WO2021085051A1 - アンテナ用導電フィルムおよびアンテナ - Google Patents

アンテナ用導電フィルムおよびアンテナ Download PDF

Info

Publication number
WO2021085051A1
WO2021085051A1 PCT/JP2020/037828 JP2020037828W WO2021085051A1 WO 2021085051 A1 WO2021085051 A1 WO 2021085051A1 JP 2020037828 W JP2020037828 W JP 2020037828W WO 2021085051 A1 WO2021085051 A1 WO 2021085051A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
polycarbonate resin
bis
antenna according
parts
Prior art date
Application number
PCT/JP2020/037828
Other languages
English (en)
French (fr)
Inventor
常守 秀幸
岡本 広志
智哉 中西
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to EP20882436.7A priority Critical patent/EP4052904A4/en
Priority to CN202080075233.1A priority patent/CN114616096B/zh
Priority to US17/768,974 priority patent/US11936103B2/en
Priority to JP2021554241A priority patent/JP7265031B2/ja
Publication of WO2021085051A1 publication Critical patent/WO2021085051A1/ja
Priority to JP2022196764A priority patent/JP7376671B2/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/527Cyclic esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone

Definitions

  • the present invention relates to a conductive film having good adhesion to a conductive film and having flexibility and low dielectric properties.
  • the present invention relates to a wide band antenna that can be used in a relatively high frequency band such as a microwave or millimeter wave band using the conductive film of the present invention, and an electronic device having the antenna.
  • the antenna needs to efficiently transmit high frequencies to the space and efficiently receive the high frequencies propagating in the space. Since the material constituting the antenna needs to have excellent conductivity, a laminate obtained by coating a conductor with a plastic material as a dielectric by printing, vapor deposition, or the like is used. Further, as the conductor, a conductive film such as copper or silver has been conventionally used. On the other hand, as the transmission and reception of networks both inside and outside the room have become widespread, antennas have come to be installed in various places. Under these circumstances, more transparent antennas have been developed so as not to spoil the scenery of the installation site.
  • Patent Document 1 proposes a technique of providing an antenna pattern formed of a conductor mesh layer on a transparent base material made of a polyethylene terephthalate film.
  • Patent Document 2 describes a transparent conductive film in which a conductive film containing silver as a main component is laminated on a polyethylene terephthalate film.
  • the dielectric characteristics of the dielectric become important in order to reduce the loss during high frequency propagation.
  • the heat loss in the dielectric is proportional to the loss coefficient expressed by the product of the relative permittivity and the dielectric loss tangent, low dielectric properties are required.
  • the dielectric properties of a plastic material to be a dielectric are determined by the molecular structure of the structural unit, a material having low dielectric properties and good adhesion to a conductive film is required for the dielectric.
  • a main object of the present invention is a substrate made of a polycarbonate resin material containing a polycarbonate resin having low dielectric properties and flexibility capable of forming an antenna with low propagation loss and having good adhesion to a conductive film.
  • An object of the present invention is to provide a conductive film made of a conductive film.
  • a secondary object of the present invention is to provide a transparent conductive film made of a transparent substrate made of a polycarbonate resin material containing a polycarbonate resin having high transparency and a conductive film in addition to the above.
  • the present inventors have surprisingly found that the above object can be achieved by using a substrate made of a polycarbonate resin material containing a polycarbonate resin containing a specific structural unit. As a result of proceeding with the study based on such findings, the present invention has been completed.
  • (configuration 1) to (configuration 20) are provided.
  • (Structure 1) A substrate made of a polycarbonate resin material containing a polycarbonate resin containing a unit (A) represented by the following formula (1) and / or a unit (B) represented by the following formula (2) as a main constituent unit, and a conductive film.
  • Conductive film for antennas made of laminated materials.
  • R 1 to R 2 are independently alkyl groups or halogen atoms having 1 to 6 carbon atoms, and R 3 to R 4 are independent hydrogen atoms and 1 to 6 carbon atoms, respectively. 6 alkyl group or halogen atom.
