなどが溶出してしまうことがある。そうなると、いくらフッ化水素の発生を防いでも、溶出した金属元素が負極上に堆積し、例えば微短絡などが起きて充放電サイクル特性や、高温下での貯蔵特性が悪くなり、この点も改善すべき課題として挙げられる。
本発明は、上記事情に鑑みてなされたものであり、高容量で、充放電サイクル特性および高温貯蔵特性が良好な電池を提供するものである。
本発明は、正極、負極、非水電解質およびセパレータを含む非水電解質二次電池であって、前記正極は、集電体と、前記集電体の上に形成された正極合剤層とを含み、前記正極合剤層は、正極活物質と、バインダとを含み、前記正極活物質は、ニッケルと、コバルトおよびマンガンから選ばれる少なくとも一つとを含むリチウム・ニッケル含有複合酸化物を含み、前記リチウム・ニッケル含有複合酸化物は、リチウムと酸素以外の元素の量を100mol%としたときに、ニッケルの割合が30mol%以上であり、前記バインダは、フッ化ビニリデン−クロロトリフルオロエチレン共重合体を含み、前記正極と前記負極との間には、耐熱性無機微粒子とバインダとを含む耐熱性微粒子層が配置され、充電の上限電圧が4.3V以上に設定されていることを特徴とする。
本発明によれば、リチウム・ニッケル含有複合酸化物を正極活物質として用い、電池の上限電池電圧を4.3V以上と高く設定しても、充放電サイクル特性および高温貯蔵特性が良好な電池を提供することができる。
図1Aは、本発明の非水電解質二次電池の一例を示す平面図であり、図1Bは、図1Aの断面図である。 図2は、図1Aの斜視図である。
本発明の非水電解質二次電池は、正極、負極、非水電解質およびセパレータを備えている。また、上記正極は、集電体と、上記集電体の上に形成された正極合剤層とを含み、上記正極合剤層は、正極活物質と、バインダとを含み、上記正極活物質は、ニッケルと、コバルトおよびマンガンから選ばれる少なくとも一つとを含むリチウム・ニッケル含有複合酸化物を含み、上記リチウム・ニッケル含有複合酸化物は、リチウムと酸素以外の元素の量を100mol%としたときに、ニッケルの割合が30mol%以上であり、上記バインダは、フッ化ビニリデン−クロロトリフルオロエチレン共重合体を含み、上記正極と上記負極との間には、耐熱性無機微粒子とバインダとを含む耐熱性微粒子層が配置されている。更に、本発明の非水電解質二次電池は、充電の上限電圧が4.3V以上に設定されている。
本発明の非水電解質二次電池は、正極と負極との間に耐熱性微粒子層を配置しており、この耐熱性微粒子層を備えることにより、電池の充放電サイクル特性と高温貯蔵特性とを向上させることができる。これは、4.3V以上という高電圧下で結晶安定性が低下した正極活物質からCoやMnなどの金属イオンが溶出しても、耐熱性微粒子層に含まれる耐熱性無機微粒子が金属イオンをトラップする役割があり、そのため負極での金属イオンの堆積を防ぎ、その結果正極と負極との微短絡などが防止できて、充放電サイクル特性および高温貯蔵特性が改善されると考えられる。
以下、本発明の非水電解質二次電池の構成について詳細に説明する。
[正極]
本発明の非水電解質二次電池に係る正極は、正極活物質およびバインダを含有する正極合剤層を、集電体の片面または両面に有する構造のものである。
正極活物質には、ニッケルと、コバルトおよびマンガンから選ばれる少なくとも一つとを含むリチウム・ニッケル含有複合酸化物であって、リチウムと酸素以外の元素の量を100mol%としたときに、ニッケルの割合が30mol%以上であるものを使用する。上記正極活物質は、例えば、非水電解質二次電池の正極活物質として汎用されているLiCoO2に比べて容量が大きく、非水電解質二次電池の高容量化を図ることができる。
上記リチウム・ニッケル含有複合酸化物は、Ni以外の遷移金属元素としてコバルト(Co)およびマンガン(Mn)を含有するリチウム・ニッケル・コバルト・マンガン複合酸化物とすることができる。
本発明のリチウム・ニッケル含有複合酸化物としては、下記一般組成式(1)で表されるものであるものが好ましい。
Li1+s12 (1)
但し、上記一般組成式(1)中、−0.3≦s≦0.3であり、M1は、Niと、CoおよびMnからを選ばれる少なくとも一つの元素とを含む元素群であり、M1を構成する各元素中で、Ni、CoおよびMnの割合をmol%単位でそれぞれa、bおよびcとしたときに、30≦a<95、0≦b<35、0≦c<35である。
上記一般組成式(1)で表されるリチウム・ニッケル含有複合酸化物において、Niは容量向上に寄与する成分であり、元素群M1の全元素数を100mol%としたときに、Niの割合aは、30mol%を超えていることが好ましく、70mol%以上であることがより好ましい。
上記一般組成式(1)で表されるリチウム・ニッケル含有複合酸化物において、Coも、Niと同様に容量向上に寄与する成分であり、正極合剤層における充填密度向上にも作用する一方で、多すぎるとコスト増大や、フッ化水素によるCo溶出が増えるおそれがある。これらの観点から、上記一般組成式(1)における元素群M1の全元素数を100mol%としたとき、Coの割合bは、35mol%未満であることが好ましい。
更に、上記リチウム・ニッケル含有複合酸化物においては、上記一般組成式(1)における元素群M1の全元素数を100mol%としたとき、Mnの割合cが、35mol%未満であることが好ましい。多すぎるとフッ化水素によるMn溶出が増えるおそれがある。
上記リチウム・ニッケル含有複合酸化物において、Mnと共にCoを含有していると、電池の充放電でのLiのドープおよび脱ドープに伴うMnの価数変動を抑制するようにCoが作用するため、Mnの平均価数を4価近傍の値に安定させて、充放電の可逆性をより高めることができる。
上記リチウム・ニッケル複合酸化物においては、元素群M1が、Niと、Coおよび/またはMnとで構成されていてもよいが、これらの元素と共に、Mg、Ti、Zr、Nb、Mo、W、Al、Si、Ga、Ge、SnおよびBaよりなる群から選択される少なくとも1種の元素を更に含んでいてもよい。但し、元素群M1の全元素数を100mol%としたときの、Mg、Ti、Zr、Nb、Mo、W、Al、Si、Ga、Ge、SnおよびBaの合計割合dは、5mol%以下であることが好ましく、1mol%以下であることがより好ましい。元素群M1におけるNi、Co、Mn以外の元素は、リチウム・ニッケル含有複合酸化物中に均一に分布していてもよく、また、粒子表面などに偏析していてもよい。
上記組成を有するリチウム・ニッケル含有複合酸化物は、その真密度が4.55〜4.95g/cm3と大きな値になり、高い体積エネルギー密度を有する材料となる。
上記リチウム・ニッケル含有複合酸化物は、特に化学量論比に近い組成のときに、その真密度が大きくなるが、具体的には、上記一般組成式(1)において、−0.3≦s≦0.3とすることが好ましく、sの値をこのように調整することで、真密度および可逆性を高めることができる。sは、−0.05以上0.05以下であることがより好ましく、この場合には、リチウム・ニッケル含有複合酸化物の真密度を4.6g/cm3以上と、より高い値にすることができる。
上記一般組成式(1)で表されるリチウム・ニッケル含有複合酸化物は、Li含有化合物(水酸化リチウムなど)、Ni含有化合物(硫酸ニッケルなど)、Co含有化合物(硫酸コバルトなど)、Mn含有化合物(硫酸マンガンなど)、および元素群M1に含まれるその他の元素を含有する化合物(酸化物、水酸化物、硫酸塩など)を混合し、焼成するなどして製造することができる。また、より高い純度でリチウム・ニッケル含有複合酸化物を合成するには、元素群M1に含まれる複数の元素を含む複合化合物(水酸化物、酸化物など)とLi含有化合物とを混合し、焼成することが好ましい。
上記焼成条件は、例えば、800〜1050℃で1〜24時間とすることができるが、一旦焼成温度よりも低い温度(例えば、250〜850℃)まで加熱し、その温度で保持することにより予備加熱を行い、その後に焼成温度まで昇温して反応を進行させることが好ましい。予備加熱の時間については特に制限はないが、通常、0.5〜30時間程度とすればよい。また、焼成時の雰囲気は、酸素を含む雰囲気(すなわち、大気中)、不活性ガス(アルゴン、ヘリウム、窒素など)と酸素ガスとの混合雰囲気、酸素ガス雰囲気などとすることができるが、その際の酸素濃度(体積基準)は、15%以上であることが好ましく、18%以上であることが好ましい。
正極活物質にはニッケルと、コバルトおよびマンガンから選ばれる少なくとも一つとを含むリチウム・ニッケル含有複合酸化物のみを使用してもよいが、このようなリチウム・ニッケル含有複合酸化物と他のリチウム含有複合酸化物と併用してもよい。
例えば、上記リチウム・ニッケル含有複合酸化物と、リチウムとコバルトおよびこれら以外の異種金属元素を含有するリチウム・コバルト含有複合酸化物とを、正極活物質として使用することが好ましい。上記リチウム・コバルト含有複合酸化物は、下記一般組成式(2)で表されるものであることが好ましい。
Li1+yCoz2 1-z2 (2)
但し、上記一般組成式(2)中、−0.3≦y≦0.3、0.95≦z<1.0であり、M2は、Mg、Zr、AlおよびTiよりなる群から選択される少なくとも1種の元素である。
上記一般組成式(2)中、M2がリチウムとコバルト以外の異種金属元素に該当する。異種金属元素M2は、上記の通り、Mg、Zr、Al、Tiのいずれでもよく、これらのうちの1種または2種以上であればよい。
上記リチウム・コバルト含有複合酸化物において、Coは容量向上に寄与する成分である一方で、異種金属元素M2は容量向上に寄与し得ない。よって、リチウム・コバルト含有複合酸化物を表す上記一般組成式(2)においては、これらの容量を高く維持する観点から、Coの量zを、0.95以上とすることが好ましい。また、上記一般組成式(2)において、Coの量zは、1.0未満であるが、異種金属元素M2を含有することによる上記の効果をより良好に確保する観点から、異種金属元素M2の量「1−z」は、0.005以上であることがより好ましく、よって、Coの量zは、0.995以下であることがより好ましい。
上記リチウム・コバルト含有複合酸化物は、特に化学量論比に近い組成のときに、その真密度が大きくなり、より高いエネルギー体積密度を有する材料となるが、具体的には、上記一般組成式(2)において、−0.3≦y≦0.3とすることが好ましく、yの値をこのように調節することで、真密度および充放電時の可逆性を高めることができる。
上記リチウム・コバルト含有複合酸化物は、Li含有化合物(水酸化リチウムなど)、Co含有化合物(硫酸コバルトなど)、および異種金属元素M2を含有する化合物(酸化物、水酸化物、硫酸塩など)を混合し、この原料混合物を焼成するなどして合成することができる。また、より高い純度でリチウム・コバルト含有複合酸化物を合成するには、Coおよび異種金属元素M2を含む複合化合物(水酸化物、酸化物など)とLi含有化合物などとを混合し、この原料混合物を焼成することが好ましい。
上記リチウム・コバルト含有複合酸化物を合成するための原料混合物の焼成条件は、例えば、800〜1050℃で1〜24時間とすることができるが、一旦焼成温度よりも低い温度(例えば、250〜850℃)まで加熱し、その温度で保持することにより予備加熱を行い、その後に焼成温度まで昇温して反応を進行させることが好ましい。予備加熱の時間については特に制限はないが、通常、0.5〜30時間程度とすればよい。また、焼成時の雰囲気は、酸素を含む雰囲気(すなわち、大気中)、不活性ガス(アルゴン、ヘリウム、窒素など)と酸素ガスとの混合雰囲気、酸素ガス雰囲気などとすることができるが、その際の酸素濃度(体積基準)は、15%以上であることが好ましく、18%以上であることが好ましい。
本発明の非水電解質二次電池において、一般組成式(1)で表されるリチウム・ニッケル含有複合酸化物と一般組成式(2)で表わされるリチウム・コバルト含有複合酸化物とを使用する場合には、一般組成式(1)で表されるリチウム・ニッケル含有複合酸化物と、一般組成式(2)で表わされるリチウム・コバルト含有複合酸化物との合計を100質量%としたとき、一般組成式(1)で表されるリチウム・ニッケル含有複合酸化物の含有率は、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、また、45質量%以下であることが好ましく、30質量%以下であることがより好ましい。
正極活物質には、一般組成式(1)で表されるリチウム・ニッケル含有複合酸化物と、一般組成式(2)で表わされるリチウム・コバルト含有複合酸化とは別に、更に他の活物質を併用してもよい。
このような他の活物質としては、例えば、LiCoO2;LiMnO2、Li2MnO3などのリチウム・マンガン酸化物;LiMn24、Li4/3Ti5/34などのスピネル構造のリチウム含有複合酸化物;LiFePO4などのオリビン構造のリチウム含有複合酸化物;上記各種のリチウム含有複合酸化物を基本組成とし各種元素で置換した酸化物;などが例示でき、これらのうちの1種または2種以上を用いることができる。
但し、本発明の効果を良好に確保する観点からは、正極活物質全量中における上記他の活物質の含有率は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
