JPWO2014077063A1 - 透光性電極、及び、電子デバイス - Google Patents

透光性電極、及び、電子デバイス Download PDF

Info

Publication number
JPWO2014077063A1
JPWO2014077063A1 JP2014546909A JP2014546909A JPWO2014077063A1 JP WO2014077063 A1 JPWO2014077063 A1 JP WO2014077063A1 JP 2014546909 A JP2014546909 A JP 2014546909A JP 2014546909 A JP2014546909 A JP 2014546909A JP WO2014077063 A1 JPWO2014077063 A1 JP WO2014077063A1
Authority
JP
Japan
Prior art keywords
group
layer
ring
compound
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014546909A
Other languages
English (en)
Other versions
JP6332032B2 (ja
Inventor
井 宏元
宏元 井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2014077063A1 publication Critical patent/JPWO2014077063A1/ja
Application granted granted Critical
Publication of JP6332032B2 publication Critical patent/JP6332032B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

表面粗さ(Ra)が2以下であり、且つ、弾性率が20GPa以上の表面を有する下地層と、この下地層の表面側に設けられた銀を主成分とする導電層とを備える透光性電極を構成する。

Description

本発明は、透光性電極、及び、この透光性電極を用いた電子デバイスに関する。
有機材料のエレクトロルミネッセンス(electroluminescence:以下ELと記す)を利用した有機電界発光素子(いわゆる有機EL素子)や、有機光電変換素子等の電子デバイスは、2枚の電極間に有機材料層や光電変換層が挟持された構成を有する。有機EL素子では、有機材料層(発光層)で生じた発光光は、電極を透過して外部に取り出される。また、有機光電変換素子では、外部からの光が電極を透過して光電変換層に取り込まれる。このため、これらの電子デバイスでは、2枚の電極のうち、少なくとも一方は透光性電極により構成される必要がある。
一方で、薄型・軽量な有機EL素子の形態として固体封止が知られている(例えば、特許文献1、特許文献2参照)。固体封止では、加圧・加熱プロセスがあるため、電極の凹凸影響がリーク特性に大きく影響する。このため、特に平滑な透光性電極が必要になっている。
このような要求に対して、フレキシブル基材上にITO電極を使い、さらに研磨テープで平滑な電極表面を得る技術が開示されている(例えば、特許文献3参照)。しかし、この方法では、研磨テープによる平滑化工程が煩雑となり、生産性が課題となる。また、フレキシブル基材上のITOは製膜条件の制約で電極としての特性が十分でない。
電極の特性を改良する手段として、薄いAg層を電極に使う技術が開示されている(例えば、特許文献4参照)。Ag層は、ITOよりも低温形成、かつアノード特性に優れるものの、膜厚が30nm以下と薄く、かつAgが柔軟な金属なため、固体封子時の加圧・加熱影響を受けやすく、電極の平滑性の維持に課題がある。
このような課題に対し、平滑な電極下地層として、フレキシブル基材上のバリア表面を平滑にする技術が知られている(例えば、特許文献5参照)。特許文献5には、蒸着バリア膜を形成する際のCVD条件によって表面を平滑化する技術が開示されている。しかし、この方法のようなCVD法で形成された層は、CVD法の原理上、平滑性が不十分であり、固体封子時の加圧・加熱影響を大きく受けてリーク特性が悪化する。このように、CVD法等の蒸着方式では堆積物により膜形成がなされるため、薄Ag電極の固体封止プロセスに耐えられる平滑性を満足する条件は得られにくい。
一方で、有機・無機ハイブリッドポリマーによりバリア表面を平滑にする技術が開示されている(例えば、特許文献6参照)。この方法では、確かに膜による平滑化が可能となるものの、固体封止時の加熱・加圧では平滑保護層のポリマーが局所変形し、電極の平滑が維持できない。
特開2002−216950号公報 国際公開第2010/001831号パンフレット 特開2005−93318号公報 特開2009−151963号公報 特開2012−084353号公報 特開2002−462084号公報
上述したように、透光性電極を備える電子デバイスにおいては、特性の改善のために、透光性電極の表面に平滑性が求められている。
上述した問題の解決のため、本発明においては、透光性電極の平滑化を可能とし、この透光性電極を用いることにより特性の向上が可能な電子デバイスを提供するものである。
本発明の透光性電極は、表面粗さ(Ra)が2以下であり、且つ、弾性率が20GPa以上の表面を有する下地層と、この下地層の表面側に設けられた銀を主成分とする導電層とを備えることを特徴とする。
また、本発明の電子デバイスは、上記透光性電極を備えることを特徴とする。
本発明の透光性電極によれば、表面粗さ(Ra)が2以下であり、且つ、20GPa以上の弾性率を有する平滑な下地層と、Agを主成分とする導電層を備えることにより、この透光性電極が固体封止された際に、下地層の平滑面に合わせて導電層の電極突起が平坦化される。このように、導電層が平滑化されることにより、電子デバイスの特性が向上する。
本発明によれば、特性の向上が可能な透光性電極、及び、電子デバイスを提供することができる。
第1実施形態の透光性電極の概略構成を示す図である。 第2実施形態の透光性電極の概略構成を示す図である。 第3実施形態の透光性電極の概略構成を示す図である。 ケイ素分布曲線、酸素分布曲線及び炭素分布曲線を示す図である。 図4に示す炭素分布曲線を拡大した図である。 バリア層の屈折率分布を示す図である。 バリア層の製造装置の構成を示す図である。 第4実施形態の有機電界発光素子の概略構成を示す図である。 第5実施形態の有機電界発光素子の概略構成を示す図である。 第7実施形態の有機光電変換素子の概略構成を示す図である。
以下、本発明の実施の形態を、図面に基づいて次に示す順に説明する。
1.透光性電極(第1実施形態)
2.透光性電極(第2実施形態)
3.透光性電極(第3実施形態)
4.有機電界発光素子(第4実施形態:ボトムエミッション型)
5.有機電界発光素子(第5実施形態:逆積み構成)
6.照明装置(第6実施形態)
7.有機光電変換素子(第7実施形態)
〈1.透光性電極(第1実施形態)〉
以下、本発明の透光性電極の具体的な実施の形態について説明する。
図1に、本発明の第1実施形態の透光性電極の概略構成図(断面図)を示す。図1に示すように、透光性電極10は、下地層11と、導電層12とを備える。導電層12は、下地層11の一方面上に形成されている。
以下に、本例の透光性電極10について、下地層11、導電層12の順に、詳細な構成を説明する。なお、本例の透光性電極10において、透光性とは波長550nmでの光透過率が50%以上であることをいう。
透光性電極10を構成する下地層11は、導電層12が形成される側の弾性率が20GPa以上であり、表面粗さ(算術平均粗さ:Ra)が2以下である。弾性率が20GPa以上であり、表面粗さRaが2以下の表面を持つ下地層11としては、例えばガラス、ポリシラザン改質層等を挙げることができるが、これらに限定されない。
[ガラス]
ガラスとしては、例えば、シリカガラス、ソーダ石灰シリカガラス、鉛ガラス、ホウケイ酸塩ガラス、無アルカリガラス等が挙げられる。これらのガラス材料の表面には、透光性電極10の積層構造との密着性、耐久性、平滑性の観点から、必要に応じて研磨等の物理的処理や、無機物又は有機物からなる被膜、これらの被膜を組み合わせたハイブリッド被膜が形成されていてもよい。
[ポリシラザン改質層]
ポリシラザン改質層とは、ポリシラザン含有液の塗布膜に改質処理を施して形成された層である。この改質層は、主にケイ素酸化物又は酸化窒化ケイ素化合物から形成されている。
ポリシラザン改質層の形成方法としては、基材上に少なくとも一層のポリシラザン化合物を含有する塗布液を塗布後、改質処理を行うことにより、ケイ素酸化物又は酸化窒化ケイ素化合物を含有する層を形成する方法が挙げられる。
ケイ素酸化物又は酸化窒化ケイ素化合物のポリシラザン改質層を形成するためのケイ素酸化物、又は、酸化窒化ケイ素化合物の供給は、CVD法(Chemical Vapor Deposition:化学気相成長法)のようにガスとして供給されるよりも、基材表面に塗布したほうがより均一で、平滑な層を形成することができる。CVD法などの場合は気相で反応性が増した原料物質が基材表面に堆積する工程と同時に、気相中で不必要なパーティクルよばれる異物が生成することが知られている。これらの発生したパーティクルが堆積することで、表面の平滑性が低下する。塗布法では、原料を気相反応空間に存在させないことにより、これらパーティクルの発生を抑制することが可能になる。このため、塗布法を用いることにより平滑な面を形成することができる。
(ポリシラザン含有液の塗布膜)
ポリシラザン含有液の塗布膜は、基材上に少なくとも1層にポリシラザン化合物を含有する塗布液を塗布することにより形成される。
塗布方法としては、任意の適切な方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。塗布厚さは、目的に応じて適切に設定され得る。例えば、塗布厚さは、乾燥後の厚さが好ましくは1nm〜100μm程度、さらに好ましくは10nm〜10μm程度、最も好ましくは10nm〜1μm程度となるように設定され得る。
「ポリシラザン」とは、ケイ素−窒素結合を持つポリマーで、Si−N、Si−H、N−H等からなるSiO、Si及び両方の中間固溶体SiOxNy等のセラミック前駆体無機ポリマーである。ポリシラザンは下記一般式(I)で表される。
Figure 2014077063
フィルム基材を損なわないように塗布するためには、特開平8−112879号公報に記載されているように比較的低温でセラミック化してシリカに変性するものがよい。
式中、R1、R2、及びR3のそれぞれは、独立に、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、アルコキシ基などを表す。
得られるバリア膜としての緻密性の観点からは、R1、R2、及びR3のすべてが水素原子であるパーヒドロポリシラザンが特に好ましい。
一方、そのSiと結合する水素部分が一部アルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。
パーヒドロポリシラザンは直鎖構造と6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600〜2000程度(ポリスチレン換算)であり、液体又は固体の物質であり、分子量により異なる。これらは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。
低温でセラミック化するポリシラザンの別の例としては、上記一般式(I)で示されるポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5−238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6−122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6−240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6−299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6−306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7−196986号公報)等が挙げられる。
ポリシラザンを含有する液体を調製する有機溶媒としては、具体的には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリクロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等がある。これらの溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度、等目的にあわせて選択し、複数の溶剤を混合してもよい。なお、アルコール系や水分を含有する溶剤は、ポリシラザンと容易に反応してしまうため好ましくない。
ポリシラザン含有塗布液中のポリシラザン濃度は目的とするシリカ膜厚や塗布液のポットライフによっても異なるが、0.2〜35質量%程度である。
有機ポリシラザンは、そのSiと結合する水素部分が一部アルキル基等で置換された誘導体であってもよい。アルキル基、特にもっとも分子量の少ないメチル基を有することにより下地基材との接着性が改善され、かつ硬くてもろいシリカ膜に靭性を持たせることができ、より膜厚を厚くした場合でもクラックの発生が抑えられる。
酸化ケイ素化合物への転化を促進するために、アミンや金属の触媒を添加することもできる。具体的には、AZエレクトロニックマテリアルズ(株)製 アクアミカ NAX120−20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140などが挙げられる。
(ポリシラザン含有層形成工程)
ポリシラザン含有液の塗布膜は、改質処理前又は処理中に水分が除去されていることが好ましい。そのために、ポリシラザン含有層中の溶媒を取り除く目的の第一工程と、それに続くポリシラザン含有層中の水分を取り除く目的の第二工程に分かれていることが好ましい。
第一工程においては、主に溶媒を取り除くための乾燥条件を、熱処理などの方法で適宜決めることができるが、このときに水分が除去される条件にあってもよい。熱処理温度は迅速処理の観点から高い温度が好ましいが、樹脂基材への熱ダメージを考慮し温度と処理時間を決める。例えば、樹脂基材にガラス転位温度(Tg)が70℃のPET基材を用いる場合には熱処理温度は200℃以下を設定することができる。処理時間は溶媒が除去され、かつ基材への熱ダメージがすくなくなるように短時間に設定することが好ましく、熱処理温度が200℃以下であれば30分以内に設定することができる。
第二工程は、ポリシラザン含有層中の水分を取り除くための工程で、水分を除去する方法としては低湿度環境に維持される形態が好ましい。低湿度環境における湿度は、温度により変化するので温度と湿度の関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は4度以下(温度25度/湿度25%)で、より好ましい露点温度は−8度(温度25度/湿度10%)以下、さらに好ましい露点温度は−31度(温度25度/湿度1%)以下であり、維持される時間はポリシラザン含有層の膜厚によって適宜変わる。ポリシラザン含有層の厚さが1μm以下の条件においては、好ましい露点温度は−8度以下で、維持される時間は5分以上である。また、水分を取り除きやすくするために減圧乾燥してもよい。減圧乾燥における圧力は常圧〜0.1MPaを選ぶことができる。
第一工程の条件に対する第二工程の好ましい条件としては、例えば第一工程で温度60〜150℃、処理時間1分〜30分間で溶媒を除去したときには、第二工程の露点は4度以下、処理時間は5分〜120分で、水分を除去する条件を選ぶことができる。第一工程と第二工程の区分は露点の変化で区別することができ、工程環境の露点の差が10度以上変わることで区分ができる。
ポリシラザン含有層は第二工程により水分が取り除かれた後も、その状態を維持して改質処理を行なうことが好ましい。
(ポリシラザン含有層の含水率)
ポリシラザン含有層の含水量は以下の分析方法で検出できる。
ヘッドスペース−ガスクロマトグラフ/質量分析法
装置:HP6890GC/HP5973MSD
オーブン:40℃(2min)、その後、10℃/minの速度で150℃まで昇温
カラム:DB−624(0.25mmid×30m)
注入口:230℃
検出器:SIM m/z=18
HS条件:190℃・30min
ポリシラザン含有層中の含水率は、上記の分析方法により得られる含水量からポリシラザン含有層の体積で除した値と定義され、第二工程により水分が取り除かれた状態において、好ましくは0.1%以下である。さらに好ましい含水率は0.01%以下(検出限界以下)である。
改質処理前、又は改質中に水分が除去されることで、シラノールに転化したポリシラザンの脱水反応が促進する。
(改質処理)
改質処理は、ポリシラザンの転化反応に基づく公知の方法を選ぶことができる。シラザン化合物の置換反応による酸化ケイ素膜又は酸化窒化ケイ素膜の作製には450℃以上の高温が必要であり、プラスチック等のフレキシブル基板においては適応が難しい。プラスチック基板への適応のためには、より低温で転化反応が可能なプラズマやオゾンや紫外線を使う転化反応が好ましい。
(プラズマ処理)
改質処理としてのプラズマ処理は、公知の方法を用いることができるが、大気圧プラズマ処理が好ましい。大気圧プラズマ処理の場合は、放電ガスとしては窒素ガス及び/又は周期表の第18属原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。
プラズマ処理の一例として、大気圧プラズマ処理について説明する。大気圧プラズマは、具体的には、国際公開第2007−026545号に記載される様に、放電空間に異なる周波数の電界を2つ以上形成したもので、第1の高周波電界と第2の高周波電界とを重畳した電界を形成することが好ましい。
大気圧プラズマ処理は、第1の高周波電界の周波数ω1より第2の高周波電界の周波数ω2が高く、且つ、第1の高周波電界の強さV1と、第2の高周波電界の強さV2と、放電開始電界の強さIVとの関係が、
V1≧IV>V2 又は V1>IV≧V2
を満たし、第2の高周波電界の出力密度が、1W/cm以上である。
この様な放電条件をとることにより、例えば窒素ガスのように放電開始電界強度が高い放電ガスでも、放電を開始し、高密度で安定なプラズマ状態を維持でき、高性能な薄膜形成を行うことができる。
上記の測定により放電ガスを窒素ガスとした場合、その放電開始電界強度IV(1/2Vp−p)は3.7kV/mm程度であり、従って、上記の関係において、第1の印加電界強度を、V1≧3.7kV/mmとして印加することによって窒素ガスを励起し、プラズマ状態にすることができる。
ここで、第1電源の周波数としては、200kHz以下を好ましく用いることができる。また、この電界波形としては、連続波でもパルス波でもよい。下限は1kHz程度が望ましい。
一方、第2電源の周波数としては、800kHz以上を好ましく用いることができる。この第2電源の周波数が高い程、プラズマ密度が高くなり、緻密で良質な薄膜が得られる。上限は200MHz程度が望ましい。
このような2つの電源から高周波電界を形成することは、第1の高周波電界によって高い放電開始電界強度を有する放電ガスの放電を開始するのに必要であり、また、第2の高周波電界の高い周波数及び高い出力密度によりプラズマ密度を高くして緻密で良質な薄膜を形成することができる。
(紫外線照射処理)
改質処理の方法としては、紫外線照射による処理も好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜又は酸化窒化ケイ素膜を作製することが可能である。
この紫外線照射により、基材が加熱され、セラミックス化(シリカ転化)に寄与するOとHOや、紫外線吸収剤、ポリシラザン自身が励起、活性化されるため、ポリシラザンが励起し、ポリシラザンのセラミックス化が促進され、また得られるセラミックス膜が一層緻密になる。紫外線照射は、塗膜形成後であればいずれの時点で実施しても有効である。
本実施形態に係る方法では、常用されているいずれの紫外線発生装置でも使用することが可能である。
なお、本例において、「紫外線」とは、一般には、10〜400nmの波長を有する電磁波をいうが、後述する真空紫外線(10〜200nm)処理以外の紫外線照射処理の場合は、好ましくは210〜350nmの紫外線を用いる。
紫外線の照射は、照射される塗膜を担持している基材がダメージを受けない範囲に、照射強度や照射時間を設定する。
基材としてプラスチックフィルムを用いた場合を例にとると、たとえば2kW(80W/cm×25cm)のランプを用い、基材表面での強度が20〜300mW/cm、好ましくは50〜200mW/cmになるように基材−ランプ間距離を設定し、0.1秒〜10分間の照射を行うことができる。
一般に、紫外線照射処理時の基材温度が150℃以上になると、プラスチックフィルム等の場合には基材の変形や、強度の劣化など、基材が損なわれる。しかしながら、ポリイミド等の耐熱性の高いフィルムや、金属等の基板の場合には、より高温での処理が可能である。従って、この紫外線照射時の基材温度に一般的な上限はなく、基材の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はなく、空気中で実施すればよい。
このような紫外線の発生方法としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機(株)製)、UV光レーザー、等が挙げられるが、特に限定されない。また、発生させた紫外線をポリシラザン塗膜に照射する際には、効率の向上のため均一な照射を達成するためにも、発生源からの紫外線を反射板で反射させてから塗膜に当てることが望ましい。
紫外線照射は、バッチ処理にも連続処理にも適合可能であり、被塗布基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、ポリシラザン塗膜を表面に有する基材(例、シリコンウェハー)を上記のような紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス(株)製を使用することができる。また、ポリシラザン塗膜を表面に有する基材が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、塗布される基材やコーティング組成物の組成、濃度にもよるが、一般に0.1秒〜10分、好ましくは0.5秒〜3分である。
(真空紫外線照射処理;エキシマ照射処理)
本実施形態において、さらに好ましい改質処理の方法として、真空紫外線照射による処理が挙げられる。真空紫外線照射による処理は、シラザン化合物内の原子間結合力より大きい100〜200nmの光エネルギーを用い、好ましくは100〜180nmの波長の光のエネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみによる作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で、酸化シリコン膜の形成を行う方法である。
これに必要な真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。
1.エキシマ発光とは、Xe,Kr,Ar,Neなどの希ガスの原子は化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電などによりエネルギーを得た希ガスの原子(励起原子)は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には、
e+Xe→e+Xe
Xe+Xe+Xe→Xe2*+Xe
となり、励起されたエキシマ分子であるXe2*が基底状態に遷移するときに172nmのエキシマ光を発光する。エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。
また、余分な光が放射されないので、対象物の温度を低く保つことができる。さらには始動・再始動に時間を要さないので、瞬時の点灯点滅が可能である。
エキシマ発光を得るには誘電体バリア放電を用いる方法が知られている。誘電体バリア放電とは、両電極間に誘電体(エキシマランプの場合は透明石英)を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することにより、ガス空間に生じる雷に似た、非常に細いmicro dischargeと呼ばれる放電である。micro dischargeのストリーマが管壁(誘電体)に達すると誘電体表面に電荷が溜まるため、micro dischargeは消滅する。このように、誘電体バリア放電とは、micro dischargeが管壁全体に広がり、生成・消滅を繰り返している放電である。このため肉眼でも分かる光のチラツキを生じる。また、非常に温度の高いストリーマが局所的に直接管壁に達するため、管壁の劣化を早める可能性もある。
効率よくエキシマ発光を得る方法としては、誘電体バリア放電以外に無電極電界放電も可能である。容量性結合による無電極電界放電で、別名RF放電とも呼ばれる。ランプと電極およびその配置は基本的には誘電体バリア放電と同じでよいが、両極間に印加される高周波は数MHzで点灯される。無電極電界放電はこのように空間的にまた時間的に一様な放電が得られるため、チラツキが無い長寿命のランプが得られる。
誘電体バリア放電の場合はmicro dischargeが電極間のみで生じるため、放電空間全体で放電を行わせるには外側の電極は外表面全体を覆い、かつ外部に光を取り出すために光を透過するものでなければならない。このため細い金属線を網状にした電極が用いられる。この電極は光を遮らないようにできるだけ細い線が用いられるため、酸素雰囲気中では真空紫外光により発生するオゾンなどにより損傷しやすい。
これを防ぐためにはランプの周囲、すなわち照射装置内を窒素などの不活性ガスの雰囲気にし、合成石英の窓を設けて照射光を取り出す必要が生じる。合成石英の窓は高価な消耗品であるばかりでなく、光の損失も生じる。
二重円筒型ランプは外径が25mm程度であるため、ランプ軸の直下とランプ側面では照射面までの距離の差が無視できず、照度に大きな差を生じる。したがって仮にランプを密着して並べても、一様な照度分布が得られない。合成石英の窓を設けた照射装置にすれば酸素雰囲気中の距離を一様に出来、一様な照度分布が得られる。
無電極電界放電を用いた場合には外部電極を網状にする必要は無い。ランプ外面の一部に外部電極を設けるだけでグロー放電は放電空間全体に広がる。外部電極には通常アルミのブロックで作られた光の反射板を兼ねた電極がランプ背面に使用される。しかし、ランプの外径は誘電体バリア放電の場合と同様に大きいため一様な照度分布にするためには合成石英が必要となる。
細管エキシマランプの最大の特徴は構造がシンプルなことである。石英管の両端を閉じ、内部にエキシマ発光を行うためのガスを封入しているだけである。したがって、非常に安価な光源を提供できる。
二重円筒型ランプは内外管の両端を接続して閉じる加工をしているため、細管ランプに比べ取り扱いや輸送で破損しやすい。また、細管ランプの管の外径は6〜12mm程度で、あまり太いと始動に高い電圧が必要になる。
放電の形態は誘電体バリア放電でも無電極電界放電のいずれでも使用できる。電極の形状はランプに接する面が平面であってもよいが、ランプの曲面に合わせた形状にすればランプをしっかり固定できるとともに、電極がランプに密着することにより放電がより安定する。また、アルミで曲面を鏡面にすれば光の反射板にもなる。
Xeエキシマランプは波長の短い172nmの紫外線を単一波長で放射することから発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラディカルな酸素原子種やオゾンを高濃度で発生することができる。また、有機物の結合を解離させる波長の短い172nmの光のエネルギーは能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン含有層の改質を実現できる。したがって、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料やプラスチック基板などへの照射を可能としている。
エキシマランプは光の発生効率が高いため低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で単一波長でエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。
(平滑性:表面粗さRa)
下地層11の表面の表面粗さ(Ra)は、2nm以下であり、さらに好ましくは1nm以下である。表面粗さが上記範囲にあることで、有機光電変換素子用の樹脂基材として使用する際に、凹凸が少ない平滑な膜面による光透過効率の向上と、電極間リーク電流の低減によるエネルギー変換効率が向上するので好ましい。下地層11の表面粗さ(Ra)は以下の方法で測定することができる。
(表面粗さ測定の方法;AFM測定)
表面粗さは、AFM(原子間力顕微鏡)、例えば、Digital Instruments社製DI3100で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さである。
(弾性率)
下地層11の導電層12が形成される表面の弾性率は、20GPa以上であることを要する。
下地層11としてポリシラザン改質層を用いる場合には、改質処理側の表面の弾性率が20GPa以上であることを要する。
ポリシラザン改質層は、改質処理された表面側と反対側とで異なる弾性率を有し、改質処理面側がより高い弾性率を有する。ポリシラザン改質層の場合、ポリシラザン塗布膜が改質された表面は、弾性率が20〜35GPa程度である。未改質のポリシラザン塗布膜では、5〜12GPa程度である。また、ポリシラザン改質層では、改質された表面の弾性率が高く、表面から厚さ方向に行くに従い、弾性率が低下する。少なくとも、導電層12が形成される側の面の表面において、弾性率が20GPa以上であればよい。
このため、ポリシラザン改質層は改質処理後の処理面の弾性率が20GPa以上であることを要する。そして、この改質処理面上に導電層12が形成される。また、一般的に基材として用いられる上述のガラスであれば、表面の弾性率が40GPa以上である。このため、このガラス面上への導電層12の形成が可能である。
(弾性率測定の方法;ナノインデンテーション)
下地層11の弾性率は、従来公知の弾性率測定方法により求めることができ、例えば、オリエンテック社製バイブロンDDV−2を用いて一定の歪みを一定の周波数(Hz)でかける条件下で測定する方法、測定装置としてRSA−II(レオメトリックス社製)を用い、透明基材上に下地層11を形成した後、一定周波数で印加歪を変化させたとき得られる測定値により求める方法、あるいは、ナノインデンション法を適用したナノインデンター、例えば、MTSシステム社製のナノインデンター(Nano IndenterTMXP/DCM)により測定することができる。
極めて薄い下地層11の弾性率を高い精度で測定できる観点から、ナノインデンターにより測定して求める方法が好ましい。
ここで、「ナノインデンション法」とは、測定対象物である透明基材上に設けた下地層11に対し、超微小な荷重で先端半径が0.1〜1μm程度の三角錐の圧子を押し込んで負荷を付与した後、圧子を戻して除荷し、得られた荷重−変位曲線を作成し、荷重−変位曲線から得られた負荷荷重と押し込み深さとにより、弾性率(Reduced modulus)を測定する方法である。このナノインデンション法では、超低荷重、例えば、最大荷重20mN、荷重分解能1nNのヘッドアセンブリを用いて、変位分解能として0.01nmの高精度で測定することができる。
特に、断面方向に異なる弾性率を有する下地層11に関しては、断面部より超微小な三角錐の圧子を押し込んで、断面部における基材側と反対側の弾性率を測定する方法が好ましく、この様な場合には、より精度を高める観点から走査型電子顕微鏡内で作動するナノインデンターも開発されており、それらを適用して求めることもできる。
[導電層]
導電層12は、銀を主成分として構成された層であって、銀又は銀を主成分とした合金を用いて構成され、窒素含有層23に隣接して形成された層である。このような導電層12の形成方法としては、塗布法、インクジェット法、コーティング法、ディップ法等のウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法等)、スパッタ法、CVD法等のドライプロセスを用いる方法等が挙げられる。なかでも蒸着法が好ましく適用される。また、導電層12は、窒素含有層23上に形成されることにより、形成後の高温アニール処理等がなくても十分に導電性を有することを特徴とするが、必要に応じて、形成後に高温アニール処理等を行ったものであってもよい。
導電層12を構成する銀(Ag)を主成分とする合金は、一例として銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)等が挙げられる。
以上のような導電層12は、銀又は銀を主成分とした合金の層が、必要に応じて複数の層に分けて積層された構成であってもよい。
さらに、この導電層12は、厚さが4〜12nmの範囲にあることが好ましい。厚さ12nm以下では、層の吸収成分及び反射成分が低く抑えられ、透明バリア膜の光透過率が維持されるため好ましい。また、厚さが4nm以上であることにより、層の導電性も確保される。
なお、以上のような、下地層11、導電層12からなる積層構造の透光性電極10は、導電層12の上部が保護膜で覆われていてもよく、別の導電性層が積層されていてもよい。この場合、透光性電極10の光透過性を損なうことのないように、保護膜及び導電性層が光透過性を有することが好ましい。また、導電層12の下部、すなわち、下地層11と導電層12の間にも、必要に応じた層を設けた構成としてもよい。
〈2.透光性電極(第2実施形態)〉