  • R 1 to R 2 are independently alkyl groups or halogen atoms having 1 to 6 carbon atoms, and R 3 to R 4 are independent hydrogen atoms and 1 to 6 carbon atoms, respectively.
  • 6 is an alkyl group or a halogen atom
  • R 5 represents a halogen atom, a cycloalkyl group having an alkyl group or a C 3-20 having 1 to 20 carbon atoms
  • n represents an integer of 0-10.
  • (Structure 3) The conductive film for an antenna according to the configuration 1 or 2, wherein the polycarbonate resin is a polycarbonate resin containing 45 mol% or more of the unit (A) represented by the formula (1) in all the constituent units.
  • (Structure 4) The conductive film for an antenna according to any one of configurations 1 to 3, wherein the unit (A) is a structural unit derived from 2,2-bis (4-hydroxy-3-methylphenyl) propane.
  • (Structure 5) The conductive film for an antenna according to any one of configurations 1 to 4, wherein the polycarbonate resin material has a viscosity average molecular weight of 15,000 to 40,000.
  • (Structure 6) The conductive film for an antenna according to the first configuration, wherein the polycarbonate resin is a polycarbonate resin containing the unit (B) represented by the above formula (2) as the main constituent unit.
  • (Structure 7) The conductive film for an antenna according to the configuration 1 or 6, wherein the polycarbonate resin is a polycarbonate resin containing 45 mol% or more of the unit (B) represented by the formula (2) in all the constituent units.
  • the unit (B) is 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane, 1,1-bis (3-tert-butyl-4-hydroxyphenyl) cyclohexane or 1,1-bis (4-).
  • (Structure 9) The conductive film for an antenna according to any one of configurations 1 to 6 to 8, wherein the polycarbonate resin material has a viscosity average molecular weight of 14,000 to 40,000.
  • (Structure 10) The conductive film for an antenna according to any one of configurations 1 to 9, wherein the polycarbonate resin material has a dielectric loss tangent of 0.0005 to 0.0030 at a frequency of 1 to 10 GHz measured according to a cavity resonator perturbation method.
  • (Structure 13) The conductive film for an antenna according to any one of configurations 1 to 12, wherein the substrate is a film formed by an injection molding method or an injection compression molding method using a polycarbonate resin material.
  • (Structure 14) The conductive film for an antenna according to any one of configurations 1 to 12, wherein the substrate is a film formed by a melt extrusion method using a polycarbonate resin material.
  • (Structure 15) The conductive film for an antenna according to any one of configurations 1 to 14, wherein the thickness of the substrate is 1 to 500 ⁇ m and the thickness of the conductive film is 1 to 70 ⁇ m.
  • (Structure 16) The conductive film for an antenna according to any one of configurations 1 to 15, wherein the conductive film is a metal thin film.
  • (Structure 17) The conductive film for an antenna according to the configuration 16, wherein the metal thin film is a copper foil, and the antenna pattern is formed by the copper foil.
  • (Structure 18) The conductive film for an antenna according to any one of configurations 1 to 17, wherein the conductive film peeling strength in the direction of 90 degrees with respect to the substrate is 0.8 N / mm or more.
  • (Structure 19) The transparent conductive film for an antenna according to any one of configurations 1 to 18, wherein the total light transmittance is 50% or more.
  • (Structure 20) An antenna made of the conductive film according to any one of configurations 1 to 19.
  • the conductive film of the present invention can form an antenna having both flexibility and low power loss. Further, the conductive film of the present invention preferably has good transparency and can form an antenna that does not impair the scenery of the installation location. Therefore, the industrial effect it produces is exceptional.
  • the conductive film of the present invention comprises a laminate formed by laminating a substrate made of a polycarbonate resin material containing a polycarbonate resin and a conductive film.