正極合剤層に用いるバインダには、フッ化ビニリデン−クロロトリフルオロエチレン共重合体(VDF−CTFE)を使用する。Niの含有量の高いリチウム・ニッケル含有複合酸化物は、合成時の不純物として水酸化リチウムや炭酸リチウムといったアルカリが混入しやすいが、VDF−CTFEは正極合剤層のバインダとして用いてもアルカリと反応し難いため、正極合剤層形成用組成物が増粘せず、生産性が向上する。また、VDF−CTFEは脱フッ素が起こり難いため、フッ化水素の発生を抑制することができる。更に、例えば非水電解質二次電池の正極合剤層のバインダとして汎用されているポリフッ化ビニリデン(PVDF)を使用した場合に比べて、正極と負極との間隔を、これらの対向面全体にわたってより均一性の高い状態に保つことができる。これは、VDF−CTFEは、電池の充放電に伴って生じる負極合剤層の膨張・収縮を正極合剤層で受け止めた際に、この負極合剤層の体積変化を緩和する作用が、例えばPVDFに比べて高いためであると推測される。
正極合剤層に使用するVDF−CTFEの組成は、VDF−CTFEの使用による非水電解質二次電池の充放電サイクル特性の向上効果をより良好に確保する観点から、フッ化ビニリデン由来のユニットとクロロトリフルオロエチレン由来のユニットとの合計を100mol%としたときに、クロロトリフルオロエチレン由来のユニットの割合が、0.5mol%以上であることが好ましく、1mol%以上であることがより好ましい。但し、VDF−CTFE中のクロロトリフルオロエチレン由来のユニットの割合が高くなりすぎると、非水電解質(非水電解液)を吸収して膨潤しやすくなり、正極の特性が低下する虞がある。よって、正極合剤層に使用するVDF−CTFEにおいては、フッ化ビニリデン由来のユニットとクロロトリフルオロエチレン由来のユニットとの合計を100mol%としたときに、クロロトリフルオロエチレン由来のユニットの割合が、15mol%以下であることが好ましい。
正極合剤層に用いるバインダには、VDF−CTFEのみを使用してもよく、VDF−CTFEと他のバインダ(例えば、PVDFなどのVDF−CTFE以外のフッ素樹脂のように、非水電解質二次電池の正極合剤層で汎用されているバインダ)を併用してもよい。但し、VDF−CTFEの使用による前述の各効果をより良好に確保する観点からは、正極合剤層におけるバインダ全量中のVDF−CTFE以外のバインダの量は、50質量%以下とすることが好ましい。
正極合剤層には、通常、導電助剤を含有させる。正極合剤層に用いる導電助剤には、例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類;アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ−ボンブラック類;炭素繊維;などの炭素材料を用いることが好ましく、また、金属繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類;酸化亜鉛;チタン酸カリウムなどの導電性ウィスカー類;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの有機導電性材料;などを用いることもできる。
正極合剤層の厚みは、例えば、集電体の片面あたり10〜100μmであることが好ましい。また、正極合剤層の組成としては、例えば、正極活物質の量が60〜95質量%であることが好ましく、バインダの量が1〜15質量%であることが好ましく、導電助剤の量が3〜20質量%であることが好ましい。
正極の集電体には、従来から知られている非水電解質二次電池の正極に使用されているものと同様のもの、例えば、アルミニウム製やアルミニウム合金製のパンチングメタル、網、エキスパンドメタルなどが使用できるが、厚みが10〜30μmのアルミニウム箔が好ましい。
正極側のリード体は、通常、正極作製時に、集電体の一部に正極合剤層を形成せずに集電体の露出部を残し、そこをリード体とすることによって設けられる。但し、リード体は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体にアルミニウム製の箔などを後から接続することによって設けてもよい。
[負極]
本発明の非水電解質二次電池に係る負極は、負極活物質を含有する負極合剤層を、集電体の片面または両面に有する構造のものである。
負極活物質としては、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムを吸蔵・放出可能な炭素系材料の1種または2種以上の混合物が用いられる。また、Si、Sn、Ge、Bi、Sb、Inなどの元素およびその合金、リチウム含有窒化物またはリチウム含有酸化物などのリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。特に、黒鉛単体や、SiOxで表示される材料と炭素材料とを複合化した複合体(0.5≦x≦1.5)と黒鉛との混合体を負極活物質として使用することが好ましい。
負極に集電体を用いる場合には、集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、下限は5μmであることが望ましい。また、負極側のリード体は、正極側のリード体と同様にして形成すればよい。
負極合剤層には、通常、バインダを含有させる。負極合剤層に用いるバインダには、例えば、PVDF、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などが好適に用いられる。
また、負極合剤層には、必要に応じて、アセチレンブラックなどの各種カーボンブラックやカーボンナノチューブなどの導電助剤を含有させてもよい。
負極は、例えば、負極活物質およびバインダ、更には必要に応じて導電助剤を、N−メチル−2−ピロリドン(NMP)や水などの溶剤に分散させた負極合剤含有組成物を調製し(但し、バインダは溶剤に溶解していてもよい。)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダー処理などのプレス処理を施す工程を経て製造される。負極は、上記の方法で製造されたものに制限される訳ではなく、他の製造方法で製造したものであってもよい。
負極合剤層の厚みは、集電体の片面あたり10〜100μmであることが好ましい。また、負極合剤層の組成としては、例えば、負極活物質の量が80〜95質量%であることが好ましく、バインダの量が1〜20質量%であることが好ましく、導電助剤を使用する場合には、その量が1〜10質量%であることが好ましい。
[耐熱性微粒子層]
本発明の非水電解質二次電池の正極と負極との間には耐熱性微粒子層が配置されている。耐熱性微粒子層は、耐熱性無機微粒子とバインダを含んでいる。上記耐熱性微粒子層は、正極、負極およびセパレータから選ばれるいずれかの上に形成して、正極と負極との間に配置すればよい。また、上記耐熱性微粒子層は、例えば、正極上とセパレータ上とに形成して、正極と負極との間に複数配置してもよい。
上記耐熱性無機微粒子としては、電気絶縁性を有し、少なくとも150℃において変形などの形状変化が目視で確認されず、且つ金属イオンをトラップする作用を持つ無機微粒子である。具体的には、酸化鉄、シリカ(SiO2)、アルミナ(Al23)、TiO2、BaTiO2などの無機酸化物微粒子である。無機酸化物微粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来物質またはこれらの人造物などの微粒子であってもよい。
上記耐熱性無機微粒子は、上記例示のものを1種単独で使用してもよく、2種以上を併用してもよい。上記例示の耐熱性無機微粒子の中でも、アルミナ、シリカ、ベーマイトが好ましい。
上記耐熱性無機微粒子の粒径は、平均粒子径で、好ましくは0.001μm以上、より好ましくは0.1μm以上であって、好ましくは15μm以下、より好ましくは1μm以下である。耐熱性無機微粒子の平均粒径は、例えば、HORIBA社製のレーザー散乱粒度分布計「LA−920」を用い、耐熱性無機微粒子を溶解しない媒体に分散させて測定した数平均粒子径として規定することができる。また、本明細書に記載の上記耐熱性無機微粒子以外の粒子の粒径も上記と同様に測定することができる。
また、上記耐熱性無機微粒子の形態としては、例えば、球状に近い形状を有していてもよく、板状の形状を有していてもよい。
上記板状粒子の形態としては、アスペクト比が、5以上、より好ましくは10以上であって、100以下、より好ましくは50以下であることが望ましい。板状粒子におけるアスペクト比は、例えば、走査型電子顕微鏡(SEM)により撮影した画像を画像解析することにより求めることができる。
耐熱性微粒子層における耐熱性無機微粒子の含有量は、耐熱性微粒子層の構成成分の全体積中、30体積%以上が好ましく、50体積%以上であることがより好ましい。耐熱性微粒子層中の耐熱性無機微粒子を上記の含有量とすることで、高電圧下や高温下で安定性が低下した正極活物質から金属イオンが溶出しても、耐熱性無機微粒子が金属イオンをトラップする働きを好適に作用させることができる。従って、負極上に溶出した金属が堆積して微短絡を起こすのを抑制し、充放電サイクル特性や高温貯蔵特性が向上する。
耐熱性微粒子層の厚み(耐熱性微粒子層が複数ある場合はそれぞれの耐熱性微粒子層の厚みを合計した総厚み)は、0.5μm以上10μm以下が好ましい。この範囲であれば、正極から溶出した金属イオンをトラップする働きを作用させることができる。また、より好ましくは2μm以上5μm以下である。この範囲であるとより確実に金属イオンをトラップすることができ、また、耐熱性微粒子層が比較的薄いため電池内の電解液の液量を確保することができるため、この2つの効果により充放電サイクル特性が相乗的に向上する。
耐熱性微粒子層に用いるバインダは、例えば、エチレン−酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20〜35モル%のもの)、エチレン−エチルアクリレート共重合体(EEA)などのエチレン−アクリル酸共重合体、フッ素樹脂[ポリフッ化ビニリデン(PVDF)など]、フッ素系ゴム、スチレン−ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリN−ビニルアセトアミド、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられる。これらの有機バインダは1種単独で使用してもよく、2種以上を併用しても構わない。
上記例示の有機バインダの中でも、150℃以上の耐熱性を有する耐熱樹脂が好ましく、特に、エチレン−アクリル酸共重合体、フッ素系ゴム、SBRなどの柔軟性の高い材料がより好ましい。これらの具体例としては、三井デュポンポリケミカル社製のEVA「エバフレックスシリーズ」(商品名)、日本ユニカー社製のEVA、三井デュポンポリケミカル社製のEEA「エバフレックス−EEAシリーズ」(商品名)、日本ユニカー社製のEEA、ダイキン工業社製のフッ素ゴム「ダイエルラテックスシリーズ」(商品名)、JSR社製のSBR「TRD−2001」(商品名)、日本ゼオン社製のSBR「EM−400B」(商品名)などが挙げられる。また、アクリル酸ブチルを主成分とし、これを架橋した構造を有する低ガラス転移温度の架橋アクリル樹脂(自己架橋型アクリル樹脂)も好ましい。
上記有機バインダを使用する場合には、後述する耐熱性微粒子層形成用の組成物(スラリーなど)の溶媒に溶解させるか、または分散させたエマルジョンの形態で用いればよい。
本発明の耐熱性微粒子層を作製する方法としては、例えば、耐熱性無機微粒子およびバインダを有機溶剤または水に分散させた耐熱性微粒子層形成用組成物(スラリーなど)を調製し、これを正極、負極、セパレータの少なくともいずれかに塗布した後、有機溶剤または水を乾燥などにより除去することで耐熱性微粒子層を形成する方法が挙げられる。また、有機バインダを有機溶剤などに均一に溶解した溶液または有機バインダのエマルジョンを、耐熱性無機微粒子と予め混合し、その後この混合物を有機溶剤または水と混合して調製した耐熱性微粒子層形成用組成物を用いて本発明の耐熱性微粒子層を作製することもできる。
また、上記耐熱性微粒子層形成用組成物を、熱可塑性樹脂を主成分とする樹脂多孔質膜に塗布し、樹脂多孔質膜と耐熱性微粒子層との積層体を作製し、この積層体をセパレータ(積層型セパレータ)として使用することもできる。この場合、耐熱性微粒子層における耐熱性無機微粒子の含有量は、耐熱性微粒子層の構成成分の全体積中、70体積%以上が好ましい。これにより、セパレータ自身の強度向上効果や耐熱性向上効果などにより、より安全性の高い電池とすることができる。
また、正極および/または負極上に耐熱性微粒子層を設ける時は、耐熱性微粒子層をセパレータとして機能させることも可能である。
[セパレータ]
本発明の非水電解質二次電池に係るセパレータには、通常の非水電解質二次電池で使用されているセパレータ、例えば、ポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン製の熱可塑性樹脂を主成分とする樹脂多孔質膜を用いることができる。セパレータを構成する樹脂多孔質膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。
また、セパレータとして、樹脂多孔質膜の表面に耐熱性微粒子を含有する耐熱性微粒子層を形成した前述の積層型セパレータを用いてもよい。
セパレータの厚みは、例えば、10〜30μmであることが好ましい。また、上記積層型セパレータの場合も、その耐熱性微粒子層の厚みは、例えば、2μm以上5μm以下であることが好ましい。樹脂多孔質膜と耐熱性微粒子層との積層型セパレータにおいて耐熱性微粒子層の厚みが上記範囲であると、確実に金属イオンをトラップすることができ、また、耐熱性微粒子層が比較的薄いため電池内の電解液の液量を確保することができることで、充放電サイクル特性が向上する上、正極や負極の上に耐熱性微粒子層を設けなくても十分にその機能を発揮しつつ、セパレータの耐熱性向上効果による安全性の高い電池とすることができるため、より好ましい。