次に、第2実施形態の透光性電極について説明する。図2に、透光性電極の第2実施形態の概略構成図(断面図)を示す。図2に示す第2実施形態の透光性電極20は、窒素含有層23を備えることのみが、図1に示す第1実施形態の透光性電極10と異なる。以下、第1実施形態と同様の構成要素についての重複する詳細な説明は省略し、第2実施形態の透光性電極20の構成を説明する。
図2に示すように、透光性電極20は、下地層11と、窒素含有層23と、導電層12とを備える。下地層11及び導電層12は、上述の第1実施形態と同様の構成である。また、透光性電極20は、下地層11と導電層12との間に窒素含有層が設けられている。つまり、導電層12が窒素含有層23の一方面上に隣接して形成されている。
[窒素含有層]
窒素含有層23は、導電層12に隣接して形成され、下地層11と導電層12とに挟持された層である。
導電層12と接して窒素含有層23が形成されることにより、導電層12の主成分である銀と、窒素含有層23を構成する窒素原子を含んだ化合物との相互作用により、窒素含有層表面における銀原子の拡散距離が減少し、銀の凝集が抑えられる。このため、一般的に、核成長型(Volumer-Weber:VW型)での成長により島状に孤立し易い薄銀層が、単層成長型(Frank-van der Merwe:FM型)の成長によって形成される。従って、窒素含有層23に接して、銀を主成分とする導電層12を形成することにより、薄いながらも、均一な厚さの導電層12が得られる。
窒素含有層23は、5nm以下の厚さを有することが好ましい。これは、窒素含有層23の厚さが小さいほど、すなわち下地層11と導電層12との距離が小さいほど、透光性電極20の光透過率が高くなるためである。なお、窒素含有層23の厚さは、窒素含有層23上に形成される導電層12のFM型での成長を妨げない程度の厚さ、すなわち窒素含有層23が島状にならず下地層11を覆う連続層として形成される程度の厚さとする。
また、窒素含有層23は、導電層12に隣接して設けられた層であり、窒素原子(N)を含有する化合物を用いて構成されている。この窒素原子を含む化合物において、導電層12を構成する主材料である銀と安定的に結合する窒素原子の非共有電子対を[有効非共有電子対]とする。そして、窒素含有層23を構成する化合物は、[有効非共有電子対]の含有率が所定範囲であることを特徴としている。
ここで[有効非共有電子対]とは、化合物に含有される窒素原子が有する非共有電子対のうち、芳香族性に関与せずかつ金属に配位していない非共有電子対とする。芳香族性とは、π電子を持つ原子が環状に並んだ不飽和環状構造を言い、いわゆる「ヒュッケル則」に従う芳香族性であって、環上のπ電子系に含まれる電子の数が「4n+2」(n=0、又は自然数)個であることを条件としている。
[有効非共有電子対]は、その非共有電子対を備える窒素原子自体が、芳香環を構成するヘテロ原子であるか否かにかかわらず、窒素原子の有する非共有電子対が芳香族性に関与しているか否かによって選択される。例えば、ある窒素原子が芳香環を構成するヘテロ原子であっても、その窒素原子が芳香族性に関与しない非共有電子対を有していれば、その非共有電子対は[有効非共有電子対]となる。これに対して、ある窒素原子が芳香環を構成するヘテロ原子でない場合であっても、その窒素原子の非共有電子対の全てが芳香族性に関与していれば、その窒素原子の非共有電子対は[有効非共有電子対]とはならない。尚、各化合物において、上述した[有効非共有電子対]の数nは、[有効非共有電子対]を有する窒素原子の数と一致する。
本実施形態においては、このような化合物の分子量Mに対する[有効非共有電子対]の数nを、例えば有効非共有電子対含有率[n/M]と定義する。そして窒素含有層23は、この[n/M]が、2.0×10−3≦[n/M]となるように選択された化合物を用いて構成されているところが特徴的である。また窒素含有層23は、以上のように定義される有効非共有電子対含有率[n/M]が、3.9×10−3≦[n/M]の範囲であればさらに好ましい。有効非共有電子対含有率[n/M]≧2.0×10−3となる化合物を用いて窒素含有層を構成することにより、窒素含有層に上述の導電層を構成する銀の凝集を抑える効果が得られる。
また、窒素含有層23は、有効非共有電子対含有率[n/M]が上述した所定範囲である化合物を用いて構成されていればよく、このような化合物のみで構成されていてもよく、またこのような化合物と他の化合物とを混合して用いて構成されていてもよい。他の化合物は、窒素原子が含有されていてもいなくてもよく、さらに有効非共有電子対含有率[n/M]が上述した所定範囲でなくてもよい。
窒素含有層23が、複数の化合物を用いて構成されている場合、例えば化合物の混合比に基づき、これらの化合物を混合した混合化合物の分子量Mを求める。そして、この分子量Mに対する[有効非共有電子対]の合計の数nから、有効非共有電子対含有率[n/M]の平均値を求める。この値が上述の所定範囲であることが好ましい。つまり、窒素含有層23自体の有効非共有電子対含有率[n/M]が所定範囲であることが好ましい。
なお、窒素含有層23が、複数の化合物を用いて構成されている場合であって、厚さ方向に化合物の混合比(含有比)が異なる構成であれば、導電層12と接する側の窒素含有層23の表面層における有効非共有電子対含有率[n/M]が所定範囲であればよい。
[化合物−1]
以下に、窒素含有層23を構成する化合物として、上述した有効非共有電子対含有率[n/M]が2.0×10−3≦[n/M]を満たす化合物の具体例(No.1〜No.40)を示す。各化合物No.1〜No.40には、[有効非共有電子対]を有する窒素原子に対して○を付した。また、下記表1には、これらの化合物No.1〜No.40の分子量M、[有効非共有電子対]の数n、及び有効非共有電子対含有率[n/M]を示す。下記化合物33の銅フタロシアニンにおいては、窒素原子が有する非共有電子対のうち銅に配位していない非共有電子対が[有効非共有電子対]として数えられる。
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
なお、上記表1には、これらの例示化合物が、以降に説明する他の化合物を表す一般式(1)〜(6)にも属する場合の該当一般式を示した。
[化合物−2]
また窒素含有層23を構成する化合物としては、以上のような有効非共有電子対含有率[n/M]が上述した所定範囲である化合物の他、この窒素含有層23を備えた透光性電極20が適用される電子デバイスごとに必要とされる性質を有する化合物が用いられる。例えば、この透光性電極20が、有機電界発光素子の電極として用いられる場合、その成膜性や、電子輸送性の観点から、窒素含有層23を構成する化合物としては、以降に説明する一般式(1)〜(6)で表される化合物が用いられる。
これらの一般式(1)〜(6)で示される化合物の中には、上述した有効非共有電子対含有率[n/M]の範囲に当てはまる化合物も含まれ、このような化合物であれば単独で窒素含有層23を構成する化合物として用いることができる(上記表1参照)。一方、下記一般式(1)〜(6)で示される化合物が、上述した有効非共有電子対含有率[n/M]の範囲に当てはまらない化合物であれば、有効非共有電子対含有率[n/M]が上述した範囲の化合物と混合することで窒素含有層23を構成する化合物として用いることができる。
Figure 2014077063
上記一般式(1)の式中、E101〜E108は、各々−C(R12)=又は−N=を表し、E101〜E108のうち少なくとも1つは−N=である。また、一般式(1)中のR11、及び上記R12は水素原子又は置換基を表す。
この置換基の例としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基、ピペリジル基(ピペリジニル基ともいう)、2,2,6,6−テトラメチルピペリジニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、リン酸エステル基(例えば、ジヘキシルホスホリル基等)、亜リン酸エステル基(例えばジフェニルホスフィニル基等)、ホスホノ基等が挙げられる。
これらの置換基の一部は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
Figure 2014077063
この一般式(2)は、一般式(1)の一形態でもある。上記一般式(2)の式中、Y21は、アリーレン基、ヘテロアリーレン基又はそれらの組み合わせからなる2価の連結基を表す。E201〜E216、E221〜E238は、各々−C(R21)=又は−N=を表し、R21は水素原子又は置換基を表す。ただし、E221〜E229の少なくとも1つ及びE230〜E238の少なくとも1つは−N=を表す。k21及びk22は0〜4の整数を表すが、k21+k22は2以上の整数である。
一般式(2)において、Y21で表されるアリーレン基としては、例えば、o−フェニレン基、p−フェニレン基、ナフタレンジイル基、アントラセンジイル基、ナフタセンジイル基、ピレンジイル基、ナフチルナフタレンジイル基、ビフェニルジイル基(例えば、[1,1’−ビフェニル]−4,4’−ジイル基、3,3’−ビフェニルジイル基、3,6−ビフェニルジイル基等)、テルフェニルジイル基、クアテルフェニルジイル基、キンクフェニルジイル基、セキシフェニルジイル基、セプチフェニルジイル基、オクチフェニルジイル基、ノビフェニルジイル基、デシフェニルジイル基等が例示される。
また一般式(2)において、Y21で表されるヘテロアリーレン基としては、例えば、カルバゾール環、カルボリン環、ジアザカルバゾール環(モノアザカルボリン環ともいい、カルボリン環を構成する炭素原子のひとつが窒素原子で置き換わった構成の環構成を示す)、トリアゾール環、ピロール環、ピリジン環、ピラジン環、キノキサリン環、チオフェン環、オキサジアゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インドール環からなる群から導出される2価の基等が例示される。
Y21で表されるアリーレン基、ヘテロアリーレン基又はそれらの組み合わせからなる2価の連結基の好ましい態様としては、ヘテロアリーレン基の中でも、3環以上の環が縮合してなる縮合芳香族複素環から導出される基を含むことが好ましく、また、当該3環以上の環が縮合してなる縮合芳香族複素環から導出される基としては、ジベンゾフラン環から導出される基又はジベンゾチオフェン環から導出される基が好ましい。
一般式(2)において、E201〜E216、E221〜E238で各々表される−C(R21)=のR21が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
一般式(2)において、E201〜E208のうちの6つ以上、及びE209〜E216のうちの6つ以上が、各々−C(R21)=で表されることが好ましい。
一般式(2)において、E225〜E229の少なくとも1つ、及びE234〜E238の少なくとも1つが−N=を表すことが好ましい。
さらには、一般式(2)において、E225〜E229のいずれか1つ、及びE234〜E238のいずれか1つが−N=を表すことが好ましい。
また、一般式(2)において、E221〜E224及びE230〜E233が、各々−C(R21)=で表されることが好ましい態様として挙げられる。
さらに、一般式(2)で表される化合物において、E203が−C(R21)=で表され、かつR21が連結部位を表すことが好ましく、さらに、E211も同時に−C(R21)=で表され、かつR21が連結部位を表すことが好ましい。
さらに、E225及びE234が−N=で表されることが好ましく、E221〜E224及びE230〜E233が、各々−C(R21)=で表されることが好ましい。
Figure 2014077063
この一般式(3)は、一般式(1)の一形態でもある。上記一般式(3)の式中、E301〜E312は、各々−C(R31)=を表し、R31は水素原子又は置換基を表す。また、Y31は、アリーレン基、ヘテロアリーレン基又はそれらの組み合わせからなる2価の連結基を表す。
上記一般式(3)において、E301〜E312で各々表される−C(R31)=のR31が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
また一般式(3)において、Y31で表されるアリーレン基、ヘテロアリーレン基又はそれらの組み合わせからなる2価の連結基の好ましい態様としては、一般式(2)のY21と同様のものが挙げられる。
Figure 2014077063
この一般式(4)は、一般式(1)の一形態でもある。上記一般式(4)の式中、E401〜E414は、各々−C(R41)=を表し、R41は水素原子又は置換基を表す。またAr41は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。さらにk41は3以上の整数を表す。
上記一般式(4)において、E401〜E414で各々表される−C(R41)=のR41が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
また一般式(4)において、Ar41が芳香族炭化水素環を表す場合、この芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。これらの環は、さらに一般式(1)のR11,R12として例示した置換基を有してもよい。
また一般式(4)において、Ar41が芳香族複素環を表す場合、この芳香族複素環としては、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、アザカルバゾール環等が挙げられる。尚、アザカルバゾール環とは、カルバゾール環を構成するベンゼン環の炭素原子が1つ以上窒素原子で置き換わったものを示す。これらの環は、さらに一般式(1)において、R11,R12として例示した置換基を有してもよい。
Figure 2014077063
上記一般式(5)中、R51は置換基を表し、E501,E502,E511〜E515,E512〜E525は、各々−C(R52)=又は−N=を表し、E503〜E505は、各々C(R52)=を表し、R52は水素原子(H)又は置換基を表し、E501及びE502のうちの少なくとも1つは−N=であり、E511〜E515のうちの少なくとも1つは−N=であり、E521〜E525のうちの少なくとも1つは−N=である。
上記一般式(5)において、R51が置換基を表す場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
Figure 2014077063
上記一般式(6)の式中、E601〜E612は、各々−C(R61)=又は−N=を表し、R61は水素原子又は置換基を表す。またAr61は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。
上記一般式(6)において、E601〜E612で各々表される−C(R61)=のR61が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
また一般式(6)において、Ar61が表す、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環は、一般式(4)のAr41と同様のものが挙げられる。
[化合物−3]
また窒素含有層23を構成するさらに他の化合物として、以上のような一般式(1)〜(6)で表される化合物の他、下記に具体例を示す化合物1〜118が例示される。これらの化合物は、電子輸送性又は電子注入性を備えた材料である。したがって、これらの化合物を用いて窒素含有層23を構成した透光性電極20は、有機電界発光素子における透明電極として好適であり、有機電界発光素子における電子輸送層又は電子注入層として窒素含有層23を用いることができるのである。尚、これらの化合物1〜118の中には、上述した有効非共有電子対含有率[n/M]の範囲に当てはまる化合物も含まれ、このような化合物であれば単独で窒素含有層23を構成する化合物として用いることができる。さらに、これらの化合物1〜118の中には、上述した一般式(1)〜(6)に当てはまる化合物もある。
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
(化合物の合成例)
以下に代表的な化合物の合成例として、化合物5の具体的な合成例を示すが、これに限定されない。
Figure 2014077063
工程1:(中間体1の合成)
窒素雰囲気下において、2,8−ジブロモジベンゾフラン(1.0モル)、カルバゾール(2.0モル)、銅粉末(3.0モル)、炭酸カリウム(1.5モル)を、DMAc(ジメチルアセトアミド)300ml中で混合し、130℃で24時間撹拌した。これによって得た反応液を室温まで冷却後、トルエン1Lを加え、蒸留水で3回洗浄し、減圧雰囲気下において洗浄物から溶媒を留去した。残渣をシリカゲルフラッシュクロマトグラフィー(n−ヘプタン:トルエン=4:1〜3:1)にて精製し、中間体1を収率85%で得た。
工程2:(中間体2の合成)
室温、大気下で中間体1(0.5モル)をDMF(ジメチルホルムアミド)100mlに溶解し、NBS(N−ブロモコハク酸イミド)(2.0モル)を加え、一晩室温で撹拌した。得られた沈殿物を濾過し、メタノールで洗浄し、中間体2を収率92%で得た。
工程3:(化合物5の合成)
窒素雰囲気下において、中間体2(0.25モル)、2−フェニルピリジン(1.0モル)、ルテニウム錯体[(η−C)RuCl(0.05モル)、トリフェニルホスフィン(0.2モル)、炭酸カリウム(12モル)を、NMP(N−メチル−2−ピロリドン)3L中で混合し、140℃で一晩撹拌した。
反応液を室温まで冷却後、ジクロロメタン5Lを加え、反応液を濾過した。次に、減圧雰囲気下(800Pa、80℃)において濾液から溶媒を留去し、その残渣をシリカゲルフラッシュクロマトグラフィー(CHCl:EtN=20:1〜10:1)にて精製した。
減圧雰囲気下において、精製物から溶媒を留去した後、その残渣をジクロロメタンに再び溶解し、水で3回洗浄した。洗浄によって得られた物質を無水硫酸マグネシウムで乾燥させ、減圧雰囲気下において乾燥後の物質から溶媒を留去することにより、化合物5を収率68%で得た。
[窒素含有層の形成方法]
以上のような窒素含有層23が下地層11上に形成されたものである場合、その形成方法としては、塗布法、インクジェット法、コーティング法、ディップ法等のウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法等)、スパッタ法、CVD法等のドライプロセスを用いる方法等が挙げられる。なかでも蒸着法が好ましく適用される。
特に、複数の化合物を用いて窒素含有層23を形成する場合であれば、複数の蒸着源から複数の化合物を同時に供給する共蒸着が適用される。また化合物として高分子材料を用いる場合であれば、塗布法が好ましく適用される。この場合、化合物を溶媒に溶解させた塗布液を用いる。化合物を溶解させる溶媒が限定されることはない。さらに、複数の化合物を用いて窒素含有層23を形成する場合であれば、複数の化合物を溶解させることが可能な溶媒を用いて塗布液を作製すればよい。
〈3.透光性電極(第3実施形態)〉
次に、透光性電極の第3実施形態について説明する。図3に、透光性電極の第3実施形態の概略構成図(断面図)を示す。図3に示す第3実施形態の透光性電極25は、基材26及びバリア層27を備えることのみが、図2に示す第2実施形態の透光性電極20と異なる。以下、第1実施形態及び第2実施形態と同様の構成要素についての重複する詳細な説明は省略し、第3実施形態の透光性電極25の構成を説明する。
図3に示すように、透光性電極25は、基材26と、基材26上に設けられたバリア層27を備える。そして、バリア層27が設けられた基材26上に、下地層11、窒素含有層23及び導電層12を備える。下地層11、窒素含有層23及び導電層12の構成は、上述の第2実施形態と同様である。
[基材]
透光性電極25に適用される基材26としては、ガラス、プラスチック等の種類には特に限定はされない。透光性電極25としては、基材は透明であることを要する。好ましく用いられる透明な基材26としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましくは、透光性電極25にフレキシブル性を与えることが可能な樹脂フィルムである。
ガラスとしては、例えば、シリカガラス、ソーダ石灰シリカガラス、鉛ガラス、ホウケイ酸塩ガラス、無アルカリガラス等が挙げられる。これらのガラス材料の表面には、隣接する層との密着性、耐久性、平滑性の観点から、必要に応じて、研磨等の物理的処理、及び、無機物又は有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成される。また、上述の下地層11として用いられるガラスと同様の材料を用いてもよい。
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)又はアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。
[バリア層]
基材26の表面には、バリア層27が設けられていることが好ましい。特に、基材26が樹脂フィルムからなる場合には、樹脂フィルムの表面に、無機物又は有機物からなる被膜や、これらの被膜を組み合わせたバリア層27が形成されていることが好ましい。このような被膜及びバリア層は、JIS−K−7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が0.01g/(m・24時間)以下であることが好ましい。また、JIS−K−7126−1987に準拠した方法で測定された酸素透過度が10−3ml/(m・24時間・atm)以下、水蒸気透過度が10−5g/(m・24時間)以下であることが好ましい。
以上のようなバリア層を形成する材料としては、樹脂フィルムの劣化をもたらす水分や酸素等の浸入を抑制する機能を有する材料を用いる。例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。さらに当該バリア性フィルムの脆弱性を改良するために、これら無機層と有機材料からなる層(有機層)の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
バリア性フィルムの形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。特に、特開2004−68143号公報に記載の大気圧プラズマ重合法を好ましく用いることができる。
(バリア層:構成)
透光性電極25に適用されるバリア層27としては、厚さ方向において屈折率の分布を有し、この屈折率分布において1つ以上の極値を持つ無機膜から構成されていることが好ましい。バリア層27は、ケイ素、酸素及び炭素を含む材料から構成され、ケイ素、酸素及び炭素の含有率が異なる複数の層による積層構造を有する。
そして、バリア層27は、膜厚方向におけるバリア層27の表面(下地層11の界面)からの距離と、上記各元素(ケイ素、酸素又は炭素)の原子量の比率(原子比)との関係を示す、各元素の分布曲線に特徴を有している。
なお、ケイ素、酸素又は炭素の原子比は、ケイ素、酸素及び炭素の各元素の合計量に対する、ケイ素、酸素又は炭素の比率[(Si,O,C)/(Si+O+C)]で表す。
ケイ素分布曲線、酸素分布曲線、及び、炭素分布曲線は、バリア層27の表面からの距離における、ケイ素の原子比、酸素の原子比、及び、炭素の原子比を示す。また、膜厚方向におけるバリア層27の表面(導電層12側の界面)からの距離と、酸素と炭素との合計の原子量の比率(原子比)との関係を示す分布曲線を、酸素炭素分布曲線とする。
また、バリア層27は、ケイ素、酸素及び炭素に加えて、窒素を更に含有していてもよい。窒素を含有することにより、バリア層27の屈折率を制御することができる。例えば、SiOの屈折率が1.5であるのに対し、SiNの屈折率は1.8〜2.0程度である。このため、バリア層27に窒素を含有させ。バリア層27内にSiONを形成することにより、好ましい屈折率の値である1.6〜1.8とすることが可能となる。このように、窒素の含有量を調整することにより、バリア層27の屈折率を制御することが可能である。
バリア層27が窒素を含む場合には、バリア層27を構成する各元素(ケイ素、酸素、炭素又は窒素)の分布曲線は以下のようになる。
ケイ素、酸素及び炭素に加えて、窒素を含む場合、ケイ素、酸素、炭素又は窒素の原子比は、ケイ素、酸素、炭素及び窒素の各元素の合計量に対する、ケイ素、酸素、炭素又は窒素の比率[(Si,O,C,N)/(Si+O+C+N)]で表す。
ケイ素分布曲線、酸素分布曲線、炭素分布曲線、及び、窒素分布曲線は、バリア層27の表面からの距離における、ケイ素の原子比、酸素の原子比、炭素の原子比、及び、窒素の原子比を示す。
(元素の分布曲線と屈折率分布との関係)
バリア層27の屈折率分布は、バリア層27の厚さ方向の炭素量及び酸素量により制御することができる。
図4に、バリア層27のケイ素分布曲線、酸素分布曲線、炭素分布曲線、及び、窒素分布曲線の一例を示す。また、図5に、図4に示すケイ素分布曲線、酸素分布曲線、炭素分布曲線、及び、窒素分布曲線から、炭素分布曲線を拡大して示す。図4及び図5において、横軸は、膜厚方向におけるバリア層27の表面からの距離[nm]を示す。また、縦軸は、ケイ素、酸素及び炭素の各元素の合計量に対する、ケイ素、酸素、炭素又は窒素のそれぞれの原子比[at%]を示す。
なお、ケイ素分布曲線、酸素分布曲線、炭素分布曲線、及び、窒素分布曲線の測定方法の詳細については後述する。
図4に示すように、バリア層27の表面からの距離によって、ケイ素、酸素、炭素、及び、窒素の原子比が変化している。特に、酸素及び炭素については、バリア層27の表面からの距離に応じて原子比の変動が大きく、それぞれの分布曲線が複数の極値を有している。また、酸素の分布曲線と炭素分布曲線とは相関関係にあり、炭素の原子比が大きい距離では酸素の原子比が小さくなり、炭素の原子比が小さい距離では酸素の原子比が大きくなる。
また、図6に、バリア層27の屈折率分布曲線を示す。図6において、横軸は、膜厚方向におけるバリア層27の表面からの距離[nm]を示す。縦軸は、バリア層27の屈折率を示す。図6に示すバリア層27の屈折率は、膜厚方向におけるバリア層27の表面からの距離と、この距離におけるバリア層27の可視光に対する屈折率の測定値である。バリア層27の屈折率分布の測定は、公知の方法を用いることができ、例えば分光エリプソメーター(日本分光社製 ELC−300)等を用い行うことができる。
図5及び図6に示すように、炭素の原子比とバリア層27の屈折率とには相関関係がある。具体的には、バリア層27において、炭素の原子比が増加する位置において、バリア層27の屈折率も増加する。このように、炭素の原子比に応じて、バリア層27の屈折率が変化する。つまり、バリア層27において、膜厚方向の炭素の原子比の分布を調整することにより、バリア層27の屈折率分布曲線を制御することができる。
また、上述のように炭素の原子比と酸素の原子比とにも相関関係があることから、酸素の原子比及び分布曲線を制御することにより、バリア層27の屈折率分布曲線を制御することができる。
屈折率分布に極値を有するバリア層27を備えることにより、基材26の界面で起こる反射や干渉を抑制することができる。このため、透光性電極25を透過する光が、バリア層27の作用により、全反射や干渉の影響を受けずに出光する。従って、光量が低減せず、透光性電極25の光の取り出し効率が向上する。
また、導電層12として銀等からなる金属透明導電層を用いる場合には、透光性電極25を透過する光が、導電層12において反射や干渉を受けて大きな視野角依存性の問題が発生しやすい。これは、金属透明導電層における金属の凝集や、金属透明導電層又はその界面で特定の波長領域が反射して発光スペクトルに干渉し、発光スペクトルが変化して視野角依存性を示すと考えられている。
そこで、バリア層27の屈折率分布を、放出光の特定の波長に干渉しないように調整することにより、視野角依存性を抑制することができる。バリア層27の屈折率分布は、炭素の原子比によって制御することができる。このため、炭素の分布曲線を制御することにより、バリア層27に任意の光学的な特性を付与することができる。
本例では、バリア層27が屈折率分布曲線に1つ以上の極値を持つことにより、光スペクトルを制御して色域を調整することができる。このため、透光性電極25の干渉条件を分散させることができ、特定の波長で干渉しない構成とすることができる。従って、透光性電極25を透過する光の配光性をバリア層27で制御し、発光スペクトルの視野角依存性を解消して、透光性電極25の均一な配光性を実現することができる。
(各元素の分布曲線の条件)
バリア層27は、ケイ素、酸素及び炭素の原子比、又は、各元素の分布曲線が、以下(i)〜(iii)の条件を満たすことが好ましい。
(i)ケイ素の原子比、酸素の原子比及び炭素の原子比が、バリア層27の膜厚の90%以上の領域において下記式(1):
(酸素の原子比)>(ケイ素の原子比)>(炭素の原子比)・・・(1)で表される条件を満たす。
または、ケイ素の原子比、酸素の原子比及び炭素の原子比が、バリア層27の膜厚の90%以上の領域において下記式(2):
(炭素の原子比)>(ケイ素の原子比)>(酸素の原子比)・・・(2)
で表される条件を満たす。
(ii)炭素分布曲線が少なくとも1つの極大値と極小値とを有する。
(iii)炭素分布曲線における炭素の原子比の最大値及び最小値の差の絶対値が5at%以上である。
透光性電極25は、上記条件(i)〜(iii)のうち少なくとも1つを満たすバリア層27を備えることが好ましい。特に、上記条件(i)〜(iii)を全て満たすバリア層27を備えることが好ましい。また、上記条件(i)〜(iii)を全て満たすバリア層27を、2層以上備えていてもよい。バリア層27を2層以上備える場合には、複数の薄膜層の材質は、同一であってもよく、異なっていてもよい。バリア層27を2層以上備える場合には、バリア層27は基材26の一方の表面上に形成されていてもよく、基材26の両方の表面上に形成されていてもよい。
バリア層27の屈折率は、上述の図5,6に示す相関関係のように、炭素又は酸素の原子比により制御することができる。このため、上記条件(i)〜(iii)により、バリア層27の屈折率を好ましい範囲に調整することができる。
(炭素分布曲線)
バリア層27は、炭素分布曲線が少なくとも1つの極値を有することが必要である。このようなバリア層27においては、炭素分布曲線が少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することが特にさらに好ましい。さらに、炭素分布曲線が少なくとも1つの極大値と、1つの極小値とを有することが好ましい。
炭素分布曲線が極値を有さない場合には、得られるバリア層27の配光性が不十分となる。このため、導電層12を通して得られる透光性電極25の光の角度依存性を解消することが困難となる。
また、バリア層27が3つ以上の極値を有する場合には、炭素分布曲線の有する1つの極値と、この極値に隣接する他の極値とは、バリア層27の表面からの膜厚方向の距離の差が、200nm以下であることが好ましく、100nm以下であることがより好ましい。
(極値)
バリア層27において、分布曲線の極値とは、バリア層27の膜厚方向における、バリア層27の表面からの距離に対する元素の原子比の極大値又は極小値、又はその値に対応した屈折率分布曲線の測定値である。
バリア層27において、各元素の分布曲線の極大値とは、バリア層27の表面からの距離を変化させた場合に、元素の原子比の値が増加から減少に変わる点である。なおかつ、この点から、バリア層27の表面からの距離を更に20nm変化させた位置の元素の原子比の値が、3at%以上減少する点である。
バリア層27において、各元素の分布曲線の極小値とは、バリア層27の表面からの距離を変化させた場合に元素の原子比の値が減少から増加に変わる点である。なおかつ、この点から、バリア層27の表面からの距離を更に20nm変化させた位置の元素の原子比の値が、3at%以上増加する点である。
また、バリア層27の炭素分布曲線において、炭素の原子比の最大値と最小値との差の絶対値は、5at%以上であることが好ましい。また、このようなバリア層27においては、炭素の原子比の最大値と最小値との差の絶対値が、6at%以上であることがより好ましく、さらに7at%以上であることが好ましい。炭素の原子比の最大値と最小値との差が上記範囲未満では、得られるバリア層27の屈折率分布曲線における屈折率差が小さくなり、配光性が不十分となる。
炭素分布量と屈折率は相関があり、上記の好ましい炭素原子の最大値と最小値の絶対値が7at%以上のときに、得られる屈折率の最大値と最小値との差の絶対値は0.2以上になる。
(酸素分布曲線)
バリア層27は、酸素分布曲線が少なくとも1つの極値を有することが好ましい。特に、バリア層27は、酸素分布曲線が少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することがさらに好ましい。さらに、酸素分布曲線が少なくとも1つの極大値と、1つの極小値とを有することが好ましい。
酸素分布曲線が極値を有さない場合には、得られるバリア層27の配光性が不十分となる。このため、導電層12を通して得られる透光性電極25の光の角度依存性を解消することが困難となる。
また、バリア層27が3つ以上の極値を有する場合には、酸素分布曲線の有する1つの極値と、この極値に隣接する他の極値とは、バリア層27の表面からの膜厚方向の距離の差が、200nm以下であることが好ましく、100nm以下であることがより好ましい。
また、バリア層27の酸素分布曲線において、酸素の原子比の最大値と最小値との差の絶対値が、5at%以上であることが好ましい。また、このようなバリア層27においては、酸素の原子比の最大値と最小値との差の絶対値が6at%以上であることがより好ましく、さらに7at%以上であることが好ましい。酸素の原子比の最大値と最小値との差が上記範囲未満では、得られるバリア層27の屈折率分布曲線から、配光性が不十分となる。
(ケイ素分布曲線)
