JPWO2013141005A1 - 光拡散性樹脂組成物 - Google Patents

光拡散性樹脂組成物 Download PDF

Info

Publication number
JPWO2013141005A1
JPWO2013141005A1 JP2014506117A JP2014506117A JPWO2013141005A1 JP WO2013141005 A1 JPWO2013141005 A1 JP WO2013141005A1 JP 2014506117 A JP2014506117 A JP 2014506117A JP 2014506117 A JP2014506117 A JP 2014506117A JP WO2013141005 A1 JPWO2013141005 A1 JP WO2013141005A1
Authority
JP
Japan
Prior art keywords
group
carbon atoms
bis
polycarbonate
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014506117A
Other languages
English (en)
Other versions
JP5847292B2 (ja
Inventor
利往 三宅
利往 三宅
明日香 品川
明日香 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49222467&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPWO2013141005(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2014506117A priority Critical patent/JP5847292B2/ja
Publication of JPWO2013141005A1 publication Critical patent/JPWO2013141005A1/ja
Application granted granted Critical
Publication of JP5847292B2 publication Critical patent/JP5847292B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/445Block-or graft-polymers containing polysiloxane sequences containing polyester sequences
    • C08G77/448Block-or graft-polymers containing polysiloxane sequences containing polyester sequences containing polycarbonate sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/22Mixtures comprising a continuous polymer matrix in which are dispersed crosslinked particles of another polymer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • F21V3/062Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material being plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

本発明の目的は、光拡散性および色相に優れた樹脂組成物およびその成形品を提供することにある。本発明は、ポリカーボネート(A成分)およびポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)からなる樹脂成分100重量部に対し、光拡散剤(C成分)0.05〜10.0重量部を含有し、B成分が、ポリカーボネートのマトリックス中に平均サイズが0.5〜40nmのポリジオルガノシロキサンドメインが存在するポリカーボネート−ポリジオルガノシロキサン共重合体であることを特徴とする光拡散性樹脂組成物である。