[非水電解質]
本発明の非水電解質二次電池に係る非水電解質には、例えば、リチウム塩を有機溶媒に溶解した溶液(非水電解液)を用いることができる。リチウム塩としては、溶媒中で解離してLi+イオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限はない。例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6などの無機リチウム塩、LiCF3SO3、LiCF3CO2、Li224(SO32、LiN(CF3SO22、LiC(CF3SO23、LiCn2n+1SO3(2≦n≦7)、LiN(RfOSO22〔ここで、Rfはフルオロアルキル基を示す。〕などの有機リチウム塩などを用いることができる。
非水電解液に用いる有機溶媒としては、上記リチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ−ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3−ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2−メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類;などが挙げられ、これらは2種以上混合して用いることもできる。また、より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒など、高い導電率を得ることができる組み合わせで用いることが望ましい。更に、これらの非水電解液に充放電サイクル特性の改善、高温貯蔵特性や過充電防止などの安全性を向上させる目的で、無水酸、スルホン酸エステル、ジニトリル、フルオロエチレンカーボネート(FEC)、ビニレンカーボネート(VC)、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t−ブチルベンゼンおよびこれらの誘導体などを添加剤として適宜加えることもできる。
上記リチウム塩の非水電解液中の濃度は、0.5〜1.5mol/Lとすることが好ましく、0.9〜1.25mol/Lとすることがより好ましい。
また、上記非水電解液に公知のポリマーなどのゲル化剤を添加してゲル状としたもの(ゲル状電解質)を、本発明の非水電解質二次電池に使用してもよい。
[電池の形態]
本発明の非水電解質二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した角筒形や円筒形など筒形電池の形態を採用することができる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池の形態とすることもできる。
[電池電圧]
本発明の非水電解質二次電池は、充電の上限電圧が4.3V以上に設定されており、高容量であり、充放電サイクル特性、高温貯蔵特性に優れていることから、こうした特性が要求される用途に好ましく使用できる他、従来から知られている非水電解質二次電池が適用されている各種用途にも使用することができる。
以下、実施例に基づいて本発明を詳細に説明する。但し、下記実施例は、本発明を制限するものではない。
(実施例1)
<リチウム・ニッケル含有複合酸化物の合成>
先ず、硫酸ニッケル、硫酸コバルト、硫酸マンガンおよび硫酸マグネシウムを、それぞれ、3.78mol/dm3、0.25mol/dm3、0.08mol/dm3、0.08mol/dm3の濃度で含有する混合水溶液を調製した。次に、水酸化ナトリウムの添加によってpHを約12に調整したアンモニア水を反応容器に入れ、これを強攪拌しながら、この中に、上記混合水溶液と、25質量%濃度のアンモニア水とを、それぞれ、23cm3/分、6.6cm3/分の割合で、定量ポンプを用いて滴下して、NiとCoとMnとMgとの共沈化合物(球状の共沈化合物)を合成した。この際、反応液の温度は50℃に保持し、また、反応液のpHが12付近に維持されるように、3mol/dm3濃度の水酸化ナトリウム水溶液の滴下も同時に行い、更に窒素ガスを1dm3/分の流量でバブリングした。
続いて、上記共沈化合物を水洗、濾過および乾燥させて、水酸化物を得た。この水酸化物と、LiOH・H2Oと、BaSO4と、Al(OH)3とを、モル比で、1:1:0.01:0.01になるようにエタノール中に分散させてスラリー状とした後、遊星型ボールミルで40分間混合し、室温で乾燥させて混合物を得た。次いで、上記混合物をアルミナ製のるつぼに入れ、2dm3/分のドライエアーフロー中で600℃まで加熱し、その温度で2時間保持して予備加熱を行い、更に900℃に昇温して12時間焼成することにより、リチウム・ニッケル含有複合酸化物を合成した。
次に、得られたリチウム・ニッケル含有複合酸化物を水で洗浄した後、大気中(酸素濃度が約20体積%)で、700℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム・ニッケル含有複合酸化物は、デシケーター中で保存した。
上記リチウム・ニッケル含有複合酸化物について、その組成分析を、ICP(Inductive Coupled Plasma)法を用いて以下のように行った。先ず、上記リチウム・ニッケル含有複合酸化物を0.2g採取して100mL容器に入れた。その後、純水5mL、王水2mL、純水10mLを順に加えて加熱溶解し、冷却後、更に純水で25倍に希釈して、この希釈溶液をJARRELASH社製のICP分析装置「ICP−757」を用いて検量線法により組成を分析した。その結果、上記リチウム・ニッケル含有複合酸化物の組成は、Li1.0Ni0.89Co0.05Mn0.02Mg0.02Ba0.01Al0.012で表されることが判明した。
<リチウム・コバルト含有複合酸化物の合成>
Co(OH)2とMg(OH)2とAl(OH)3とLi2CO3とをモル比で1.97:0.02:0.01:1.02になるように混合し、この混合物を大気中(酸素濃度が約20体積%)、950℃で12時間熱処理してリチウム・コバルト含有複合酸化物を合成し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム・コバルト含有複合酸化物は、デシケーター中で保存した。
上記リチウム・コバルト含有複合酸化物について、その組成分析を前述と同様にしてICP法を用いて行ったところ、上記リチウム・コバルト含有複合酸化物の組成は、Li1.0Co0.985Mg0.01Al0.0052で表されることが判明した。
<正極の作製>
上記リチウム・ニッケル含有複合酸化物と上記リチウム・コバルト含有複合酸化物とを20:80の質量比で混合した混合物:96質量部と、バインダであるフッ化ビニリデン−クロロトリフルオロエチレン共重合体(VDF−CTFE)を10質量%の濃度で含むNMP溶液:20質量部と、導電助剤である人造黒鉛:1質量部およびケッチェンブラック:1質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。
上記正極合剤含有ペーストを、厚みが15μmのアルミニウム箔(正極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、アルミニウム箔の両面に正極合剤層を形成した。その後、プレス処理を行って、正極合剤層の厚さおよび密度を調節し、アルミニウム箔の露出部にニッケル製のリード体を溶接して、長さ375mm、幅43mmの帯状の正極を作製した。得られた正極における正極合剤層は、片面あたりの厚みが55μmであり、正極合剤層の密度は3.85g/cm3であった。
<負極の作製>
負極活物質である黒鉛(平均粒子径16μm):97.5質量部、バインダであるSBR:1.5質量部、および増粘剤であるカルボキシメチルセルロース:1質量部に、水を加えて混合し、負極合剤含有ペーストを調製した。
上記負極合剤含有ペーストを、厚みが8μmの銅箔(負極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、銅箔の両面に負極合剤層を形成した。その後、プレス処理を行って、負極合剤層の厚さおよび密度を調節し、銅箔の露出部にニッケル製のリード体を溶接して、長さ380mm、幅44mmの帯状の負極を作製した。得られた負極における負極合剤層は、片面あたりの厚みが65μmであった。
<耐熱性微粒子層付きセパレータの作製>
平均粒子径が3μmのベーマイト二次凝集体5kgに、イオン交換水5kgと、分散剤(水系ポリカルボン酸アンモニウム塩、固形分濃度40質量%)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで10時間解砕処理をして分散液を調製した。処理後の分散液の一部を120℃で真空乾燥し、走査型電子顕微鏡(SEM)で観察したところ、ベーマイトの形状はほぼ板状であった。また、処理後のベーマイトの平均粒子径は1μmであった。
上記分散液500gに、増粘剤としてキサンタンガムを0.5g、バインダとして樹脂バインダーディスパージョン(変性ポリブチルアクリレート、固形分含量45質量%)を17g加え、スリーワンモーターで3時間攪拌して均一な耐熱性微粒子層形成用スラリー(固形分比率50質量%)を調製した。
次に、リチウムイオン二次電池用PE製の微多孔質セパレータ(厚み12μm、空孔率40%、平均孔径0.08μm、PEの融点135℃)の片面にコロナ放電処理(放電量40W・分/m2)を施し、この処理面に上記耐熱性微粒子層形成用スラリーをマイクログラビアコーターによって塗布し、乾燥して厚みが4μmの耐熱性微粒子層をセパレータ上に形成して、耐熱性微粒子層付きセパレータを作製した。
<電池の組み立て>
上記帯状の正極を、上記セパレータを介して上記帯状の負極に重ね、渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回構造の巻回電極体とし、この巻回電極体をポリプロピレン製の絶縁テープで固定した。次に、外寸が厚さ4.0mm、幅34mm、高さ50mmのアルミニウム合金製の角形の電池ケースに上記巻回電極体を挿入し、リード体の溶接を行うと共に、アルミニウム合金製の蓋板を電池ケースの開口端部に溶接した。その後、蓋板に設けた注入口から非水電解液(ECとMECとDECとを体積比=1:1:1で混合した溶媒にLiPF6を1.1mol/Lの濃度になるよう溶解させたものに、FECを2.0質量%となる量で、およびVCを1.0質量%となる量で、それぞれ添加した溶液)を注入し、1時間静置した後に注入口を封止して、図1に示す構造で、図2に示す外観の本実施例の非水電解質二次電池を作製した。
ここで、図1および図2に示す電池について説明する。図1Aは、本発明の非水電解質二次電池の一例を示す平面図であり、図1Bは、図1Aの断面図である。図1Bに示すように、正極1と負極2はセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状の巻回電極体6として、角形(角筒形)の電池ケース4に非水電解液と共に収容されている。但し、図1Bでは、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や非水電解液などは図示していない。また、図1Bでは、巻回電極体6の内周側の部分は断面にしていない。
電池ケース4はアルミニウム合金製で電池の外装体を構成するものであり、この電池ケース4は正極端子を兼ねている。そして、電池ケース4の底部にはPEシートからなる絶縁体5が配置され、正極1、負極2およびセパレータ3からなる扁平状の巻回電極体6からは、正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、電池ケース4の開口部を封口するアルミニウム合金製の封口用の蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。
そして、この蓋板9は電池ケース4の開口部に挿入され、両者の接合部を溶接することによって、電池ケース4の開口部が封口され、電池内部が密閉されている。また、図1Bの電池では、蓋板9に非水電解液注入口14が設けられており、この非水電解液注入口14には、封止部材が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている。更に、蓋板9には、電池の温度が上昇した際に内部のガスを外部に排出する機構として、開裂ベント15が設けられている。
この実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって電池ケース4と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、電池ケース4の材質などによっては、その正負が逆になる場合もある。
図2は、図1Aの斜視図である。図2は本発明の非水電解質二次電池が角形電池であることを示すことを目的として図示されたものである。
(実施例2)
耐熱性微粒子層付きセパレータの作製に用いた微多孔質セパレータの厚みを8μmに変更した以外は、実施例1と同様にして本実施例の非水電解質二次電池を作製した。
(実施例3)
耐熱性微粒子層付きセパレータの作製に用いた微多孔質セパレータの厚みを8.5μmに変更し、その耐熱性微粒子層の厚みを1.8μmに変更した以外は、実施例1と同様にして本実施例の非水電解質二次電池を作製した。
(実施例4)