バリア層27は、ケイ素分布曲線において、ケイ素の原子比の最大値と最小値との差の絶対値が、5at%未満であることが好ましい。また、このようなバリア層27においては、ケイ素の原子比の最大値と最小値との差の絶対値が4at%未満であることがより好ましく、さらに3at%未満であることが好ましい。ケイ素の原子比の最大値と最小値との差が上記範囲以上では、得られるバリア層27の屈折率分布曲線から配光性が不十分となる。
(酸素と炭素の合計量:酸素炭素分布曲線)
また、バリア層27において、ケイ素原子と酸素原子と炭素原子との合計量に対する、酸素原子と炭素原子との合計量の比率を、酸素炭素分布曲線とする。
バリア層27は、酸素炭素分布曲線において、酸素及び炭素の合計原子比の最大値と最小値との差の絶対値が、5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることが特に好ましい。
酸素及び炭素の合計原子比の最大値と最小値との差が上記範囲以上では、得られるバリア層27の屈折率分布曲線から配光性が不十分となる。
(XPSデプスプロファイル)
上述のケイ素分布曲線、酸素分布曲線、炭素分布曲線、酸素炭素分布曲線、及び、窒素分布曲線は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定と、アルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。XPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。
なお、横軸をエッチング時間とする元素の分布曲線では、エッチング時間がバリア層27の膜厚方向における表面からの距離に概ね相関する。このため、XPSデプスプロファイル測定の際に、エッチング速度とエッチング時間との関係から算出される、バリア層27の表面からの距離を「膜厚方向におけるバリア層27の表面からの距離」として採用することができる。
XPSデプスプロファイル測定には、エッチングイオン種としてアルゴン(Ar)を用いた希ガスイオンスパッタ法を採用し、エッチング速度(エッチングレート)を0.05nm/sec(SiO熱酸化膜換算値)とすることが好ましい。
また、バリア層27は、膜面全体において均一で且つ優れた配光性を有する層を形成するという観点から、バリア層27が膜面方向(バリア層27の表面に平行な方向)において実質的に一様であることが好ましい。バリア層27が膜面方向において実質的に一様とは、バリア層27の膜面の任意の2箇所において、それぞれの測定箇所の元素の分布曲線の有する極値の数が同じであり、且つ、分布曲線における炭素の原子比の最大値及び最小値の差の絶対値が互いに同じ、或いは、最大値及び最小値の差が5at%以内であることをいう。
(実質的連続)
バリア層27において、炭素分布曲線は実質的に連続であることが好ましい。炭素分布曲線が実質的に連続であるとは、炭素分布曲線において炭素の原子比が不連続に変化する部分を含まないことを意味する。具体的には、エッチング速度とエッチング時間とから算出されるバリア層27の表面からの距離(x、単位:nm)と、炭素の原子比(C、単位:at%)とが、下記数式(F1):
(dC/dx)≦0.5 ・・・(F1)
で表される条件を満たす。
(ケイ素原子比、酸素原子比)
また、ケイ素分布曲線、酸素分布曲線及び炭素分布曲線において、ケイ素の原子比、酸素の原子比及び炭素の原子比が、バリア層27の膜厚の90%以上の領域において上記式(1)で表される条件を満たすことが好ましい。この場合には、バリア層27中におけるケイ素原子、酸素原子及び炭素原子の合計量に対する、ケイ素原子の含有量の原子比率は、25〜45at%であることが好ましく、30〜40at%であることがより好ましい。
また、バリア層27中におけるケイ素原子、酸素原子及び炭素原子の合計量に対する、酸素原子の含有量の原子比率は、33〜67at%であることが好ましく、45〜67at%であることがより好ましい。
さらに、バリア層27中におけるケイ素原子、酸素原子及び炭素原子の合計量に対する、炭素原子の含有量の原子比率は、3〜33at%であることが好ましく、3〜25at%であることがより好ましい。
(薄膜層の厚さ)
バリア層27の厚さは、5〜3000nmの範囲であることが好ましく、10〜2000nmの範囲であることがより好ましく、100〜1000nmの範囲であることが特に好ましい。バリア層27の厚さが上記範囲を外れると、バリア層27の配光性が不十分となる。
また、バリア層27を複数の層から形成する場合には、バリア層27の全体の厚さが10〜10000nmの範囲であり、10〜5000nmの範囲であることが好ましく、100〜3000nmの範囲であることがより好ましく、200〜2000nmの範囲であることが特に好ましい。
(プライマー層)
バリア層27は、基材26との間にプライマーコート層、ヒートシール性樹脂層、接着剤層等を備えていてもよい。プライマーコート層は、基材26とバリア層27との接着性を向上させることが可能な公知のプライマーコート剤を用いて形成することができる。また、ヒートシール性樹脂層は、適宜公知のヒートシール性樹脂を用いて形成することができる。さらに、接着剤層は、適宜公知の接着剤を用いて形成することができ、このような接着剤層により複数のバリア層27を接着させてもよい。
(バリア層の製造方法)
透光性電極25においては、バリア層27がプラズマ化学気相成長法により形成された層であることが好ましい。プラズマ化学気相成長法により形成されるバリア層27としては、基材26を一対の成膜ロール上に配置し、この一対の成膜ロール間に放電してプラズマを発生させるプラズマ化学気相成長法(プラズマCVD)で形成された層であることがより好ましい。プラズマ化学気相成長法はペニング放電プラズマ方式のプラズマ化学気相成長法であってもよい。また、一対の成膜ロール間に放電する際には、一対の成膜ロールの極性を交互に反転させることが好ましい。
プラズマ化学気相成長法においてプラズマを発生させる際には、複数の成膜ロールの間の空間にプラズマ放電を発生させることが好ましい。特に、一対の成膜ロールを用い、この一対の成膜ロールのそれぞれに基材26を配置して、一対の成膜ロール間に放電してプラズマを発生させることがより好ましい。
このようにして、一対の成膜ロール上に基材26を配置して、この成膜ロール間に放電することにより、一方の成膜ロール上に存在する基材26上に成膜することができる。同時に、もう一方の成膜ロール上の基材26上にも成膜することが可能である。このため、成膜レートを倍にでき、効率よく薄膜を製造できる。さらに、一対の成膜ロール上のそれぞれの基材26上に、同じ構造の膜を形成できる。
また、上記プラズマ化学気相成長法には有機ケイ素化合物と酸素とを含む成膜ガスを用いることが好ましい。成膜ガス中の酸素の含有量は、成膜ガス中の有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。
バリア層27は、連続的な成膜プロセスにより形成された層であることが好ましい。
(バリア層の製造装置)
バリア層27は、上述のように生産性の観点からロールツーロール方式で基材26の表面上に形成されることが好ましい。プラズマ化学気相成長法によりバリア層27を製造できる装置としては、特に制限されないが、少なくとも一対の成膜ロールと、プラズマ電源とを備え、且つ、成膜ロール間において放電することが可能な構成となっている装置であることが好ましい。
例えば、図7に示す製造装置30を用いた場合には、プラズマ化学気相成長法を利用しながらロールツーロール方式で製造することも可能となる。以下、図7を参照しながら、バリア層27の製造方法について説明する。なお、図7は、バリア層27の製造に好適な製造装置の一例を示す模式図である。
図7に示す製造装置30は、送り出しロール31と、搬送ロール32、33、34、35と、成膜ロール36、37と、ガス供給管38と、プラズマ発生用電源39と、成膜ロール36及び37の内部に設置された磁場発生装置41、42と、巻取りロール43とを備えている。また、製造装置30においては、少なくとも成膜ロール36、37と、ガス供給管38と、プラズマ発生用電源39と、磁場発生装置41、42とが図示しない真空チャンバー内に配置されている。更に、製造装置30において真空チャンバーは、図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバー内の圧力を調整することが可能となっている。
製造装置30においては、一対の成膜ロール(成膜ロール36と成膜ロール37)を一対の対向電極として機能させることが可能となるように、各成膜ロールがそれぞれプラズマ発生用電源39に接続されている。このため、製造装置30においては、プラズマ発生用電源39から電力を供給することにより、成膜ロール36と成膜ロール37との間の空間に放電することが可能であり、成膜ロール36と成膜ロール37との間の空間にプラズマを発生させることができる。なお、成膜ロール36と成膜ロール37を電極として利用する場合には、電極としても利用可能なように成膜ロール36と成膜ロール37との材質や設計を変更すればよい。また、製造装置30においては、一対の成膜ロール(成膜ロール36及び37)は、中心軸が同一平面上において略平行となるようにして配置することが好ましい。このようにして、一対の成膜ロール(成膜ロール36及び37)を配置することにより、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できる。このため、炭素分布曲線における極値を少なくとも倍増させることが可能となる。そして、製造装置30によれば、CVD法によりフィルム40の表面上にバリア層27を形成することが可能であり、成膜ロール36上においてフィルム40の表面上に膜成分を堆積させつつ、更に成膜ロール37上においてもフィルム40の表面上に膜成分を堆積させることもできるため、フィルム40の表面上にバリア層27を効率よく形成することができる。
また、成膜ロール36及び成膜ロール37の内部には、成膜ロールが回転しても回転しないように固定された磁場発生装置41及び42がそれぞれ設けられている。
さらに、成膜ロール36及び成膜ロール37としては、公知のロールを用いることができる。成膜ロール36及び37としては、より効率よく薄膜を形成するという観点から、同一の直径のロールを使うことが好ましい。また、成膜ロール36及び37の直径としては、放電条件、チャンバーのスペース等の観点から、5〜100cmの範囲とすることが好ましい。
また、製造装置30においては、フィルム40の表面がそれぞれ対向するように、一対の成膜ロール(成膜ロール36と成膜ロール37)上に、フィルム40が配置されている。このようにフィルム40を配置することにより、成膜ロール36と成膜ロール37との間に放電を行ってプラズマを発生させる際に、一対の成膜ロール間に存在するフィルム40のそれぞれの表面に、同時にバリア層27を成膜することが可能となる。すなわち、製造装置30によれば、CVD法により、成膜ロール36上にてフィルム40の表面上に膜成分を堆積させ、更に成膜ロール37上にて膜成分を堆積させることができるため、フィルム40の表面上にバリア層27を効率よく形成することが可能となる。
また、製造装置30に用いる送り出しロール31及び搬送ロール32、33、34、35としては公知のロールを用いることができる。また、巻取りロール43としても、バリア層27を形成したフィルム40を巻き取ることが可能であればよく、特に制限されず、公知のロールを用いることができる。
また、ガス供給管38としては原料ガス等を所定の速度で供給又は排出することが可能な配管を用いることができる。さらに、プラズマ発生用電源39としては、公知のプラズマ発生装置の電源を用いることができる。プラズマ発生用電源39は、これに接続された成膜ロール36、37に電力を供給して、成膜ロール36、37を放電のための対向電極としての利用を可能にする。プラズマ発生用電源39としては、より効率よくプラズマCVDを実施することが可能となることから、成膜ロールの極性を交互に反転させることが可能な交流電源等を利用することが好ましい。また、より効率よくプラズマCVDを実施することが可能となることから、印加電力を100W〜10kWとすることができ、且つ、交流の周波数を50Hz〜500kHzとすることが可能なプラズマ発生用電源39を用いることがより好ましい。また、磁場発生装置41、42としては、公知の磁場発生装置を用いることができる。さらに、フィルム40としては、上述の透光性電極25に適用可能な基材26の他に、バリア層27を予め形成させた基材26を用いることができる。このように、フィルム40としてバリア層27を予め形成させた基材26を用いることにより、バリア層27の厚みを厚くすることも可能である。
上述のように、図7に示す製造装置30を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、真空チャンバー内の圧力、成膜ロールの直径、並びに、フィルムの搬送速度を調整することにより、バリア層27を製造することができる。すなわち、図7に示す製造装置30を用いて、成膜ガス(原料ガス等)を真空チャンバー内に供給しつつ、一対の成膜ロール(成膜ロール36及び37)間に放電することにより、成膜ガス(原料ガス等)がプラズマによって分解され、成膜ロール36上のフィルム40の表面上並びに成膜ロール37上のフィルム40の表面上に、バリア層27がプラズマCVD法により形成される。なお、成膜に際しては、フィルム40が送り出しロール31や成膜ロール36等により、それぞれ搬送されることにより、ロールツーロール方式の連続的な成膜プロセスによりフィルム40の表面上にバリア層27が形成される。
(原料ガス)
バリア層27の形成に用いる成膜ガス中の原料ガスとしては、形成するバリア層27の材質に応じて適宜選択して使用することができる。原料ガスとしては、例えばケイ素を含有する有機ケイ素化合物を用いることができる。有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン、1.1.3.3−テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン等が挙げられる。これらの有機ケイ素化合物の中でも、製膜での取り扱い及び得られるバリア層27の配光性等の特性の観点から、ヘキサメチルジシロキサン、1.1.3.3−テトラメチルジシロキサンを用いることが好ましい。また、これらの有機ケイ素化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
また、成膜ガスとしては、原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、1種を単独で又は2種以上を組み合わせて使用することができ、例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。
成膜ガスとしては、原料ガスを真空チャンバー内に供給するために、必要に応じてキャリアガスを用いてもよい。さらに、成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて放電用ガスを用いてもよい。キャリアガス及び放電用ガスとしては、公知のガスを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス、水素を用いることができる。
成膜ガスが、原料ガスと反応ガスとを含有する場合には、原料ガスと反応ガスとの比率を、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にし過ぎないことが好ましい。反応ガスの比率を過剰にし過ぎてしまうと、バリア層27の配光性が十分に得られなくなってしまう。また、成膜ガスが有機ケイ素化合物と酸素とを含有する場合には、成膜ガス中の有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。
以下、一例として、原料ガスにヘキサメチルジシロキサン(有機ケイ素化合物:HMDSO:(CHSiO:)、反応ガスに酸素(O)を用いる場合について説明する。
原料ガスとしてヘキサメチルジシロキサン、反応ガスとして酸素を含有する成膜ガスをプラズマCVDにより反応させて、ケイ素−酸素系の薄膜を作製する場合、成膜ガスにより下記反応式(1):
(CHSiO+12O→6CO+9HO+2SiO ・・・(1)
の反応が起こり、二酸化ケイ素が生成される。この反応において、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。このため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対して、酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成されてしまう。このため、原料のガス流量比を、理論比である完全反応の原料比以下の流量に制御して、非完全反応を遂行させる。つまり、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少ない量にする必要がある。
なお、実際のプラズマCVDチャンバー内の反応では、原料のヘキサメチルジシロキサンと反応ガスの酸素は、ガス供給部から成膜領域へ供給されるため、反応ガスの酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には完全に反応を進行させることはできない。つまり、酸素の含有量を化学量論比に比して大過剰に供給したときに、初めて反応が完結すると考えられる。例えば、CVDにより完全酸化させて酸化ケイ素を得るために、酸素のモル量(流量)を原料のヘキサメチルジシロキサンのモル量(流量)の20倍以上程度とする場合もある。
このため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍量以下(より好ましくは、10倍以下)であることが好ましい。このような比でヘキサメチルジシロキサン及び酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子がバリア層27中に取り込まれ、所望のバリア層27を形成することが可能となる。
なお、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)が少なすぎると、酸化されなかった炭素原子や水素原子がバリア層27中に過剰に取り込まれるため、バリア層27の透明性が低下する。このため、透光性電極25のように、透明性が必要とされるフレキシブル基板には利用できなくなってしまう。このような観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。
(真空度)
真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5Pa〜100Paの範囲とすることが好ましい。
(成膜ロール)
上述のプラズマCVD法において、成膜ロール36、37間に放電するために、プラズマ発生用電源39に接続された電極ドラムに印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができる。例えば、0.1〜10kWの範囲とすることが好ましい。印加電力が下限未満ではパーティクルが発生し易くなる傾向にある。他方、上限を超えると成膜時に発生する熱量が多くなり、成膜時の基材表面の温度が上昇してしまい、基材26が熱負けして成膜時に皺が発生してしまう。
なお、本例において、電極ドラムは、成膜ロール36、37に設置されている。
フィルム40の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.25〜100m/minの範囲とすることが好ましく、0.5〜20m/minの範囲とすることがより好ましい。ライン速度が下限未満では、フィルムに熱に起因する皺が発生しやすくなる傾向にあり、他方、上限を超えると、形成されるバリア層27の厚みが薄くなる傾向にある。
(平滑層)
基材26とバリア層27との間には、平滑層が形成されていてもよい。平滑層は突起等が存在する基材26の粗面を平坦化し、或いは、基材26に存在する突起により、バリア層27に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、基本的には感光性樹脂を硬化させて形成される。
平滑層の形成に用いる感光性樹脂としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。
光重合性不飽和結合を分子内に1個以上有する反応性モノマーとしては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、tert−ブチルアクリレート、n−ペンチルアクリレート、n−ヘキシルアクリレート、2−エチルヘキシルアクリレート、n−オクチルアクリレート、n−デシルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、アリルアクリレート、ベンジルアクリレート、ブトキシエチルアクリレート、ブトキシエチレングリコールアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、2−エチルヘキシルアクリレート、グリセロールアクリレート、グリシジルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、イソボニルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2−メトリキエチルアクリレート、メトキシエチレングリコールアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,5−ペンタンジオールジアクリレート、1,6−ヘキサジオールジアクリレート、1,3−プロパンジオールアクリレート、1,4−シクロヘキサンジオールジアクリレート、2,2−ジメチロールプロパンジアクリレート、グリセロールジアクリレート、トリプロピレングリコールジアクリレート、グリセロールトリアクリレート、トリメチロールプロパントリアクリレート、ポリオキシエチルトリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、エチレンオキサイド変性ペンタエリスリトールトリアクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート、プロピオンオキサイド変性ペンタエリスリトールトリアクリレート、プロピオンオキサイド変性ペンタエリスリトールテトラアクリレート、トリエチレングリコールジアクリレート、ポリオキシプロピルトリメチロールプロパントリアクリレート、ブチレングリコールジアクリレート、1,2,4−ブタンジオールトリアクリレート、2,2,4−トリメチル−1,3−ペンタジオールジアクリレート、ジアリルフマレート、1,10−デカンジオールジメチルアクリレート、ペンタエリスリトールヘキサアクリレート、及び、上記のアクリレートをメタクリレートに換えたもの、γ−メタクリロキシプロピルトリメトキシシラン、1−ビニル−2−ピロリドン等が挙げられる。上記の反応性モノマーは、1種又は2種以上の混合物として、或いは、その他の化合物との混合物として使用することができる。
感光性樹脂組成物は、光重合開始剤を含有する。
光重合開始剤としては、例えば、ベンゾフェノン、o−ベンゾイル安息香酸メチル、4,4−ビス(ジメチルアミン)ベンゾフェノン、4,4−ビス(ジエチルアミン)ベンゾフェノン、α−アミノ・アセトフェノン、4,4−ジクロロベンゾフェノン、4−ベンゾイル−4−メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2−ジエトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、p−tert−ブチルジクロロアセトフェノン、チオキサントン、2−メチルチオキサントン、2−クロロチオキサントン、2−イソプロピルチオキサントン、ジエチルチオキサントン、ベンジルジメチルケタール、ベンジルメトキシエチルアセタール、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2−tert−ブチルアントラキノン、2−アミルアントラキノン、β−クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4−アジドベンジルアセトフェノン、2,6−ビス(p−アジドベンジリデン)シクロヘキサン、2,6−ビス(p−アジドベンジリデン)−4−メチルシクロヘキサノン、2−フェニル−1,2−ブタジオン−2−(o−メトキシカルボニル)オキシム、1−フェニル−プロパンジオン−2−(o−エトキシカルボニル)オキシム、1,3−ジフェニル−プロパントリオン−2−(o−エトキシカルボニル)オキシム、1−フェニル−3−エトキシ−プロパントリオン−2−(o−ベンゾイル)オキシム、ミヒラーケトン、2−メチル[4−(メチルチオ)フェニル]−2−モノフォリノ−1−プロパン、2−ベンジル−2−ジメチルアミノ−1−(4−モノフォリノフェニル)−ブタノン−1、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、n−フェニルチオアクリドン、4,4−アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、四臭素化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン、メチレンブルー等の光還元性の色素とアスコルビン酸、トリエタノールアミン等の還元剤の組み合わせ等が挙げられ、これらの光重合開始剤を1種又は2種以上の組み合わせで使用することができる。
平滑層は、特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法、或いは、蒸着法等のドライコーティング法により形成することが好ましい。
平滑層の形成では、上述の感光性樹脂に、必要に応じて、酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、平滑層の積層位置に関係なく、いずれの平滑層においても、成膜性向上及び膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。
感光性樹脂を溶媒に溶解又は分散させた塗布液を用いて平滑層を形成する際に、使用する溶媒としては、メタノール、エタノール、n−プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール等のアルコール類、α−もしくはβ−テルピネオール等のテルペン類等、アセトン、メチルエチルケトン、シクロヘキサノン、N−メチル−2−ピロリドン、ジエチルケトン、2−ヘプタノン、4−ヘプタノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、2−メトキシエチルアセテート、シクロヘキシルアセテート、2−エトキシエチルアセテート、3−メトキシブチルアセテート等の酢酸エステル類、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、3−エトキシプロピオン酸エチル、安息香酸メチル、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等を挙げることができる。
平滑層の平滑性は、JIS B 0601で規定される表面粗さで表現される値で、最大断面高さRt(p)が、10nm以上、30nm以下であることが好ましい。10nmよりも小さい場合には、ワイヤーバー、ワイヤレスバー等の塗布方式で後述のケイ素化合物を塗布する段階において、平滑層表面に塗工手段が接触する場合に塗布性が損なわれることがある。また、30nmよりも大きい場合には、ケイ素化合物を塗布した後の、凹凸を平滑化することが難しくなる場合がある。
表面粗さは、AFM(原子間力顕微鏡)を用いて測定された、微細な凹凸の振幅に関する粗さである。この表面粗さは、AFMの極小の先端半径の触針を持つ検出器によって、数十μmの区間内を多数回測定し、この連続測定した凹凸の断面曲線から算出される。
(平滑層への添加剤)
平滑層には、添加剤が含まれていてもよい。平滑層に含まれる添加剤としては、感光性樹脂の表面に光重合反応性を有する感光性基が導入された反応性シリカ粒子(以下、単に「反応性シリカ粒子」ともいう)が好ましい。
ここで、光重合性を有する感光性基としては、(メタ)アクリロイルオキシ基に代表される重合性不飽和基等を挙げることができる。感光性樹脂は、この反応性シリカ粒子の表面に導入された感光性基と光重合反応可能な化合物、例えば、重合性不飽和基を有する不飽和有機化合物を含むことが好ましい。また、感光性樹脂は、反応性シリカ粒子や、重合性不飽和基を有する不飽和有機化合物に汎用の希釈溶剤が混合されて、固形分が調整されていてもよい。
ここで、反応性シリカ粒子の平均粒子径としては、0.001〜0.1μmの平均粒子径であることが好ましい。平均粒子径を上記範囲にすることにより、後述する平均粒子径1〜10μmの無機粒子からなるマット剤と組合せて用いると、配光性等の光学特性と、ハードコート性とを兼ね備えた平滑層を形成し易くなる。
なお、上記効果をより得やすくするためには、平均粒子径を0.001〜0.01μmの範囲をすることが好ましい。平滑層中には、上述の様な無機粒子を質量比として20%以上60%以下含有することが好ましい。20%以上添加することで、基材26とバリア層27との密着性が向上する。また、60%を超えると、フィルムを湾曲させたり、加熱処理を行った場合にクラックが生じたり、バリア層27の透明性や屈折率等の光学的物性に影響を及ぼすことがある。
なお、本例では、反応性シリカ粒子として、加水分解性シリル基の加水分解反応によってシリカ粒子との間にシリルオキシ基を生成し、化学的に結合している重合性不飽和基修飾加水分解性シランを用いることができる。
加水分解性シリル基としては、例えば、アルコキシリル基、アセトキシリル基等のカルボキシリレートシリル基、クロロシリル基等のハロゲン化シリル基、アミノシリル基、オキシムシリル基、ヒドリドシリル基等が挙げられる。
重合性不飽和基としては、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、プロペニル基、ブタジエニル基、スチリル基、エチニイル基、シンナモイル基、マレート基、アクリルアミド基等が挙げられる。
平滑層の厚さは、好ましくは1〜10μm、より好ましくは2〜7μmである。1μm以上にすることにより、平滑層を有する基材26の平滑性が十分になる。また、10μm以下にすることにより、光学特性のバランスを調整し易くなると共に、平滑層を基材26の一方の面にのみ設けた場合のカールを抑え易くすることができる。
また、平滑層には、その他の添加剤として、マット剤を含有してもよい。マット剤としては、平均粒子径が0.1〜5μm程度の無機粒子が好ましい。
このような無機粒子としては、シリカ、アルミナ、タルク、クレイ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、二酸化チタン、酸化ジルコニウム等の1種又は2種以上を併せて使用することができる。
ここで、無機粒子からなるマット剤は、平滑層の固形分100質量部に対して2質量部以上、好ましくは4質量部以上、より好ましくは6質量部以上、20質量部以下、好ましくは18質量部以下、より好ましくは16質量部以下の割合で混合されていることが好ましい。
(ブリードアウト防止層)
バリア層27には、ブリードアウト防止層を設けることができる。ブリードアウト防止層は、平滑層を有するフィルム状の基材26を加熱した際に、基材26中から未反応のオリゴマー等が表面へ移行して、基材26の表面を汚染する現象を抑制するために、平滑層を有する基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に平滑層と同じ構成をとっても構わない。
ブリードアウト防止層としては、重合性不飽和基を有する不飽和有機化合物を用いることができる。この不飽和有機化合物としては、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物、或いは、分子中に1個の重合性不飽和基を有する単価不飽和有機化合物等を用いることが好ましい。
ここで、多価不飽和有機化合物としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等が挙げられる。
また、単価不飽和有機化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、アリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、グリセロール(メタ)アクリレート、グリシジル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−エトキシエトキシ)エチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2−メトキシプロピル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等が挙げられる。
また、ブリードアウト防止層には、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂、光重合開始剤等を含有させてもよい。
この熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニル及びその共重合体、塩化ビニル及びその共重合体、塩化ビニリデン及びその共重合体等のビニル系樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール系樹脂、アクリル樹脂及びその共重合体、メタクリル樹脂及びその共重合体等のアクリル系樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、ポリカーボネート樹脂等が挙げられる。
また、熱硬化性樹脂としては、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。