Description

本発明は光拡散性樹脂組成物に関する。さらに詳しくは光拡散性、熱安定性、色相に優れた照明用のカバー、ディスプレイ用拡散板、ガラス代替用途などに好適に用いることができる光拡散性樹脂組成物に関する。
従来から各種照明カバー、ディスプレイ、自動車のメーター、各種銘板などの光拡散性が要求される用途に、芳香族ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂といった透明性樹脂に有機物や無機物の光拡散剤を分散させた材料が広く用いられている。この様な透明性樹脂の中で特に芳香族ポリカーボネート樹脂は機械的特性、耐熱性、耐候性に優れている上、高い光線透過率を備えた樹脂として幅広く使用されている。
また光拡散剤としては、架橋構造を有する有機系粒子があり、さらに詳しくは架橋アクリル系粒子、架橋シリコーン系粒子や架橋スチレン系粒子などが挙げられる。さらに炭酸カルシウム、硫酸バリウム、水酸化アルミニウム、二酸化ケイ素、酸化チタン、弗化カルシウムなどの無機系粒子あるいはガラス短繊維などの無機系繊維がある。芳香族ポリカーボネート樹脂に光拡散剤を分散させた材料は、光源のLED化に伴い、その良好な耐熱性と機械特性から需要が伸びてきているが、LED発光効率向上を目的とした光学特性の改良について、更なる改善が求められている。
光拡散性樹脂組成物に安定剤を配合し、樹脂分解由来の色相改善やそれに付随する光線透過率の向上を達成させることは知られている(特許文献1〜2)。
一方で、特殊なポリカーボネート共重合体を用いて光拡散性樹脂組成物の光学特性を改良する方法も開示されている。特許文献3〜4では、特殊なポリカーボネートを用い、成形時の流動性を改良し、輝度および色調に優れる光拡散性ポリカーボネート系樹脂組成物を提供することが提案されている。しかしながら、これらは溶融流動性を改良することで樹脂分解を抑制したに過ぎず、特殊なポリカーボネートによって光学特性そのものを改良したものではない。また光拡散性樹脂組成物としては、光拡散性が充分ではなく、更なる改良が必要である。
また特許文献5では、ポリカーボネートとポリオルガノシロキサンのブロックを含む芳香族ポリカーボネートと、ビーズ状架橋アクリル樹脂を用いて、全光線透過率とヘーズ(全光線透過率に対する拡散光線透過率の割合)の高い光拡散性樹脂組成物を提供することが提案されている。しかしながら、色相改善については記載がなく、また光拡散性樹脂組成物としては、光拡散性が充分ではなく、更なる改良が必要である。
特許文献6には、ポリカーボネートのマトリックス中に平均サイズが20〜45nmのポリジオルガノシロキサンドメインが存在する半透明のポリカーボネート−ポリジオルガノシロキサン共重合体が記載されている。しかしながら特許文献6には、光拡散性に関する検討は一切されていない。
特開2001−214049号公報 特開2001−323149号公報 特開2007−302793号公報 特開2007−16079号公報 特開平10−46022号公報 国際公開第2004/076541号パンフレット
本発明の目的は、光拡散性および色相に優れた樹脂組成物およびその成形品を提供することにある。具体的には、LED発光効率の向上を目的とする。本発明者らは、この目的を達成せんとして鋭意研究を重ねた結果、特定のポリカーボネートと光拡散剤とを組み合わせることで、光拡散性、色相に優れた樹脂組成物が得られることを見出し、本発明に到達した。
すなわち本発明によれば、ポリカーボネート(A成分)およびポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)からなる樹脂成分100重量部に対し、光拡散剤(C成分)0.05〜10.0重量部を含有し、
B成分が、ポリカーボネートのマトリックス中に平均サイズが0.5〜40nmのポリジオルガノシロキサンドメインが存在するポリカーボネート−ポリジオルガノシロキサン共重合体であることを特徴とする光拡散性樹脂組成物が提供される。
図1は、本発明における光拡散度の測定方法を示す概略図である。
A 平板状試験片
B 光源
γ 拡散光角度
以下本発明について具体的に説明する。
<A成分:ポリカーボネート>
ポリカーボネート(A成分)は、ジヒドロキシ化合物とカーボネート前駆体とを界面重縮合法や溶融エステル交換法で反応させて得られたものである。またカーボネートプレポリマーを固相エステル交換法により重合させたもの、または環状カーボネート化合物の開環重合法により重合させて得られるものである。
ここで使用されるジヒドロキシ成分としては、通常、ポリカーボネートのジヒドロキシ成分として使用されているものであればよく、ビスフェノール類でも脂肪族ジオール類でも良い。
ビスフェノール類としては、4,4’ −ジヒドロキシビフェニル、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシ−3,3’−ビフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス(3−t−ブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、2,2−ビス(3−ブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、4,4’−ジヒドロキシジフェニルエ−テル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエ−テル、4,4’−スルホニルジフェノール、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、2,2’−ジメチル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、2,2’−ジフェニル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルフィド、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,8−ビス(4−ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’−(1,3−アダマンタンジイル)ジフェノール、1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等が挙げられる。
脂肪族ジオール類としては、2,2−ビス−(4−ヒドロキシシクロヘキシル)−プロパン、1,14−テトラデカンジオール、オクタエチレングリコール、1,16−ヘキサデカンジオール、4,4’−ビス(2−ヒドロキシエトキシ)ビフェニル、ビス{(2−ヒドロキシエトキシ)フェニル}メタン、1,1−ビス{(2−ヒドロキシエトキシ)フェニル}エタン、1,1−ビス{(2−ヒドロキシエトキシ)フェニル}−1−フェニルエタン、2,2−ビス{(2−ヒドロキシエトキシ)フェニル}プロパン、2,2−ビス{(2−ヒドロキシエトキシ)−3−メチルフェニル}プロパン、1,1−ビス{(2−ヒドロキシエトキシ)フェニル}−3,3,5−トリメチルシクロヘキサン、2,2−ビス{4−(2−ヒドロキシエトキシ)−3,3’−ビフェニル}プロパン、2,2−ビス{(2−ヒドロキシエトキシ)−3−イソプロピルフェニル}プロパン、2,2−ビス{3−t−ブチル−4−(2−ヒドロキシエトキシ)フェニル}プロパン、2,2−ビス{(2−ヒドロキシエトキシ)フェニル}ブタン、2,2−ビス{(2−ヒドロキシエトキシ)フェニル}−4−メチルペンタン、2,2−ビス{(2−ヒドロキシエトキシ)フェニル}オクタン、1,1−ビス{(2−ヒドロキシエトキシ)フェニル}デカン、2,2−ビス{3−ブロモ−4−(2−ヒドロキシエトキシ)フェニル}プロパン、2,2−ビス{3,5−ジメチル−4−(2−ヒドロキシエトキシ)フェニル}プロパン、2,2−ビス{3−シクロヘキシル−4−(2−ヒドロキシエトキシ)フェニル}プロパン、1,1−ビス{3−シクロヘキシル−4−(2−ヒドロキシエトキシ)フェニル}シクロヘキサン、ビス{(2−ヒドロキシエトキシ)フェニル}ジフェニルメタン、9,9−ビス{(2−ヒドロキシエトキシ)フェニル}フルオレン、9,9−ビス{4−(2−ヒドロキシエトキシ)−3−メチルフェニル}フルオレン、1,1−ビス{(2−ヒドロキシエトキシ)フェニル}シクロヘキサン、1,1−ビス{(2−ヒドロキシエトキシ)フェニル}シクロペンタン、4,4’−ビス(2−ヒドロキシエトキシ)ジフェニルエ−テル、4,4’−ビス(2−ヒドロキシエトキシ)−3,3’−ジメチルジフェニルエ−テル、1,3−ビス[2−{(2−ヒドロキシエトキシ)フェニル}プロピル]ベンゼン、1,4−ビス[2−{(2−ヒドロキシエトキシ)フェニル}プロピル]ベンゼン、1,4−ビス{(2−ヒドロキシエトキシ)フェニル}シクロヘキサン、1,3−ビス{(2−ヒドロキシエトキシ)フェニル}シクロヘキサン、4,8−ビス{(2−ヒドロキシエトキシ)フェニル}トリシクロ[5.2.1.02,6]デカン、1,3−ビス{(2−ヒドロキシエトキシ)フェニル}−5,7−ジメチルアダマンタン、3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ(5,5)ウンデカン、1,4:3,6−ジアンヒドロ−D−ソルビトール(イソソルビド)、1,4:3,6−ジアンヒドロ−D−マンニトール(イソマンニド)、1,4:3,6−ジアンヒドロ−L−イジトール(イソイディッド)等が挙げられる。
これらの中で芳香族ビスフェノール類が好ましく、なかでも1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−スルホニルジフェノール、2,2’−ジメチル−4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、および1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼンが好ましい。殊に2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,4’−スルホニルジフェノール、および9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2−ビス(4−ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。
ポリカーボネート(A成分)は、分岐化剤を上記のジヒドロキシ化合物と併用して分岐化ポリカーボネートとしてもよい。かかる分岐ポリカーボネートに使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられる。中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。
これらのポリカーボネートは、通常のポリカーボネートを製造するそれ自体公知の反応手段、例えば芳香族ジヒドロキシ成分にホスゲンや炭酸ジエステルなどのカーボネート前駆物質を反応させる方法により製造される。その製造方法について基本的な手段を簡単に説明する。
カーボネート前駆物質として、例えばホスゲンを使用する反応では、通常、酸結合剤および溶媒の存在下に反応を行う。酸結合剤としては、例えば水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物またはピリジンなどのアミン化合物が用いられる。溶媒としては、例えば塩化メチレン、クロロベンゼンなどのハロゲン化炭化水素が用いられる。また反応促進のために、第三級アミンまたは第四級アンモニウム塩などの触媒を用いることもできる。その際、反応温度は通常0〜40℃であり、反応時間は数分〜5時間である。
カーボネート前駆物質として炭酸ジエステルを用いるエステル交換反応は、不活性ガス雰囲気下、所定割合の芳香族ジヒドロキシ成分を炭酸ジエステルと加熱しながら撹拌して、生成するアルコールまたはフェノール類を留出させる方法により行われる。反応温度は生成するアルコールまたはフェノール類の沸点などにより異なるが、通常120〜300℃の範囲である。反応はその初期から減圧にして生成するアルコールまたはフェノール類を留出させながら反応を完結させる。また、反応を促進するためにエステル交換反応に使用される触媒を使用することもできる。前記エステル交換反応に使用される炭酸ジエステルとしては、例えばジフェニルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネートなどが挙げられる。これらのうち特にジフェニルカーボネートが好ましい。
重合反応においては末端停止剤を使用することが好ましい。末端停止剤は分子量調節のために使用され、また得られたポリカーボネートは、末端が封鎖されているので、そうでないものと比べて熱安定性に優れている。かかる末端停止剤としては、下記式〔5〕〜〔7〕で表される単官能フェノール類を示すことができる。
Figure 2013141005
[式中、Aは水素原子、炭素数1〜9のアルキル基、アルキルフェニル基(アルキル部分の炭素数は1〜9)、フェニル基、またはフェニルアルキル基(アルキル部分の炭素数1〜9)であり、rは1〜5、好ましくは1〜3の整数である。]
Figure 2013141005
[式中、Xは−R−O−、−R−CO−O−または−R−O−CO−である、ここでRは単結合または炭素数1〜10、好ましくは1〜5の二価の脂肪族炭化水素基を示し、nは10〜50の整数を示す。]
上記式〔5〕で表される単官能フェノール類の具体例としては、フェノール、イソプロピルフェノール、p−tert−ブチルフェノール、p−クレゾール、p−クミルフェノール、2−フェニルフェノール、4−フェニルフェノール、およびイソオクチルフェノールなどが挙げられる。また、上記式〔6〕〜〔7〕で表される単官能フェノール類は、長鎖のアルキル基あるいは脂肪族エステル基を置換基として有するフェノール類であり、これらを用いてポリカーボネートの末端を封鎖すると、これらは末端停止剤または分子量調節剤として機能するのみならず、樹脂の溶融流動性が改良され、成形加工が容易になるばかりでなく、樹脂の吸水率を低くする効果があり好ましく使用される。
上記式〔6〕の置換フェノール類としては、nが10〜30、特に10〜26のものが好ましい。その具体例としては例えばデシルフェノール、ドデシルフェノール、テトラデシルフェノール、ヘキサデシルフェノール、オクタデシルフェノール、エイコシルフェノール、ドコシルフェノールおよびトリアコンチルフェノール等を挙げることができる。
また、上記式〔7〕の置換フェノール類としては、Xが−R−CO−O−であり、Rが単結合である化合物が適当であり、nが10〜30、特に10〜26のものが好適であって、その具体例としては例えばヒドロキシ安息香酸デシル、ヒドロキシ安息香酸ドデシル、ヒドロキシ安息香酸テトラデシル、ヒドロキシ安息香酸ヘキサデシル、ヒドロキシ安息香酸エイコシル、ヒドロキシ安息香酸ドコシルおよびヒドロキシ安息香酸トリアコンチルが挙げられる。
これら単官能フェノール類の内、上記式〔5〕で表される単官能フェノール類が好ましく、より好ましくはアルキル置換もしくはフェニルアルキル置換のフェノール類であり、特に好ましくはp−tert−ブチルフェノール、p−クミルフェノールまたは2−フェニルフェノールである。これらの単官能フェノール類の末端停止剤は、得られたポリカーボネートの全末端に対して少なくとも5モル%、好ましくは少なくとも10モル%末端に導入されることが望ましく、また、末端停止剤は単独でまたは2種以上混合して使用してもよい。
ポリカーボネート(A成分)は、本発明の趣旨を損なわない範囲で、芳香族ジカルボン酸、例えばテレフタル酸、イソフタル酸、ナフタレンジカルボン酸あるいはその誘導体を共重合したポリエステルカーボネートであってもよい。
ポリカーボネート(A成分)の粘度平均分子量は、13,000〜50,000の範囲が好ましく、16,000〜30,000がより好ましく、18,000〜28,000の範囲がさらにより好ましく、19,000〜26,000の範囲が最も好ましい。分子量が50,000を越えると溶融粘度が高くなりすぎて成形性に劣る場合があり、分子量が13,000未満であると機械的強度に問題が生じる場合がある。なお、本発明でいう粘度平均分子量は、まず次式にて算出される比粘度を塩化メチレン100mlにポリカーボネート0.7gを20℃で溶解した溶液からオストワルド粘度計を用いて求め、求められた比粘度を次式にて挿入して粘度平均分子量Mを求める。
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−40.83
c=0.7
ポリカーボネート(A成分)は、樹脂中の全Cl(塩素)量が好ましくは0〜200ppm、より好ましくは0〜150ppmである。ポリカーボネート中の全Cl量が200ppmを越えると、色相および熱安定性が悪くなることがある。
<B成分:ポリカーボネート−ポリジオルガノシロキサン共重合体>
ポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)とは、ポリカーボネートのマトリックス中に平均サイズが0.5〜40nmであるポリジオルガノシロキサンドメインが存在するポリカーボネート−ポリジオルガノシロキサン共重合体である。ポリジオルガノシロキサンドメインの平均サイズは0.5〜25nmであることが好ましく、1.0〜20nmであることがより好ましく、1.0〜18nmであることがさらに好ましく、特に好ましくは5.0〜15nmである。ドメインの平均サイズが小さいと色相改善に効果がなく、大きすぎると濁りが生じ全光線透過率能が低下する傾向にある。
色相改善を考慮すると、ドメインの平均サイズの下限は、好ましくは5nm、より好ましくは8nmである。
このポリジオルガノシロキサンドメインの平均サイズは、小角エックス線散乱法(Small Angel X−ray Scattering:SAXS)により測定を実施する。小角エックス線散乱法とは、散乱角(2θ)が10°未満の範囲の小角領域で生じる散漫な散乱回折を測定する方法である。この小角エックス線散乱法では物質中に電子密度の異なる1〜100nm程度の大きさの領域があると、その電子密度差によりエックス線の散漫散乱が計測される。この散乱角と散乱強度に基づいて測定対象物の粒子径を求める。
ポリカーボネートのマトリックス中にポリジオルガノシロキサンドメインが分散した凝集構造となるポリカーボネート−ポリジオルガノシロキサン共重合体の場合、ポリカーボネートマトリックスとポリジオルガノシロキサンドメインの電子密度差により、エックス線の散漫散乱が生じる。散乱角(2θ)が10°未満の範囲の各散乱角(2θ)における散乱強度Iを測定して、小角エックス線散乱プロファイルを測定し、ポリジオルガノシロキサンドメインが球状ドメインであり、粒径分布のばらつきが存在すると仮定して、仮の粒径と仮の粒径分布モデルから、市販の解析ソフトウェアを用いてシミュレーションを行い、ポリジオルガノシロキサンドメインの平均サイズを求める。小角エックス線散乱法によれば、透過型電子顕微鏡による観察では正確に測定できない、ポリカーボネートのマトリックス中に分散したポリジオルガノシロキサンドメインの平均サイズを、精度よく、簡便に、かつ再現性良く測定することができる。