実施例1で作製した耐熱性微粒子層形成用スラリーを、実施例1で作製した正極の上に、マイクログラビアコーターによって塗布し、乾燥して厚みが3μmの耐熱性微粒子層を正極上に形成して、耐熱性微粒子層付き正極を作製した。また、セパレータとして、耐熱性微粒子層を形成していない厚みが16μmの微孔性ポリエチレンセパレータ(空孔率:41%)を準備した。上記正極と上記セパレータとを用いた以外は、実施例1と同様にして本実施例の非水電解質二次電池を作製した。
(比較例1)
セパレータとして、耐熱性微粒子層を形成していない厚みが16μmの微孔性ポリエチレンセパレータ(空孔率:41%)を用いた以外は、実施例1と同様にして本比較例の非水電解質二次電池を作製した。
(比較例2)
正極のバインダをPVDFに変更し、耐熱性微粒子層付きセパレータの作製に用いた微多孔質セパレータの厚みを9.5μmに変更し、その耐熱性微粒子層の厚みを4.5μmに変更した以外は、実施例1と同様にして本比較例の非水電解質二次電池を作製した。
(比較例3)
正極のバインダをPVDFに変更し、耐熱性微粒子層を形成していない厚みが16μmの微孔性ポリエチレンセパレータ(空孔率:41%)を用いた以外は、実施例1と同様にして本比較例の非水電解質二次電池を作製した。
実施例1〜4および比較例1〜3の非水電解質二次電池について、下記の各評価を行った。
<4.2V評価>
実施例および比較例の各電池について、常温(25℃)で、1Cの定電流で4.2Vに達するまで充電し、その後4.2Vの定電圧で充電する定電流−定電圧充電(総充電時間:2.5時間)を行い、その後0.2Cの定電流放電(放電終止電圧:3.0V)を行って、得られた放電容量(mAh)を4.2V初期電池容量とした。
その後、実施例および比較例の各電池について、4.2V初期電池容量の測定と同じ条件の充電および放電の一連の操作を1サイクルとして充放電を200サイクル繰り返し、200サイクル目での放電容量を測定し、その200サイクル目での放電容量を4.2V初期電池容量で除した値を百分率で表すことで、4.2V容量維持率を求めた。
次に、実施例および比較例の各電池(上記容量維持率の測定を行った電池とは別の電池)について、4.2V初期容量測定時と同じ条件で定電流充電および定電圧充電を行った後に、85℃の環境下で4時間貯蔵した。貯蔵後、各電池について0.2Cの電流値で3.0Vまで放電を行った後に、4.2V初期容量測定時と同じ条件で定電流充電および定電圧充電を行い、続いて0.2Cの電流値で3.0Vまで放電を行って貯蔵後放電容量を求め、その貯蔵後放電容量を4.2V初期電池容量で除した値を百分率で表すことで4.2V貯蔵回復率を求めた。
<4.35V評価>
実施例および比較例の各電池(4.2V評価を行った電池とは別の電池)について、常温(25℃)で、1Cの定電流で4.35Vに達するまで充電し、その後4.35Vの定電圧で充電する定電流−定電圧充電(総充電時間:2.5時間)を行い、その後0.2Cの定電流放電(放電終止電圧:3.0V)を行って、得られた放電容量(mAh)を4.35V初期電池容量とした。
その後、実施例および比較例の各電池について、4.35V初期電池容量の測定と同じ条件の充電および放電の一連の操作を1サイクルとして充放電を200サイクル繰り返し、200サイクル目での放電容量を測定し、その200サイクル目での放電容量を4.35V初期電池容量で除した値を百分率で表すことで、4.35V容量維持率を求めた。
次に、実施例および比較例の各電池(上記容量維持率の測定を行った電池とは別の電池)について、4.35V初期容量測定時と同じ条件で定電流充電および定電圧充電を行った後に、85℃の環境下で4時間貯蔵した。貯蔵後、各電池について0.2Cの電流値で3.0Vまで放電を行った後に、4.35V初期容量測定時と同じ条件で定電流充電および定電圧充電を行い、続いて0.2Cの電流値で3.0Vまで放電を行って貯蔵後放電容量を求め、その貯蔵後放電容量を4.35V初期電池容量で除した値を百分率で表すことで4.35V貯蔵回復率を求めた。
上記各評価結果と、実施例および比較例の各電池の電解液量を表1に示す。電解液量は、実施例1での電解液量を100とした場合の、実施例2〜比較例3までの電解液量(質量比)を示している。
Figure 2014103755
表1から、本発明の実施例1〜4の電池は、比較例1〜3の電池に比べて、4.35V容量維持率および4.35V貯蔵回復率において高い値を示していることが分かる。一方、本発明の実施例1〜4の電池および比較例1〜3の電池は、4.2V容量維持率および4.2V貯蔵回復率において大きな特性の差は認められないことが分かる。
また、耐熱性微粒子層の厚みが2μm以上の実施例1、2および4と、耐熱性微粒子層の厚みが2μm未満の実施例3との比較から、耐熱性微粒子層の厚みが2μm以上では4.35Vでの容量維持率および貯蔵回復率がより向上することが分かる。更に、セパレータの全厚が同一である実施例1と4との比較から、耐熱性微粒子層をセパレータ上に形成した実施例1のほうが、たとえ耐熱性微粒子層の厚みが大きくても、電池内の電解液量が増加し、4.35Vでの容量維持率が向上することが分かる。また、耐熱性微粒子層の厚みが同一の実施例1と2との比較から、セパレータの全厚が小さいほど電池内の電解液量が増加し、4.35Vでの容量維持率が向上することが分かる。
以上より、本発明によれば、リチウム・ニッケル含有複合酸化物を正極活物質として用い、電池の上限電池電圧を4.3V以上と高く設定しても、充放電サイクル特性および高温貯蔵特性が良好な電池を提供することができることが分かる。
本発明は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、これらに限定はされない。本発明の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。
1 正極
2 負極
3 セパレータ
4 電池ケース
5 絶縁体
6 巻回電極体
7 正極リード体
8 負極リード体
9 蓋板
10 絶縁パッキング
11 端子
12 絶縁体
13 リード板
14 非水電解液注入口
15 開裂ベント
本発明は、高容量であり、充放電サイクル特性および高温貯蔵特性が良好な非水電解質二次電池に関するものである。
携帯電話、ノート型パーソナルコンピュータなどの携帯型電子機器の小型化・軽量化と高性能化に伴い、電源となるリチウムイオン二次電池などの非水電解質二次電池の高容量化、高性能化および高安全性化への期待は大きい。また、近年では電気自動車用や電動式自転車用のような大型および中型の非水電解質二次電池の需要も増える傾向にあり、それと共に非水電解質二次電池への高容量化などの要請は益々高まっている。
非水電解質二次電池で使用されている正極は、例えば、正極活物質、導電助剤およびバインダにN−メチル−2−ピロリドンなどの有機溶剤を加えて混合することにより、ペースト状やスラリー状などの正極合剤層形成用組成物を調製し、この正極合剤層形成用組成物を集電体となる導電性基体の表面に塗布し、溶剤を乾燥・除去して正極合剤層を形成する工程を経て作製される。そして、正極活物質にはLiCoO2が汎用されており、正極のバインダにはポリフッ化ビニリデンが汎用されている。
このような非水電解質二次電池の高容量化を図るに当たっては、例えば、従来から汎用されているLiCoO2よりも容量の大きなNiを含有するリチウム・ニッケル含有複合酸化物を、正極活物質に使用する方法が検討されている。
ところが、リチウム・ニッケル含有複合酸化物のNi含有率を高めると、リチウム・ニッケル含有複合酸化物にその合成時の不純物として水酸化リチウムや炭酸リチウムといったアルカリが混入しやすく、このようなリチウム・ニッケル含有複合酸化物を用いて正極合剤層形成用組成物を調製すると、バインダであるポリフッ化ビニリデンとアルカリとの反応によって正極合剤層形成用組成物が増粘してしまう。そして、増粘した正極合剤層形成用組成物を用いて正極を作製すると、正極の特性が設計通りに発現しないため、充放電サイクル特性などの電池特性に悪影響を及ぼすことがある。
更に、電池を形成した後もポリフッ化ビニリデンから脱フッ素が起こり、これが電池内に不可避的に混入する水分と反応してフッ化水素が発生し、フッ化水素による正極活物質の腐食により、正極活物質からCoやMnなどの金属イオンの溶出が起こることがある。これもまた、充放電サイクル特性などの電池特性に悪影響を及ぼすことがある。
従来より正極合剤層形成用組成物中でのポリフッ化ビニリデンの反応による増粘の問題の解決を図った技術の提案がなされている。例えば、特許文献1には、正極や負極のバインダとして、フッ化ビニリデンとクロロトリフルオロエチレンとの共重合体を使用する技術が提案されている。この技術を用いれば、ポリフッ化ビニリデンを含む正極合剤層形成用組成物の増粘の問題を解決できると共に、フッ化ビニリデンとクロロトリフルオロエチレンとの共重合体は、ポリフッ化ビニリデンに比べて脱フッ素が起こり難いことから、正極活物質からの金属イオンの溶出もある程度防ぐことができると考えられる。
特開平11−195419号公報
近年、Niの含有率の高いリチウム・ニッケル含有複合酸化物を正極活物質に使用するのと同時に、電池の充電上限電圧を従来よりも高く、例えば4.3V以上に設定することで、更なる高容量化を実現しようとしている。しかし、電池の充電電圧が高ければ高いほど、正極活物質の結晶安定性が低下し、前述のフッ化水素が電池内に発生しなかったとしても、正極活物質に含まれるCoやMnなどが溶出してしまうことがある。そうなると、いくらフッ化水素の発生を防いでも、溶出した金属元素が負極上に堆積し、例えば微短絡などが起きて充放電サイクル特性や、高温下での貯蔵特性が悪くなり、この点も改善すべき課題として挙げられる。
本発明は、上記事情に鑑みてなされたものであり、高容量で、充放電サイクル特性および高温貯蔵特性が良好な電池を提供するものである。
本発明は、正極、負極、非水電解質およびセパレータを含む非水電解質二次電池であって、前記正極は、集電体と、前記集電体の上に形成された正極合剤層とを含み、前記正極合剤層は、正極活物質と、バインダとを含み、前記正極活物質は、ニッケルと、コバルトおよびマンガンから選ばれる少なくとも一つとを含むリチウム・ニッケル含有複合酸化物を含み、前記リチウム・ニッケル含有複合酸化物は、リチウムと酸素以外の元素の量を100mol%としたときに、ニッケルの割合が30mol%以上であり、前記バインダは、フッ化ビニリデン−クロロトリフルオロエチレン共重合体を含み、前記正極と前記負極との間には、耐熱性無機微粒子とバインダとを含む耐熱性微粒子層が配置され、充電の上限電圧が4.3V以上に設定されていることを特徴とする。
本発明によれば、リチウム・ニッケル含有複合酸化物を正極活物質として用い、電池の上限電池電圧を4.3V以上と高く設定しても、充放電サイクル特性および高温貯蔵特性が良好な電池を提供することができる。
図1Aは、本発明の非水電解質二次電池の一例を示す平面図であり、図1Bは、図1Aの断面図である。 図2は、図1Aの斜視図である。
本発明の非水電解質二次電池は、正極、負極、非水電解質およびセパレータを備えている。また、上記正極は、集電体と、上記集電体の上に形成された正極合剤層とを含み、上記正極合剤層は、正極活物質と、バインダとを含み、上記正極活物質は、ニッケルと、コバルトおよびマンガンから選ばれる少なくとも一つとを含むリチウム・ニッケル含有複合酸化物を含み、上記リチウム・ニッケル含有複合酸化物は、リチウムと酸素以外の元素の量を100mol%としたときに、ニッケルの割合が30mol%以上であり、上記バインダは、フッ化ビニリデン−クロロトリフルオロエチレン共重合体を含み、上記正極と上記負極との間には、耐熱性無機微粒子とバインダとを含む耐熱性微粒子層が配置されている。更に、本発明の非水電解質二次電池は、充電の上限電圧が4.3V以上に設定されている。
本発明の非水電解質二次電池は、正極と負極との間に耐熱性微粒子層を配置しており、この耐熱性微粒子層を備えることにより、電池の充放電サイクル特性と高温貯蔵特性とを向上させることができる。これは、4.3V以上という高電圧下で結晶安定性が低下した正極活物質からCoやMnなどの金属イオンが溶出しても、耐熱性微粒子層に含まれる耐熱性無機微粒子が金属イオンをトラップする役割があり、そのため負極での金属イオンの堆積を防ぎ、その結果正極と負極との微短絡などが防止できて、充放電サイクル特性および高温貯蔵特性が改善されると考えられる。
以下、本発明の非水電解質二次電池の構成について詳細に説明する。
[正極]
本発明の非水電解質二次電池に係る正極は、正極活物質およびバインダを含有する正極合剤層を、集電体の片面または両面に有する構造のものである。
正極活物質には、ニッケルと、コバルトおよびマンガンから選ばれる少なくとも一つとを含むリチウム・ニッケル含有複合酸化物であって、リチウムと酸素以外の元素の量を100mol%としたときに、ニッケルの割合が30mol%以上であるものを使用する。上記正極活物質は、例えば、非水電解質二次電池の正極活物質として汎用されているLiCoO2に比べて容量が大きく、非水電解質二次電池の高容量化を図ることができる。
上記リチウム・ニッケル含有複合酸化物は、Ni以外の遷移金属元素としてコバルト(Co)およびマンガン(Mn)を含有するリチウム・ニッケル・コバルト・マンガン複合酸化物とすることができる。
本発明のリチウム・ニッケル含有複合酸化物としては、下記一般組成式(1)で表されるものであるものが好ましい。
Li1+s12 (1)
但し、上記一般組成式(1)中、−0.3≦s≦0.3であり、M1は、Niと、CoおよびMnからを選ばれる少なくとも一つの元素とを含む元素群であり、M1を構成する各元素中で、Ni、CoおよびMnの割合をmol%単位でそれぞれa、bおよびcとしたときに、30≦a<95、0≦b<35、0≦c<35である。