また、電離放射線硬化性樹脂は、光重合性プレポリマー若しくは光重合性モノマー等の1種又は2種以上を混合した電離放射線硬化塗料に、電離放射線(紫外線又は電子線)を照射することで硬化させることができる。ここで光重合性プレポリマーとしては、1分子中に2個以上のアクリロイル基を有し、架橋硬化することにより3次元網目構造となるアクリル系プレポリマーが特に好ましい。アクリル系プレポリマーとしては、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、メラミンアクリレート等が使用できる。また光重合性モノマーとしては、上記多価不飽和有機化合物等を使用できる。
また、光重合開始剤としては、アセトフェノン、ベンゾフェノン、ミヒラーケトン、ベンゾイン、ベンジルメチルケタール、ベンゾインベンゾエート、ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−(4−モルフォリニル)−1−プロパン、α−アシロキシムエステル、チオキサンソン類等が挙げられる。
ブリードアウト防止層は、マット剤や他の必要な成分を配合した後、必要に応じて希釈溶剤で塗布液を調製し、この塗布液を基材表面に従来公知の塗布方法によって塗布し、塗布液に電離放射線を照射して硬化させることにより形成することができる。なお、電離放射線としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等から発せられる100〜400nm、好ましくは200〜400nmの波長領域の紫外線を照射する。或いは、走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射する。
ブリードアウト防止層の厚さとしては、1〜10μmであることが好ましく、特に2〜7μmであることが好ましい。1μm以上とすることにより、耐熱性を十分にできる。また、10μm以下とすることにより、光学特性のバランスを調整し易くなると共に、平滑層を基材26の一方の面に設けた場合におけるカールを抑えることができる。
[透光性電極の用途]
上述した各実施形態の透光性電極は、各種電子デバイスに用いることができる。電子デバイスの例としては、有機電界発光素子、LED(Light Emitting Diode)、液晶素子、有機光電変換素子、タッチパネル等が挙げられ、これらの電子デバイスにおいて光透過性を必要とされる電極部材として、上述の透光性電極を用いることができる。
以下では、用途の一例として、透光性電極をアノード及びカソードとして用いた有機電界発光素子の実施形態、及び、有機光電変換素子の透明電極に適用した実施形態を説明する。
〈4.有機電界発光素子(第4実施形態:ボトムエミッション型)〉
[有機電界発光素子の構成]
次に、本発明の第4実施形態について説明する。第4実施形態は、電子デバイスの一例として、上述の第第3実施形態の透光性電極25を用いた有機電界発光素子について説明する。図8に、本実施形態の有機電界発光素子の概略構成を示す。以下にこの図に基づいて有機電界発光素子の構成を説明する。
図8に示す有機電界発光素子50は、アノードとなる透光性電極25上に、発光機能層45、及びカソードとなる対向電極46が積層され、さらに、樹脂層47及び封止部材48により固体封止された構成である。このうち、アノードとして用いられている透光性電極25は、上述の第3実施形態と同様の構成である。このため有機電界発光素子50は、発生させた光(以下、発光光hと記す)を、少なくとも基材26側から取り出すボトムエミッション型として構成されている。
また、有機電界発光素子50の全体的な層構造は、上記に限定されることはなく、一般的な層構造であってもよい。ここでは、透光性電極25がアノード(すなわち陽極)側に配置され、主に導電層12がアノードとして機能する一方、対向電極46がカソード(すなわち陰極)として機能する。
この場合、例えば発光機能層45は、アノードである透光性電極25の上部に[正孔注入層45a/正孔輸送層45b/発光層45c/電子輸送層45d/電子注入層45e]をこの順に積層した構成を例示できるが、このうち少なくとも有機材料を用いて構成された発光層45cを有することが必要である。正孔注入層45a及び正孔輸送層45bは、正孔輸送性と正孔注入性とを有する正孔輸送/注入層として設けられてもよい。電子輸送層45d及び電子注入層45eは、電子輸送性と電子注入性とを有する単一層として設けられてもよい。また、これらの発光機能層45のうち、例えば電子注入層45eは無機材料で構成されている場合もある。
また、発光機能層45は、これらの層の他にも正孔阻止層や電子阻止層等が必要に応じて必要箇所に積層されていてよい。さらに、発光層45cは、各波長領域の発光光を発生させる各色発光層を有し、これらの各色発光層を、非発光性の中間層を介して積層させて発光層ユニットとして形成されていてもよい。中間層は、正孔阻止層、電子阻止層として機能してもよい。さらにカソードである対向電極46も、必要に応じた積層構造であってもよい。このような構成において、透光性電極25と対向電極46とで発光機能層45が挟持されている部分のみが、有機電界発光素子50における発光領域となる。
また、有機電界発光素子50は、透光性電極25の一方面上に、発光機能層45、及び、対向電極46を覆う樹脂層47を介して、封止部材48が貼り合わされることにより、固体封止されている。有機電界発光素子50の固体封止は、封止部材48の貼合面、又は、透光性電極25の基材26及び対向電極46上のいずれか一方に、未硬化の樹脂材料を複数箇所に塗布し、この樹脂材料を挟んで基材26と封止部材48とを、加熱した状態で互いに押圧して一体化する。
(導電層の平滑化)
上記構成の有機電界発光素子50では、固体封止の際に加えられた圧力で、下地層11上に形成された導電層12に、下地層11の平滑な表面が転写される。このため、導電層12の表面を、下地層11の表面と同様に、Ra≦2に平滑化することができる。以下、この平滑化について説明する。
導電層12を構成するAg層は、薄く柔軟なため、応力により変形しやすい特性を有する。そして、Ag層が柔軟で変形しやすいため、固体封止の際に素子全体にかかる応力がこのAg層に集中しやすい。さらに、固体封止の際の加熱により、Ag層がより変形しやすくなる。これに対し、下地層11は表面の弾性率が高いため、固体封止の応力によって変形せず、形成時の平滑性(Ra≦2)を保つ。このため、応力により変形するAg層が、導電層12の下部に形成されて下地層11の表面形状に沿うように変形する。この結果、下地層11の表面の平滑面の形状が、導電層12に転写され、導電層12の表面形状を下地層11と同様に平滑化することができる。
また、下地層11と導電層12とに窒素含有層23が挟持されている場合にも、固体封止により、導電層12の平滑化が可能である。この場合には、窒素含有層23の表面と導電層12の表面とが合わせて平滑化される。窒素含有層23は上述の説明のように、塗布法により形成することが可能である。塗布法により窒素含有層23を形成した場合には、下地層11と同程度の平滑性を有する表面を形成することができる。このため、窒素含有層23上にAgからなる導電層が形成されている場合にも、固体封止により、導電層12の表面の平滑化が可能となる。
以下、上述した有機電界発光素子50を構成するための主要各層の詳細を、透光性電極25、対向電極46、発光機能層45の発光層45c、発光機能層45の他の層、封止部材48及び樹脂層47の順に説明する。
[透光性電極(アノード側)]
透光性電極25は、上述の第3実施形態の透光性電極25であり、基材26側から順に、バリア層27、下地層11、窒素含有層23、及び導電層12が順に形成された構成である。ここでは特に、透光性電極25を構成する導電層12が実質的なアノードとなる。
[対向電極(カソード)]
対向電極46は、発光機能層45に電子を供給するためのカソードとして機能する電極層であり、金属、合金、有機又は無機の導電性化合物、及びこれらの混合物が用いられる。具体的には、金、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO、SnO等の酸化物半導体等が挙げられる。
対向電極46は、これらの導電性材料を蒸着やスパッタリング等の方法により形成することができる。また、対向電極46としてのシート抵抗は、数百Ω/sq.以下が好ましく、厚さは通常5nm〜5μm、好ましくは5nm〜200nmの範囲で選ばれる。
なお、この有機電界発光素子50が、対向電極46側からも発光光hを取り出す両面発光型であれば、上述した導電性材料のうち光透過性の良好な導電性材料を選択して対向電極46を構成する。
[発光層]
本実施形態の有機電界発光素子に用いられる発光層45cは、発光材料として例えば燐光発光化合物が含有されている。
この発光層45cは、電極又は電子輸送層45dから注入された電子と、正孔輸送層45bから注入された正孔とが再結合して発光する層であり、発光する部分は発光層45cの層内であっても発光層45cにおける隣接する層との界面であってもよい。
このような発光層45cとしては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層45c間には非発光性の中間層(図示せず)を有していることが好ましい。
発光層45cの厚さの総和は1〜100nmの範囲にあることが好ましく、さらに好ましくは、より低い電圧で駆動することができることから1〜30nmである。尚、発光層45cの厚さの総和とは、発光層45c間に非発光性の中間層が存在する場合には、当該中間層も含む厚さである。
複数層を積層した構成の発光層45cの場合、個々の発光層の厚さとしては、1〜50nmの範囲に調整することが好ましく、1〜20nmの範囲に調整することがより好ましい。積層された複数の発光層が、青、緑、赤のそれぞれの発光色に対応する場合、青、緑、赤の各発光層の厚さの関係については、特に制限はない。
以上のような発光層45cは、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜形成方法により形成することができる。
また発光層45cは、複数の発光材料を混合してもよく、また燐光発光材料と蛍光発光材料(蛍光ドーパント、蛍光性化合物ともいう)を同一発光層45c中に混合して用いてもよい。
発光層45cの構成として、ホスト化合物(発光ホストともいう)、発光材料(発光ドーパント化合物、ゲスト材料ともいう)を含有し、発光材料より発光させることが好ましい。
(ホスト化合物)
発光層45cに含有されるホスト化合物としては、室温(25℃)における燐光発光の燐光量子収率が0.1未満の化合物が好ましい。さらに、燐光量子収率が0.01未満である化合物が好ましい。また、ホスト化合物は、発光層45cに含有される化合物の中で、層中での体積比が50%以上であることが好ましい。
ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、又は複数種用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機電界発光素子50を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。
公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、発光の長波長化を防ぎ、かつ高Tg(ガラス転移温度)化合物が好ましい。ここでいうガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS−K−7121に準拠した方法により求められる値である。
以下に、有機電界発光素子に適用可能なホスト化合物の具体例(H1〜H79)を示す。なお、有機電界発光素子に適用可能なホスト化合物は、これらに限定されない。
ホスト化合物H68〜H79において、x及びyはランダム共重合体の比率を表す。その比率は、例えば、x:y=1:10などとすることができる。
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
公知のホスト化合物の具体例としては、以下の文献に記載されている化合物を用いることもできる。例えば、特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等が挙げられる。
(発光材料)
本実施形態の有機電界発光素子に用いることのできる発光材料としては、燐光発光性化合物(燐光性化合物、燐光発光材料ともいう)が挙げられる。
燐光発光性化合物とは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にて燐光発光する化合物であり、燐光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましい燐光量子収率は0.1以上である。
上記燐光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中での燐光量子収率は種々の溶媒を用いて測定できるが、本例において燐光発光性化合物を用いる場合、任意の溶媒のいずれかにおいて上記燐光量子収率(0.01以上)が達成されればよい。
燐光発光性化合物の発光の原理としては2種挙げられる。一つは、キャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーを燐光発光性化合物に移動させることで燐光発光性化合物からの発光を得るというエネルギー移動型であり、もう一つは、燐光発光性化合物がキャリアトラップとなり、燐光発光性化合物上でキャリアの再結合が起こり燐光発光性化合物からの発光が得られるというキャリアトラップ型である。いずれの場合においても、燐光発光性化合物の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件となる。
燐光発光性化合物は、一般的な有機電界発光素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8〜10族の金属を含有する錯体系化合物である。さらに好ましくはイリジウム化合物、オスミウム化合物、又は白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
本実施形態の有機電界発光素子においては、少なくとも一つの発光層45cに2種以上の燐光発光性化合物を含有していてもよく、発光層45cにおける燐光発光性化合物の濃度比が発光層45cの厚さ方向で変化していてもよい。
燐光発光性化合物は好ましくは発光層45cの総量に対し0.1体積%以上30体積%未満である。
(一般式(7)で表される化合物)
発光層45cに含まれる化合物(燐光発光性化合物)は、下記一般式(7)で表される化合物であることが好ましい。
なお、一般式(7)で表される燐光発光性化合物(燐光発光性の金属錯体ともいう)は、有機電界発光素子50の発光層45cに発光ドーパントとして含有されることが好ましい態様であるが、発光層45c以外の発光機能層に含有されていてもよい。
Figure 2014077063
上記一般式(7)中、P、Qは、各々炭素原子又は窒素原子を表し、A1はP−Cと共に芳香族炭化水素環又は芳香族複素環を形成する原子群を表す。A2はQ−Nと共に芳香族複素環を形成する原子群を表す。P1−L1−P2は2座の配位子を表し、P1、P2は各々独立に炭素原子、窒素原子又は酸素原子を表す。L1はP1、P2と共に2座の配位子を形成する原子群を表す。j1は1〜3の整数を表し、j2は0〜2の整数を表すが、j1+j2は2又は3である。M1は元素周期表における8族〜10族の遷移金属元素を表す。
そして、一般式(7)において、A1が、P−Cと共に形成する芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。
これらの環はさらに、一般式(1)のR11,R12として例示した置換基を有してもよい。
一般式(7)において、A1が、P−Cと共に形成する芳香族複素環としては、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、アザカルバゾール環等が挙げられる。
ここで、アザカルバゾール環とは、上記カルバゾール環を構成するベンゼン環の炭素原子が1つ以上窒素原子で置き換わったものを示す。
これらの環はさらに、一般式(1)のR11,R12として例示した置換基を有してもよい。
一般式(7)において、A2が、Q−Nと共に形成する芳香族複素環としては、オキサゾール環、オキサジアゾール環、オキサトリアゾール環、イソオキサゾール環、テトラゾール環、チアジアゾール環、チアトリアゾール環、イソチアゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、ピラゾール環、トリアゾール環等が挙げられる。
これらの環はさらに、一般式(1)のR11,R12として例示した置換基を有してもよい。
P1−L1−P2で表される2座の配位子としては、フェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボール、アセチルアセトン、ピコリン酸等が挙げられる。
一般式(7)において、j1は1〜3の整数を表し、j2は0〜2の整数を表すが、j1+j2は2又は3を表す、中でも、j2は0である場合が好ましい。
一般式(7)において、M1は元素周期表における8族〜10族の遷移金属元素(単に遷移金属ともいう)が用いられるが、中でも、イリジウム好ましい。
(一般式(8)で表される化合物)
一般式(7)で表される化合物の中でも、下記一般式(8)で表される化合物であることがさらに好ましい。
Figure 2014077063
上記一般式(8)中、Zは、炭化水素環基又は複素環基を表す。P、Qは、各々炭素原子又は窒素原子を表し、A1はP−Cと共に芳香族炭化水素環又は芳香族複素環を形成する原子群を表す。A3は−C(R01)=C(R02)−、−N=C(R02)−、−C(R01)=N−又は−N=N−を表し、R01、R02は、各々水素原子又は置換基を表す。P1−L1−P2は2座の配位子を表し、P1、P2は各々独立に炭素原子、窒素原子、又は酸素原子を表す。L1はP1、P2と共に2座の配位子を形成する原子群を表す。j1は1〜3の整数を表し、j2は0〜2の整数を表すが、j1+j2は2又は3である。M1は元素周期表における8族〜10族の遷移金属元素を表す。
一般式(8)において、Zで表される炭化水素環基としては、非芳香族炭化水素環基、芳香族炭化水素環基が挙げられ、非芳香族炭化水素環基としては、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらの基は、無置換でもよく、一般式(1)のR11,R12として例示した置換基を有してもよい。好ましくは、Zで表される基は、芳香族炭化水素環基又は芳香族複素環基である。
また、芳香族炭化水素環基(芳香族炭化水素基、アリール基等ともいう)としては、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が挙げられる。
これらの基は、無置換でもよく、一般式(1)のR11,R12として例示した置換基を有してもよい。
一般式(8)において、Zで表される複素環基としては、非芳香族複素環基、芳香族複素環基等が挙げられ、非芳香族複素環基としては、例えば、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε−カプロラクトン環、ε−カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3−ジオキサン環、1,4−ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン−1,1−ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]−オクタン環等から導出される基を挙げられる。
これらの基は、無置換でもよく、一般式(1)のR11,R12として例示した置換基を有してもよい。
芳香族複素環基としては、例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等が挙げられる。
これらの基は、無置換でもよく、一般式(1)のR11,R12として例示した置換基を有してもよい。
一般式(8)において、A1が、P−Cと共に形成する芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。
これらの環はさらに、一般式(1)のR11,R12として例示した置換基を有してもよい。
一般式(8)において、A1がP−Cと共に形成する芳香族複素環としては、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、カルボリン環、アザカルバゾール環等が挙げられる。
ここで、アザカルバゾール環とは、上記カルバゾール環を構成するベンゼン環の炭素原子が1つ以上窒素原子で置き換わったものを示す。
これらの環はさらに、一般式(1)のR11,R12として例示した置換基を有してもよい。
一般式(8)のA3で表される、−C(R01)=C(R02)−、−N=C(R02)−、−C(R01)=N−において、R01、R02で各々表される置換基は、一般式(1)のR11,R12として例示した置換基と同義である。
一般式(8)において、P1−L1−P2で表される2座の配位子としては、フェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボール、アセチルアセトン、ピコリン酸等が挙げられる。
また、j1は1〜3の整数を表し、j2は0〜2の整数を表すが、j1+j2は2又は3を表す、中でも、j2は0である場合が好ましい。
一般式(8)において、M1で表される元素周期表における8族〜10族の遷移金属元素(単に遷移金属ともいう)は、一般式(7)において、M1で表される元素周期表における8族〜10族の遷移金属元素と同義である。
(一般式(9)で表される化合物)
上記一般式(8)で表される化合物の好ましい態様の一つとして、下記一般式(9)で表される化合物が挙げられる。
Figure 2014077063
上記一般式(9)中、R03は置換基を表し、R04は水素原子又は置換基を表し、複数のR04は互いに結合して環を形成してもよい。n01は1〜4の整数を表す。R05は水素原子又は置換基を表し、複数のR05は互いに結合して環を形成してもよい。n02は1〜2の整数を表す。R06は水素原子又は置換基を表し、互いに結合して環を形成してもよい。n03は1〜4の整数を表す。Z1はC−Cと共に6員の芳香族炭化水素環若しくは、5員又は6員の芳香族複素環を形成するのに必要な原子群を表す。Z2は炭化水素環基又は複素環基を形成するのに必要な原子群を表す。P1−L1−P2は2座の配位子を表し、P1、P2は各々独立に炭素原子、窒素原子又は酸素原子を表す。L1はP1、P2と共に2座の配位子を形成する原子群を表す。j1は1〜3の整数を表し、j2は0〜2の整数を表すが、j1+j2は2又は3である。M1は元素周期表における8族〜10族の遷移金属元素を表す。R03とR06、R04とR06及びR05とR06は互いに結合して環を形成していてもよい。
一般式(9)において、R03、R04、R05、R06で各々表される置換基は、一般式(1)のR11,R12として例示した置換基を有してもよい。
一般式(9)において、Z1がC−Cと共に形成する6員の芳香族炭化水素環としては、ベンゼン環等が挙げられる。
これらの環はさらに、一般式(1)のR11,R12として例示した置換基を有してもよい。
一般式(9)において、Z1がC−Cと共に形成する5員又は6員の芳香族複素環としては、例えば、オキサゾール環、オキサジアゾール環、オキサトリアゾール環、イソオキサゾール環、テトラゾール環、チアジアゾール環、チアトリアゾール環、イソチアゾール環、チオフェン環、フラン環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、ピラゾール環、トリアゾール環等が挙げられる。
これらの環はさらに、一般式(1)のR11,R12として例示した置換基を有してもよい。
一般式(9)において、Z2で表される炭化水素環基としては、非芳香族炭化水素環基、芳香族炭化水素環基が挙げられ、非芳香族炭化水素環基としては、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらの基は、無置換でもよく、一般式(1)のR11,R12として例示した置換基を有してもよい。
また、芳香族炭化水素環基(芳香族炭化水素基、アリール基等ともいう)としては、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が挙げられる。これらの基は、無置換でもよく、一般式(1)のR11,R12として例示した置換基を有してもよい。
一般式(9)において、Z2で表される複素環基としては、非芳香族複素環基、芳香族複素環基等が挙げられ、非芳香族複素環基としては、例えば、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε−カプロラクトン環、ε−カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3−ジオキサン環、1,4−ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン−1,1−ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]−オクタン環等から導出される基を挙げることができる。これらの基は無置換でもよく、また、一般式(1)のR11,R12として例示した置換基を有してもよい。
芳香族複素環基としては、例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等が挙げられる。
これらの環は無置換でもよく、さらに一般式(1)のR11,R12として例示した置換基を有してもよい。
一般式(9)において、Z1及びZ2で形成される基としては、ベンゼン環が好ましい。
一般式(9)において、P1−L1−P2で表される2座の配位子は、一般式(7)において、P1−L1−P2で表される2座の配位子と同義である。
一般式(9)において、M1で表される元素周期表における8族〜10族の遷移金属元素は、一般式(7)において、M1で表される元素周期表における8族〜10族の遷移金属元素と同義である。
また、燐光発光性化合物は、有機電界発光素子50の発光層45cに使用される公知のものの中から適宜選択して用いることができる。
本実施形態の有機電界発光素子に適用される燐光発光性化合物は、好ましくは元素の周期表で8〜10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、又は白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
以下に燐光発光性化合物の具体例(Pt−1〜Pt−3、A−1、Ir−1〜Ir−50)を示す。なお、本実施形態の有機電界発光素子に適用される燐光発光性化合物は、これらに限定されない。なお、これらの化合物において、m及びnは繰り返し数を表す。
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
Figure 2014077063
上記の燐光発光性化合物(燐光発光性金属錯体等ともいう)は、例えば、Organic Letters誌 vol.3 No.16 2579〜2581頁(2001)、Inorganic Chemistry,第30巻 第8号 1685〜1687頁(1991年)、J.Am.Chem.Soc.,123巻 4304頁(2001年)、Inorganic Chemistry,第40巻第7号 1704〜1711頁(2001年)、Inorganic Chemistry,第41巻 第12号 3055〜3066頁(2002年)、New Journal of Chemistry.,第26巻 1171頁(2002年)、European Journal of Organic Chemistry,第4巻 695〜709頁(2004年)、さらにこれらの文献中に記載の参考文献等の方法を適用することにより合成できる。
(蛍光発光材料)
蛍光発光材料としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。
[注入層:正孔注入層、電子注入層]
注入層とは、駆動電圧低下や発光輝度向上のために電極と発光層45cの間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層45aと電子注入層45eとがある。
注入層は、必要に応じて設けることができる。正孔注入層45aであれば、アノードと発光層45c又は正孔輸送層45bの間、電子注入層45eであればカソードと発光層45c又は電子輸送層45dとの間に配置される。
正孔注入層45aは、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニン層、酸化バナジウムに代表される酸化物層、アモルファスカーボン層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子層等が挙げられる。
電子注入層45eは、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属層、フッ化カリウムに代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデンに代表される酸化物層等が挙げられる。電子注入層45eはごく薄い層であることが望ましく、素材にもよるがその厚さは1nm〜10μmの範囲が好ましい。
[正孔輸送層]
正孔輸送層45bは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層45a、電子阻止層も正孔輸送層45bに含まれる。正孔輸送層45bは単層又は複数層設けることができる。
正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、さらには米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
また、特開平11−251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されているような、いわゆるp型正孔輸送材料を用いることもできる。高効率の発光素子が得られることから、これらの材料を用いることが好ましい。
正孔輸送層45bは、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層45bの厚さについては特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層45bは、上記材料の1種又は2種以上からなる一層構造であってもよい。
また、正孔輸送層45bの材料に不純物をドープしてp性を高くすることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
このように、正孔輸送層45bのp性を高くすると、より低消費電力の素子を作製することができるため好ましい。
[電子輸送層]
電子輸送層45dは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層45e、正孔阻止層(図示せず)も電子輸送層45dに含まれる。電子輸送層45dは単層構造又は複数層の積層構造として設けることができる。
単層構造の電子輸送層45d、及び積層構造の電子輸送層45dにおいて発光層45cに隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層45cに伝達する機能を有していればよい。このような材料としては従来公知の化合物の中から任意に選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層45dの材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq3)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層45dの材料として用いることができる。
その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されていても、電子輸送層45dの材料として好ましく用いることができる。また、発光層45cの材料としても例示されるジスチリルピラジン誘導体も電子輸送層45dの材料として用いることができ、正孔注入層45a、正孔輸送層45bと同様にn型−Si、n型−SiC等の無機半導体も電子輸送層45dの材料として用いることができる。
電子輸送層45dは、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層45dの厚さについては特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層45dは上記材料の1種又は2種以上からなる一層構造であってもよい。
また、電子輸送層45dに不純物をドープし、n性を高くすることもできる。その例としては、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。さらに電子輸送層45dには、カリウムやカリウム化合物などを含有させることが好ましい。カリウム化合物としては、例えば、フッ化カリウム等を用いることができる。このように電子輸送層45dのn性を高くすると、より低消費電力の素子を作製することができる。
また電子輸送層45dの材料(電子輸送性化合物)として、好ましくは、下記一般式(10)で表される化合物を用いることができる。
(Ar1)n1−Y1 ・・・一般式(10)
一般式(10)の式中、n1は1以上の整数を表し、Y1はn1が1の場合は置換基を表し、n1が2以上の場合は単なる結合手又はn1価の連結基を表す。Ar1は後記する一般式(A)で表される基を表し、n1が2以上の場合、複数のAr1は同一でも異なっていてもよい。ただし、上記一般式(10)で表される化合物は分子内に3環以上の環が縮合してなる縮合芳香族複素環を少なくとも2つ有する。