  • the adhesive strength between the base material and the copper foil is preferably 0.8 N / mm or more, more preferably 1.0 N / mm or more, and most preferably 1.2 N / mm or more. If the adhesive strength is poor, the copper foil may peel off. Adhesive strength is based on JIS C5016-1994, and while peeling a copper foil with a thickness of 18 ⁇ m at a speed of 50 mm per minute in the direction of 90 ° with respect to the copper foil removal surface, the peel strength is increased by a tensile tester. Can be measured.
  • the total light transmittance of the conductive film of the present invention is preferably 50% or more, more preferably 60% or more, further preferably 70% or more, and most preferably 75% or more. If the total light transmittance is low, the transparency may be impaired.
  • the total light transmittance conforms to ISO 13468-1, and can be measured with a haze meter equipped with an integrating sphere.
  • the polycarbonate resin material of the present invention has a dielectric loss tangent (frequency 1 to 10 GHz) measured by a perturbation method using the cavity resonator, preferably in the range of 0.0005 to 0.0030, and more preferably 0. It is in the range of 0005 to 0.0025, more preferably in the range of 0.0010 to 0.0020.
  • the dielectric loss tangent is within the above range, heat loss is small as a conductive film, which is preferable.
  • the polycarbonate resin used for the polycarbonate resin material constituting the substrate of the aspect I of the present invention contains (A) a unit (A) represented by the following formula (1) as a main constituent unit.
  • R 1 to R 2 are independently alkyl groups or halogen atoms having 1 to 6 carbon atoms, and R 3 to R 4 are independent hydrogen atoms and 1 to 6 carbon atoms, respectively. 6 alkyl group or halogen atom.
  • the ratio of the structural unit (A) to all the structural units is preferably 45 mol% or more, more preferably 50 mol% or more, and 60 mol% or more. It is more preferably 70 mol% or more, and most preferably 80 mol% or more. When the ratio of the structural unit (A) is 45 mol% or more, it is preferable because it has excellent dielectric properties.
  • Examples of the dihydric phenol that induces the structural unit (A) include 2,2-bis (4-hydroxy-3-methylphenyl) propane (hereinafter referred to as bisphenol C) and 2,2-bis (4-hydroxy-3). -Isopropylphenyl) propane, 2,2-bis (3-t-butyl-4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis ⁇ Examples thereof include (3,5-dibromo-4-hydroxy) phenyl ⁇ propane, and the like.
  • the most suitable divalent phenol is bisphenol C.
  • a carbonate-bonded repeating unit derived from another divalent phenol as a divalent phenol may be copolymerized as long as the object and properties of the present invention are not impaired.
  • Typical examples of such other divalent phenols are hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, bis (4-hydroxyphenyl) methane, bis ⁇ (4-hydroxy-3,5-dimethyl) phenyl ⁇ .
  • the polycarbonate resin material used in the aspect I of the present invention has a viscosity average molecular weight (Mv) of preferably 15,000 to 40,000, more preferably 16,000 to 30,000, and even more preferably. Is 18,000 to 28,000.
  • Mv viscosity average molecular weight
  • a polycarbonate resin material having a viscosity average molecular weight of less than 15,000 may not have sufficient toughness and crack resistance.
  • a polycarbonate resin material having a viscosity average molecular weight of more than 40,000 may be inferior in versatility because it requires a high molding temperature or a special molding method. Further, as the melt viscosity increases, the dependence on the injection speed tends to increase, and the yield may decrease due to poor appearance or the like.
  • the viscosity average molecular weight Mv was calculated from the obtained specific viscosity ( ⁇ SP) by the following mathematical formula.
  • the polycarbonate resin used for the polycarbonate resin material constituting the substrate of the aspect II of the present invention contains (B) a unit (B) represented by the following formula (2) as a main constituent unit.
  • R 1 to R 2 are independently alkyl groups or halogen atoms having 1 to 6 carbon atoms, and R 3 to R 4 are independent hydrogen atoms and 1 to 6 carbon atoms, respectively.