B成分は下記式〔1〕で表される単位および下記式〔3〕で表される単位を含有するポリカーボネート−ポリジオルガノシロキサン共重合体であることが好ましい。
(式〔1〕で表される単位)
Figure 2013141005
及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜18のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数3〜14のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良い。
ハロゲン原子として、フッ素原子、塩素原子、臭素原子などが挙げられる。炭素原子数1〜18のアルキル基として、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基などが挙げられる。炭素原子数1〜18のアルコキシ基として、メトキシ基、エトキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基などが挙げられる。炭素原子数6〜20のシクロアルキル基として、シクロヘキシル基、シクロオクチル基などが挙げられる。炭素原子数6〜20のシクロアルコキシ基として、シクロヘキシルオキシ基、シクロオクチルオキシ基などが挙げられる。炭素原子数2〜10のアルケニル基として、プロペニル基、ブテニル基、ヘキセニル基、オクテニル基などが挙げられる。炭素原子数3〜14のアリール基として、フェニル基、ナフチル基などが挙げられる。炭素原子数3〜14のアリールオキシ基として、フェニルオキシ基、ナフチルオキシ基などが挙げられる。炭素原子数7〜20のアラルキル基として、ベンジル基などが挙げられる。炭素原子数7〜20のアラルキルオキシ基としてベンジルオキシ基などが挙げられる。
e及びfは、夫々1〜4の整数である。
Wは単結合もしくは下記式〔2〕で表される基からなる群より選ばれる少なくとも一つの基である。
Figure 2013141005
11,R12,R13,R14,R15,R16,R17及びR18は、夫々独立して水素原子、炭素原子数1〜18のアルキル基、炭素原子数3〜14のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる基を表す。
炭素原子数1〜18のアルキル基として、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基などが挙げられる。炭素原子数3〜14のアリール基として、フェニル基、ナフチル基などが挙げられる。炭素原子数7〜20のアラルキル基として、ベンジル基などが挙げられる。
19及びR20は、夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数6〜10のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良い。
ハロゲン原子として、フッ素原子、塩素原子、臭素原子などが挙げられる。
炭素原子数1〜18のアルキル基として、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基などが挙げられる。炭素原子数1〜10のアルコキシ基として、メトキシ基、エトキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基などが挙げられる。炭素原子数6〜20のシクロアルキル基として、シクロヘキシル基、シクロオクチル基などが挙げられる。炭素原子数6〜20のシクロアルコキシ基として、シクロヘキシルオキシ基、シクロオクチルオキシ基などが挙げられる。炭素原子数2〜10のアルケニル基として、プロペニル基、ブテニル基、ヘキセニル基、オクテニル基などが挙げられる。炭素原子数3〜14のアリール基として、フェニル基、ナフチル基などが挙げられる。炭素原子数6〜10のアリールオキシ基として、フェニルオキシ基、ナフチルオキシ基などが挙げられる。炭素原子数7〜20のアラルキル基として、ベンジル基などが挙げられる。炭素原子数7〜20のアラルキルオキシ基として、ベンジルオキシ基などが挙げられる。
gは、1〜10の整数、hは4〜7の整数である。
上記式〔1〕で表される単位を誘導する二価フェノール(I)としては、例えば、4,4’−ジヒドロキシビフェニル、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシ−3,3’−ビフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス(3−t−ブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、2,2−ビス(3−ブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、4,4’−ジヒドロキシジフェニルエ−テル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエ−テル、4,4’−スルホニルジフェノール、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、2,2’−ジメチル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、2,2’−ジフェニル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルフィド、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,8−ビス(4−ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’−(1,3−アダマンタンジイル)ジフェノール、および1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等が挙げられる。
なかでも、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−スルホニルジフェノール、2,2’−ジメチル−4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、および1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,4’−スルホニルジフェノール、および9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2−ビス(4−ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。
(式〔3〕で表される単位)
Figure 2013141005
上記式〔3〕で表される単位において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基である。好ましくは水素原子、炭素数1〜6のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基である。水素原子、炭素数1〜6のアルキル基又はフェニル基が特に好ましい。
炭素数1〜12のアルキル基として、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基などが挙げられる。炭素数6〜12の置換若しくは無置換のアリール基として、フェニル基、ナフチル基が挙げられる。置換基として、メチル基、エチル基、ブチル基などの炭素数1〜6のアルキル基が挙げられる。
及びR10は夫々独立して、水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基である。
ハロゲン原子として、フッ素原子、塩素原子、臭素原子などが挙げられる。炭素原子数1〜10のアルキル基として、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基などが挙げられる。炭素原子数1〜10のアルコキシ基として、メトキシ基、エトキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基などが挙げられる。好ましくは水素原子、炭素原子数1〜10のアルキル基であり、水素原子、炭素原子数1〜4のアルキル基が特に好ましい。
pは、自然数であり、qは0又は自然数であり、p+qは150以下の自然数である。p、qはジオルガノシロキサン重合度を表す。p+qは150以下の自然数である。p+qは好ましくは3〜120、より好ましくは30〜100、さらに好ましくは30〜80、特に好ましくは30〜50である。
Xは炭素数2〜8の二価脂肪族基である。二価脂肪族基として、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基などの炭素原子数1〜10のアルキレンキ基が好ましい。
上記式〔3〕で表される単位を誘導するジヒドロキシアリール末端ポリジオルガノシロキサン(II)としては、例えば下記式(I)に示すような化合物が好適に用いられる。
Figure 2013141005
ポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)の全重量に対する式〔3〕で表される単位の含有量は、好ましくは0.01〜20.0重量%、より好ましくは0.01〜10.0重量%、さらに好ましくは2.0〜10.0重量%、最も好ましくは2.0〜8.0重量%である。ポリジオルガノシロキサン成分含有量が0.01重量%未満では、色相効果が不足し、20.0重量%を超えると全光線透過率が低下する場合がある。なお、かかるジオルガノシロキサン重合度、ポリジオルガノシロキサン成分含有量は、H−NMR測定により算出することが可能である。
ポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)の製造方法について以下に説明する。
あらかじめ水に不溶性の有機溶媒とアルカリ水溶液との混合液中において、二価フェノール(I)と、ホスゲンや二価フェノール(I)のクロロホルメート等のクロロホルメート形成性化合物との反応により、二価フェノール(I)のクロロホルメートおよび/または末端クロロホルメート基を有する二価フェノール(I)のカーボネートオリゴマーを含むクロロホルメート化合物の混合溶液を調製する。クロロホルメート形成性化合物としてはホスゲンが好適である。
二価フェノール(I)からのクロロホルメート化合物を生成するにあたり、上記式〔1〕で表されるカーボネート構成単位を誘導する二価フェノール(I)の全量を一度にクロロホルメート化合物としてもよく、又は、その一部を後添加モノマーとして後段の界面重縮合反応に反応原料として添加してもよい。後添加モノマーとは、後段の重縮合反応を速やかに進行させるために加えるものであり、必要のない場合には敢えて加える必要はない。
このクロロホルメート化合物生成反応の方法は特に限定はされないが、通常、酸結合剤の存在下、溶媒中で行う方式が好適である。更に、所望に応じ、亜硫酸ナトリウム、およびハイドロサルファイドなどの酸化防止剤を少量添加してもよく、添加することが好ましい。
クロロホルメート形成性化合物の使用割合は、反応の化学量論比(当量)を考慮して適宜調整すればよい。また、好適なクロロホルメート形成性化合物であるホスゲンを使用する場合、ガス化したホスゲンを反応系に吹き込む方法が好適に採用できる。
前記酸結合剤としては、例えば、水酸化ナトリウム、および水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、および炭酸カリウム等のアルカリ金属炭酸塩、並びにピリジンの如き有機塩基、あるいはこれらの混合物などが用いられる。
酸結合剤の使用割合も、上記同様に、反応の化学量論比(当量)を考慮して適宜定めればよい。具体的には、二価フェノール(I)のクロロホルメート化合物の形成に使用する二価フェノール(I)1モルあたり(通常1モルは2当量に相当)、2当量若しくはこれより若干過剰量の酸結合剤を用いることが好ましい。
前記溶媒としては、公知のポリカーボネートの製造に使用されるものなど各種の反応に不活性な溶媒を1種単独であるいは混合溶媒として使用すればよい。代表的な例としては、例えば、キシレンの如き炭化水素溶媒、並びに、塩化メチレンおよびクロロベンゼンをはじめとするハロゲン化炭化水素溶媒などが挙げられる。特に塩化メチレンの如きハロゲン化炭化水素溶媒が好適に用いられる。
クロロホルメート化合物の生成反応における圧力は特に制限はなく、常圧、加圧、もしくは減圧のいずれでもよいが、通常常圧下で反応を行うことが有利である。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、反応に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は他の条件に左右され一概に規定できないが、通常、0.2〜10時間で行われる。
クロロホルメート化合物の生成反応におけるpH範囲は、公知の界面反応条件が利用でき、pHは通常10以上に調製される。
ポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)の製造においては、このようにして二価フェノール(I)のクロロホルメートおよび末端クロロホルメート基を有する二価フェノール(I)のカーボネートオリゴマーを含むクロロホルメート化合物の混合溶液を調整した後、該混合溶液を攪拌しながら式〔3〕で表わされるカーボネート構成単位を誘導するジヒドロキシアリール末端ポリジオルガノシロキサン(II)を、該混合溶液の調整にあたり仕込まれた二価フェノール(I)の量1モルあたり、0.01モル/min以下の速度で加え、該ジヒドロキシアリール末端ポリジオルガノシロキサン(II)と該クロロホーメート化合物とを界面重縮合させることにより、ポリカーボネート−ポリジオルガノシロキサン共重合体を得る。
ポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)は、分岐化剤を二価フェノール系化合物と併用して分岐化ポリカーボネート−ポリジオルガノシロキサン共重合体とすることができる。かかる分岐ポリカーボネートに使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。
かかる分岐化ポリカーボネート−ポリジオルガノシロキサン共重合体の製造方法は、クロロホルメート化合物の生成反応時にその混合溶液中に分岐化剤が含まれる方法であっても、該生成反応終了後の界面重縮合反応時に分岐化剤が添加される方法であってもよい。分岐化剤由来のカーボネート構成単位の割合は、該共重合樹脂を構成するカーボネート構成単位全量中、好ましくは0.005〜1.5モル%、より好ましくは0.01〜1.2モル%、特に好ましくは0.05〜1.0モル%である。なお、かかる分岐構造量についてはH−NMR測定により算出することが可能である。
重縮合反応における系内の圧力は、減圧、常圧、もしくは加圧のいずれでも可能であるが、通常は、常圧若しくは反応系の自圧程度で好適に行い得る。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は反応温度等の他の条件によって異なるので一概に規定はできないが、通常、0.5〜10時間で行われる。
場合により、得られたポリカーボネート−ポリジオルガノシロキサン共重合体に適宜、物理的処理(混合、分画など)及び/又は化学的処理(ポリマー反応、架橋処理、部分分解処理など)を施して所望の還元粘度[ηSP/c]のポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)として取得することもできる。
得られた反応生成物(粗生成物)は公知の分離精製法等の各種の後処理を施して、所望の純度(精製度)のポリカーボネート−ポリジオルガノシロキサン共重合体として回収することができる。
ポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)の粘度平均分子量は好ましくは1.6×10〜3.0×10であり、より好ましくは1.6×10〜2.5×10、更に好ましくは1.7×10〜2.4×10である。かかる好適な範囲の下限以上であれば、多くの分野において実用上の機械的強度が得られ、かかる上限以下であれば高剪断速度における剪断粘度が低く、各種成形法、特に射出成形において好適である。
ポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)の粘度平均分子量の算出は次の要領で行なわれる。まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート−ポリジオルガノシロキサン共重合体0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mvを算出する。
ηSP/c=[η]+0.45×[η]2c(但し[η]は極限粘度)
[η]=1.23×10−4Mv0.83
c=0.7
B成分中の下記式〔3〕に含まれる下記式〔4〕で表される単位の含有量は、樹脂組成物の全重量を基準にして、好ましくは0.001〜1.0重量%、より好ましくは0.01〜0.8重量%、さらに好ましくは0.01〜0.6重量%特に好ましくは0.01〜0.2重量%である。この割合が0.001重量%未満では、色相改善効果が発揮せず、1.0重量%を超えると全光線透過率が低下する場合があるので好ましくない。
Figure 2013141005
(上記式〔3〕において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは150以下の自然数である。Xは炭素数2〜8の二価脂肪族基である。)
Figure 2013141005
(上記式〔4〕において、R21、R22、R23、R24、R25及びR26は、各々式〔3〕のR、R、R、R、R及びRと同じであり、rおよびsは各々式〔3〕のpおよびqと同じである。)
樹脂成分中のB成分の含有量は、B成分に含まれる式〔4〕で表される単位の含有量を上述の好ましい範囲となるように調整する。B成分の含有量は、樹脂成分100重量部中、好ましくは0.01〜10.0重量部、より好ましくは0.01〜5.0重量部、さらに好ましくは0.1〜5.0重量部、特に好ましくは0.1〜2.0重量部である。
<C成分:光拡散剤>
光拡散剤(C成分)は、高分子微粒子に代表される有機系微粒子、並びに無機系微粒子の何れであってもよい。高分子微粒子としては、非架橋性モノマーと架橋性モノマーとを重合して得られる架橋粒子が代表的に例示される。さらにかかるモノマー以外の他の共重合可能なモノマーを使用することもできる。
なかでも高分子微粒子が好ましく、特に架橋粒子が好適に使用できる。かかる架橋粒子において、非架橋性モノマーとして使用されるモノマーとして、アクリル系モノマー、スチレン系モノマー、アクリロニトリル系モノマー等の非架橋性ビニル系モノマー及びオレフィン系モノマー等を挙げることができる。