上記一般組成式(1)で表されるリチウム・ニッケル含有複合酸化物において、Niは容量向上に寄与する成分であり、元素群M1の全元素数を100mol%としたときに、Niの割合aは、30mol%を超えていることが好ましく、70mol%以上であることがより好ましい。
上記一般組成式(1)で表されるリチウム・ニッケル含有複合酸化物において、Coも、Niと同様に容量向上に寄与する成分であり、正極合剤層における充填密度向上にも作用する一方で、多すぎるとコスト増大や、フッ化水素によるCo溶出が増えるおそれがある。これらの観点から、上記一般組成式(1)における元素群M1の全元素数を100mol%としたとき、Coの割合bは、35mol%未満であることが好ましい。
更に、上記リチウム・ニッケル含有複合酸化物においては、上記一般組成式(1)における元素群M1の全元素数を100mol%としたとき、Mnの割合cが、35mol%未満であることが好ましい。多すぎるとフッ化水素によるMn溶出が増えるおそれがある。
上記リチウム・ニッケル含有複合酸化物において、Mnと共にCoを含有していると、電池の充放電でのLiのドープおよび脱ドープに伴うMnの価数変動を抑制するようにCoが作用するため、Mnの平均価数を4価近傍の値に安定させて、充放電の可逆性をより高めることができる。
上記リチウム・ニッケル複合酸化物においては、元素群M1が、Niと、Coおよび/またはMnとで構成されていてもよいが、これらの元素と共に、Mg、Ti、Zr、Nb、Mo、W、Al、Si、Ga、Ge、SnおよびBaよりなる群から選択される少なくとも1種の元素を更に含んでいてもよい。但し、元素群M1の全元素数を100mol%としたときの、Mg、Ti、Zr、Nb、Mo、W、Al、Si、Ga、Ge、SnおよびBaの合計割合dは、5mol%以下であることが好ましく、1mol%以下であることがより好ましい。元素群M1におけるNi、Co、Mn以外の元素は、リチウム・ニッケル含有複合酸化物中に均一に分布していてもよく、また、粒子表面などに偏析していてもよい。
上記組成を有するリチウム・ニッケル含有複合酸化物は、その真密度が4.55〜4.95g/cm3と大きな値になり、高い体積エネルギー密度を有する材料となる。
上記リチウム・ニッケル含有複合酸化物は、特に化学量論比に近い組成のときに、その真密度が大きくなるが、具体的には、上記一般組成式(1)において、−0.3≦s≦0.3とすることが好ましく、sの値をこのように調整することで、真密度および可逆性を高めることができる。sは、−0.05以上0.05以下であることがより好ましく、この場合には、リチウム・ニッケル含有複合酸化物の真密度を4.6g/cm3以上と、より高い値にすることができる。
上記一般組成式(1)で表されるリチウム・ニッケル含有複合酸化物は、Li含有化合物(水酸化リチウムなど)、Ni含有化合物(硫酸ニッケルなど)、Co含有化合物(硫酸コバルトなど)、Mn含有化合物(硫酸マンガンなど)、および元素群M1に含まれるその他の元素を含有する化合物(酸化物、水酸化物、硫酸塩など)を混合し、焼成するなどして製造することができる。また、より高い純度でリチウム・ニッケル含有複合酸化物を合成するには、元素群M1に含まれる複数の元素を含む複合化合物(水酸化物、酸化物など)とLi含有化合物とを混合し、焼成することが好ましい。
上記焼成条件は、例えば、800〜1050℃で1〜24時間とすることができるが、一旦焼成温度よりも低い温度(例えば、250〜850℃)まで加熱し、その温度で保持することにより予備加熱を行い、その後に焼成温度まで昇温して反応を進行させることが好ましい。予備加熱の時間については特に制限はないが、通常、0.5〜30時間程度とすればよい。また、焼成時の雰囲気は、酸素を含む雰囲気(すなわち、大気中)、不活性ガス(アルゴン、ヘリウム、窒素など)と酸素ガスとの混合雰囲気、酸素ガス雰囲気などとすることができるが、その際の酸素濃度(体積基準)は、15%以上であることが好ましく、18%以上であることが好ましい。
正極活物質にはニッケルと、コバルトおよびマンガンから選ばれる少なくとも一つとを含むリチウム・ニッケル含有複合酸化物のみを使用してもよいが、このようなリチウム・ニッケル含有複合酸化物と他のリチウム含有複合酸化物と併用してもよい。
例えば、上記リチウム・ニッケル含有複合酸化物と、リチウムとコバルトおよびこれら以外の異種金属元素を含有するリチウム・コバルト含有複合酸化物とを、正極活物質として使用することが好ましい。上記リチウム・コバルト含有複合酸化物は、下記一般組成式(2)で表されるものであることが好ましい。
Li1+yCoz2 1-z2 (2)
但し、上記一般組成式(2)中、−0.3≦y≦0.3、0.95≦z<1.0であり、M2は、Mg、Zr、AlおよびTiよりなる群から選択される少なくとも1種の元素である。
上記一般組成式(2)中、M2がリチウムとコバルト以外の異種金属元素に該当する。異種金属元素M2は、上記の通り、Mg、Zr、Al、Tiのいずれでもよく、これらのうちの1種または2種以上であればよい。
上記リチウム・コバルト含有複合酸化物において、Coは容量向上に寄与する成分である一方で、異種金属元素M2は容量向上に寄与し得ない。よって、リチウム・コバルト含有複合酸化物を表す上記一般組成式(2)においては、これらの容量を高く維持する観点から、Coの量zを、0.95以上とすることが好ましい。また、上記一般組成式(2)において、Coの量zは、1.0未満であるが、異種金属元素M2を含有することによる上記の効果をより良好に確保する観点から、異種金属元素M2の量「1−z」は、0.005以上であることがより好ましく、よって、Coの量zは、0.995以下であることがより好ましい。
上記リチウム・コバルト含有複合酸化物は、特に化学量論比に近い組成のときに、その真密度が大きくなり、より高いエネルギー体積密度を有する材料となるが、具体的には、上記一般組成式(2)において、−0.3≦y≦0.3とすることが好ましく、yの値をこのように調節することで、真密度および充放電時の可逆性を高めることができる。
上記リチウム・コバルト含有複合酸化物は、Li含有化合物(水酸化リチウムなど)、Co含有化合物(硫酸コバルトなど)、および異種金属元素M2を含有する化合物(酸化物、水酸化物、硫酸塩など)を混合し、この原料混合物を焼成するなどして合成することができる。また、より高い純度でリチウム・コバルト含有複合酸化物を合成するには、Coおよび異種金属元素M2を含む複合化合物(水酸化物、酸化物など)とLi含有化合物などとを混合し、この原料混合物を焼成することが好ましい。
上記リチウム・コバルト含有複合酸化物を合成するための原料混合物の焼成条件は、例えば、800〜1050℃で1〜24時間とすることができるが、一旦焼成温度よりも低い温度(例えば、250〜850℃)まで加熱し、その温度で保持することにより予備加熱を行い、その後に焼成温度まで昇温して反応を進行させることが好ましい。予備加熱の時間については特に制限はないが、通常、0.5〜30時間程度とすればよい。また、焼成時の雰囲気は、酸素を含む雰囲気(すなわち、大気中)、不活性ガス(アルゴン、ヘリウム、窒素など)と酸素ガスとの混合雰囲気、酸素ガス雰囲気などとすることができるが、その際の酸素濃度(体積基準)は、15%以上であることが好ましく、18%以上であることが好ましい。
本発明の非水電解質二次電池において、一般組成式(1)で表されるリチウム・ニッケル含有複合酸化物と一般組成式(2)で表わされるリチウム・コバルト含有複合酸化物とを使用する場合には、一般組成式(1)で表されるリチウム・ニッケル含有複合酸化物と、一般組成式(2)で表わされるリチウム・コバルト含有複合酸化物との合計を100質量%としたとき、一般組成式(1)で表されるリチウム・ニッケル含有複合酸化物の含有率は、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、また、45質量%以下であることが好ましく、30質量%以下であることがより好ましい。
正極活物質には、一般組成式(1)で表されるリチウム・ニッケル含有複合酸化物と、一般組成式(2)で表わされるリチウム・コバルト含有複合酸化とは別に、更に他の活物質を併用してもよい。
このような他の活物質としては、例えば、LiCoO2;LiMnO2、Li2MnO3などのリチウム・マンガン酸化物;LiMn24、Li4/3Ti5/34などのスピネル構造のリチウム含有複合酸化物;LiFePO4などのオリビン構造のリチウム含有複合酸化物;上記各種のリチウム含有複合酸化物を基本組成とし各種元素で置換した酸化物;などが例示でき、これらのうちの1種または2種以上を用いることができる。
但し、本発明の効果を良好に確保する観点からは、正極活物質全量中における上記他の活物質の含有率は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
正極合剤層に用いるバインダには、フッ化ビニリデン−クロロトリフルオロエチレン共重合体(VDF−CTFE)を使用する。Niの含有量の高いリチウム・ニッケル含有複合酸化物は、合成時の不純物として水酸化リチウムや炭酸リチウムといったアルカリが混入しやすいが、VDF−CTFEは正極合剤層のバインダとして用いてもアルカリと反応し難いため、正極合剤層形成用組成物が増粘せず、生産性が向上する。また、VDF−CTFEは脱フッ素が起こり難いため、フッ化水素の発生を抑制することができる。更に、例えば非水電解質二次電池の正極合剤層のバインダとして汎用されているポリフッ化ビニリデン(PVDF)を使用した場合に比べて、正極と負極との間隔を、これらの対向面全体にわたってより均一性の高い状態に保つことができる。これは、VDF−CTFEは、電池の充放電に伴って生じる負極合剤層の膨張・収縮を正極合剤層で受け止めた際に、この負極合剤層の体積変化を緩和する作用が、例えばPVDFに比べて高いためであると推測される。
正極合剤層に使用するVDF−CTFEの組成は、VDF−CTFEの使用による非水電解質二次電池の充放電サイクル特性の向上効果をより良好に確保する観点から、フッ化ビニリデン由来のユニットとクロロトリフルオロエチレン由来のユニットとの合計を100mol%としたときに、クロロトリフルオロエチレン由来のユニットの割合が、0.5mol%以上であることが好ましく、1mol%以上であることがより好ましい。但し、VDF−CTFE中のクロロトリフルオロエチレン由来のユニットの割合が高くなりすぎると、非水電解質(非水電解液)を吸収して膨潤しやすくなり、正極の特性が低下する虞がある。よって、正極合剤層に使用するVDF−CTFEにおいては、フッ化ビニリデン由来のユニットとクロロトリフルオロエチレン由来のユニットとの合計を100mol%としたときに、クロロトリフルオロエチレン由来のユニットの割合が、15mol%以下であることが好ましい。
正極合剤層に用いるバインダには、VDF−CTFEのみを使用してもよく、VDF−CTFEと他のバインダ(例えば、PVDFなどのVDF−CTFE以外のフッ素樹脂のように、非水電解質二次電池の正極合剤層で汎用されているバインダ)を併用してもよい。但し、VDF−CTFEの使用による前述の各効果をより良好に確保する観点からは、正極合剤層におけるバインダ全量中のVDF−CTFE以外のバインダの量は、50質量%以下とすることが好ましい。
正極合剤層には、通常、導電助剤を含有させる。正極合剤層に用いる導電助剤には、例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類;アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ−ボンブラック類;炭素繊維;などの炭素材料を用いることが好ましく、また、金属繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類;酸化亜鉛;チタン酸カリウムなどの導電性ウィスカー類;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの有機導電性材料;などを用いることもできる。
正極合剤層の厚みは、例えば、集電体の片面あたり10〜100μmであることが好ましい。また、正極合剤層の組成としては、例えば、正極活物質の量が60〜95質量%であることが好ましく、バインダの量が1〜15質量%であることが好ましく、導電助剤の量が3〜20質量%であることが好ましい。
正極の集電体には、従来から知られている非水電解質二次電池の正極に使用されているものと同様のもの、例えば、アルミニウム製やアルミニウム合金製のパンチングメタル、網、エキスパンドメタルなどが使用できるが、厚みが10〜30μmのアルミニウム箔が好ましい。
正極側のリード体は、通常、正極作製時に、集電体の一部に正極合剤層を形成せずに集電体の露出部を残し、そこをリード体とすることによって設けられる。但し、リード体は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体にアルミニウム製の箔などを後から接続することによって設けてもよい。
[負極]
本発明の非水電解質二次電池に係る負極は、負極活物質を含有する負極合剤層を、集電体の片面または両面に有する構造のものである。
負極活物質としては、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムを吸蔵・放出可能な炭素系材料の1種または2種以上の混合物が用いられる。また、Si、Sn、Ge、Bi、Sb、Inなどの元素およびその合金、リチウム含有窒化物またはリチウム含有酸化物などのリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。特に、黒鉛単体や、SiOxで表示される材料と炭素材料とを複合化した複合体(0.5≦x≦1.5)と黒鉛との混合体を負極活物質として使用することが好ましい。