一般式(10)において、Y1で表される置換基の例としては、透光性電極25の窒素含有層23を構成する化合物として示した一般式(1)のR11,R12として例示した置換基と同義である。
一般式(10)において、Y1で表されるn1価の連結基としては、具体的には、2価の連結基、3価の連結基、4価の連結基等が挙げられる。
一般式(10)において、Y1で表される2価の連結基としては、アルキレン基(例えば、エチレン基、トリメチレン基、テトラメチレン基、プロピレン基、エチルエチレン基、ペンタメチレン基、ヘキサメチレン基、2,2,4−トリメチルヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、シクロヘキシレン基(例えば、1,6−シクロヘキサンジイル基等)、シクロペンチレン基(例えば、1,5−シクロペンタンジイル基など)等)、アルケニレン基(例えば、ビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基、1−メチルビニレン基、1−メチルプロペニレン基、2−メチルプロペニレン基、1−メチルペンテニレン基、3−メチルペンテニレン基、1−エチルビニレン基、1−エチルプロペニレン基、1−エチルブテニレン基、3−エチルブテニレン基等)、アルキニレン基(例えば、エチニレン基、1−プロピニレン基、1−ブチニレン基、1−ペンチニレン基、1−ヘキシニレン基、2−ブチニレン基、2−ペンチニレン基、1−メチルエチニレン基、3−メチル−1−プロピニレン基、3−メチル−1−ブチニレン基等)、アリーレン基(例えば、o−フェニレン基、p−フェニレン基、ナフタレンジイル基、アントラセンジイル基、ナフタセンジイル基、ピレンジイル基、ナフチルナフタレンジイル基、ビフェニルジイル基(例えば、[1,1’−ビフェニル]−4,4’−ジイル基、3,3’−ビフェニルジイル基、3,6−ビフェニルジイル基等)、テルフェニルジイル基、クアテルフェニルジイル基、キンクフェニルジイル基、セキシフェニルジイル基、セプチフェニルジイル基、オクチフェニルジイル基、ノビフェニルジイル基、デシフェニルジイル基等)、ヘテロアリーレン基(例えば、カルバゾール環、カルボリン環、ジアザカルバゾール環(モノアザカルボリン環ともいい、カルボリン環を構成する炭素原子のひとつが窒素原子で置き換わった構成の環構成を示す)、トリアゾール環、ピロール環、ピリジン環、ピラジン環、キノキサリン環、チオフェン環、オキサジアゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インドール環からなる群から導出される2価の基等)、酸素や硫黄などのカルコゲン原子、3環以上の環が縮合してなる縮合芳香族複素環から導出される基等(ここで、3環以上の環が縮合してなる縮合芳香族複素環としては、好ましくはN、O及びSから選択されたヘテロ原子を、縮合環を構成する元素として含有する芳香族複素縮合環であることが好ましく、具体的には、アクリジン環、ベンゾキノリン環、カルバゾール環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等)が挙げられる。
一般式(10)において、Y1で表される3価の連結基としては、例えば、エタントリイル基、プロパントリイル基、ブタントリイル基、ペンタントリイル基、ヘキサントリイル基、ヘプタントリイル基、オクタントリイル基、ノナントリイル基、デカントリイル基、ウンデカントリイル基、ドデカントリイル基、シクロヘキサントリイル基、シクロペンタントリイル基、ベンゼントリイル基、ナフタレントリイル基、ピリジントリイル基、カルバゾールトリイル基等が挙げられる。
一般式(10)において、Y1で表される4価の連結基としては、上記の3価の基にさらにひとつ結合基がついたものであり、例えば、プロパンジイリデン基、1,3−プロパンジイル−2−イリデン基、ブタンジイリデン基、ペンタンジイリデン基、ヘキサンジイリデン基、ヘプタンジイリデン基、オクタンジイリデン基、ノナンジイリデン基、デカンジイリデン基、ウンデカンジイリデン基、ドデカンジイリデン基、シクロヘキサンジイリデン基、シクロペンタンジイリデン基、ベンゼンテトライル基、ナフタレンテトライル基、ピリジンテトライル基、カルバゾールテトライル基等が挙げられる。
なお、上記の2価の連結基、3価の連結基、4価の連結基は、各々さらに一般式(1)のR11,R12として例示した置換基を有してもよい。
一般式(10)で表される化合物の好ましい態様としては、Y1が3環以上の環が縮合してなる縮合芳香族複素環から導出される基を表すことが好ましく、当該3環以上の環が縮合してなる縮合芳香族複素環としては、ジベンゾフラン環又はジベンゾチオフェン環が好ましい。また、n1が2以上であることが好ましい。
さらに、一般式(10)で表される化合物は、分子内に上記の3環以上の環が縮合してなる縮合芳香族複素環を少なくとも2つ有する。
また、Y1がn1価の連結基を表す場合、一般式(10)で表される化合物の三重項励起エネルギーを高く保つために、Y1は非共役であることが好ましく、さらに、Tg(ガラス転移点、ガラス転移温度ともいう)を向上させる点から、芳香環(芳香族炭化水素環+芳香族複素環)で構成されていることが好ましい。
ここで、非共役とは、連結基が単結合(一重結合ともいう)と二重結合の繰り返しによって表記できないか、又は連結基を構成する芳香環同士の共役が立体的に切断されている場合を意味する。
(一般式(A)で表される基)
一般式(10)中におけるAr1は、下記一般式(A)で表される基を表す。
Figure 2014077063
式中、Xは、−N(R)−、−O−、−S−又は−Si(R)(R′)−を表し、E1〜E8は、−C(R1)=又は−N=を表し、R、R′及びR1は水素原子、置換基又はY1との連結部位を表す。*はY1との連結部位を表す。Y2は単なる結合手又は2価の連結基を表す。Y3及びY4は、各々5員又は6員の芳香族環から導出される基を表し、少なくとも一方は環構成原子として窒素原子を含む芳香族複素環から導出される基を表す。n2は1〜4の整数を表す。
ここで、一般式(A)のXで表される−N(R)−又は−Si(R)(R′)−において、さらに、E1〜E8で表される−C(R1)=において、R、R′及びR1で各々表される置換基は、一般式(1)のR11,R12として例示した置換基と同義である。
また、一般式(A)において、Y2で表される2価の連結基としては、一般式(10)において、Y1で表される2価の連結基と同義である。
さらに、一般式(A)において、Y3及びY4で各々表される5員又は6員の芳香族環から導出される基の形成に用いられる5員又は6員の芳香族環としては、ベンゼン環、オキサゾール環、チオフェン環、フラン環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ジアジン環、トリアジン環、イミダゾール環、イソオキサゾール環、ピラゾール環、トリアゾール環等が挙げられる。
さらに、Y3及びY4で各々表される5員又は6員の芳香族環から導出される基の少なくとも一方は、環構成原子として窒素原子を含む芳香族複素環から導出される基を表すが、当該環構成原子として窒素原子を含む芳香族複素環としては、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ジアジン環、トリアジン環、イミダゾール環、イソオキサゾール環、ピラゾール環、トリアゾール環等が挙げられる。
(Y3で表される基の好ましい態様)
一般式(A)において、Y3で表される基としては、上記6員の芳香族環から導出される基であることが好ましく、さらに好ましくは、ベンゼン環から導出される基である。
(Y4で表される基の好ましい態様)
一般式(A)において、Y4で表される基としては、上記6員の芳香族環から導出される基であることが好ましく、さらに好ましくは、窒素原子を環構成原子として含む芳香族複素環から導出される基であり、特に好ましくは、Y4がピリジン環から導出される基である。
(一般式(A)で表される基の好ましい態様)
一般式(A)で表される基の好ましい態様としては、下記一般式(A−1)、(A−2)、(A−3)、又は(A−4)のいずれかで表される基が挙げられる。
Figure 2014077063
上記一般式(A−1)の式中、Xは−N(R)−、−O−、−S−又は−Si(R)(R′)−を表し、E1〜E8は−C(R1)=又は−N=を表し、R、R′及びR1は水素原子、置換基又はY1との連結部位を表す。Y2は単なる結合手又は2価の連結基を表す。E11〜E20は、−C(R2)=又は−N=を表し、少なくとも1つは−N=を表す。R2は、水素原子、置換基又は連結部位を表す。但し、E11、E12の少なくとも1つは−C(R2)=を表し、R2は連結部位を表す。n2は1〜4の整数を表す。*は、上記一般式(10)のY1との連結部位を表す。
Figure 2014077063
上記一般式(A−2)の式中、Xは−N(R)−、−O−、−S−又は−Si(R)(R′)−を表し、E1〜E8は−C(R1)=又は−N=を表し、R、R′及びR1は水素原子、置換基又はY1との連結部位を表す。Y2は単なる結合手又は2価の連結基を表す。E21〜E25は−C(R2)=又は−N=を表し、E26〜E30は−C(R2)=、−N=、−O−、−S−又は−Si(R3)(R4)−を表し、E21〜E30の少なくとも1つは−N=を表す。R2は、水素原子、置換基又は連結部位を表し、R3及びR4は水素原子又は置換基を表す。但し、E21又はE22の少なくとも1つは−C(R2)=を表し、R2は連結部位を表す。n2は1〜4の整数を表す。*は、上記一般式(10)のY1との連結部位を表す。
Figure 2014077063
上記一般式(A−3)の式中、Xは−N(R)−、−O−、−S−又は−Si(R)(R′)−を表し、E1〜E8は−C(R1)=又は−N=を表し、R、R′及びR1は水素原子、置換基又はY1との連結部位を表す。Y2は単なる結合手又は2価の連結基を表す。E31〜E35は−C(R2)=、−N=、−O−、−S−又は−Si(R3)(R4)−を表し、E36〜E40は−C(R2)=又は−N=を表し、E31〜E40の少なくとも1つは−N=を表す。R2は、水素原子、置換基又は連結部位を表し、R3及びR4は水素原子又は置換基を表す。但し、E32又はE33の少なくとも1つは−C(R2)=で表され、R2は連結部位を表す。n2は1〜4の整数を表す。*は、上記一般式(10)のY1との連結部位を表す。
Figure 2014077063
上記一般式(A−4)の式中、Xは−N(R)−、−O−、−S−又は−Si(R)(R′)−を表し、E1〜E8は−C(R1)=又は−N=を表し、R、R′及びR1は水素原子、置換基又はY1との連結部位を表す。Y2は単なる結合手又は2価の連結基を表す。E41〜E50は−C(R2)=、−N=、−O−、−S−又は−Si(R3)(R4)−を表し、少なくとも1つは−N=を表す。R2は、水素原子、置換基又は連結部位を表し、R3及びR4は水素原子又は置換基を表す。但し、E42又はE43の少なくとも1つは−C(R2)=で表され、R2は連結部位を表す。n2は1〜4の整数を表す。*は、上記一般式(10)のY1との連結部位を表す。
以下、一般式(A−1)〜(A−4)のいずれかで表される基について説明する。
一般式(A−1)〜(A−4)で表される基のいずれかのXで表される−N(R)−又は−Si(R)(R′)−において、さらにE1〜E8で表される−C(R1)=において、R、R′及びR1で各々表される置換基は、一般式(1)のR11,R12として例示した置換基と同義である。
一般式(A−1)〜(A−4)で表される基のいずれかにおいて、Y2で表される2価の連結基としては、一般式(10)において、Y1で表される2価の連結基と同義である。
一般式(A−1)のE11〜E20、一般式(A−2)のE21〜E30、一般式(A−3)のE31〜E40、一般式(A−4)のE41〜E50で、各々表される−C(R2)=のR2で表される置換基は、一般式(1)のR11,R12として例示した置換基と同義である。
次に、一般式(10)で表される化合物のさらに好ましい態様について説明する。
[一般式(11)で表される化合物]
上記一般式(10)で表される化合物の中でも、下記一般式(11)で表される化合物が好ましい。この一般式(11)は、透光性電極25の窒素含有層23を構成する化合物として示した一般式(2)を含む。以下、一般式(11)で表される化合物について説明する。
Figure 2014077063
上記一般式(11)の式中、Y5は、アリーレン基、ヘテロアリーレン基又はそれらの組み合わせからなる2価の連結基を表す。E51〜E66は、各々−C(R3)=又は−N=を表し、R3は水素原子又は置換基を表す。Y6〜Y9は、各々芳香族炭化水素環から導出される基又は芳香族複素環から導出される基を表し、Y6又はY7の少なくとも一方、及びY8又はY9の少なくとも一方は、N原子を含む芳香族複素環から導出される基を表す。n3及びn4は0〜4の整数を表すが、n3+n4は2以上の整数である。
一般式(11)におけるY5は、一般式(2)におけるY21と同義である。
一般式(11)におけるE51〜E66は、一般式(2)におけるE201〜E216と同義であり、E51〜E66で各々表される−C(R3)=のR3が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
一般式(11)において、E51〜E66で各々表される基としては、E51〜E58のうちの6つ以上及びE59〜E66のうちの6つ以上が、各々−C(R3)=で表されることが好ましい。
一般式(11)において、Y6〜Y9として各々芳香族炭化水素環から導出される基の形成に用いられる芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。
さらに、上記芳香族炭化水素環は、一般式(1)のR11,R12として例示した置換基を有してもよい。
一般式(11)において、Y6〜Y9として各々芳香族複素環から導出される基の形成に用いられる芳香族複素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の一つがさらに窒素原子で置換されている環を示す)等が挙げられる。
さらに、上記芳香族炭化水素環は、一般式(1)のR11,R12として例示した置換基を有してもよい。
一般式(11)において、Y6又はY7の少なくとも一方、及びY8又はY9の少なくとも一方で表されるN原子を含む芳香族複素環から導出される基の形成に用いられるN原子を含む芳香族複素環としては、例えば、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の一つがさらに窒素原子で置換されている環を示す)等が挙げられる。
一般式(11)において、Y7、Y9で表される基としては、各々ピリジン環から導出される基を表すことが好ましい。
また、一般式(11)において、Y6及びY8で表される基としては、各々ベンゼン環から導出される基を表すことが好ましい。
以上説明したような一般式(11)で表される化合物の中でもさらに好ましい態様として、透光性電極25の窒素含有層23を構成する化合物として示した一般式(2)で表される化合物が例示される。
以上のような一般式(10),(11)、又は一般式(2)で表される化合物の具体例として、上記で例示した化合物(1〜118)が示される。
[阻止層:正孔阻止層、電子阻止層]
阻止層は、上述のように有機化合物薄膜の基本構成層の他に、必要に応じて設けられる。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
正孔阻止層とは、広い意味では、電子輸送層45dの機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層45dの構成を必要に応じて、正孔阻止層として用いることができる。正孔阻止層は、発光層45cに隣接して設けられていることが好ましい。
一方、電子阻止層とは、広い意味では、正孔輸送層45bの機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層45bの構成を必要に応じて電子阻止層として用いることができる。阻止層の厚さとしては、好ましくは3〜100nmであり、さらに好ましくは5〜30nmである。
[封止部材]
封止部材48は、有機電界発光素子50を覆うものであって、板状(フィルム状)の封止部材48が樹脂層47によって基材26側に固定される。この封止部材48は、少なくとも発光機能層45を覆う状態で設けられ、透光性電極25及び対向電極46の端子部分(図示省略)を露出させる状態で設けられている。また封止部材48に電極を設け、有機電界発光素子50の透光性電極25及び対向電極46の端子部分と、この電極とを導通させるように構成されていてもよい。
板状(フィルム状)の封止部材48としては、具体的には、ガラス基板、ポリマー基板が挙げられ、これらの基板材料をさらに薄型のフィルム状にして用いてもよい。ガラス基板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー基板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。
なかでも、素子を薄型化できるということから、封止部材48として薄型のフィルム状にしたポリマー基板を好ましく使用することができる。
さらには、フィルム状としたポリマー基板は、JIS−K−7126−1987に準拠した方法で測定された酸素透過度が1×10−3ml/(m・24h・atm)以下、JIS−K−7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10−3g/(m・24h)以下であることが好ましい。
また、以上のような基板材料は、凹板状に加工して封止部材48として用いてもよい。この場合、上述した基板部材に対してサンドブラスト加工、化学エッチング加工等の加工が施され、凹状が形成される。
また、これに限らず、金属材料を用いてもよい。金属材料としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金が挙げられる。このような金属材料は、薄型のフィルム状にして封止部材48として用いることにより、有機電界発光素子が設けられた発光パネル全体を薄型化できる。
[樹脂層]
封止部材48を基材26側に固定するための樹脂層47は、封止部材48と基材26との間に挟持された有機電界発光素子50を封止するためのシール剤として用いられる。樹脂層47は、封止部材48又は基材26の貼合面上に、未硬化の樹脂材料を複数箇所に分散させて塗布し、これらの樹脂材料を介して封止部材48と基材26とを互いに押圧した後、樹脂材料を硬化することで形成されている。
ここで、樹脂材料は、所定間隔でビード状に塗布され、空気逃げ通路が各ビードの間に形成される。これによって、比較的簡単な樹脂材料の塗布によって、貼合後における樹脂層47への気泡の混入を防止することができる。なお、「ビード」とは連続した線状に塗布された樹脂材料を意味し、以下の説明では、線状に塗布された樹脂材料を「ビード」と記す。
樹脂材料によるビードは、延出方向に略直交する断面視で、他方の貼合面との初期接触時に略点接触するドーム状に形成されていることが好ましい。この形状により、樹脂材料が貼合面に接触した直後の初期接触時に、樹脂材料と貼合面との接触面積を小さくすることができ、樹脂層47中に空気を混入させにくくすることができる。そして、樹脂材料を介して対向して配置された封止部材48と基材26との少なくとも一方の部材の外面を押圧しながら、その押し圧部分をビードの延設方向に移動させることで、ビード間の通路空気を確実に外部に追い出すことが可能となる。
このような樹脂層47としては、光硬化性樹脂用いることが好ましい。例えば、ポリエステル(メタ)アクリレート、ポリエ一テル(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリウレタン(メタ)アクリレート等の各種(メタ)アクリレートを主成分とした光ラジカル重合性樹脂や、エポキシやビニルエーテル等の樹脂を主成分とした光カチオン重合性樹脂や、チオール・エン付加型樹脂等が挙げられる。これら光硬化性樹脂の中でも、硬化物の収縮率が低く、アウトガスも少なく、また長期信頼性に優れるエポキシ樹脂系の光カチオン重合性樹脂が好ましい。
また、このような樹脂層47としては、エポキシ系等の熱及び化学硬化型(二液混合)の樹脂を用いることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを用いることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂を用いることができる。
なお、有機電界発光素子50を構成する有機材料は、熱処理により劣化する場合がある。このため、室温から80℃までに接着硬化できる樹脂材料を使用することが好ましい。
[有機電界発光素子の効果]
以上説明した有機電界発光素子50は、上述の実施の形態の導電性と光透過性とを兼ね備えた透光性電極25をアノードとして用い、この上部に発光機能層45とカソードとなる対向電極46とをこの順に設けた構成である。このため、透光性電極25と対向電極46との間に十分な電圧を印加して有機電界発光素子50での高輝度発光を実現しつつ、透光性電極25側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。
さらに、有機電界発光素子50は、表面弾性率が高く、平滑性に優れた表面を有する下地層11を有し、この下地層11上に導電層12が形成されている。このため、固体封止の際の押圧により、導電層12の表面に下地層11の平坦化された表面形状を転写することができる。従って、固体封止時の加熱と加圧により、電極突起が平坦化され、有機電界発光素子50のリーク特性が改善される。
〈5.有機電界発光素子(第5実施形態:逆積み構成)〉
[有機電界発光素子の構成]
次に、本発明の第5実施形態について説明する。第5実施形態は、電子デバイスの一例として、上述した第3実施形態の透光性電極を用いた有機電界発光素子について説明する。図9に、本実施形態の有機電界発光素子の概略構成を示す。以下にこの図に基づいて有機電界発光素子の構成を説明する。
図9に示す第2例の有機電界発光素子51は、基材26側から順にカソード(透光性電極25)、発光機能層45及びアノード(対向電極46)が設けられ、積層順が逆であることのみが上述の図8を用いて説明した第4実施形態の有機電界発光素子50と異なる。以下、第4実施形態の有機電界発光素子50と同様の構成要素についての重複する詳細な説明は省略し、第5実施形態の有機電界発光素子51の特徴的な構成を説明する。
図9に示す有機電界発光素子51は、カソードとなる透光性電極25上に、発光機能層45、及びアノードとなる対向電極46がこの順に積層され、さらに、樹脂層47及び封止部材48により固体封止されている。このうち、光取り出し面26a側の導電層として、上述の実施の形態の透光性電極25を用いているところが特徴的である。このため有機電界発光素子51は、少なくとも基材26側から発光光hを取り出すボトムエミッション型として構成されている。
このような有機電界発光素子51は、第4実施形態の有機電界発光素子と同様に全体的な層構造が限定されることはなく、一般的な層構造であってよい。第5実施形態の有機電界発光素子51は、カソードとなる透光性電極25の上部に、電子注入層45e/電子輸送層45d/発光層45c/正孔輸送層45b/正孔注入層45aをこの順に設けた構成であり、この上部にアノードとなる対向電極46が積層された構成である。
なお、発光機能層45は、第4実施形態で説明したと同様に、必要に応じたさまざまな構成が採用され、ここでの図示を省略した正孔阻止層や電子阻止層が設けられてもよい。以上のような構成において、透光性電極25と対向電極46とで挟持された部分のみが、有機電界発光素子51における発光領域となることも、第4実施形態と同様である。
また、発光機能層45の上方にアノードとして設けられる対向電極46は、第1例のアノードと同様の金属、合金、有機又は無機の導電性化合物、及びこれらの混合物が用いられる。
さらに、上記構成の有機電界発光素子51においても、第4実施形態と同様に、固体封止の際に加えられた圧力で、下地層11上に形成された導電層12に、下地層11の平滑な表面が転写される。このため、導電層12の表面を、下地層11の表面と同様に、Ra≦2に平滑化することができる。
[有機電界発光素子の効果]
以上説明した有機電界発光素子51は、導電性と光透過性とを兼ね備えた透光性電極25をカソードとして用い、この上部に発光機能層45とアノードとなる対向電極46とをこの順に設けた構成である。このため、第1例と同様に、透光性電極25と対向電極46との間に十分な電圧を印加して有機電界発光素子51での高輝度発光を実現しつつ、透光性電極25側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。
さらに、有機電界発光素子51は、表面弾性率が高く、平滑性に優れた表面を有する下地層11を有し、この下地層11上に導電層12が形成されている。このため、固体封止の際の押圧により、導電層12の表面に下地層11の平坦化された表面形状を転写することができる。従って、固体封止時の加熱と加圧により、電極突起が平坦化され、有機電界発光素子51のリーク特性が改良される。
なお、上述の実施形態では、基材、バリア層、下地層、窒素含有層及び導電層からなる透光性電極をボトミエミッション型の有機電界発光素子に適用した構成について説明しているが、この透光性電極が適用される有機電界発光素子は、ボトムエミッション型に限られず、例えば、対向電極側から光を取り出すトップエミッション型の構成や、両面から光を取り出す両面発光型の構成としてもよい。有機電界発光素子がトップエミッション型であれば、対向電極に透明な材料を用いると共に、透光性電極の基材に換えて反射性を有する不透明な基材を用い、発光光hを基板で反射させて対向電極側から取り出す構成としてもよい。また、有機電界発光素子が両面発光型であれば、対向電極に透光性電極と同様に透明な材料を用い、発光光hを両面から取り出す構成としてもよい。
また、トップエミッション型及び両面発光型の有機電界発光素子においても、第4実施形態の有機電界発光素子のような透光性電極をアノードとする構成と、第5実施形態の有機電界発光素子のようなカソードとする構成とを、それぞれ構成することができる。
[有機電界発光素子の用途]
上述した各構成の有機電界発光素子は、上述したように面発光体であるため各種の発光光源として用いることができる。例えば、家庭用照明や車内照明などの照明装置、時計や液晶用のバックライト、看板広告用照明、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる。また、これらの発光光源に限定されず、その他の光源としても用いることができる。
特に、カラーフィルタと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
また、各実施形態例の有機電界発光素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。この場合、近年の照明装置及びディスプレイの大型化にともない、有機電界発光素子を設けた発光パネル同士を平面的に接合する、いわゆるタイリングによって発光面を大面積化してもよい。
動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。また異なる発光色を有する有機電界発光素子を2種以上使用することにより、カラー又はフルカラー表示装置を作製することが可能である。
〈6.照明装置(第6実施形態)〉
[照明装置−1]
本発明の第6実施形態について説明する。第6実施形態は、電子デバイスの一例として上述の各実施形態の有機電界発光素子を用いた照明装置について説明する。
本実施形態の照明装置に用いる有機電界発光素子は、上述した構成の各有機電界発光素子に共振器構造を持たせた設計としてもよい。共振器構造として構成された有機電界発光素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
なお、有機電界発光素子に用いられる材料は、実質的に白色の発光を生じる有機電界発光素子(白色有機電界発光素子ともいう)に適用できる。例えば、複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得ることもできる。複数の発光色の組み合わせとしては、赤色、緑色、青色の3原色の3つの発光極大波長を含有させてもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有させてもよい。
また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光又は蛍光で発光する材料の組み合わせや、蛍光又はリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせでもよい。白色有機電界発光素子においては、発光ドーパントを複数組み合わせて混合してもよい。
このような白色有機電界発光素子は、各色発光の有機電界発光素子をアレー状に個別に並列配置して白色発光を得る構成と異なり、有機電界発光素子自体が白色を発光する。このため、素子を構成するほとんどの層の形成にマスクを必要とせず、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極層を形成でき、生産性も向上する。
また、このような白色有機電界発光素子の発光層に用いる発光材料としては、特に制限はなく、例えば液晶表示素子におけるバックライトであれば、CF(カラーフィルタ)特性に対応した波長範囲に適合するように、上述の有機電界発光素子の実施形態に記載の金属錯体、また公知の発光材料の中から任意の材料を選択して組み合わせて白色化すればよい。
以上に説明した白色有機電界発光素子を用いれば、実質的に白色の発光を生じる照明装置を作製することが可能である。
[照明装置−2]
また、照明装置は、例えば有機電界発光素子を複数用いることにより、発光面を大面積化することもできる。この場合、透明基板上に有機電界発光素子を設けた複数の発光パネルを、支持基板上に複数配列する(すなわちタイリングする)ことによって発光面を大面積化する。支持基板は、封止部材を兼ねるものであってもよく、この支持基板と、発光パネルの透明基板との間に有機電界発光素子を挟持する状態で各発光パネルをタイリングする。支持基板と透明基板との間には樹脂材料を充填し、これによって有機電界発光素子を固体封止してもよい。なお、発光パネルの周囲には、透光性電極及び対向電極の端子を露出させておく。
このような構成の照明装置では、各発光パネルの中央が発光領域となり、発光パネル間には非発光領域が発生する。このため、非発光領域からの光取り出し量を増加させるための光取り出し部材を、光取り出し面の非発光領域に設けてもよい。光取り出し部材としては、集光シートや光拡散シートを用いることができる。
〈7.有機光電変換素子(第7実施形態)〉
次に、本発明の第7実施形態について説明する。第7実施形態は、電子デバイスの一例として、上述の第3実施形態の透光性電極25を用いた有機光電変換素子について説明する。図10に、本実施形態の有機光電変換素子の概略構成図を示す。以下にこの図に基づいて有機光電変換素子の構成を説明する。
図10に示す有機光電変換素子60は、光電変換材料としてカルコパイライト構造の化合物半導体系材料を用いたものであり、図3を用いて説明した透光性電極25を備えている。この有機光電変換素子60は、基材26を含む透光性電極25上に、カルコパイライト構造の光電変換層61、バッファ層62、半絶縁層63及び裏面電極64がこの順に配置され、さらに、樹脂層66及び封止部材67により固体封止された構成である。
このように、有機光電変換素子60は、透光性電極25のバリア層27上から裏面電極64までを覆う樹脂層66を介して、封止部材67が貼り合わされることにより、固体封止されている。有機光電変換素子60の固体封止は、封止部材67の貼合面、又は、透光性電極25の基材26及び裏面電極64上のいずれか一方に、未硬化の樹脂材料を複数箇所に塗布し、この樹脂材料を挟んで基材26と封止部材67とを、加熱した状態で互いに押圧して一体化する。このような構成の有機光電変換素子60は、光電変換層61に対して透光性電極25側が、太陽光Hの受光面となる。なお、本実施形態の有機光電変換素子60は、実質的な電池部分が透光性電極25の導電層12から裏面電極64までの積層部分である。
(導電層の平滑化)
上記構成の有機光電変換素子60は、透光性電極25が、下地層11の弾性率20GPa以上、Ra≦2の平滑面側に、Agを主成分とする導電層12が設けられ、樹脂層66と封止部材67とのより固体封止されていることが特徴的である。
有機光電変換素子60では、固体封止の際に加えられた圧力で、下地層11上に形成された導電層12に、下地層11の平滑な表面が転写される。このため、導電層12の表面を、下地層11の表面と同様に、Ra≦2に平滑化することができる。この導電層12の平滑化は、上述の第4実施形態の有機電界発光素子と同様の現象によって行われる。このため、導電層12の平滑化については詳細な説明を省略する。
次に、図10に基づいて、本実施形態の有機光電変換素子60を構成する各層の構成を、透光性電極25側から順に説明する。
[透光性電極]
透光性電極25は、上述の第3実施形態の透光性電極25であり、基材26側から順に、バリア層27、下地層11、窒素含有層23、及び導電層12が順に形成された構成である。透光性電極25において、特に導電層12が有機光電変換素子60を構成する一対の電極のうちの一方の電極として用いられる。この透光性電極25は、例えば陰極として用いられる。
[光電変換層]
光電変換層61は、カルコパイライト構造の化合物半導体材料(カルコパイライト系材料)で構成された半導体薄膜であり、いわゆるCIS系光電変換層である。カルコパイライト系材料は、Ib族元素(Cu、Ag、Au)、IIIb族元素(B、Al、Ga、In、Tl)、およびVIb族元素(S、Se、Te、Po)を含んで構成され、例えばCu(In1−xGa)(Se1−y[0≦x≦1、0≦y≦1]を主成分とする。ここで、ガリウム(Ga)やイオウ(S)が固溶していない場合(x=y=0)において、光電変換層61はCuInSeからなる半導体薄膜となる。