アクリル系モノマーとしては、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、2−エチルヘキシルアクリレート、メチルメタクリート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、2−エチルヘキシルメタクリレート、およびフェニルメタクリレート等を単独でまたは混合して使用することが可能である。このなかでも特にメチルメタクリレートが好ましい。
またスチレン系モノマーとしては、スチレン、α−メチルスチレン、メチルスチレン(ビニルトルエン)、およびエチルスチレン等のアルキルスチレン、並びにブロモ化スチレンの如きハロゲン化スチレンを使用することができ、特にスチレンが好ましい。アクリロニトリル系モノマーとしては、アクリロニトリル、およびメタクリロニトリルを使用することができる。
また、オレフィン系モノマーとしては、エチレンおよび各種ノルボルネン型化合物等を使用することができる。さらに、他の共重合可能な他のモノマーとして、グリシジルメタクリレート、N−メチルマレイミド、および無水マレイン酸等を例示することができる。有機架橋粒子は結果としてN−メチルグルタルイミドの如き単位を有することもできる。
かかる非架橋性ビニル系モノマーに対する架橋性モノマーとしては、例えば、ジビニルベンゼン、アリルメタクリレート、トリアリルシアヌレート、トリアリルイソシアネート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコール(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ジシクロペンテニルジ(メタ)アクリレート、およびN−メチロール(メタ)アクリルアミド等が挙げられる。
また他の架橋粒子としてはシリコーン架橋粒子を挙げることができる。シリコーン架橋粒子は、シロキサン結合を主骨格としてケイ素原子に有機置換基を有するものである。かかる架橋粒子には、ポリオルガノシルセスキオキサンに代表される架橋度の高いもの、並びにオルガノシリコーンゴム粒子に代表される架橋度の低いもののいずれも含む。本発明に用いられるシリコーン架橋粒子は、ポリオルガノシルセスキオキサンに代表される架橋度の高いものが好ましい。このポリオルガノシルセスキオキサンは、R−SiO3/2(Rは一価の有機基)で示される3官能性シロキサン単位(以下単に“T単位”と称する)が、1〜4官能性シロキサン単位の合計100モル%中50モル%以上、好ましくは90モル%以上、より好ましくは95モル%以上であるものをいう。ポリオルガノシルセスキオキサンに結合する有機基としては、炭素数1〜18のアルキル基、フェニル基、トリル基、およびキシリル基の如きアリール基、β−フェニルエチル基およびβ−フェニルプロピル基の如きアラルキル基、並びにシクロヘキシル基などが例示される。更にビニル基、γ−グリシドキシプロピル基、およびγ−メタクリロキシプロピル基などに代表される反応性基を含有することもできる。炭素数1〜18のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、デシル基、ドデシル基、およびオクタデシル基などが例示される。より好ましくアルキル基は炭素数1〜12、更に好ましくは炭素数1〜10のアルキル基である。特にメチル基が好適である。市販のシリコーン系光拡散性微粒子としては、例えば、東芝シリコーン社製トスパールシリーズ、東レ・ダウコーニング・シリコーン社製トレフィルシリーズ、信越化学工業社製シリコーンパウダーが挙げられる。
光拡散剤(C成分)の平均粒径は、0.01〜50μmであることが好ましく、より好ましくは1〜30μm、さらに好ましく2〜30μmである。平均粒径が0.01μm未満あるいは50μmを超えると光拡散性が不足する場合がある。平均粒径は、レーザー回折・散乱法で求められる粒度の積算分布の50%値(D50)で表されるものである。粒子径の分布は単一であっても複数であってもよい。即ち平均粒径の異なる2種以上の光拡散剤を組み合わせることが可能である。しかしながらより好ましい光拡散剤は、その粒径分布の狭いものである。平均粒径の前後2μmの範囲に、粒子の70重量%以上が含有される分布を有するものがより好ましい。光拡散剤の形状は、光拡散性の観点から球状に近いものが好ましく、真球状に近い形態であるほどより好ましい。かかる球状には楕円球を含む。
光拡散剤(C成分)の屈折率は、1.30〜1.80の範囲が好ましく、より好ましくは1.33〜1.70、さらに好ましくは1.35〜1.65の範囲である。これらは樹脂組成物に配合した状態において十分な光拡散機能を発揮する。
光拡散剤(C成分)含有量は、A成分およびB成分から構成される樹脂成分100重量部に対して、0.05〜10.0重量部であり、好ましくは0.1〜5.0重量部、より好ましくは0.1〜2.0重量、さらに好ましくは0.1〜1.0重量である。C成分の含有量が少ないと十分な光拡散性が得られず、多すぎると全光線透過率が低下する。
<その他の添加剤>
本発明の樹脂組成物の難燃性、酸化防止性、光安定性(紫外線安定性)、蛍光増白剤、離型性および金型腐食の改良のために、これらの改良に使用されている添加剤が有利に使用される。以下これら添加剤について具体的に説明する。
(I)難燃剤
本発明の樹脂組成物には、ポリカーボネートの難燃剤として知られる各種の化合物が配合されてよい。かかる化合物の配合は難燃性の向上をもたらすが、それ以外にも各化合物の性質に基づき、例えば帯電防止性、流動性、剛性、および熱安定性の向上などがもたらされる。かかる難燃剤としては、(i)有機金属塩系難燃剤(例えば有機スルホン酸アルカリ(土類)金属塩、有機ホウ酸金属塩系難燃剤、および有機錫酸金属塩系難燃剤など)、(ii)有機リン系難燃剤(例えば、有機基含有のモノホスフェート化合物、ホスフェートオリゴマー化合物、ホスホネートオリゴマー化合物、ホスホニトリルオリゴマー化合物、およびホスホン酸アミド化合物など)、(iii)シリコーン化合物からなるシリコーン系難燃剤、(iv)フィブリル化PTFEが挙げられ、その中でも有機金属塩系難燃剤、有機リン系難燃剤が好ましい。
(i)有機金属塩系難燃剤
有機金属塩化合物は、炭素原子数1〜50、好ましくは1〜40の有機酸のアルカリ(土類)金属塩、好ましくは有機スルホン酸アルカリ(土類)金属塩であることが好ましい。この有機スルホン酸アルカリ(土類)金属塩には、炭素原子数1〜10、好ましくは2〜8のパーフルオロアルキルスルホン酸とアルカリ金属またはアルカリ土類金属との金属塩の如きフッ素置換アルキルスルホン酸の金属塩、並びに炭素原子数7〜50、好ましくは7〜40の芳香族スルホン酸とアルカリ金属またはアルカリ土類金属との金属塩が含まれる。
金属塩を構成するアルカリ金属としてはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムが挙げられ、アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウムおよびバリウムが挙げられる。より好適にはアルカリ金属である。かかるアルカリ金属の中でも、透明性の要求がより高い場合にはイオン半径のより大きいルビジウムおよびセシウムが好適である一方、これらは汎用的でなくまた精製もし難いことから、結果的にコストの点で不利となる場合がある。一方、リチウムおよびナトリウムなどのより小さいイオン半径の金属は逆に難燃性の点で不利な場合がある。これらを勘案してスルホン酸アルカリ金属塩中のアルカリ金属を使い分けることができるが、いずれの点においても特性のバランスに優れたスルホン酸カリウム塩が最も好適である。かかるカリウム塩と他のアルカリ金属からなるスルホン酸アルカリ金属塩とを併用することもできる。
パーフルオロアルキルスルホン酸アルカリ金属塩の具体例としては、トリフルオロメタンスルホン酸カリウム、パーフルオロブタンスルホン酸カリウム、パーフルオロヘキサンスルホン酸カリウム、パーフルオロオクタンスルホン酸カリウム、ペンタフルオロエタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸ナトリウム、パーフルオロオクタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸リチウム、パーフルオロブタンスルホン酸リチウム、パーフルオロヘプタンスルホン酸リチウム、トリフルオロメタンスルホン酸セシウム、パーフルオロブタンスルホン酸セシウム、パーフルオロオクタンスルホン酸セシウム、パーフルオロヘキサンスルホン酸セシウム、パーフルオロブタンスルホン酸ルビジウム、およびパーフルオロヘキサンスルホン酸ルビジウム等が挙げられる。これらは1種もしくは2種以上を併用して使用することができる。ここでパーフルオロアルキル基の炭素数は、1〜18の範囲が好ましく、1〜10の範囲がより好ましく、更に好ましくは1〜8の範囲である。これらの中で特にパーフルオロブタンスルホン酸カリウムが好ましい。
アルカリ金属からなるパーフルオロアルキルスルホン酸アルカリ(土類)金属塩中には、通常少なからず弗化物イオン(F)が混入する。かかる弗化物イオンの存在は難燃性を低下させる要因となり得るので、できる限り低減されることが好ましい。かかる弗化物イオンの割合はイオンクロマトグラフィー法により測定できる。弗化物イオンの含有量は、100ppm以下が好ましく、40ppm以下が更に好ましく、10ppm以下が特に好ましい。また製造効率的に0.2ppm以上であることが好適である。
かかる弗化物イオン量の低減されたパーフルオロアルキルスルホン酸アルカリ(土類)金属塩は、製造方法は公知の製造方法を用い、かつ含フッ素有機金属塩を製造する際の原料中に含有される弗化物イオンの量を低減する方法、反応により得られた弗化水素などを反応時に発生するガスや加熱によって除去する方法、並びに含フッ素有機金属塩を製造に再結晶および再沈殿等の精製方法を用いて弗化物イオンの量を低減する方法などによって製造することができる。特に有機金属塩系難燃剤は比較的水に溶けやすいこことから、イオン交換水、特に電気抵抗値が18MΩ・cm以上、すなわち電気伝導度が約0.55μS/cm以下を満足する水を用い、かつ常温よりも高い温度で溶解させて洗浄を行い、その後冷却させて再結晶化させる工程により製造することが好ましい。
芳香族スルホン酸アルカリ(土類)金属塩としては、ジフェニルサルファイド−4,4’−ジスルホン酸ジナトリウム、ジフェニルサルファイド−4,4’−ジスルホン酸ジカリウム、5−スルホイソフタル酸カリウム、5−スルホイソフタル酸ナトリウム、ポリエチレンテレフタル酸ポリスルホン酸ポリナトリウム、1−メトキシナフタレン−4−スルホン酸カルシウム、4−ドデシルフェニルエーテルジスルホン酸ジナトリウム、ポリ(2,6−ジメチルフェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,3−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,4−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(2,6−ジフェニルフェニレンオキシド)ポリスルホン酸ポリカリウム、ポリ(2−フルオロ−6−ブチルフェニレンオキシド)ポリスルホン酸リチウム、ベンゼンスルホネートのスルホン酸カリウム、ベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸ストロンチウム、ベンゼンスルホン酸マグネシウム、p−ベンゼンジスルホン酸ジカリウム、ナフタレン−2,6−ジスルホン酸ジカリウム、ビフェニル−3,3’−ジスルホン酸カルシウム、ジフェニルスルホン−3−スルホン酸ナトリウム、ジフェニルスルホン−3−スルホン酸カリウム、ジフェニルスルホン−3,3’−ジスルホン酸ジカリウム、ジフェニルスルホン−3,4’−ジスルホン酸ジカリウム、α,α,α−トリフルオロアセトフェノン−4−スルホン酸ナトリウム、ベンゾフェノン−3,3’−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸ジナトリウム、チオフェン−2,5−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸カルシウム、ベンゾチオフェンスルホン酸ナトリウム、ジフェニルスルホキサイド−4−スルホン酸カリウム、ナフタレンスルホン酸ナトリウムのホルマリン縮合物、およびアントラセンスルホン酸ナトリウムのホルマリン縮合物などを挙げることができる。
これら芳香族スルホン酸アルカリ(土類)金属塩では、特にカリウム塩が好適である。これらの芳香族スルホン酸アルカリ(土類)金属塩の中でも、ジフェニルスルホン−3−スルホン酸カリウム、およびジフェニルスルホン−3,3’−ジスルホン酸ジカリウムが好適である。特にこれらの混合物(前者と後者の重量比が15/85〜30/70)が好適である。
スルホン酸アルカリ(土類)金属塩以外の有機金属塩としては、硫酸エステルのアルカリ(土類)金属塩および芳香族スルホンアミドのアルカリ(土類)金属塩などが好適に例示される。硫酸エステルのアルカリ(土類)金属塩としては、特に一価および/または多価アルコール類の硫酸エステルのアルカリ(土類)金属塩を挙げることができる。
かかる一価および/または多価アルコール類の硫酸エステルとしては、メチル硫酸エステル、エチル硫酸エステル、ラウリル硫酸エステル、ヘキサデシル硫酸エステル、ポリオキシエチレンアルキルフェニルエーテルの硫酸エステル、ペンタエリスリトールのモノ、ジ、トリ、テトラ硫酸エステル、ラウリン酸モノグリセライドの硫酸エステル、パルミチン酸モノグリセライドの硫酸エステル、およびステアリン酸モノグリセライドの硫酸エステルなどを挙げることができる。これらの硫酸エステルのアルカリ(土類)金属塩として好ましくはラウリル硫酸エステルのアルカリ(土類)金属塩が挙げられる。
芳香族スルホンアミドのアルカリ(土類)金属塩としては、例えばサッカリン、N−(p−トリルスルホニル)−p−トルエンスルホイミド、N−(N’−ベンジルアミノカルボニル)スルファニルイミド、およびN−(フェニルカルボキシル)スルファニルイミドのアルカリ(土類)金属塩などが挙げられる。
有機金属塩系難燃剤の含有量は、樹脂組成物100重量部に対し、好ましくは0.001〜1重量部、より好ましくは0.005〜0.5重量部、さらに好ましくは0.01〜0.3重量部、特に好ましくは0.03〜0.15重量部である。
(ii)有機リン系難燃剤
有機リン系難燃剤としては、アリールホスフェート化合物が好適である。かかるホスフェート化合物は概して色相に優れるためである。またホスフェート化合物は可塑化効果があるため、成形加工性を高められる点で有利である。かかるホスフェート化合物は、従来難燃剤として公知の各種ホスフェート化合物が使用できる。有機リン系難燃剤の配合量は、樹脂組成物100重量部に対し、好ましくは0.01〜20重量部、より好ましくは2〜10重量部、さらに好ましくは2〜7重量部である。
(iii)シリコーン系難燃剤
シリコーン系難燃剤として使用されるシリコーン化合物は、燃焼時の化学反応によって難燃性を向上させるものである。該化合物としては従来芳香族ポリカーボート樹脂の難燃剤として提案された各種の化合物を使用することができる。シリコーン化合物はその燃焼時にそれ自体が結合してまたは樹脂に由来する成分と結合してストラクチャーを形成することにより、または該ストラクチャー形成時の還元反応により、ポリカーボネートに難燃効果を付与するものと考えられている。したがってかかる反応における活性の高い基を含んでいることが好ましい。より具体的にはアルコキシ基およびハイドロジェン(即ちSi−H基)から選択された少なくとも1種の基を所定量含んでいることが好ましい。かかる基(アルコキシ基、Si−H基)の含有割合としては、0.1〜1.2mol/100gの範囲が好ましく、0.12〜1mol/100gの範囲がより好ましく、0.15〜0.6mol/100gの範囲が更に好ましい。かかる割合はアルカリ分解法より、シリコーン化合物の単位重量当たりに発生した水素またはアルコールの量を測定することにより求められる。尚、アルコキシ基は炭素数1〜4のアルコキシ基が好ましく、特にメトキシ基が好適である。一般的にシリコーン化合物の構造は、以下に示す4種類のシロキサン単位を任意に組み合わせることによって構成される。
すなわち、M単位:(CHSiO1/2、H(CHSiO1/2、H(CH)SiO1/2、(CH(CH=CH)SiO1/2、(CH(C)SiO1/2、(CH)(C)(CH=CH)SiO1/2等の1官能性シロキサン単位、D単位:(CHSiO、H(CH)SiO、HSiO、H(C)SiO、(CH)(CH=CH)SiO、(CSiO等の2官能性シロキサン単位、T単位:(CH)SiO3/2、(C)SiO3/2、HSiO3/2、(CH=CH)SiO3/2、(C)SiO3/2等の3官能性シロキサン単位、Q単位:SiOで示される4官能性シロキサン単位である。
シリコーン系難燃剤に使用されるシリコーン化合物の構造は、具体的には、示性式としてDn、Tp、MmDn、MmTp、MmQq、MmDnTp、MmDnQq、MmTpQq、MmDnTpQq、DnTp、DnQq、DnTpQqが挙げられる。この中で好ましいシリコーン化合物の構造は、MmDn、MmTp、MmDnTp、MmDnQqであり、さらに好ましい構造は、MmDnまたはMmDnTpである。
ここで、前記示性式中の係数m、n、p、qは各シロキサン単位の重合度を表す1以上の整数であり、各示性式における係数の合計がシリコーン化合物の平均重合度となる。この平均重合度は好ましくは3〜150の範囲、より好ましくは3〜80の範囲、更に好ましくは3〜60の範囲、特に好ましくは4〜40の範囲である。かかる好適な範囲であるほど難燃性において優れるようになる。更に後述するように芳香族基を所定量含むシリコーン化合物においては透明性や色相にも優れる。その結果良好な反射光が得られる。またm、n、p、qのいずれかが2以上の数値である場合、その係数の付いたシロキサン単位は、結合する水素原子や有機残基が異なる2種以上のシロキサン単位とすることができる。
シリコーン化合物は、直鎖状であっても分岐構造を持つものであってもよい。またシリコン原子に結合する有機残基は炭素数1〜30、より好ましくは1〜20の有機残基であることが好ましい。かかる有機残基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、およびデシル基などのアルキル基、シクロヘキシル基の如きシクロアルキル基、フェニル基の如きアリール基、並びにトリル基の如きアラルキル基を挙げることがでる。さらに好ましくは炭素数1〜8のアルキル基、アルケニル基またはアリール基である。アルキル基としては、特にはメチル基、エチル基、およびプロピル基等の炭素数1〜4のアルキル基が好ましい。さらにシリコーン系難燃剤として使用されるシリコーン化合物はアリール基を含有することが好ましい。一方、二酸化チタン顔料の有機表面処理剤としてのシラン化合物およびシロキサン化合物は、アリール基を含有しない方が好ましい効果が得られる点で、シリコーン系難燃剤とはその好適な態様において明確に区別される。シリコーン系難燃剤として使用されるシリコーン化合物は、前記Si−H基およびアルコキシ基以外にも反応基を含有していてもよく、かかる反応基としては例えば、アミノ基、カルボキシル基、エポキシ基、ビニル基、メルカプト基、およびメタクリロキシ基などが例示される。