負極に集電体を用いる場合には、集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、下限は5μmであることが望ましい。また、負極側のリード体は、正極側のリード体と同様にして形成すればよい。
負極合剤層には、通常、バインダを含有させる。負極合剤層に用いるバインダには、例えば、PVDF、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などが好適に用いられる。
また、負極合剤層には、必要に応じて、アセチレンブラックなどの各種カーボンブラックやカーボンナノチューブなどの導電助剤を含有させてもよい。
負極は、例えば、負極活物質およびバインダ、更には必要に応じて導電助剤を、N−メチル−2−ピロリドン(NMP)や水などの溶剤に分散させた負極合剤含有組成物を調製し(但し、バインダは溶剤に溶解していてもよい。)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダー処理などのプレス処理を施す工程を経て製造される。負極は、上記の方法で製造されたものに制限される訳ではなく、他の製造方法で製造したものであってもよい。
負極合剤層の厚みは、集電体の片面あたり10〜100μmであることが好ましい。また、負極合剤層の組成としては、例えば、負極活物質の量が80〜95質量%であることが好ましく、バインダの量が1〜20質量%であることが好ましく、導電助剤を使用する場合には、その量が1〜10質量%であることが好ましい。
[耐熱性微粒子層]
本発明の非水電解質二次電池の正極と負極との間には耐熱性微粒子層が配置されている。耐熱性微粒子層は、耐熱性無機微粒子とバインダを含んでいる。上記耐熱性微粒子層は、正極、負極およびセパレータから選ばれるいずれかの上に形成して、正極と負極との間に配置すればよい。また、上記耐熱性微粒子層は、例えば、正極上とセパレータ上とに形成して、正極と負極との間に複数配置してもよい。
上記耐熱性無機微粒子としては、電気絶縁性を有し、少なくとも150℃において変形などの形状変化が目視で確認されず、且つ金属イオンをトラップする作用を持つ無機微粒子である。具体的には、酸化鉄、シリカ(SiO2)、アルミナ(Al23)、TiO2、BaTiO2などの無機酸化物微粒子である。無機酸化物微粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来物質またはこれらの人造物などの微粒子であってもよい。
上記耐熱性無機微粒子は、上記例示のものを1種単独で使用してもよく、2種以上を併用してもよい。上記例示の耐熱性無機微粒子の中でも、アルミナ、シリカ、ベーマイトが好ましい。
上記耐熱性無機微粒子の粒径は、平均粒子径で、好ましくは0.001μm以上、より好ましくは0.1μm以上であって、好ましくは15μm以下、より好ましくは1μm以下である。耐熱性無機微粒子の平均粒径は、例えば、HORIBA社製のレーザー散乱粒度分布計「LA−920」を用い、耐熱性無機微粒子を溶解しない媒体に分散させて測定した数平均粒子径として規定することができる。また、本明細書に記載の上記耐熱性無機微粒子以外の粒子の粒径も上記と同様に測定することができる。
また、上記耐熱性無機微粒子の形態としては、例えば、球状に近い形状を有していてもよく、板状の形状を有していてもよい。
上記板状粒子の形態としては、アスペクト比が、5以上、より好ましくは10以上であって、100以下、より好ましくは50以下であることが望ましい。板状粒子におけるアスペクト比は、例えば、走査型電子顕微鏡(SEM)により撮影した画像を画像解析することにより求めることができる。
耐熱性微粒子層における耐熱性無機微粒子の含有量は、耐熱性微粒子層の構成成分の全体積中、30体積%以上が好ましく、50体積%以上であることがより好ましい。耐熱性微粒子層中の耐熱性無機微粒子を上記の含有量とすることで、高電圧下や高温下で安定性が低下した正極活物質から金属イオンが溶出しても、耐熱性無機微粒子が金属イオンをトラップする働きを好適に作用させることができる。従って、負極上に溶出した金属が堆積して微短絡を起こすのを抑制し、充放電サイクル特性や高温貯蔵特性が向上する。
耐熱性微粒子層の厚み(耐熱性微粒子層が複数ある場合はそれぞれの耐熱性微粒子層の厚みを合計した総厚み)は、0.5μm以上10μm以下が好ましい。この範囲であれば、正極から溶出した金属イオンをトラップする働きを作用させることができる。また、より好ましくは2μm以上5μm以下である。この範囲であるとより確実に金属イオンをトラップすることができ、また、耐熱性微粒子層が比較的薄いため電池内の電解液の液量を確保することができるため、この2つの効果により充放電サイクル特性が相乗的に向上する。
耐熱性微粒子層に用いるバインダは、例えば、エチレン−酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20〜35モル%のもの)、エチレン−エチルアクリレート共重合体(EEA)などのエチレン−アクリル酸共重合体、フッ素樹脂[ポリフッ化ビニリデン(PVDF)など]、フッ素系ゴム、スチレン−ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリN−ビニルアセトアミド、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられる。これらの有機バインダは1種単独で使用してもよく、2種以上を併用しても構わない。
上記例示の有機バインダの中でも、150℃以上の耐熱性を有する耐熱樹脂が好ましく、特に、エチレン−アクリル酸共重合体、フッ素系ゴム、SBRなどの柔軟性の高い材料がより好ましい。これらの具体例としては、三井デュポンポリケミカル社製のEVA「エバフレックスシリーズ」(商品名)、日本ユニカー社製のEVA、三井デュポンポリケミカル社製のEEA「エバフレックス−EEAシリーズ」(商品名)、日本ユニカー社製のEEA、ダイキン工業社製のフッ素ゴム「ダイエルラテックスシリーズ」(商品名)、JSR社製のSBR「TRD−2001」(商品名)、日本ゼオン社製のSBR「EM−400B」(商品名)などが挙げられる。また、アクリル酸ブチルを主成分とし、これを架橋した構造を有する低ガラス転移温度の架橋アクリル樹脂(自己架橋型アクリル樹脂)も好ましい。
上記有機バインダを使用する場合には、後述する耐熱性微粒子層形成用の組成物(スラリーなど)の溶媒に溶解させるか、または分散させたエマルジョンの形態で用いればよい。
本発明の耐熱性微粒子層を作製する方法としては、例えば、耐熱性無機微粒子およびバインダを有機溶剤または水に分散させた耐熱性微粒子層形成用組成物(スラリーなど)を調製し、これを正極、負極、セパレータの少なくともいずれかに塗布した後、有機溶剤または水を乾燥などにより除去することで耐熱性微粒子層を形成する方法が挙げられる。また、有機バインダを有機溶剤などに均一に溶解した溶液または有機バインダのエマルジョンを、耐熱性無機微粒子と予め混合し、その後この混合物を有機溶剤または水と混合して調製した耐熱性微粒子層形成用組成物を用いて本発明の耐熱性微粒子層を作製することもできる。
また、上記耐熱性微粒子層形成用組成物を、熱可塑性樹脂を主成分とする樹脂多孔質膜に塗布し、樹脂多孔質膜と耐熱性微粒子層との積層体を作製し、この積層体をセパレータ(積層型セパレータ)として使用することもできる。この場合、耐熱性微粒子層における耐熱性無機微粒子の含有量は、耐熱性微粒子層の構成成分の全体積中、70体積%以上が好ましい。これにより、セパレータ自身の強度向上効果や耐熱性向上効果などにより、より安全性の高い電池とすることができる。
また、正極および/または負極上に耐熱性微粒子層を設ける時は、耐熱性微粒子層をセパレータとして機能させることも可能である。
[セパレータ]
本発明の非水電解質二次電池に係るセパレータには、通常の非水電解質二次電池で使用されているセパレータ、例えば、ポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン製の熱可塑性樹脂を主成分とする樹脂多孔質膜を用いることができる。セパレータを構成する樹脂多孔質膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。
また、セパレータとして、樹脂多孔質膜の表面に耐熱性微粒子を含有する耐熱性微粒子層を形成した前述の積層型セパレータを用いてもよい。
セパレータの厚みは、例えば、10〜30μmであることが好ましい。また、上記積層型セパレータの場合も、その耐熱性微粒子層の厚みは、例えば、2μm以上5μm以下であることが好ましい。樹脂多孔質膜と耐熱性微粒子層との積層型セパレータにおいて耐熱性微粒子層の厚みが上記範囲であると、確実に金属イオンをトラップすることができ、また、耐熱性微粒子層が比較的薄いため電池内の電解液の液量を確保することができることで、充放電サイクル特性が向上する上、正極や負極の上に耐熱性微粒子層を設けなくても十分にその機能を発揮しつつ、セパレータの耐熱性向上効果による安全性の高い電池とすることができるため、より好ましい。
[非水電解質]
本発明の非水電解質二次電池に係る非水電解質には、例えば、リチウム塩を有機溶媒に溶解した溶液(非水電解液)を用いることができる。リチウム塩としては、溶媒中で解離してLi+イオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限はない。例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6などの無機リチウム塩、LiCF3SO3、LiCF3CO2、Li224(SO32、LiN(CF3SO22、LiC(CF3SO23、LiCn2n+1SO3(2≦n≦7)、LiN(RfOSO22〔ここで、Rfはフルオロアルキル基を示す。〕などの有機リチウム塩などを用いることができる。
非水電解液に用いる有機溶媒としては、上記リチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ−ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3−ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2−メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類;などが挙げられ、これらは2種以上混合して用いることもできる。また、より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒など、高い導電率を得ることができる組み合わせで用いることが望ましい。更に、これらの非水電解液に充放電サイクル特性の改善、高温貯蔵特性や過充電防止などの安全性を向上させる目的で、無水酸、スルホン酸エステル、ジニトリル、フルオロエチレンカーボネート(FEC)、ビニレンカーボネート(VC)、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t−ブチルベンゼンおよびこれらの誘導体などを添加剤として適宜加えることもできる。
上記リチウム塩の非水電解液中の濃度は、0.5〜1.5mol/Lとすることが好ましく、0.9〜1.25mol/Lとすることがより好ましい。
また、上記非水電解液に公知のポリマーなどのゲル化剤を添加してゲル状としたもの(ゲル状電解質)を、本発明の非水電解質二次電池に使用してもよい。
[電池の形態]
本発明の非水電解質二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した角筒形や円筒形など筒形電池の形態を採用することができる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池の形態とすることもできる。
[電池電圧]
本発明の非水電解質二次電池は、充電の上限電圧が4.3V以上に設定されており、高容量であり、充放電サイクル特性、高温貯蔵特性に優れていることから、こうした特性が要求される用途に好ましく使用できる他、従来から知られている非水電解質二次電池が適用されている各種用途にも使用することができる。
以下、実施例に基づいて本発明を詳細に説明する。但し、下記実施例は、本発明を制限するものではない。
(実施例1)
<リチウム・ニッケル含有複合酸化物の合成>
先ず、硫酸ニッケル、硫酸コバルト、硫酸マンガンおよび硫酸マグネシウムを、それぞれ、3.78mol/dm3、0.25mol/dm3、0.08mol/dm3、0.08mol/dm3の濃度で含有する混合水溶液を調製した。次に、水酸化ナトリウムの添加によってpHを約12に調整したアンモニア水を反応容器に入れ、これを強攪拌しながら、この中に、上記混合水溶液と、25質量%濃度のアンモニア水とを、それぞれ、23cm3/分、6.6cm3/分の割合で、定量ポンプを用いて滴下して、NiとCoとMnとMgとの共沈化合物(球状の共沈化合物)を合成した。この際、反応液の温度は50℃に保持し、また、反応液のpHが12付近に維持されるように、3mol/dm3濃度の水酸化ナトリウム水溶液の滴下も同時に行い、更に窒素ガスを1dm3/分の流量でバブリングした。