このような光電変換層61は、その膜厚が0.5〜5μmであることが好ましく、より好ましくは1〜2μmである。
[バッファ層]
バッファ層62は、光電変換層61の電気的な接合を図るための層である。このようなバッファ層62は、CdS、ZnS、ZnOなどのII−VI族化合物半導体、これらの混晶、又はIn、In、In(OH)等のIn系の化合物半導体を用いて構成される。このようなバッファ層62は、膜厚が20nm〜150nm、好ましくは50nm程度である。なお、このようなバッファ層62は、必要に応じて設ければよいが、このようなバッファ層62を形成することにより開放電圧の向上および光電変換効率が可能となるため、バッファ層62を設けた方が高効率の有機光電変換素子を得やすい傾向がある。
[半絶縁層]
半絶縁層63は、n型の高抵抗層であり、高抵抗n型層とも呼ばれる。光電変換層61と裏面電極64との間の漏れ電流を低減するための層である。このような半絶縁層63は、ZnO、ホウ素(B)を含有するZnO:B、アルミニウム(Al)を含有するZnO:Alなどを用いて構成される。なお、このような半絶縁層63は、バッファ層62と共に必要に応じて設ければよく、バッファ層62と半絶縁層63との何れか一方のみであってもよい。また、両方とも設ける必要のない場合には設けなくともよい。バッファ層62およびn型の高抵抗層である半絶縁層63を形成することにより、開放電圧の向上および光電変換効率が可能となるため、これらのバッファ層62および半絶縁層63を設けた方が高効率の有機光電変換素子を得やすい傾向がある。
[裏面電極]
裏面電極64は、有機光電変換素子60を構成する一対の電極のうちの他方の電極であり、例えば陽極として用いられる。この裏面電極64は、光電変換層61の成膜に際しての加熱に対して耐性を有する高融点金属で構成される。また裏面電極64は、光電変換層61を構成するセレン(Se)に対する耐食性を有する導電性材料で構成される。このような裏面電極64を構成する材料としては、例えばモリブデン(Mo)、チタン(Ti)、クロム(Cr)が例示される。
[グリッド電極]
透光性電極25の裏面電極64には、必要に応じてグリッド電極65が設けられる。このグリッド電極65は、裏面電極64から電流・電圧を受け取り外部回路へと低抵抗で取り出す端子としての電極である。このようなグリッド電極65は、例えばアルミニウムのような導電性の良好な材料で構成されることとする。
[樹脂層・封止部材]
封止部材67を基材26側に固定するための樹脂層66は、封止部材67と基材26との間に挟持された有機光電変換素子60を封止するためのシール剤として用いられる。樹脂層66は、封止部材67又は基材26の貼合面上に、未硬化の樹脂材料を複数箇所に分散させて塗布し、これらの樹脂材料を介して封止部材67と基材26とを互いに押圧した後、樹脂材料を硬化することで形成されている。
封止部材67は、有機光電変換素子60を覆うものであって、板状(フィルム状)の封止部材67が樹脂層66によって基材26側に固定される。この封止部材67は、少なくとも、実質的な電池部分である導電層12から裏面電極64までを覆う状態で設けられ、導電層12及び裏面電極64の端子部分(図示省略)を露出させる状態で設けられている。
樹脂層66及び封止部材67の構成は、上述の第4実施形態の有機電界発光素子の樹脂層及び封止部材と同様の構成である。また、このため、樹脂層66及び封止部材67を用いた有機光電変換素子60の固体封止も、第4実施形態の有機電界発光素子の固体封止と同様に行うことができる。このため、樹脂層66及び封止部材67、並びに、有機光電変換素子の固体封止については詳細な説明を省略する。
[その他の層]
以上説明した各層のほか、本実施形態の有機光電変換素子60は、光電変換効率の向上や、素子の寿命の向上のために、他の部材(他の層)をさらに設けてもよい。その他の部材としては、例えば、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層などが挙げられる。正孔注入層であれば、光電変換層61と裏面電極64との間に配置される。電子注入層であれば、光電変換層61と透光性電極25との間に配置される。励起子ブロック層であれば、光電変換層61と裏面電極64との間、又は光電変換層61と透光性電極25との間に配置される。UV吸収層であれば、太陽光によるフレキシブル基板の劣化を抑制するため、基材26よりも外側の最外層に配置される。波長変換層も同様に、基材26よりも外側の最外層に配置される。さらに光電変換層61側の陰極(ここでは例えば透光性電極25)に隣接して金属酸化物の層を積層してもよい。
また、本実施形態の有機光電変換素子60は、太陽光Hのより効率的な受光を目的として、太陽光Hの受光側である基材26の受光面上に、各種の光学機能層を有していてもよい。光学機能層としては、例えば、マイクロレンズアレイ等の集光層や、透光性電極25で反射した光を散乱させ、再度、光電変換層61に入射させることができるような光拡散層等が用いられる。
集光層としてマイクロレンズアレイを設ける場合であれば、さらに集光シートと組み合わせることにより、特定方向からの太陽光Hの受光量を高める構成や、逆に太陽光Hの入射角度依存性を低減する構成としてもよい。
マイクロレンズアレイの例としては、一辺が30μmでその頂角が90度となるような四角錐を2次元に配列させた構成が例示される。一辺は10〜100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚みが厚くなり好ましくない。
また光拡散層としては、各種のアンチグレア層、金属又は各種無機酸化物等のナノ粒子・ナノワイヤー等を無色透明なポリマーに分散した層等を挙げることができる。
[有機光電変換素子60の効果]
以上説明した有機光電変換素子60は、導電性と光透過性とを兼ね備えた透光性電極25を備えたことにより、透光性電極25を介しての光電変換層61における太陽光Hの受光効率を確保しつつ、光電変換層61で変換された電荷の透光性電極25を介しての取り出し効率の向上を図ることができる。この結果、カルコパイライト構造の光電変換層61を有する有機光電変換素子60においての光電変換効率の向上を図ることが可能になる。
さらに、有機光電変換素子60は、表面弾性率が高く、平滑性に優れた表面を有する下地層11を有し、この下地層11上に導電層12が形成されている。このため、固体封止の際の押圧により、導電層12の表面に下地層11の平坦化された表面形状を転写することができる。従って、固体封止時の加熱と加圧により、電極突起が平坦化され、有機光電変換素子60のリーク特性が改善される。
なお、この有機光電変換素子60は、基材26として光透過性の材料基板を選択し、裏面電極64としてITOのような透明導電膜を用いることにより、両面受光型の有機光電変換素子60とすることもできる。両面受光型の有機光電変換素子は、両面どちらからでも光を受けて発電することができるため、例えば階段の柵などの部分に設置した際には、午前も午後も発電することが可能となり、結果としてトータルでの発電量を増やすことも可能である。また、このような両面発光型の有機光電変換素子は、シースルーが可能となるため、採光窓の一部をこのようなシースルー型の有機光電変換素子とすると、採光と発電を両立させることも可能であり、各種の用途が考えられる有機光電変換素子である。
以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[ボトムエミッション型の有機電界発光素子の作製]
試料101〜110の各透明電極を、導電性領域の面積が5cm×5cmとなるように作製した。下記表2には、試料101〜110の各透明電極における各層の構成を示した。
[試料101の有機電界発光素子の作製手順]
試料101の作製において、まず、透明な無アルカリガラス製の基材上に、表1に示す化合物No.10からなる窒素含有層を形成し、窒素含有層の上部に銀からなる導電層を10nmの厚さで形成して透光性電極を作製した。さらに、透光性電極上に、発光機能層と、対向電極を形成した後、封止部材により固体封止し、試料101の有機電界発光素子を作製した。
(窒素含有層含有層、導電層の形成)
まず、透明な無アルカリガラス製の基材を、市販の真空蒸着装置の基材ホルダーに固定し、化合物No.10をタンタル製抵抗加熱ボートに入れ、これら基材ホルダーと加熱ボートとを真空蒸着装置の第1真空槽内に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、真空蒸着装置の第2真空槽内に取り付けた。
次に、第1真空槽を4×10−4Paまで減圧した後、化合物No.10の入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で基材上に窒素含有層を厚さ10nmで設けた。
次に、窒素含有層まで形成した基材を真空のまま第2真空槽に移し、第2真空槽を4×10−4Paまで減圧した後、銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒〜0.2nm/秒で厚さ10nmの銀からなる導電層を形成した。
(発光機能層〜対向電極)
引き続き、市販の真空蒸着装置を用い、真空度1×10−4Paまで減圧した後、基材を移動させながら化合物HT−1を、蒸着速度0.1nm/秒で蒸着し、20nmの正孔輸送層(HTL)を設けた。
次に、化合物A−3(青色発光ドーパント)、化合物A−1(緑色発光ドーパント)、化合物A−2(赤色発光ドーパント)及び化合物H−1(ホスト化合物)を、化合物A−3が膜厚に対し線形に35重量%から5重量%になるように場所により蒸着速度を変化させ、化合物A−1と化合物A−2は膜厚に依存することなく各々0.2重量%の濃度になるように、蒸着速度0.0002nm/秒で、化合物H−1は64.6重量%から94.6重量%になるように場所により蒸着速度を変化させて、厚さ70nmになるよう共蒸着し発光層を形成した。
その後、化合物ET−1を膜厚30nmに蒸着して電子輸送層を形成し、更にフッ化カリウム(KF)を厚さ2nmで形成した。更に、アルミニウム110nmを蒸着して対向電極を形成した。
なお、上記化合物HT−1、化合物A−1〜3、化合物H−1、及び、化合物ET−1は、以下に示す化合物である。
Figure 2014077063
(固体封止)
対向電極までを作製した試料を、厚さ100μmのアルミ箔の片面に熱硬化型の液状接着剤(エポキシ系樹脂)を厚さ30μmで塗設してある封止部材を用いて、素子の透光性電極の導電層、対向電極の引き出し電極の端部が外に出るように、封止部材の接着剤形成面と素子の有機機能層面を連続的に重ね合わせた。重ね合わせた部材を減圧装置内に配置し、90℃で0.1MPaの減圧条件下で、重ね合わせた基材同士に押圧をかけて5分間保持した。続いて、重ね合わせた部材を大気圧環境に戻し、さらに90℃で30分間加熱し接着剤を硬化させた。
上記封止工程は、大気圧下、含水率1ppm以下の窒素雰囲気下で、JIS B 9920に準拠し、測定した清浄度がクラス100で、露点温度が−80℃以下、酸素濃度0.8ppm以下の大気圧で行った。なお、陽極、陰極からの引き出し配線等の形成に関する記載は省略してある。
以上の工程により、試料101の有機電界発光素子を作製した。
[試料102の有機電界発光素子の作製手順]
試料102の作製において、まず、透明な無アルカリガラス製の基材上に、ポリシラザン改質層からなる下地層を形成し、この下地層上に表1に示す化合物No.10からなる窒素含有層を形成し、窒素含有層の上部に銀からなる導電層を形成して、透光性電極を作製した。さらに、透光性電極上に、発光機能層と、対向電極を形成した後、封止部材により固体封止し、試料102を作製した。
(下地層の形成)
まず、ポリシラザン層塗布液として、パーヒドロポリシラザン(アクアミカ NN120−10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)の10質量%ジブチルエーテル溶液を作製した。
次に、透明な無アルカリガラス製の基材上に、ポリシラザン層塗布液を、ワイヤレスバーにて、乾燥後の平均膜厚が300nmとなるように塗布し、温度85℃、湿度55%RHの雰囲気下で1分間処理して乾燥させ、更に温度25℃、湿度10%RH(露点温度−8℃)の雰囲気下に10分間保持し、除湿処理を行って、ポリシラザン層を形成した。
次に、形成したポリシラザン層に対し、下記紫外線装置に設置して改質処理を実施した。
紫外線照射装置:株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL−M−1−200
照射波長:172nm
ランプ封入ガス:Xe
稼動ステージ上に固定したポリシラザン層を形成した基材に対し、以下の条件で改質処理を行って、ガスバリア層を形成した。
エキシマランプ光強度:130mW/cm(172nm)
試料と光源の距離:1mm
ステージ加熱温度:70℃
照射装置内の酸素濃度:1.0%
エキシマランプ照射時間:5秒
以上の条件により、基材上にポリシラザン改質層からなる下地層を形成した。
さらに、この下地層上に上記試料101と同様の手順で、窒素含有層、導電層、発光機能層、及び、対向電極を形成し、封止部材を用いて固体封止して試料102の有機電界発光素子を作製した。
[試料103の有機電界発光素子の作製手順]
基材として使用する材料を、2軸延伸ポリエチレンナフタレートフィルム(PENフィルム、厚み:100μm、幅:350mm、帝人デュポンフィルム(株)製、商品名「テオネックスQ65FA」)に変更した以外は、上記試料102と同様の手順で、試料103の有機電界発光素子を作製した。
[試料104の有機電界発光素子の作製手順]
試料104の作製において、まず、2軸延伸ポリエチレンナフタレートフィルムの基材上にバリア層を形成し、このバリア層上にポリシラザン改質層からなる下地層と、表1に示す化合物No.10からなる窒素含有層と、銀からなる導電層を形成して、透光性電極を作製した。さらに、透光性電極上に、発光機能層と、対向電極を形成した後、封止部材により固体封止し、試料104の有機電界発光素子を作製した。
(バリア層の形成)
基材を上述の図7に示すバリア層の製造装置に装着して、下記製膜条件(プラズマCVD条件)にて、基材上にバリア層を300nmの厚さで作製した。
原料ガス(HMDSO)の供給量:50sccm(Standard Cubic Centimeter per Minute)
酸素ガス(O)の供給量:500sccm
真空チャンバー内の真空度:3Pa
プラズマ発生用電源からの印加電力:1.2kW
プラズマ発生用電源の周波数:80kHz
フィルムの搬送速度:0.5m/min
さらに、このバリア層上に、上記試料102と同様の手順で、下地層、窒素含有層、導電層、発光機能層、及び、対向電極を形成し、封止部材を用いて固体封止して試料104の有機電界発光素子を作製した。
[試料105の有機電界発光素子の作製手順]
窒素含有層の材料を下記に示すL−1795に変更した以外は、上記試料104と同様の手順で、試料105の有機電界発光素子を作製した。
(窒素含有層含有層の形成)
まず、上記試料104と同様の手順で、2軸延伸ポリエチレンナフタレートフィルム製の基材上にバリア層を形成し、このバリア層上にポリシラザン改質層からなる下地層を形成した。
次に、下地層を形成した基材を市販の真空蒸着装置の基材ホルダーに固定し、L−1795をタンタル製抵抗加熱ボートに入れ、これら基材ホルダーと加熱ボートとを真空蒸着装置の第1真空槽内に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、真空蒸着装置の第2真空槽内に取り付けた。
次に、第1真空槽を4×10−4Paまで減圧した後、L−1795の入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で基材上に窒素含有層を厚さ10nmで設けた。
次に、窒素含有層まで形成した基材を真空のまま第2真空槽に移し、第2真空槽を4×10−4Paまで減圧した後、銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒〜0.2nm/秒で厚さ10nmの銀からなる導電層を形成した。
Figure 2014077063
さらに、この導電層上に、上記試料104と同様の手順で、下地層、窒素含有層、導電層、発光機能層、及び、対向電極を形成し、封止部材を用いて固体封止して試料105の有機電界発光素子を作製した。
[試料106の有機電界発光素子の作製手順]
透明な無アルカリガラス製の基材上に、ITO電極をスパッタ製膜で100nm形成して導電層を形成した。さらに、ITO電極上に、上記試料101と同様の手順で、発光機能層、及び、対向電極を形成し、封止部材を用いて固体封止して試料106の有機電界発光素子を作製した。
[試料107の有機電界発光素子の作製手順]
試料107の作製において、まず、透明な無アルカリガラス製の基材上に、ポリシラザン未改質層からなる下地層を形成し、この下地層上に表1に示す化合物No.10からなる窒素含有層を形成し、窒素含有層の上部に銀からなる導電層を形成して、透光性電極を作製した。さらに、透光性電極上に、発光機能層と、対向電極を形成した後、封止部材により固体封止し、試料107の有機電界発光素子を作製した。
(下地層の形成)
試料102の下地層(ポリシラザン改質層)を形成する工程において、エキシマランプ照射による改質処理を施さなかったこと以外は同様にして、ポリシラザン未改質層からなる下地層を形成した。
以上の条件により、基材上にポリシラザン未改質層からなる下地層を形成した。
さらに、この下地層上に上記試料102と同様の手順で、窒素含有層、導電層、発光機能層、及び、対向電極を形成し、封止部材を用いて固体封止して試料107の有機電界発光素子を作製した。
[試料108の有機電界発光素子の作製手順]
試料108の作製において、まず、2軸延伸ポリエチレンナフタレートフィルムの基材上にバリア層を形成し、このバリア層上に表1に示す化合物No.10からなる窒素含有層と、銀からなる導電層を形成して、透光性電極を作製した。さらに、透光性電極上に、発光機能層と、対向電極を形成した後、封止部材により固体封止し、試料108の有機電界発光素子を作製した。
バリア層は、2軸延伸ポリエチレンナフタレートフィルムからなる基材上に、試料104と同様の手順で形成した。さらに、このバリア層上に上記試料104と同様の手順で、窒素含有層、導電層、発光機能層、及び、対向電極を形成し、封止部材を用いて固体封止して試料108の有機電界発光素子を作製した。
[試料109の有機電界発光素子の作製手順]
試料109の作製において、まず、2軸延伸ポリエチレンナフタレートフィルムの基材上に有機・無機ハイブリッドポリマーからなる下地層を形成し、この下地層上に表1に示す化合物No.10からなる窒素含有層と、銀からなる導電層を形成して、透光性電極を作製した。さらに、透光性電極上に、発光機能層と、対向電極を形成した後、封止部材により固体封止し、試料109の有機電界発光素子を作製した。
(下地層の形成)
基材の易接着面に、UV硬化型有機/無機ハイブリッドハードコート材 OPSTAR Z7501(JSR株式会社製)を乾燥後の膜厚が4μmになるようにワイヤーバーで塗布した。80℃で3分乾燥した後、空気雰囲気下にて高圧水銀ランプ使用して1.0J/cmの照射を行って硬化し、下地層を形成した。
さらに、この下地層上に上記試料102と同様の手順で、窒素含有層、導電層、発光機能層、及び、対向電極を形成し、封止部材を用いて固体封止して試料109の有機電界発光素子を作製した。
[試料110の有機電界発光素子の作製手順]
透明な無アルカリガラス製の基材上に、上記試料102と同様の手順で、ポリシラザン改質層からなる下地層を形成、この下地層上に、ITO電極をスパッタ製膜で100nm形成して導電層を形成した後、このITO電極を研磨して平滑化した。さらに、ITO電極上に、上記試料102と同様の手順で、発光機能層、及び、対向電極を形成し、封止部材を用いて固体封止して試料110の有機電界発光素子を作製した。
[有機電界発光素子の評価]
(表面粗さ:表面平滑性)
表面粗さRaは、Digital Instruments社製の原子間力顕微鏡(AFM)DI3100を用いて、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が30μmの区間内を多数回測定し、微細な凹凸の振幅に関する平均の粗さから求めた。
(弾性率:ナノインデンテーション)
下地層の弾性率は、MTSシステム社製のナノインデンター(Nano Indenter TMXP/DCM)を用いて、下地層に対して、先端半径が0.1〜1μm程度の三角錐の圧子を超微小な荷重で押し込んで負荷を付与した後、圧子を戻して除荷し、得られた荷重−変位曲線を作成し、荷重−変位曲線から得られた負荷荷重と押し込み深さより、弾性率(Reduced modulus)を測定した。
(発光効率)
分光放射輝度計CS−1000(コニカミノルタセンシング社製)を用いて、各照明装置を構成する各試料の正面輝度及び輝度角度依存性を測定し、正面輝度1000cd/mにおける電力効率を求めた。なお、電力効率の評価は、試料101の有機電界発光素子の電力効率を100とする相対値で表示した。数値が大きいほど、電力効率に優れていることを表す。
(リーク特性)
各試料において、固体封止前と固体封止後との各状態のリーク特性を測定した。リーク特性は、室温下、500μA/cmの条件において、流れる順電圧とその逆電圧による電流値を3回測定し、その平均値より整流比を算出した。整流比が高いほどリーク特性に優れていることを表す。
(柔軟性)
試料のうち、樹脂基材を使った試料103、試料104、及び、試料108〜110について、折り曲げ耐性(柔軟性)を確認した。柔軟性は、室温下、発光面と封止面のそれぞれに屈曲直径30mmφの曲率がかかるように各200回折り曲げ、折り曲げた箇所のダークスポットの個数を評価した。
ダークスポット(DS)の個数の評価は、試料を室温下で300cd/mとなるように発光させた状態で、マイクロスコープ(株式会社モリテックス製MS−804、レンズMP−ZE25−200)で試料の撮影を行なった。撮影画像を目視で観察を行いダークスポットの数を計測した。発生個数が少ないほど折り曲げ耐性に優れることを表す。
(保存性)
85℃、85%RHの環境下で500時間の加熱処理を行った後、試料を室温下で300cd/mとなるように発光させた状態で、マイクロスコープ(株式会社モリテックス製MS−804、レンズMP−ZE25−200)で試料の撮影を行なった。撮影画像を目視で観察を行いダークスポット(DS)の数を計測した。発生個数が少ないほど保存耐性に優れることを表す。
上記試料101〜110の有機電界発光素子の各評価結果を表2に示す。
Figure 2014077063
表2に示すように、下地層の弾性率が20GPa以上であり、表面粗さ(Ra)が2以下の試料101〜105は、固体封止前のリーク特性が1000〜3000であるのに対し、固体封止後のリーク特性が8000〜10000に向上している。これは、下地層の弾性率が20GPa以上であり、表面粗さ(Ra)が2以下であることにより、この下地層上に設けられた導電層が、固体封止の際の加圧・加熱処理によって平滑化されたことがわかる。
さらに、試料101〜105は、発光効率も良好な結果が得られた。また、リーク特性の向上に伴い、保存性も向上する結果が得られた。
これに対し、下地層の弾性率が10GPa程度の試料107及び試料109や、下地層を設けていない試料108では、固体封止後のリーク特性が、固体封止前よりも悪化している。これは、固体封止の際の加圧・加熱処理において、導電層の平滑性が悪化し、導電層の凹凸の影響により、リーク特性が悪化したと考えられる。
また、ITO電極を用いた試料106では、下地層として弾性率が20GPa以上であり、表面粗さ(Ra)が2以下のガラス基材を用いているものの、固体封止前よりも固体封止後のリーク特性が悪化している。
同様に、ITO電極を用いた試料110では、ITO電極層が研磨により平滑化され、さらに、下地層として弾性率が20GPa以上であり、表面粗さ(Ra)が2以下のポリシラザン改質層が形成されているものの、固体封止前よりも固体封止後のリーク特性が悪化している。
これらの結果から、下地層の弾性率及び平滑性が高く、さらに、下地層上に形成する導電層がAgを主成分とすることにより、固体封止の際に導電層の表面が平滑になり、リーク特性が向上することがわかる。
これに対し、下地層の弾性率及び平滑性が低い場合には、固体封止による導電層の形状悪化により、リーク特性が低下することがわかる。また、ITO電極の研磨では、導電層が十分な平滑性を有していないことがわかる。さらに、ITO電極を用いた場合には、固体封止の際の導電層の平滑化という効果を得ることができない。これは、ITO電極の厚さが100nmと厚いこと、及び、ITO電極がAg層のような柔軟性を有さず、固体封止の際の加圧による変形が十分に起こらないことに起因すると考えられる。
[有機光電変換素子の作製]
実施例1で作製した試料103、試料110と同様の透光性電極を備えた有機光電変換素子の試料201、試料202を作製した。以下、有機光電変換素子の作製手順を説明する。
[試料201の有機電界発光素子の作製手順]
ポリエレンナフタレートフィルム(PENフィルム)に、下地層、窒素含有層、及び、導電層までを形成した試料103の透光性電極上に、正孔輸送層、光電変換層、電子輸送層、及び、裏面電極を形成した後、封止部材により固体封止し、試料201の有機光電変換素子を作製した。
(正孔輸送層の形成)
まず、導電性高分子及びポリアニオンからなるPEDOT−PSS(CLEVIOS(登録商標) P VP AI 4083、ヘレオス株式会社製、導電率1×10−3S/cm)を2.0質量%で含むイソプロパノール溶液を調製した。次に、導電層までを形成した試料103の透光性電極上に、乾燥膜厚が約30nmになるように、基板を65℃に調温したブレードコーターを用いて溶液を塗布した。その後、120℃の温風で20秒間加熱処理して、試料103の透光性電極上に溶液の塗布膜を形成した。さらに、塗布膜を形成した透光性電極をグローブボックス中に持ち込み、窒素雰囲気下において120℃で3分間加熱処理を行い、正孔輸送層を形成した。
(光電変換層の形成)
次に、o−ジクロロベンゼンに、p型有機半導体材料である下記KP115を0.8質量%、n型有機半導体材料であるPC61BM(フロンティアカーボン製nanom spectra E100H)を1.6質量%混合した有機光電変換材料組成物溶液を調製した。この溶液を、ホットプレートで100℃に加熱しながら撹拌(60分間)して完全に溶解した。この後、乾燥膜厚が約170nmになるように、基板を80℃に調温したブレードコーターを用いて塗布し、2分間乾燥して、上記正孔輸送層上に光電変換層を形成した。
(p型半導体層:KP115)
光電変換層に用いるKP115は、非特許文献Appl.Phys.Lett.Vol.98、p.043301を参考にして、下記に示す化合物KP115を合成した。なお、KP115の数平均分子量は43000であった。
Figure 2014077063
(電子輸送層の形成)
次に、下記化合物Cを0.02質量%になるようにヘキサフルオロイソプロパノールに溶解して溶液を調製した。この溶液を、光電変換層までを形成した透光性電極上に、乾燥膜厚が約5nmになるように、基板を65℃に調温したブレードコーターを用いて塗布乾燥した。その後、100℃の温風で2分間加熱処理して、上記光電変換層上に電子輸送層を形成した。
(電子輸送層材料:化合物Cの合成)
電子輸送層に用いる化合物Cは、以下の方法で合成した。
非特許文献Adv. Mater. 2007, 19, 2010を参考にして、下記化合物Bを合成した。化合物Bの重量平均分子量は4400であった。
この化合物B1.0gと、アルドリッチ社製3,3’−イミノビス(N,N−ジメチルプロピルアミン)9.0gとをテトラヒドロフラン100mlおよびN,N−ジメチルホルムアミド100mlに溶解し、室温で48時間撹拌を行った。反応終了後、溶媒を減圧留去し、さらに水に再沈殿を行うことで、化合物Cを1.3g得た(収率90%)。得られた化合物Cについて、H−NMRによって構造を特定した。結果を下記に示す。H−NMR:7.6〜8.0ppm(br),2.88ppm(br),2.18ppm(m),2.08ppm(s),1.50ppm(m),1.05ppm(br).
Figure 2014077063
(裏面電極の形成)
次に、上記電子輸送層まで形成した試料を、10mm幅のシャドウマスクと透光性電極の導電層とが直交するように、真空蒸着装置の真空槽に設置した。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、当該真空槽内に取り付けた。
次に、真空槽を4×10−4Paまで減圧した後、抵抗加熱ボートを通電して加熱し、蒸着速度2nm/秒で、上記電子輸送層上に100nmの厚さの銀からなる裏面電極を形成した。
(固体封止)
裏面電極までを作製した試料を、厚さ100μmのアルミ箔の片面に熱硬化型の液状接着剤(エポキシ系樹脂)を厚さ30μmで塗設してある封止部材を用いて、素子の第1電極、第2電極の引き出し電極の端部が外にでるように、封止部材の接着剤面と素子の有機機能層面を連続的に重ね合わせ、ドライラミネート法により接着を行った。
上記封止工程は、大気圧下、含水率1ppm以下の窒素雰囲気下で、JIS B 9920に準拠し、測定した清浄度がクラス100で、露点温度が−80℃以下、酸素濃度0.8ppm以下の大気圧で行った。なお、陽極、陰極からの引き出し配線等の形成に関する記載は省略してある。
以上の工程により、試料201の有機光電変換素子を作製した。
[試料202の有機電界発光素子の作製手順]
使用する透光性電極を、実施例1の試料110に変更した以外は、上記試料201と同様の手順で試料202の態様電池を作製した。
[有機光電変換素子の評価]
(光電変換効率の評価)
上記で作製した光電変換素子について、ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光を照射し、有効面積を1cmにしたマスクを受光部に重ね、短絡電流密度Jsc[mA/cm]、開放電圧Voc[V]、及び、曲線因子(フィルファクター)FF[%]を、同素子上に形成した4箇所の受光部についてそれぞれ測定し、平均値を求めた。また、求めた短絡電流密度Jsc、開放電圧Voc、及び曲線因子FFから下記式(3)に従って、光電変換効率η[%]を求めた。ここで、光電変換効率η[%]の数字が大きい程、エネルギー変換効率(光電変換効率)が良好であることを示す。
η[%]=Jsc[mA/cm]×Voc[V]×FF[%]/入射光強度[mW/cm] ・・・(3)
(光電変換効率の耐久性の評価)
上記光電変換効率の評価を行った有機光電変換素子の試料を、陽極と陰極の間に抵抗を接続したまま80℃に加熱し、ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光で1000h暴露し続けた後、室温に冷却して上記光電変換効率の評価と同様の方法で、有機光電変換素子上に形成した4箇所の受光部について、それぞれ上記式(3)に従って光電変換効率η[%]を求めた。次に、下記式(4)により変換効率の相対効率[%]を算出して平均値を求め、これを光電変換効率の耐久性の尺度とした。
変換効率の相対効率[%]=[(暴露後の変換効率)/(暴露前の変換効率)]×100 ・・・(4)
ここで、変換効率の相対効率[%]が高い程、エネルギー変換効率の耐久性(光電変換効率の耐久性)に優れていることを表す。この相対効率低下率が80%となる時間をLT80として素子の耐久性を評価した。
上記試料201、試料202の有機光電変換素子の各評価結果を表3に示す。
Figure 2014077063
表3に示すように、試料103の透光性電極を用いた試料201の有機光電変換素子は、試料110の透光性電極を用いた試料202の有機光電変換素子よりも、変換効率及びLT80が共に良好な結果が得られた。
試料201に使用する試料103の透光性電極は、下地層の弾性率が20GPa以上であり、表面粗さ(Ra)が2以下である。このため、有機光電変換素子を形成する際にも、下地層上に形成された導電層が、固体封止の際の加圧・加熱処理によって平滑化されたことがわかる。
また、試料202では、ITO電極層が研磨により平滑化されているものの、導電層が十分な平滑性を有していないことがわかる。また、下地層として弾性率が20GPa以上であり、表面粗さ(Ra)が2以下のポリシラザン改質層が形成されているものの、固体封止の際の加圧・加熱処理によっても、ITO電極が平滑化されていないことがわかる。
このように、下地層の弾性率及び平滑性が高く、さらに、下地層上に形成する導電層がAgを主成分とする透光性電極を有機光電変換素子に用いることにより、固体封止の際に導電層の表面が平滑化されて、この有機光電変換素子の特性が向上することがわかる。
なお、本発明は上述の実施形態例において説明した構成に限定されるものではなく、その他本発明構成を逸脱しない範囲において種々の変形、変更が可能である。
10,20,25・・・透光性電極、11・・・下地層、12・・・導電層、23・・・窒素含有層、26・・・基材、26a・・・光取り出し面、27・・・バリア層、30・・・製造装置、31・・・送り出しロール、32,33,34,35・・・搬送ロール、36,37・・・成膜ロール、38・・・ガス供給管、39・・・プラズマ発生用電源、40・・・フィルム、41・・・磁場発生装置、43・・・巻取りロール、45・・・発光機能層、45a・・・正孔注入層、45b・・・正孔輸送層、45c・・・発光層、45d・・・電子輸送層、45e・・・電子注入層、46・・・対向電極、47,66・・・樹脂層、48,67・・・封止部材、50,51・・・有機電界発光素子、60・・・有機光電変換素子、61・・・光電変換層、62・・・バッファ層、63・・・半絶縁層、64・・・裏面電極、65・・・グリッド電極
特開2002−216950号公報 国際公開第2010/001831号パンフレット 特開2005−93318号公報 特開2009−151963号公報 特開2012−084353号公報 特開2002−046208号公報