シリコーン系難燃剤の配合量は、樹脂組成物100重量部に対し、好ましくは0.01〜20重量部、より好ましくは0.5〜10重量部、さらに好ましくは1〜5重量部である。
(iv)フィブリル形成能を有するポリテトラフルオロエチレン(フィブリル化PTFE)
フィブリル化PTFEは、フィブリル化PTFE単独であっても、混合形態のフィブリル化PTFEすなわちフィブリル化PTFE粒子と有機系重合体からなるポリテトラフルオロエチレン系混合体であってもよい。フィブリル化PTFEは極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その数平均分子量は、150万〜数千万の範囲である。かかる下限はより好ましくは300万である。かかる数平均分子量は、特開平6−145520号公報に開示されているとおり、380℃でのポリテトラフルオロエチレンの溶融粘度に基づき算出される。即ち、B成分のフィブリル化PTFEは、かかる公報に記載された方法で測定される380℃における溶融粘度が10〜1013poiseの範囲であり、好ましくは10〜1012poiseの範囲である。
かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル化PTFEは樹脂中での分散性を向上させ、更に良好な難燃性および機械的特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。また、特開平6−145520号公報に開示されているとおり、かかるフィブリル化PTFEを芯とし、低分子量のポリテトラフルオロエチレンを殻とした構造を有するものも好ましく利用される。かかるフィブリル化PTFEの市販品としては例えば三井・デュポンフロロケミカル(株)のテフロン(登録商標)6J、ダイキン化学工業(株)のポリフロンMPA FA500、F−201Lなどを挙げることができる。混合形態のフィブリル化PTFEとしては、(1)フィブリル化PTFEの水性分散液と有機重合体の水性分散液または溶液とを混合し共沈殿を行い共凝集混合物を得る方法(特開昭60−258263号公報、特開昭63−154744号公報などに記載された方法)、(2)フィブリル化PTFEの水性分散液と乾燥した有機重合体粒子とを混合する方法(特開平4−272957号公報に記載された方法)、(3)フィブリル化PTFEの水性分散液と有機重合体粒子溶液を均一に混合し、かかる混合物からそれぞれの媒体を同時に除去する方法(特開平06−220210号公報、特開平08−188653号公報などに記載された方法)、(4)フィブリル化PTFEの水性分散液中で有機重合体を形成する単量体を重合する方法(特開平9−95583号公報に記載された方法)、および(5)PTFEの水性分散液と有機重合体分散液を均一に混合後、更に該混合分散液中でビニル系単量体を重合し、その後混合物を得る方法(特開平11−29679号公報などに記載された方法)により得られたものが使用できる。
これらの混合形態のフィブリル化PTFEの市販品としては、三菱レイヨン(株)の「メタブレン A3000」(商品名)「メタブレン A3700」(商品名)、「メタブレン A3800」(商品名)で代表されるメタブレンAシリーズ、Shine polymer社のSN3300B7(商品名)、およびGEスペシャリティーケミカルズ社製 「BLENDEX B449」(商品名)などが例示される。
混合形態におけるフィブリル化PTFEの割合としては、かかる混合物100重量%中、フィブリル化PTFEが1重量%〜95重量%であることが好ましく、10重量%〜90重量%であるのがより好ましく、20重量%〜80重量%が最も好ましい。
混合形態におけるフィブリル化PTFEの割合がかかる範囲にある場合は、フィブリル化PTFEの良好な分散性を達成することができる。フィブリル化PTFEの配合量は、樹脂組成物100重量部に対して、好ましくは0.001〜0.2重量部であり、0.01〜0.2重量部がより好ましく、0.01〜0.18重量部がさらに好ましい。ここで示す重量部はポリテトラフルオロエチレンが混合形態(混合体)の場合は、混合体全体の重量を示す。
(II)リン系安定剤
本発明の樹脂組成物は、加水分解性を促進させない程度において、リン系安定剤が配合されることが好ましい。かかるリン系安定剤は製造時または成形加工時の熱安定性を向上させ、機械的特性、色相、および成形安定性を向上させる。リン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル、並びに第3級ホスフィンなどが例示される。
具体的にはホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられる。
更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2’−エチリデンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイトなどを挙げることができる。
ホスフェート化合物としては、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどを挙げることができる。好ましくはトリフェニルホスフェート、トリメチルホスフェートである。
ホスホナイト化合物としては、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等が挙げられる。
なかでもテトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。
かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。
第3級ホスフィンとしては、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリアミルホスフィン、ジメチルフェニルホスフィン、ジブチルフェニルホスフィン、ジフェニルメチルホスフィン、ジフェニルオクチルホスフィン、トリフェニルホスフィン、トリ−p−トリルホスフィン、トリナフチルホスフィン、およびジフェニルベンジルホスフィンなどが例示される。特に好ましい第3級ホスフィンは、トリフェニルホスフィンである。上記リン系安定剤は、1種のみならず2種以上を混合して用いることができる。上記リン系安定剤の中でもトリメチルホスフェートに代表されるアルキルホスフェート化合物が配合されることが好ましい。またかかるアルキルホスフェート化合物と、ホスファイト化合物および/またはホスホナイト化合物との併用も好ましい態様である。
リン系安定剤の配合量は、樹脂組成物100重量部に対し、好ましくは0.0001〜1重量部、より好ましくは0.001〜0.5重量部、さらに好ましくは0.005〜0.3重量部である。
(III)ヒンダードフェノール系安定剤
本発明の樹脂組成物には、更にヒンダードフェノール系安定剤を配合することができる。かかる配合は例えば成形加工時の色相悪化や長期間の使用における色相の悪化などを抑制する効果が発揮される。
ヒンダードフェノール系安定剤としては、例えば、α−トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n−オクタデシル−β−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−ヘキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ビス[2−tert−ブチル−4−メチル6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,2−チオジエチレンビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3’,5’−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、およびテトラキス[メチレン−3−(3’,5’−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンなどが例示される。これらはいずれも入手容易である。上記ヒンダードフェノール系安定剤は、単独でまたは2種以上を組合せて使用することができる。
ヒンダードフェノール系安定剤の配合量は、樹脂組成物100重量部に対し、好ましくは0.0001〜1重量部、より好ましくは0.001〜0.5重量部、さらに好ましくは0.005〜0.3重量部である。
(IV)前記以外の熱安定剤
本発明の樹脂組成物には、前記リン系安定剤およびヒンダードフェノール系安定剤以外の他の熱安定剤を配合することもできる。かかる他の熱安定剤としては、例えば3−ヒドロキシ−5,7−ジ−tert−ブチル−フラン−2−オンとo−キシレンとの反応生成物に代表されるラクトン系安定剤が好適に例示される。
かかる安定剤の詳細は特開平7−233160号公報に記載されている。かかる化合物はIrganox HP−136(商標、CIBA SPECIALTY CHEMICALS社製)として市販され、該化合物を利用できる。更に該化合物と各種のホスファイト化合物およびヒンダードフェノール化合物を混合した安定剤が市販されている。例えば前記社製のIrganoxHP−2921が好適に例示される。ラクトン系安定剤の配合量は、樹脂組成物100重量部に対して好ましくは0.0005〜0.05重量部、より好ましくは0.001〜0.03重量部である。
またその他の安定剤としては、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、およびグリセロール−3−ステアリルチオプロピオネートなどのイオウ含有安定剤が例示される。かかるイオウ含有安定剤の配合量は、樹脂組成物100重量部に対して好ましくは0.001〜0.1重量部、より好ましくは0.01〜0.08重量部である。
本発明の樹脂組成物には、必要に応じてエポキシ化合物を配合することができる。かかるエポキシ化合物は、金型腐食を抑制するという目的で配合されるものであり、基本的にエポキシ官能基を有するもの全てが適用できる。好ましいエポキシ化合物の具体例としては、3,4ーエポキシシクロヘキシルメチルー3’,4’ーエポキシシクロヘキシルカルボキシレート、2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロセキサン付加物、メチルメタクリレートとグリシジルメタクリレートの共重合体、スチレンとグリシジルメタクリレートの共重合体等が挙げられる。かかるエポキシ化合物の添加量としては、樹脂組成物100重量部に対して0.003〜0.2重量部が好ましく、より好ましくは0.004〜0.15重量部であり、さらに好ましくは0.005〜0.1重量部である。
(V)紫外線吸収剤
本発明の樹脂組成物においては、耐光性を付与することを目的として紫外線吸収剤の配合も可能である。ベンゾフェノン系紫外線吸収剤としては、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ベンジロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−ソジウムスルホキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2−ヒドロキシ−4−n−ドデシルオキシベンソフェノン、および2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノンなどが例示される。
ベンゾトリアゾール系紫外線吸収剤として、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジクミルフェニル)フェニルベンゾトリアゾール、2−(2−ヒドロキシ−3−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−アミルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−4−オクトキシフェニル)ベンゾトリアゾ−ル、2,2’−メチレンビス(4−クミル−6−ベンゾトリアゾールフェニル)、2,2’−p−フェニレンビス(1,3−ベンゾオキサジン−4−オン)、および2−[2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミドメチル)−5−メチルフェニル]ベンゾトリアゾ−ルなどが例示される。また2−(2’−ヒドロキシ−5−メタクリロキシエチルフェニル)−2H−ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や、2−(2’―ヒドロキシ−5−アクリロキシエチルフェニル)―2H―ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2−ヒドロキシフェニル−2H−ベンゾトリアゾール骨格を有する重合体などが例示される。
ヒドロキシフェニルトリアジン系紫外線吸収剤として、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−メチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−エチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−プロピルオキシフェノール、および2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ブチルオキシフェノールなどが例示される。さらに2−(4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4−ジメチルフェニル基となった化合物が例示される。
環状イミノエステル系紫外線吸収剤として、2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−m−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、および2,2’−p,p’−ジフェニレンビス(3,1−ベンゾオキサジン−4−オン)などが例示される。
またシアノアクリレート系紫外線吸収剤として、1,3−ビス−[(2’−シアノ−3’,3’−ジフェニルアクリロイル)オキシ]−2,2−ビス[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3−ビス−[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。
紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/または光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。前記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。前記の中でも紫外線吸収能の点においてはベンゾトリアゾール系およびヒドロキシフェニルトリアジン系が好ましく、耐熱性や色相の点では、環状イミノエステル系およびシアノアクリレート系が好ましい。具体的には例えばケミプロ化成(株)「ケミソーブ79」などが挙げられる。前記紫外線吸収剤は単独であるいは2種以上の混合物で用いてもよい。
紫外線吸収剤の配合量は、樹脂組成物100重量部に対して好ましくは0.01〜2重量部、より好ましくは0.02〜2重量部、さらに好ましくは0.03〜1重量部、特に好ましくは0.05〜0.5重量部である。
(VI)蛍光増白剤
本発明の樹脂組成物において蛍光増白剤は、樹脂等の色調を白色あるいは青白色に改善するために用いられるものであれば特に制限はなく、例えばスチルベン系、ベンズイミダゾール系、ベンズオキサゾール系、ナフタルイミド系、ローダミン系、クマリン系、オキサジン系化合物等が挙げられる。具体的には例えばCI Fluorescent Brightener 219:1や、イーストマンケミカル社製EASTOBRITE OB−1やハッコールケミカル(株)製「ハッコールPSR」、などを挙げることができる。ここで蛍光増白剤は、光線の紫外部のエネルギーを吸収し、このエネルギーを可視部に放射する作用を有するものである。蛍光増白剤の含有量は、樹脂組成物100重量部に対して、0.001〜0.1重量部が好ましく、より好ましくは0.001〜0.05重量部である。0.1重量部を超えても該組成物の色調の改良効果は小さい。
(VII)その他
上記以外にも本発明の樹脂組成物には、成形品に種々の機能の付与や特性改善のために、それ自体知られた添加物を少割合配合することができる。これら添加物は本発明の目的を損なわない限り、通常の配合量である。かかる添加剤としては、強化充填剤、摺動剤(例えばPTFE粒子)、着色剤(例えばカーボンブラック、酸化チタンなどの顔料、染料)、蛍光染料、無機系蛍光体(例えばアルミン酸塩を母結晶とする蛍光体)、帯電防止剤、結晶核剤、無機および有機の抗菌剤、光触媒系防汚剤(例えば微粒子酸化チタン、微粒子酸化亜鉛)、離型剤、流動改質剤、ラジカル発生剤、赤外線吸収剤(熱線吸収剤)、並びにフォトクロミック剤などが挙げられる。
<樹脂組成物>
本発明の樹脂組成物は、0.03μm以下の算術平均粗さ(Ra)を有する厚み2mmの平滑平板において、ヘーズが好ましくは95%〜99.9%、より好ましくは96〜99.9、さらに好ましくは97〜99.9である。
本発明の樹脂組成物は、単軸押出機、二軸押出機の如き押出機を用いて、溶融混練することによりペレット化することができる。かかるペレットを作製するにあたり、上記各種難燃剤、強化充填剤、添加剤を配合することもできる。本発明の樹脂組成物は、通常前記の如く製造されたペレットを射出成形して各種製品を製造することができる。更にペレットを経由することなく、押出機で溶融混練された樹脂を直接シート、フィルム、異型押出成形品、ダイレクトブロー成形品、および射出成形品にすることも可能である。かかる射出成形においては、通常の成形方法だけでなく、適宜目的に応じて、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体の注入によるものを含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などの射出成形法を用いて成形品を得ることができる。これら各種成形法の利点は既に広く知られるところである。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。また本発明の樹脂組成物は、押出成形により各種異形押出成形品、シート、およびフィルムなどの形で利用することもできる。またシート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法なども使用可能である。さらに特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物を回転成形やブロー成形などにより成形品とすることも可能である。
本発明の樹脂組成物を製造するには、任意の方法が採用される。例えばA成分、B成分、C成分および任意に他の成分をそれぞれV型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などの予備混合手段を用いて充分に混合した後、必要に応じて押出造粒器やブリケッティングマシーンなどにより造粒を行い、その後ベント式二軸ルーダーに代表される溶融混練機で溶融混練、およびペレタイザー等の機器によりペレット化する方法が挙げられる。