続いて、上記共沈化合物を水洗、濾過および乾燥させて、水酸化物を得た。この水酸化物と、LiOH・H2Oと、BaSO4と、Al(OH)3とを、モル比で、1:1:0.01:0.01になるようにエタノール中に分散させてスラリー状とした後、遊星型ボールミルで40分間混合し、室温で乾燥させて混合物を得た。次いで、上記混合物をアルミナ製のるつぼに入れ、2dm3/分のドライエアーフロー中で600℃まで加熱し、その温度で2時間保持して予備加熱を行い、更に900℃に昇温して12時間焼成することにより、リチウム・ニッケル含有複合酸化物を合成した。
次に、得られたリチウム・ニッケル含有複合酸化物を水で洗浄した後、大気中(酸素濃度が約20体積%)で、700℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム・ニッケル含有複合酸化物は、デシケーター中で保存した。
上記リチウム・ニッケル含有複合酸化物について、その組成分析を、ICP(Inductive Coupled Plasma)法を用いて以下のように行った。先ず、上記リチウム・ニッケル含有複合酸化物を0.2g採取して100mL容器に入れた。その後、純水5mL、王水2mL、純水10mLを順に加えて加熱溶解し、冷却後、更に純水で25倍に希釈して、この希釈溶液をJARRELASH社製のICP分析装置「ICP−757」を用いて検量線法により組成を分析した。その結果、上記リチウム・ニッケル含有複合酸化物の組成は、Li1.0Ni0.89Co0.05Mn0.02Mg0.02Ba0.01Al0.012で表されることが判明した。
<リチウム・コバルト含有複合酸化物の合成>
Co(OH)2とMg(OH)2とAl(OH)3とLi2CO3とをモル比で1.97:0.02:0.01:1.02になるように混合し、この混合物を大気中(酸素濃度が約20体積%)、950℃で12時間熱処理してリチウム・コバルト含有複合酸化物を合成し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム・コバルト含有複合酸化物は、デシケーター中で保存した。
上記リチウム・コバルト含有複合酸化物について、その組成分析を前述と同様にしてICP法を用いて行ったところ、上記リチウム・コバルト含有複合酸化物の組成は、Li1.0Co0.985Mg0.01Al0.0052で表されることが判明した。
<正極の作製>
上記リチウム・ニッケル含有複合酸化物と上記リチウム・コバルト含有複合酸化物とを20:80の質量比で混合した混合物:96質量部と、バインダであるフッ化ビニリデン−クロロトリフルオロエチレン共重合体(VDF−CTFE)を10質量%の濃度で含むNMP溶液:20質量部と、導電助剤である人造黒鉛:1質量部およびケッチェンブラック:1質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。
上記正極合剤含有ペーストを、厚みが15μmのアルミニウム箔(正極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、アルミニウム箔の両面に正極合剤層を形成した。その後、プレス処理を行って、正極合剤層の厚さおよび密度を調節し、アルミニウム箔の露出部にニッケル製のリード体を溶接して、長さ375mm、幅43mmの帯状の正極を作製した。得られた正極における正極合剤層は、片面あたりの厚みが55μmであり、正極合剤層の密度は3.85g/cm3であった。
<負極の作製>
負極活物質である黒鉛(平均粒子径16μm):97.5質量部、バインダであるSBR:1.5質量部、および増粘剤であるカルボキシメチルセルロース:1質量部に、水を加えて混合し、負極合剤含有ペーストを調製した。
上記負極合剤含有ペーストを、厚みが8μmの銅箔(負極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、銅箔の両面に負極合剤層を形成した。その後、プレス処理を行って、負極合剤層の厚さおよび密度を調節し、銅箔の露出部にニッケル製のリード体を溶接して、長さ380mm、幅44mmの帯状の負極を作製した。得られた負極における負極合剤層は、片面あたりの厚みが65μmであった。
<耐熱性微粒子層付きセパレータの作製>
平均粒子径が3μmのベーマイト二次凝集体5kgに、イオン交換水5kgと、分散剤(水系ポリカルボン酸アンモニウム塩、固形分濃度40質量%)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで10時間解砕処理をして分散液を調製した。処理後の分散液の一部を120℃で真空乾燥し、走査型電子顕微鏡(SEM)で観察したところ、ベーマイトの形状はほぼ板状であった。また、処理後のベーマイトの平均粒子径は1μmであった。
上記分散液500gに、増粘剤としてキサンタンガムを0.5g、バインダとして樹脂バインダーディスパージョン(変性ポリブチルアクリレート、固形分含量45質量%)を17g加え、スリーワンモーターで3時間攪拌して均一な耐熱性微粒子層形成用スラリー(固形分比率50質量%)を調製した。
次に、リチウムイオン二次電池用PE製の微多孔質セパレータ(厚み12μm、空孔率40%、平均孔径0.08μm、PEの融点135℃)の片面にコロナ放電処理(放電量40W・分/m2)を施し、この処理面に上記耐熱性微粒子層形成用スラリーをマイクログラビアコーターによって塗布し、乾燥して厚みが4μmの耐熱性微粒子層をセパレータ上に形成して、耐熱性微粒子層付きセパレータを作製した。
<電池の組み立て>
上記帯状の正極を、上記セパレータを介して上記帯状の負極に重ね、渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回構造の巻回電極体とし、この巻回電極体をポリプロピレン製の絶縁テープで固定した。次に、外寸が厚さ4.0mm、幅34mm、高さ50mmのアルミニウム合金製の角形の電池ケースに上記巻回電極体を挿入し、リード体の溶接を行うと共に、アルミニウム合金製の蓋板を電池ケースの開口端部に溶接した。その後、蓋板に設けた注入口から非水電解液(ECとMECとDECとを体積比=1:1:1で混合した溶媒にLiPF6を1.1mol/Lの濃度になるよう溶解させたものに、FECを2.0質量%となる量で、およびVCを1.0質量%となる量で、それぞれ添加した溶液)を注入し、1時間静置した後に注入口を封止して、図1に示す構造で、図2に示す外観の本実施例の非水電解質二次電池を作製した。
ここで、図1および図2に示す電池について説明する。図1Aは、本発明の非水電解質二次電池の一例を示す平面図であり、図1Bは、図1Aの断面図である。図1Bに示すように、正極1と負極2はセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状の巻回電極体6として、角形(角筒形)の電池ケース4に非水電解液と共に収容されている。但し、図1Bでは、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や非水電解液などは図示していない。また、図1Bでは、巻回電極体6の内周側の部分は断面にしていない。
電池ケース4はアルミニウム合金製で電池の外装体を構成するものであり、この電池ケース4は正極端子を兼ねている。そして、電池ケース4の底部にはPEシートからなる絶縁体5が配置され、正極1、負極2およびセパレータ3からなる扁平状の巻回電極体6からは、正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、電池ケース4の開口部を封口するアルミニウム合金製の封口用の蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。
そして、この蓋板9は電池ケース4の開口部に挿入され、両者の接合部を溶接することによって、電池ケース4の開口部が封口され、電池内部が密閉されている。また、図1Bの電池では、蓋板9に非水電解液注入口14が設けられており、この非水電解液注入口14には、封止部材が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている。更に、蓋板9には、電池の温度が上昇した際に内部のガスを外部に排出する機構として、開裂ベント15が設けられている。
この実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって電池ケース4と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、電池ケース4の材質などによっては、その正負が逆になる場合もある。
図2は、図1Aの斜視図である。図2は本発明の非水電解質二次電池が角形電池であることを示すことを目的として図示されたものである。
(実施例2)
耐熱性微粒子層付きセパレータの作製に用いた微多孔質セパレータの厚みを8μmに変更した以外は、実施例1と同様にして本実施例の非水電解質二次電池を作製した。
(実施例3)
耐熱性微粒子層付きセパレータの作製に用いた微多孔質セパレータの厚みを8.5μmに変更し、その耐熱性微粒子層の厚みを1.8μmに変更した以外は、実施例1と同様にして本実施例の非水電解質二次電池を作製した。
(実施例4)
実施例1で作製した耐熱性微粒子層形成用スラリーを、実施例1で作製した正極の上に、マイクログラビアコーターによって塗布し、乾燥して厚みが3μmの耐熱性微粒子層を正極上に形成して、耐熱性微粒子層付き正極を作製した。また、セパレータとして、耐熱性微粒子層を形成していない厚みが16μmの微孔性ポリエチレンセパレータ(空孔率:41%)を準備した。上記正極と上記セパレータとを用いた以外は、実施例1と同様にして本実施例の非水電解質二次電池を作製した。
(比較例1)
セパレータとして、耐熱性微粒子層を形成していない厚みが16μmの微孔性ポリエチレンセパレータ(空孔率:41%)を用いた以外は、実施例1と同様にして本比較例の非水電解質二次電池を作製した。
(比較例2)
正極のバインダをPVDFに変更し、耐熱性微粒子層付きセパレータの作製に用いた微多孔質セパレータの厚みを9.5μmに変更し、その耐熱性微粒子層の厚みを4.5μmに変更した以外は、実施例1と同様にして本比較例の非水電解質二次電池を作製した。
(比較例3)
正極のバインダをPVDFに変更し、耐熱性微粒子層を形成していない厚みが16μmの微孔性ポリエチレンセパレータ(空孔率:41%)を用いた以外は、実施例1と同様にして本比較例の非水電解質二次電池を作製した。
実施例1〜4および比較例1〜3の非水電解質二次電池について、下記の各評価を行った。
<4.2V評価>
実施例および比較例の各電池について、常温(25℃)で、1Cの定電流で4.2Vに達するまで充電し、その後4.2Vの定電圧で充電する定電流−定電圧充電(総充電時間:2.5時間)を行い、その後0.2Cの定電流放電(放電終止電圧:3.0V)を行って、得られた放電容量(mAh)を4.2V初期電池容量とした。
その後、実施例および比較例の各電池について、4.2V初期電池容量の測定と同じ条件の充電および放電の一連の操作を1サイクルとして充放電を200サイクル繰り返し、200サイクル目での放電容量を測定し、その200サイクル目での放電容量を4.2V初期電池容量で除した値を百分率で表すことで、4.2V容量維持率を求めた。
次に、実施例および比較例の各電池(上記容量維持率の測定を行った電池とは別の電池)について、4.2V初期容量測定時と同じ条件で定電流充電および定電圧充電を行った後に、85℃の環境下で4時間貯蔵した。貯蔵後、各電池について0.2Cの電流値で3.0Vまで放電を行った後に、4.2V初期容量測定時と同じ条件で定電流充電および定電圧充電を行い、続いて0.2Cの電流値で3.0Vまで放電を行って貯蔵後放電容量を求め、その貯蔵後放電容量を4.2V初期電池容量で除した値を百分率で表すことで4.2V貯蔵回復率を求めた。
<4.35V評価>
実施例および比較例の各電池(4.2V評価を行った電池とは別の電池)について、常温(25℃)で、1Cの定電流で4.35Vに達するまで充電し、その後4.35Vの定電圧で充電する定電流−定電圧充電(総充電時間:2.5時間)を行い、その後0.2Cの定電流放電(放電終止電圧:3.0V)を行って、得られた放電容量(mAh)を4.35V初期電池容量とした。
その後、実施例および比較例の各電池について、4.35V初期電池容量の測定と同じ条件の充電および放電の一連の操作を1サイクルとして充放電を200サイクル繰り返し、200サイクル目での放電容量を測定し、その200サイクル目での放電容量を4.35V初期電池容量で除した値を百分率で表すことで、4.35V容量維持率を求めた。
次に、実施例および比較例の各電池(上記容量維持率の測定を行った電池とは別の電池)について、4.35V初期容量測定時と同じ条件で定電流充電および定電圧充電を行った後に、85℃の環境下で4時間貯蔵した。貯蔵後、各電池について0.2Cの電流値で3.0Vまで放電を行った後に、4.35V初期容量測定時と同じ条件で定電流充電および定電圧充電を行い、続いて0.2Cの電流値で3.0Vまで放電を行って貯蔵後放電容量を求め、その貯蔵後放電容量を4.35V初期電池容量で除した値を百分率で表すことで4.35V貯蔵回復率を求めた。
上記各評価結果と、実施例および比較例の各電池の電解液量を表1に示す。電解液量は、実施例1での電解液量を100とした場合の、実施例2〜比較例3までの電解液量(質量比)を示している。
Figure 2014103755
表1から、本発明の実施例1〜4の電池は、比較例1〜3の電池に比べて、4.35V容量維持率および4.35V貯蔵回復率において高い値を示していることが分かる。一方、本発明の実施例1〜4の電池および比較例1〜3の電池は、4.2V容量維持率および4.2V貯蔵回復率において大きな特性の差は認められないことが分かる。