Claims (7)

  1. 表面粗さ(Ra)が2以下であり、且つ、弾性率が20GPa以上の表面を有する下地層と、
    前記下地層の前記表面側に設けられた銀を主成分とする導電層と、を備える
    透光性電極。
  2. 前記下地層が、ポリシラザン改質層である請求項1に記載の透光性電極。
  3. 窒素原子を含有すると共に当該窒素原子が有する非共有電子対のうち芳香族性に関与せずかつ金属に配位していない非共有電子対の数をn、分子量をMとした場合の有効非共有電子対含有率[n/M]が2.0×10−3≦[n/M]である化合物を用いて構成された窒素含有層を、前記導電層に隣接して備える請求項1に記載の透光性電極。
  4. 基材と、前記基材上に設けられた厚さ方向の屈折率分布に少なくとも1つ以上の極値を有するバリア層とを備え、前記バリア層上に前記下地層が設けられている請求項1に記載の透光性電極。
  5. 請求項1に記載の透明電極を有する電子デバイス。
  6. 有機材料から構成される発光層を備える請求項5に記載の電子デバイス。
  7. 光電変換層を備える請求項5に記載の電子デバイス。
JP2014546909A 2012-11-16 2013-10-10 透光性電極、及び、電子デバイス Active JP6332032B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012252655 2012-11-16
JP2012252655 2012-11-16
PCT/JP2013/077649 WO2014077063A1 (ja) 2012-11-16 2013-10-10 透光性電極、及び、電子デバイス