<成形品>
本発明の樹脂組成物のペレットを射出成形して成形品を得ることができる。
かかる射出成形においては、通常のコールドランナー方式の成形法だけでなく、ランナーレスを可能とするホットランナーによって製造することも可能である。また射出成形においても、通常の成形方法だけでなくガスアシスト射出成形、射出圧縮成形、超高速射出成形、射出プレス成形、二色成形、サンドイッチ成形、インモールドコーティング成形、インサート成形、発泡成形(超臨界流体を利用するものを含む)、急速加熱冷却金型成形、断熱金型成形および金型内再溶融成形、並びにこれらの組合せからなる成形法等を使用することができる。さらに樹脂組成物から形成された成形品には、各種の表面処理を行うことが可能である。表面処理としては、加飾塗装、ハードコート、撥水・撥油コート、親水コート、紫外線吸収コート、赤外線吸収コート、電磁波吸収コート、発熱コート、帯電防止コート、制電コート、導電コート、並びにメタライジング(メッキ、化学蒸着(CVD)、物理蒸着(PVD)、溶射など)などの各種の表面処理を行うことができる。殊に透明シートに透明導電層が被覆されたものは好適である。
本発明者が現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない
以下に実施例を挙げてさらに説明するが、本発明はそれに限定されるものではない。
尚、評価としては以下の項目について実施した。
1.ポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)の評価
(1)粘度平均分子量(Mv)
次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート−ポリジオルガノシロキサン共重合体を溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mvを算出した。
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−4Mv0.83
c=0.7
(2)ポリジオルガノシロキサン成分含有量
日本電子(株)製 JNM−AL400を用い、ポリカーボネート−ポリジオルガノシロキサン共重合体のH−NMRスペクトルを測定し、二価フェノール(I)由来のピークの積分比とジヒドロキシアリール末端ポリジオルガノシロキサン(II)由来のピークの積分比を比較することにより算出した。
ポリジオルガノシロキサン成分含有量(wt%)=[A/(A+B)]×100
A:〔ジヒドロキシアリール末端ポリジオルガノシロキサン(II)のH一つ分のピークの積分比〕×〔ポリジオルガノシロキサン部分の分子量〕
B:〔二価フェノール(I)のH一つ分のピークの積分比〕×〔二価フェノールの分子量〕
(3)ポリジオルガノシロキサンドメインの平均サイズ
ポリカーボネート−ポリジオルガノシロキサン共重合体パウダーをベント式二軸押出機(テクノベル(株)製、KZW15−25MG)によって、温度260℃で混錬し、ペレット化した。得られたペレットを120℃で5時間熱風乾燥した後、射出成形機[住友重機械工業(株)SG150U・S−M IV]を用いて、成形温度280℃、金型温度80℃にて幅50mm、長さ90mm、厚みがゲート側から3.0mm(長さ20mm)、2.0mm(長さ45mm)、1.0mm(長さ25mm)である3段型プレートを成形した。
この3段型プレートを用いて、厚み1.0mm部の端部より5mm、側部より5mmの交点におけるポリジオルガノシロキサンドメインの平均サイズを、X線回折装置((株)リガク社製 RINT−TTRII)を用いて測定した。X線源として、CuKα特性エックス線(波長0.1541841nm)、管電圧50kV、管電流300mAを使用した。小角散乱光学系は、Slit:1st 0.03mm、HS 10mm、SS 0.2mm、RS 0.1mmとした。測定は、非対称走査法(2θスキャン)により、FT 0.01°ステップ、4sec/step、走査範囲 0.06−3°として実施した。カーブフィッティングの解析には、(株)リガク社製 小角散乱解析ソフトウェア NANO−Solver(Ver.3.3)を使用した。
解析はポリカーボネートのマトリックス中にポリジオルガノシロキサンの球状ドメインが分散した凝集構造であり、粒径分布のばらつきが存在すると仮定して、ポリカーボネートマトリックスの密度を1.2g/cm、ポリジオルガノシロキサンドメインの密度を1.1g/cmとし、粒子間相互作用(粒子間干渉)を考慮しない孤立粒子モデルにて実施した。
2.樹脂組成物の評価
(1)全光線透過率、ヘーズ
実施例の各組成から得られたペレットを120℃で5時間、熱風循環式乾燥機にて乾燥し、射出成形機[住友重機械工業(株)SG150U・S−M IV]を用いて、成形温度280℃、金型温度80℃にて幅50mm、長さ90mm、厚みがゲート側から3.0mm(長さ20mm)、2.0mm(長さ45mm)、1.0mm(長さ25mm)である3段型プレートを成形した。 この3段型プレートの厚み2.0mm部分の全光線透過率およびヘーズをJIS−K 7136に従い測定した。
(2)光拡散度
上記3段型プレートの厚み2mm部分の光拡散度を、日本電色工業(株)製の分散度測定計を使用して測定した。その際の測定方法を図1に示す。尚、光拡散度とは図1において光線を上方から垂直に試験片面に当てたときγ=0度のときの透過光量を100とした場合、その透過光量が50になるときのγの角度をいう。
(3)色相
上記3段型プレートの厚み2mm部分の色相(b値)を、日本電色(株)製分光彩計SE−2000(光源:C/2)を用いて測定した。b値はJIS Z8722に規定する三刺激値X、Y、Zからハンターの色差式から誘導されるもので、数値が低いほど色相が無色に近いことを示す。
(4)ポリジオルガノシロキサン成分含有量
日本電子(株)製 JNM−AL400を用い、上記3段型プレートのH−NMRスペクトルを測定し、二価フェノール(I)由来のピークの積分比とジヒドロキシアリール末端ポリジオルガノシロキサン(II)由来のピークの積分比を比較することにより算出した。
ポリジオルガノシロキサン成分含有量(wt%)=[A/(A+B)]×100
A:〔ジヒドロキシアリール末端ポリジオルガノシロキサン(II)のH一つ分のピークの積分比〕×〔ポリジオルガノシロキサン部分の分子量〕
B:〔二価フェノール(I)のH一つ分のピークの積分比〕×〔二価フェノールの分子量〕
実施例1〜16、および比較例1〜5
A〜C成分および各種添加剤を表1および表2記載の各配合量で、ブレンダーにて混合した後、ベント式二軸押出機を用いて溶融混練してペレットを得た。使用する各種添加剤は、それぞれ配合量の10〜100倍の濃度を目安に予めポリカーボネートとの予備混合物を作成した後、ブレンダーによる全体の混合を行った。ベント式二軸押出機は(株)日本製鋼所製:TEX30α(完全かみ合い、同方向回転、2条ネジスクリュー)を使用した。押出条件は吐出量20kg/h、スクリュー回転数150rpm、ベントの真空度3kPaであり、また押出温度は第一供給口から第二供給口まで270℃、第二供給口からダイス部分まで290℃とした。
結果を表1および表2に示す。実施例1〜13,15は、B成分が、ポリカーボネートのマトリックス中のドメインの平均サイズが1〜18nmの範囲にあるので、樹脂組成物の全光線透過率が良好である。実施例5、13のようにドメインの平均サイズが小さいと、色相が悪化する傾向があるが、全光線透過率は良好である。実施例7のように、光拡散剤(C成分)の量が多いと、全光線透過率は低下するが光拡散度は増加する。
Figure 2013141005
Figure 2013141005
Figure 2013141005
Figure 2013141005
Figure 2013141005
Figure 2013141005
なお、使用した各成分の詳細は以下の通りである。
(A成分)
A−1:下記製法により得られた粘度平均分子量19,700のポリカーボネートパウダー
温度計、攪拌機、還流冷却器付き反応器にイオン交換水2340部、25%水酸化ナトリウム水溶液947部、ハイドロサルファイト0.7部を仕込み、攪拌下に2,2−ビス(4−ヒドロキシフェニル)プロパン(以下「ビスフェノールA」と称する事がある)710部を溶解した(ビスフェノールA溶液)後、塩化メチレン2299部と48.5%水酸化ナトリウム水溶液112部を加えて、15〜25℃でホスゲン354部を約90分かけて吹き込みホスゲン化反応を行った。
ホスゲン化終了後、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液148部と48.5%水酸化ナトリウム水溶液88部を加えて、攪拌を停止し、10分間静置分離後、攪拌を行い乳化させ5分後、ホモミキサー(特殊機化工業(株))で回転数1200rpm、バス回数35回で処理し高乳化ドープを得た。該高乳化ドープを重合槽(攪拌機付き)で、無攪拌条件下、温度35℃で3時間反応し重合を終了した。
反応終了後、有機相を分離し、塩化メチレンで希釈して水洗した後塩酸酸性にして水洗し、水相の導電率がイオン交換水と殆ど同じになったところで温水を張ったニーダーに投入して、攪拌しながら塩化メチレンを蒸発させ、ポリカーボネートのパウダーを得た。脱水後、熱風循環式乾燥機により120℃で12時間乾燥し、ポリカーボネートパウダーを得た。
A−2:下記製法により得られた粘度平均分子量22,500のポリカーボネートパウダー
11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液125部に変更した以外は、A−1の製造方法と同様に行い、ポリカーボネートパウダーを得た。
A−3:下記製法により得られた粘度平均分子量25,100の分岐構造を有するポリカーボネートパウダー
温度計、攪拌機、還流冷却器付き反応器にイオン交換水2340部、25%水酸化ナトリウム水溶液947部、ハイドロサルファイト0.7部を仕込み、攪拌下にビスフェノールA 710部を溶解した(ビスフェノールA溶液)後、塩化メチレン2299部と48.5%水酸化ナトリウム水溶液112部、14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液38.1部(1.00mol%)を加えて、15〜25℃でホスゲン354部を約90分かけて吹き込みホスゲン化反応を行った。
ホスゲン化終了後、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液219部と48.5%水酸化ナトリウム水溶液88部を加えて、攪拌を停止し、10分間静置分離後、攪拌を行い乳化させ5分後、ホモミキサー(特殊機化工業(株))で回転数1200rpm、バス回数35回で処理し高乳化ドープを得た。該高乳化ドープを重合槽(攪拌機付き)で、無攪拌条件下、温度35℃で3時間反応し重合を終了した。
反応終了後、有機相を分離し、塩化メチレンで希釈して水洗した後塩酸酸性にして水洗し、水相の導電率がイオン交換水と殆ど同じになったところで温水を張ったニーダーに投入して、攪拌しながら塩化メチレンを蒸発させ、ポリカーボネートのパウダーを得た。脱水後、熱風循環式乾燥機により120℃で12時間乾燥し、分岐構造を有するポリカーボネートパウダーを得た。
A−4:下記製法により得られた粘度平均分子量20,300の分岐構造を有するポリカーボネートパウダー
11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液261部に変更した以外は、A−3の製造方法と同様に行い、分岐構造を有するポリカーボネートパウダーを得た。
(B成分)
B−1:下記製法により得られた粘度平均分子量19,100のポリカーボネート−ポリジオルガノシロキサン共重合体パウダー
温度計、撹拌機、還流冷却器付き反応器にイオン交換水21591部、48.5%水酸化ナトリウム水溶液3674部を入れ、上記式〔1〕で表されるカーボネート単位を構成するジヒドロキシ化合物(I)として2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)3880部、およびハイドロサルファイト7.6部を溶解した後、塩化メチレン14565部(ジヒドロキシ化合物(I)1モルに対して14モル)を加え、撹拌下22〜30℃でホスゲン1900部を60分要して吹き込んだ。
次に、48.5%水酸化ナトリウム水溶液1131部、p−tert−ブチルフェノール108部を塩化メチレン800部に溶解した溶液を加え、攪拌しながら上記式〔3〕で表わされる単位を構成するジメチルシロキサン単位の平均繰返し数が約37であるジヒドロキシアリール末端ポリジオルガノシロキサン(II)として下記式〔8〕で表されるポリジオルガノシロキサン化合物204部を塩化メチレン1600部に溶解した溶液を、ジヒドロキシアリール末端ポリジオルガノシロキサン(II)が二価フェノール(I)の量1モルあたり0.0008モル/minとなる速度で加えて乳化状態とした後、再度激しく撹拌した。かかる攪拌下、反応液が26℃の状態でトリエチルアミン4.3部を加えて温度26〜31℃において1時間撹拌を続けて反応を終了した。
反応終了後、有機相を分離し、塩化メチレンで希釈して水洗した後塩酸酸性にして水洗し、水相の導電率がイオン交換水と殆ど同じになったところで温水を張ったニーダーに投入して、攪拌しながら塩化メチレンを蒸発させ、ポリカーボネート−ポリジオルガノシロキサン共重合体のパウダーを得た。
脱水後、熱風循環式乾燥機により120℃で12時間乾燥し、ポリカーボネート−ポリジオルガノシロキサン共重合体パウダーを得た。(ポリジオルガノシロキサン成分含有量4.1%、ポリジオルガノシロキサンドメイン10nm、粘度平均分子量19,100)
Figure 2013141005
B−2:下記製法により得られた粘度平均分子量19,400のポリカーボネート−ポリジオルガノシロキサン共重合体パウダー
ポリカーボネート構成単位を構成するジメチルシロキサン単位の繰返し数が約37であるジヒドロキシアリール末端ポリジオルガノシロキサン430部を用い、攪拌時間を45分にした以外はB−1の製造方法と同様に実施し、ポリカーボネート−ポリジオルガノシロキサン共重合体パウダーを得た。(ポリジオルガノシロキサン成分含有量8.2%、ポリジオルガノシロキサンドメイン13nm、粘度平均分子量19,400)
B−3:下記製法により得られた粘度平均分子量19,200のポリカーボネート−ポリジオルガノシロキサン共重合体パウダー
ポリカーボネート構成単位を構成するジメチルシロキサン単位の平均繰返し数を約100にした以外はB−1の製造方法と同様に実施し、ポリカーボネート−ポリジオルガノシロキサン共重合体パウダーを得た。(ポリジオルガノシロキサン成分含有量4.2%、ポリジオルガノシロキサンドメイン25nm、粘度平均分子量19,200)
B−4:下記製法により得られた粘度平均分子量19,200のポリカーボネート−ポリジオルガノシロキサン共重合体パウダー
ポリジオルガノシロキサン化合物を2部にした以外はB−1の製造方法と同様に実施し、ポリカーボネート−ポリジオルガノシロキサン共重合体パウダーを得た。(ポリジオルガノシロキサン成分含有量0.04%、ポリジオルガノシロキサンドメイン2nm、粘度平均分子量19,200)
B−5:下記製法により得られた粘度平均分子量19,600のポリカーボネート−ポリジオルガノシロキサン共重合体パウダー
ポリカーボネート構成単位を構成するジメチルシロキサン単位の平均繰返し数を約150にした以外はB−1の製造方法と同様に実施し、ポリカーボネート−ポリジオルガノシロキサン共重合体パウダーを得た。(ポリジオルガノシロキサン成分含有量4.2%、ポリジオルガノシロキサンドメイン38nm、粘度平均分子量19,600)
B−6:下記製法により得られた粘度平均分子量18,900のポリカーボネート−ポリジオルガノシロキサン共重合体パウダー
ポリカーボネート構成単位を構成するジメチルシロキサン単位の平均繰返し数を約13にした以外はB−1の製造方法と同様に実施し、ポリカーボネート−ポリジオルガノシロキサン共重合体パウダーを得た。(ポリジオルガノシロキサン成分含有量4.2%、ポリジオルガノシロキサンドメイン1.0nm、粘度平均分子量18,900)
B−7:下記製法により得られた粘度平均分子量19,200のポリカーボネート−ポリジオルガノシロキサン共重合体パウダー
ポリカーボネート構成単位を構成するジメチルシロキサン単位の平均繰返し数を13にし、ポリジオルガノシロキサン化合物を2部にした以外はB−1の製造方法と同様に実施し、ポリカーボネート−ポリジオルガノシロキサン共重合体パウダーを得た。(ポリジオルガノシロキサン成分含有量0.04%、ポリジオルガノシロキサンドメイン0.3nm、粘度平均分子量19,200)
B−8:下記製法により得られた粘度平均分子量18,500のポリカーボネート−ポリジオルガノシロキサン共重合体パウダー
ポリカーボネート構成単位を構成するジメチルシロキサン単位の平均繰返し数を約200にした以外はB−1の製造方法と同様に実施し、ポリカーボネート−ポリジオルガノシロキサン共重合体パウダーを得た。(ポリジオルガノシロキサン成分含有量4.2%、ポリジオルガノシロキサンドメイン48nm、粘度平均分子量18,500)
(C成分)
C−1:ビーズ状架橋シリコーン(モメンティブパフォーマンスマテリアルズジャパン合同会社(株)製:TSR9002(商品名)、平均粒子径2μm)
C−2:ビーズ状架橋アクリル粒子(積水化成品工業(株)製:MBX−5(商品名)、平均粒子径5μm)
C−3:ビーズ状架橋アクリル粒子(東亜合成(株)製:SDP−S225(商品名)、平均粒子径2μm)
(その他の成分)
D−1:レゾルノールビス[ジ(2,6−ジメチルフェニル)ホスフェート]を主成分とするリン酸エステル(大八化学工業(株):PX−200(商品名))
D−2:パーフルオロブタンスルホン酸カリウム塩(大日本インキ化学(株)製:メガファックF−114P(商品名))
E−1:ポリテトラフルオロエチレン粒子とスチレン−アクリル系共重合体からなる混合物(Shine Polymer製:SN3307(商品名))
E−2:ポリテトラフルオロエチレン粒子とスチレン−アクリル系共重合体からなる混合物(Shine Polymer製:SN3300B7(商品名))
F−1:サンドスタブパウダー(クラリアントジャパン(株)製:P−EPQ(商品名))
F−2:ヒンダードフェノール系酸化防止剤(チバ・スペシャルティ・ケミカルズ社製:Irganox1076 (商品名))
G−1:UV吸収剤(ケミプロ化成(株)製:ケミソーブ79(商品名))
H−1:蛍光増白剤(ハッコールケミカル(株)製:ハッコールPSR(商品名))
発明の効果
本発明の光拡散性樹脂組成物は、その成形品においてポリジオルガノシロキサンドメインが特定の凝集構造を形成し、優れた光拡散性と色相を発揮するため、光学部品、電気・電子機器分野、自動車分野において幅広く使用することができる。具体例としては照明用のカバー、ディスプレイ用拡散板、ガラス代替用途において幅広く使用することができる。