また、耐熱性微粒子層の厚みが2μm以上の実施例1、2および4と、耐熱性微粒子層の厚みが2μm未満の実施例3との比較から、耐熱性微粒子層の厚みが2μm以上では4.35Vでの容量維持率および貯蔵回復率がより向上することが分かる。更に、セパレータの全厚が同一である実施例1と4との比較から、耐熱性微粒子層をセパレータ上に形成した実施例1のほうが、たとえ耐熱性微粒子層の厚みが大きくても、電池内の電解液量が増加し、4.35Vでの容量維持率が向上することが分かる。また、耐熱性微粒子層の厚みが同一の実施例1と2との比較から、セパレータの全厚が小さいほど電池内の電解液量が増加し、4.35Vでの容量維持率が向上することが分かる。
以上より、本発明によれば、リチウム・ニッケル含有複合酸化物を正極活物質として用い、電池の上限電池電圧を4.3V以上と高く設定しても、充放電サイクル特性および高温貯蔵特性が良好な電池を提供することができることが分かる。
本発明は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、これらに限定はされない。本発明の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。
1 正極
2 負極
3 セパレータ
4 電池ケース
5 絶縁体
6 巻回電極体
7 正極リード体
8 負極リード体
9 蓋板
10 絶縁パッキング
11 端子
12 絶縁体
13 リード板
14 非水電解液注入口
15 開裂ベント

Claims (9)

  1. 正極、負極、非水電解質およびセパレータを含む非水電解質二次電池であって、
    前記正極は、集電体と、前記集電体の上に形成された正極合剤層とを含み、
    前記正極合剤層は、正極活物質と、バインダとを含み、
    前記正極活物質は、ニッケルと、コバルトおよびマンガンから選ばれる少なくとも一つとを含むリチウム・ニッケル含有複合酸化物を含み、
    前記リチウム・ニッケル含有複合酸化物は、リチウムと酸素以外の元素の量を100mol%としたときに、ニッケルの割合が30mol%以上であり、
    前記バインダは、フッ化ビニリデン−クロロトリフルオロエチレン共重合体を含み、
    前記正極と前記負極との間には、耐熱性無機微粒子とバインダとを含む耐熱性微粒子層が配置され、
    充電の上限電圧が4.3V以上に設定されていることを特徴とする非水電解質二次電池。
  2. 前記セパレータが、熱可塑性樹脂を含む樹脂多孔質膜と、前記耐熱性微粒子層との積層体で形成されている請求項1に記載の非水電解質二次電池。
  3. 前記耐熱性微粒子層が、正極および負極から選ばれる少なくとも一方の上に形成されている請求項1に記載の非水電解質二次電池。
  4. 前記耐熱性微粒子層の厚みが、2μm以上である請求項1に記載の非水電解質二次電池。
  5. 前記耐熱性微粒子層は、前記耐熱性無機微粒子を全体の体積割合で30体積%以上含む請求項1に記載の非水電解質二次電池。
  6. 前記リチウム・ニッケル含有複合酸化物が、下記一般組成式(1)で表される請求項1に記載の非水電解質二次電池。
    Li1+s12 (1)
    但し、前記一般組成式(1)中、−0.3≦s≦0.3であり、M1は、Niと、CoおよびMnから選ばれる少なくとも一つの元素とを含む元素群であり、M1を構成する各元素中で、Ni、CoおよびMnの割合をmol%単位でそれぞれa、bおよびcとしたときに、30≦a<95、0≦b<35、0≦c<35である。
  7. 前記リチウム・ニッケル含有複合酸化物が、コバルトおよびマンガンを含む請求項1に記載の非水電解質二次電池。
  8. 前記正極活物質は、前記リチウム・ニッケル含有複合酸化物とは異なるリチウム・コバルト含有複合酸化物を更に含む求項1に記載の非水電解質二次電池。
  9. 前記リチウム・コバルト含有複合酸化物が、下記一般組成式(2)で表される請求項8に記載の非水電解質二次電池。
    Li1+yCoz2 1-z2 (2)
    但し、前記一般組成式(2)中、−0.3≦y≦0.3、0.95≦z<1.0であり、M2は、Mg、Zr、AlおよびTiよりなる群から選択される少なくとも一つの元素である。
JP2014554318A 2012-12-25 2013-12-13 非水電解質二次電池 Pending JPWO2014103755A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012281091 2012-12-25
JP2012281091 2012-12-25
PCT/JP2013/083502 WO2014103755A1 (ja) 2012-12-25 2013-12-13 非水電解質二次電池

Publications (1)

Publication Number Publication Date
JPWO2014103755A1 true JPWO2014103755A1 (ja) 2017-01-12

Family

ID=51020843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014554318A Pending JPWO2014103755A1 (ja) 2012-12-25 2013-12-13 非水電解質二次電池

Country Status (3)

Country Link
JP (1) JPWO2014103755A1 (ja)
TW (1) TW201436350A (ja)
WO (1) WO2014103755A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923700A (zh) * 2016-11-10 2019-06-21 三洋电机株式会社 非水电解质二次电池用电极以及非水电解质二次电池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6353310B2 (ja) * 2014-07-30 2018-07-04 マクセルホールディングス株式会社 非水電解質二次電池
WO2017033431A1 (ja) * 2015-08-24 2017-03-02 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層、及び非水系二次電池
EP3346521B1 (en) * 2015-08-31 2020-03-04 Zeon Corporation Composition for non-aqueous secondary cell functional layer, functional layer for non-aqueous secondary cell, and non-aqueous secondary cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195419A (ja) * 1997-12-26 1999-07-21 Kureha Chem Ind Co Ltd 非水系電池用電極合剤および非水系電池
JP2003242976A (ja) * 2002-02-18 2003-08-29 Seimi Chem Co Ltd リチウム二次電池用正極活物質の製造方法
JP2007335405A (ja) * 2006-05-19 2007-12-27 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2009117369A (ja) * 2007-03-05 2009-05-28 Toda Kogyo Corp 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2011023335A (ja) * 2009-06-18 2011-02-03 Hitachi Maxell Ltd 非水二次電池用電極および非水二次電池
JP2011138780A (ja) * 2004-07-07 2011-07-14 Lg Chem Ltd 有機無機複合多孔性フィルム及びこれを用いる電気化学素子
JP2011138621A (ja) * 2009-12-25 2011-07-14 Sanyo Electric Co Ltd 非水電解質二次電池の正極の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748136B2 (ja) * 2007-10-03 2011-08-17 ソニー株式会社 耐熱絶縁層付きセパレータ及び非水電解質二次電池
JP5239302B2 (ja) * 2007-11-14 2013-07-17 ソニー株式会社 リチウムイオン二次電池
JP5584456B2 (ja) * 2009-12-10 2014-09-03 日本化学工業株式会社 リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195419A (ja) * 1997-12-26 1999-07-21 Kureha Chem Ind Co Ltd 非水系電池用電極合剤および非水系電池
JP2003242976A (ja) * 2002-02-18 2003-08-29 Seimi Chem Co Ltd リチウム二次電池用正極活物質の製造方法
JP2011138780A (ja) * 2004-07-07 2011-07-14 Lg Chem Ltd 有機無機複合多孔性フィルム及びこれを用いる電気化学素子
JP2007335405A (ja) * 2006-05-19 2007-12-27 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2009117369A (ja) * 2007-03-05 2009-05-28 Toda Kogyo Corp 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2011023335A (ja) * 2009-06-18 2011-02-03 Hitachi Maxell Ltd 非水二次電池用電極および非水二次電池
JP2011138621A (ja) * 2009-12-25 2011-07-14 Sanyo Electric Co Ltd 非水電解質二次電池の正極の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923700A (zh) * 2016-11-10 2019-06-21 三洋电机株式会社 非水电解质二次电池用电极以及非水电解质二次电池
CN109923700B (zh) * 2016-11-10 2022-07-08 三洋电机株式会社 非水电解质二次电池用电极以及非水电解质二次电池

Also Published As

Publication number Publication date
TW201436350A (zh) 2014-09-16
WO2014103755A1 (ja) 2014-07-03

Similar Documents

Publication Publication Date Title
JP4061586B2 (ja) 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
US9570777B2 (en) Lithium secondary battery
JP6288186B2 (ja) リチウムイオン二次電池
KR101485382B1 (ko) 리튬 이차 전지
KR102301470B1 (ko) 비수 전해질 이차 전지
WO2016121322A1 (ja) 非水電解質二次電池用負極板及びその負極板を用いた非水電解質二次電池
JP6734059B2 (ja) 非水電解質二次電池
JP6654793B2 (ja) 非水電解質二次電池用正極、非水電解質二次電池およびそのシステム
JP6275694B2 (ja) 非水電解質二次電池
JP2015046218A (ja) 非水電解質二次電池用電極およびそれを用いた非水電解質二次電池
JP2016085949A (ja) リチウム二次電池
JP6750196B2 (ja) 非水系リチウム電池及びその使用方法
JP2017162554A (ja) 非水電解液電池
WO2016185663A1 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池並びに非水電解質二次電池用負極材の製造方法
JP2011060481A (ja) 非水電解質二次電池
JP2015195195A (ja) 非水電解質二次電池
CN109565029B (zh) 制造二次电池的长寿命的电极的方法
WO2014103755A1 (ja) 非水電解質二次電池
CN109075383B (zh) 锂离子二次电池及电池组
JP4678457B2 (ja) リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびそれを用いたリチウム二次電池
WO2019142744A1 (ja) 非水電解質二次電池
JP6208584B2 (ja) 非水電解質二次電池
JP2017021941A (ja) 非水電解質二次電池
JP5625848B2 (ja) リチウムイオン二次電池及びその製造方法
JP4582684B2 (ja) 非水二次電池

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180403