Publications (2)

Publication Number Publication Date
JPWO2014077063A1 true JPWO2014077063A1 (ja) 2017-01-05
JP6332032B2 JP6332032B2 (ja) 2018-05-30

Family

ID=50730984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014546909A Active JP6332032B2 (ja) 2012-11-16 2013-10-10 透光性電極、及び、電子デバイス

Country Status (4)

Country Link
US (1) US9966557B2 (ja)
JP (1) JP6332032B2 (ja)
CN (1) CN104782230B (ja)
WO (1) WO2014077063A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6468186B2 (ja) * 2013-05-31 2019-02-13 コニカミノルタ株式会社 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JP6432189B2 (ja) * 2014-07-18 2018-12-05 株式会社デンソー 有機半導体装置およびその製造方法
KR102355558B1 (ko) * 2014-07-31 2022-01-27 삼성전자주식회사 이미지 센서
JP2016115602A (ja) * 2014-12-17 2016-06-23 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及びその製造方法
US9576791B2 (en) * 2015-06-01 2017-02-21 GM Global Technology Operations LLC Semiconductor devices including semiconductor structures and methods of fabricating the same
CN107004690B (zh) * 2015-11-12 2021-05-14 松下知识产权经营株式会社 光传感器
JP7133904B2 (ja) * 2016-03-31 2022-09-09 住友化学株式会社 積層フィルム及びその製造方法
JP6691803B2 (ja) * 2016-03-31 2020-05-13 住友化学株式会社 積層フィルム及びその製造方法
JP6723051B2 (ja) * 2016-03-31 2020-07-15 住友化学株式会社 積層フィルム及びその製造方法、並びに、積層フィルムの分析方法
JP6748611B2 (ja) 2017-07-12 2020-09-02 株式会社Joled 有機el素子、有機el表示パネル、および、有機el表示パネルの製造方法
CN107768528B (zh) * 2017-09-13 2019-10-29 北京大学深圳研究生院 氟代醇溶剂在制备钙钛矿光电器件中的应用
TWI689562B (zh) * 2018-10-19 2020-04-01 國立臺灣大學 反式有機太陽光電及其製造方法
CN111142587B (zh) * 2019-12-26 2022-05-03 武汉颐光科技有限公司 一种双旋转补偿器穆勒矩阵椭偏仪系统控制方法
CN111613516B (zh) * 2020-06-18 2023-03-10 沈阳国联环保科技有限公司 一种医药检测设备用长寿命光源
KR102590686B1 (ko) * 2020-09-25 2023-10-19 가부시끼가이샤 레조낙 투명 기판 및 그 제조 방법
US11435863B1 (en) * 2021-04-15 2022-09-06 Tpk Advanced Solutions Inc. Touch sensor and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171637A (ja) * 2007-01-10 2008-07-24 Fuji Electric Holdings Co Ltd 透明導電膜積層体、該透明導電膜積層体を用いた有機el素子、並びに、これらの製造方法
JP2010198921A (ja) * 2009-02-25 2010-09-09 Fuji Electric Holdings Co Ltd 透明導電膜積層体を用いた有機el素子、並びに、これらの製造方法
JP2011068124A (ja) * 2009-08-26 2011-04-07 Konica Minolta Holdings Inc ガスバリア性フィルム、その製造方法、及びそれを用いた有機光電変換素子
JP2011077028A (ja) * 2009-09-04 2011-04-14 Hitachi Displays Ltd 有機el表示装置
JP2012084307A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd 有機el装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3037138A (en) * 1959-11-20 1962-05-29 James F Motson Light source
US5239406A (en) * 1988-02-12 1993-08-24 Donnelly Corporation Near-infrared reflecting, ultraviolet protected, safety protected, electrochromic vehicular glazing
JP2002046208A (ja) 2000-08-02 2002-02-12 Dainippon Printing Co Ltd バリア性積層フィルム
JP3903204B2 (ja) 2001-01-24 2007-04-11 ソニー株式会社 表示装置の製造方法
JP4324684B2 (ja) 2003-09-19 2009-09-02 日本ミクロコーティング株式会社 平坦な表面の透明導電性フィルムの製造方法
JP2005116546A (ja) * 2003-10-02 2005-04-28 Toshiba Corp 半導体装置およびその製造方法
WO2007046290A1 (en) * 2005-10-18 2007-04-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2008210665A (ja) * 2007-02-27 2008-09-11 Canon Inc 有機発光素子及びそれを用いた表示装置
US8348474B1 (en) * 2007-05-21 2013-01-08 Goldeneye, Inc. LED light recycling cavity with integrated optics
CN101179114A (zh) * 2007-12-10 2008-05-14 天津理工大学 一种柔性有机电致发光器件及其制备方法
JP2009151963A (ja) * 2007-12-19 2009-07-09 Institute Of Physical & Chemical Research 透明電極およびその製造方法
JPWO2010001831A1 (ja) 2008-07-04 2011-12-22 コニカミノルタホールディングス株式会社 有機elパネルおよび有機elパネルの製造方法
US8836130B2 (en) * 2009-01-23 2014-09-16 Nichia Corporation Light emitting semiconductor element bonded to a base by a silver coating
JP2010205650A (ja) * 2009-03-05 2010-09-16 Fujifilm Corp 有機el表示装置
US20120012183A1 (en) * 2009-03-31 2012-01-19 Lintec Corporation Organic thin-film solar cell and method of producing same
WO2011004850A1 (ja) * 2009-07-08 2011-01-13 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク
WO2011090035A1 (ja) * 2010-01-19 2011-07-28 旭硝子株式会社 撥水性基体およびその製造方法
JP2011238778A (ja) * 2010-05-11 2011-11-24 Konica Minolta Opto Inc 波長変換素子の製造方法、波長変換素子および発光装置
JP2012084353A (ja) 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171637A (ja) * 2007-01-10 2008-07-24 Fuji Electric Holdings Co Ltd 透明導電膜積層体、該透明導電膜積層体を用いた有機el素子、並びに、これらの製造方法
JP2010198921A (ja) * 2009-02-25 2010-09-09 Fuji Electric Holdings Co Ltd 透明導電膜積層体を用いた有機el素子、並びに、これらの製造方法
JP2011068124A (ja) * 2009-08-26 2011-04-07 Konica Minolta Holdings Inc ガスバリア性フィルム、その製造方法、及びそれを用いた有機光電変換素子
JP2011077028A (ja) * 2009-09-04 2011-04-14 Hitachi Displays Ltd 有機el表示装置
JP2012084307A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd 有機el装置

Also Published As

Publication number Publication date
WO2014077063A1 (ja) 2014-05-22
CN104782230A (zh) 2015-07-15
US9966557B2 (en) 2018-05-08
CN104782230B (zh) 2016-11-16
US20150303398A1 (en) 2015-10-22
JP6332032B2 (ja) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6332032B2 (ja) 透光性電極、及び、電子デバイス
JP6003981B2 (ja) 透明電極、電子デバイス、および有機電界発光素子
JP6128117B2 (ja) 透明電極の製造方法
WO2013073356A1 (ja) 透明電極、および電子デバイス
JP6384327B2 (ja) 有機発光素子
JP5943005B2 (ja) 透明電極、電子デバイス、有機電界発光素子、および有機電界発光素子の製造方法
JP6119742B2 (ja) 透明電極、透明電極の製造方法、電子デバイス、および有機電界発光素子
JP6432505B2 (ja) 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス素子の製造方法
WO2014188913A1 (ja) 透明電極、及び、電子デバイス
WO2016143660A1 (ja) 有機エレクトロルミネッセンス素子
JP6070320B2 (ja) 透明電極付き基板、及び、電子デバイス
JP5998789B2 (ja) 透明電極、及び電子デバイス
JP6366221B2 (ja) 透明電極、及び電子デバイス
JP6107825B2 (ja) 有機エレクトロルミネッセンス素子
JP6286890B2 (ja) ガスバリアフィルムの製造方法、有機エレクトロルミネッセンス素子の製造方法
JP2016046064A (ja) 有機エレクトロルミネッセンス素子
JP2016170879A (ja) 有機エレクトロルミネッセンス素子
JP5817557B2 (ja) 透明バリア膜、および電子デバイス
WO2016174950A1 (ja) 有機エレクトロルミネッセンス素子
WO2014208449A1 (ja) 有機エレクトロルミネッセンス素子及びその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R150 Certificate of patent or registration of utility model

Ref document number: 6332032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150