Claims (9)

  1. ポリカーボネート(A成分)およびポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)からなる樹脂成分100重量部に対し、光拡散剤(C成分)0.05〜10.0重量部を含有し、
    B成分が、ポリカーボネートのマトリックス中に平均サイズが0.5〜40nmのポリジオルガノシロキサンドメインが存在するポリカーボネート−ポリジオルガノシロキサン共重合体であることを特徴とする光拡散性樹脂組成物。
  2. B成分が下記式〔1〕で表される単位および下記式〔3〕で表される単位を含有するポリカーボネート−ポリジオルガノシロキサン共重合体である請求項1に記載の樹脂組成物。
    Figure 2013141005
    [上記式〔1〕において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜18のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数3〜14のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1〜4の整数であり、Wは単結合もしくは下記式〔2〕で表される基からなる群より選ばれる少なくとも一つの基である。
    Figure 2013141005
    (上記式〔2〕においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1〜18のアルキル基、炭素原子数3〜14のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数6〜10のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1〜10の整数、hは4〜7の整数である。)]
    Figure 2013141005
    (上記式〔3〕において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは150以下の自然数である。Xは炭素数2〜8の二価脂肪族基である。)
  3. 樹脂組成物の全重量を基準にして、上記式〔3〕に含まれる下記式〔4〕で表される単位の含有量が0.001〜1.0重量%である請求項2に記載の樹脂組成物。
    Figure 2013141005
    (上記式〔4〕において、R21、R22、R23、R24、R25及びR26は、各々式〔3〕のR、R、R、R、R及びRと同じであり、rおよびsは各々式〔3〕のpおよびqと同じである。)
  4. 樹脂組成物の全重量を基準にして、上記式〔3〕に含まれる上記式〔4〕で表される単位の含有量が0.01〜0.2重量%である請求項2に記載の樹脂組成物。
  5. B成分の含有量が樹脂成分100重量部中、0.01〜10.0重量部である請求項1に記載の樹脂組成物。
  6. C成分が高分子微粒子である請求項1に記載の樹脂組成物。
  7. 0.03μm以下の算術平均粗さ(Ra)を有する厚み2mmの平滑平板において、ヘーズが95%〜99.9%である請求項1に記載の樹脂組成物。
  8. 請求項1〜7のいずれか一項に記載の樹脂組成物からなる成形品。
  9. 成形品が照明器具又は表示器具である請求項8に記載の成形品。
JP2014506117A 2012-03-21 2013-02-26 光拡散性樹脂組成物 Active JP5847292B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014506117A JP5847292B2 (ja) 2012-03-21 2013-02-26 光拡散性樹脂組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012064052 2012-03-21
JP2012064052 2012-03-21
PCT/JP2013/055765 WO2013141005A1 (ja) 2012-03-21 2013-02-26 光拡散性樹脂組成物
JP2014506117A JP5847292B2 (ja) 2012-03-21 2013-02-26 光拡散性樹脂組成物

Publications (2)

Publication Number Publication Date
JPWO2013141005A1 true JPWO2013141005A1 (ja) 2015-08-03
JP5847292B2 JP5847292B2 (ja) 2016-01-20

Family

ID=49222467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014506117A Active JP5847292B2 (ja) 2012-03-21 2013-02-26 光拡散性樹脂組成物

Country Status (7)

Country Link
US (1) US20140357809A1 (ja)
EP (1) EP2829574B1 (ja)
JP (1) JP5847292B2 (ja)
KR (1) KR102023227B1 (ja)
CN (1) CN104204094B (ja)
TW (1) TW201402690A (ja)
WO (1) WO2013141005A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI659060B (zh) * 2014-02-13 2019-05-11 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition
JP6343680B2 (ja) * 2014-12-02 2018-06-13 帝人株式会社 ポリカーボネート樹脂組成物およびそれからなる成形品
CN106046735B (zh) * 2015-04-10 2018-12-28 中国石油化工股份有限公司 一种具有高雾度、高透光率的聚碳酸酯树脂组合物及其制备方法
CN107663333A (zh) 2016-07-29 2018-02-06 Sabic环球技术有限责任公司 光漫射制品
WO2019124556A1 (ja) * 2017-12-21 2019-06-27 帝人株式会社 ポリカーボネート-ポリジオルガノシロキサン共重合体、その樹脂組成物、およびその製造方法
KR102524536B1 (ko) * 2018-01-23 2023-04-24 삼성디스플레이 주식회사 감광성 수지 조성물, 이로부터 제조된 필름, 상기 필름을 포함한 색변환 부재, 및 상기 색변환 부재를 포함하는 전자장치
JP7023469B2 (ja) * 2018-03-02 2022-02-22 帝人株式会社 電気光学効果を有するポリカーボネート及びその製造方法、並びにそのポリカーボネートを用いた光制御素子
JP6886992B2 (ja) 2018-03-30 2021-06-16 恵和株式会社 光拡散板積層体、バックライトユニット、及び液晶表示装置
JP7099872B2 (ja) * 2018-05-23 2022-07-12 スタンレー電気株式会社 オートライト用照度センサ
EP3736624A1 (en) * 2019-03-13 2020-11-11 Keiwa Inc. Multilayer of light diffusers, backlight unit, and liquid crystal display device
WO2021085051A1 (ja) 2019-10-29 2021-05-06 帝人株式会社 アンテナ用導電フィルムおよびアンテナ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046022A (ja) * 1996-07-31 1998-02-17 Idemitsu Petrochem Co Ltd 光拡散性樹脂組成物
JP2006518803A (ja) * 2003-02-21 2006-08-17 ゼネラル・エレクトリック・カンパニイ 透明耐熱性ポリカーボネート−ポリシロキサン共重合体、そのポリカーボネートとの透明ブレンド及び製造方法
JP2006523243A (ja) * 2003-02-21 2006-10-12 ゼネラル・エレクトリック・カンパニイ 半透明熱可塑性樹脂組成物、その製造方法及び成形品

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3420002A1 (de) 1984-05-29 1985-12-05 Bayer Ag, 5090 Leverkusen Tetrafluorethylenpolymerisat enthaltende polymerisatpulverkompositionen
JPS6145520A (ja) 1985-07-26 1986-03-05 信越ポリマー株式会社 可動接点
US4753994A (en) 1986-12-02 1988-06-28 Mobay Corporation Flame retardant polycarbonate compositions
JPS6446022A (en) * 1987-08-11 1989-02-20 Honda Motor Co Ltd Clutch device for working machine
EP0483510A3 (en) 1990-10-31 1992-09-02 General Electric Company Polycarbonate compositions with improved appearance and flammability characteristics
CA2108411A1 (en) 1992-11-17 1994-05-18 Wie-Hin Pan Method of dispersing solid additives in polymeric resins
JP3263795B2 (ja) 1992-12-24 2002-03-11 日本ジーイープラスチックス株式会社 光拡散性ポリカーボネート樹脂組成物
CH686306A5 (de) 1993-09-17 1996-02-29 Ciba Geigy Ag 3-Aryl-benzofuranone als Stabilisatoren.
JPH08188653A (ja) 1995-01-10 1996-07-23 General Electric Co <Ge> 固体の添加剤をポリマー中に分散させる方法およびそれによって得られる製品
FR2733504A1 (fr) 1995-04-28 1996-10-31 Gen Elec Plastics Abs Euro Bv Nouveaux alliages polymeres a base de polymerisat comprenant des motifs de derives de tetrafluoroethylene, procede de fabrication, articles obtenus a partir de tels alliages et utilisation de ces alliages dans des compositions polymeres
JP3272985B2 (ja) 1996-07-31 2002-04-08 三菱レイヨン株式会社 ポリテトラフルオロエチレン含有混合粉体の製造方法
JP4373577B2 (ja) 1999-11-25 2009-11-25 帝人化成株式会社 光拡散性芳香族ポリカーボネート樹脂組成物
JP4373579B2 (ja) 2000-05-12 2009-11-25 帝人化成株式会社 光拡散性芳香族ポリカーボネート樹脂組成物
US6908202B2 (en) * 2002-10-03 2005-06-21 General Electric Company Bulk diffuser for flat panel display
JP4404853B2 (ja) * 2003-06-17 2010-01-27 帝人化成株式会社 直下型バックライト式液晶表示装置および光拡散板
JP2006063121A (ja) 2004-08-25 2006-03-09 Mitsubishi Engineering Plastics Corp 光拡散性樹脂組成物およびそれを用いた光拡散性部材
JP4752232B2 (ja) * 2004-09-30 2011-08-17 住友化学株式会社 光拡散性ポリカーボネート樹脂組成物
JP5063873B2 (ja) 2005-07-05 2012-10-31 出光興産株式会社 光拡散性ポリカーボネート系樹脂組成物、および同樹脂組成物を用いた光拡散板
JP5073226B2 (ja) 2006-05-11 2012-11-14 出光興産株式会社 光拡散性樹脂組成物及びそれを用いた光拡散板
JP5047543B2 (ja) 2006-06-19 2012-10-10 出光興産株式会社 ポリカーボネート系光拡散性樹脂組成物および光拡散板
US20080103267A1 (en) * 2006-10-31 2008-05-01 General Electric Company Infrared transmissive thermoplastic composition
JP5635227B2 (ja) 2008-02-18 2014-12-03 帝人株式会社 光拡散性ポリカーボネート樹脂組成物
KR101723699B1 (ko) * 2009-07-29 2017-04-05 테이진 카세이 가부시키가이샤 폴리카보네이트-폴리디오르가노실록산 공중합체
JP5684470B2 (ja) * 2009-11-11 2015-03-11 帝人株式会社 熱可塑性樹脂組成物
JP2011144219A (ja) 2010-01-12 2011-07-28 Teijin Chem Ltd ポリカーボネート−ポリジオルガノシロキサン共重合体およびシート
JP5679693B2 (ja) * 2010-05-07 2015-03-04 帝人株式会社 難燃性ポリカーボネート樹脂組成物
EP2578636B2 (en) 2010-05-27 2022-06-22 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded polycarbonate resin
CN104053722A (zh) 2011-09-28 2014-09-17 拜耳材料科技有限责任公司 光散射聚碳酸酯片作为灯罩的用途
WO2013073709A1 (ja) * 2011-11-17 2013-05-23 帝人化成株式会社 導光性能を有する樹脂組成物、それからなる導光成形品および面光源体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046022A (ja) * 1996-07-31 1998-02-17 Idemitsu Petrochem Co Ltd 光拡散性樹脂組成物
JP2006518803A (ja) * 2003-02-21 2006-08-17 ゼネラル・エレクトリック・カンパニイ 透明耐熱性ポリカーボネート−ポリシロキサン共重合体、そのポリカーボネートとの透明ブレンド及び製造方法
JP2006523243A (ja) * 2003-02-21 2006-10-12 ゼネラル・エレクトリック・カンパニイ 半透明熱可塑性樹脂組成物、その製造方法及び成形品

Also Published As

Publication number Publication date
KR102023227B1 (ko) 2019-11-25
JP5847292B2 (ja) 2016-01-20
EP2829574A4 (en) 2015-10-28
EP2829574B1 (en) 2018-09-19
TW201402690A (zh) 2014-01-16
CN104204094B (zh) 2016-03-02
WO2013141005A1 (ja) 2013-09-26
TWI560238B (ja) 2016-12-01
CN104204094A (zh) 2014-12-10
KR20140138735A (ko) 2014-12-04
US20140357809A1 (en) 2014-12-04
EP2829574A1 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5847292B2 (ja) 光拡散性樹脂組成物
JP5808425B2 (ja) 導光性能を有する樹脂組成物、それからなる導光成形品および面光源体
JP5684470B2 (ja) 熱可塑性樹脂組成物
JP5805927B2 (ja) ポリカーボネート−ポリジオルガノシロキサン共重合体、成形品およびその製造方法
JP6343680B2 (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
WO2011055854A1 (ja) 芳香族ポリカーボネート樹脂組成物からなる押し出し成形品
JP6426372B2 (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
JP5809358B2 (ja) 導光性能を有する樹脂組成物、並びにそれからなる導光板および面光源体
JP5947117B2 (ja) 蛍光発光性樹脂組成物
JP6042593B2 (ja) 難燃光拡散性ポリカーボネート樹脂組成物からなる押し出し成形品
JP2011116839A (ja) 難燃光拡散性ポリカーボネート樹脂組成物
JP6895778B2 (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
JP6133644B2 (ja) 難燃光拡散性ポリカーボネート樹脂組成物
JP2016108389A (ja) 光拡散性ポリカーボネート樹脂組成物
JP2013221046A (ja) 導光性能を有する樹脂組成物、並びにそれからなる導光板および面光源体
JP2015218325A (ja) 光拡散性樹脂組成物
WO2019004127A1 (ja) 強化ポリカーボネート樹脂組成物
JP5654224B2 (ja) 光拡散性芳香族ポリカーボネート樹脂組成物及びそれからなる成形品
JP2018154025A (ja) 熱カシメ結合体
JP2018193522A (ja) 熱カシメ結合体

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151124

R150 Certificate of patent or registration of utility model

Ref document number: 5847292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150