  • 6 is an alkyl group or a halogen atom
  • R 5 represents a halogen atom, a cycloalkyl group having an alkyl group or a C 3-20 having 1 to 20 carbon atoms
  • n represents an integer of 0-10.
  • the ratio of the structural unit (B) to all the structural units is preferably 45 mol% or more, more preferably 50 mol% or more, and 60 mol% or more. It is more preferably 70 mol% or more, and most preferably 80 mol% or more. When the ratio of the structural unit (B) is 45 mol% or more, it is preferable because it has excellent dielectric properties.
  • Examples of the dihydric phenol that induces the structural unit (B) include 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane, 1,1-bis (4-hydroxy-3-isopropylphenyl) cyclohexane, and 1, 1-bis (3-tert-butyl-4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxy-3,5-dimethylphenyl) cyclohexane, 1,1-bis (3,5-dibromo-4-) Hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxy-3-methylphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxy-3-isopropylphenyl) -3,3 5-trimethylcyclohexane, 1,1-bis (3-tert-butyl-4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxy-3,5
  • Suitable dihydric phenols are 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane, 1,1-bis (3-tert-butyl-4-hydroxyphenyl) cyclohexane or 1,1-bis (4).
  • a building block derived from -hydroxy-3-methylphenyl) -3,3,5-trimethylcyclohexane, a particularly suitable dihydric phenol is 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane. And / or 1,1-bis (4-hydroxy-3-methylphenyl) -3,3,5-trimethylcyclohexane.
  • a carbonate-bonded repeating unit derived from another divalent phenol as a divalent phenol may be copolymerized as long as the object and properties of the present invention are not impaired.
  • Typical examples of such other divalent phenols are hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, bis (4-hydroxyphenyl) methane, bis ⁇ (4-hydroxy-3,5-dimethyl) phenyl ⁇ .
  • the polycarbonate resin material used in Aspect II of the present invention has a viscosity average molecular weight (Mv) of preferably 14,000 to 40,000, more preferably 15,000 to 30,000, and even more preferably. Is between 17,000 and 28,000.
  • Mv viscosity average molecular weight
  • a polycarbonate resin material having a viscosity average molecular weight of less than 14,000 may not have sufficient toughness and crack resistance.
  • a polycarbonate resin material having a viscosity average molecular weight of more than 40,000 may be inferior in versatility because it requires a high molding temperature or a special molding method. Further, as the melt viscosity increases, the dependence on the injection speed tends to increase, and the yield may decrease due to poor appearance or the like.
  • the viscosity average molecular weight of the polycarbonate resin material in the aspect II of the present invention is determined by the same measuring method as the viscosity average molecular weight of the polycarbonate resin material used in the above-mentioned aspect I.
  • the polycarbonate resin used in the present invention is obtained by reacting a divalent phenol with a carbonate precursor.
  • the reaction method include an interfacial polycondensation method, a molten transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
  • interfacial polycondensation a terminal terminator of monohydric phenols is usually used.
  • it may be a branched polycarbonate obtained by polymerizing a trifunctional component, or may be a copolymerized polycarbonate obtained by copolymerizing an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, and a vinyl-based monomer.
  • the reaction is usually carried out in the presence of an acid binder and a solvent.
  • an acid binder for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine is used.
  • the solvent for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used.
  • a catalyst such as a tertiary amine or a quaternary ammonium salt can also be used to promote the reaction.
  • the reaction temperature is usually 0 to 40 ° C., and the reaction time is several minutes to 5 hours.
  • the transesterification reaction using, for example, a carbonic acid diester as a carbonic acid precursor is carried out by a method of distilling the produced alcohol or phenol by stirring a predetermined ratio of aromatic dihydroxy components with the carbonic acid diester while heating in an inert gas atmosphere. It is said.
  • the reaction temperature varies depending on the boiling point of the alcohol or phenol produced, but is usually in the range of 120 to 300 ° C.
  • the reaction is completed by distilling off the produced alcohols or phenols under reduced pressure from the initial stage. It is also possible to use a catalyst usually used in a transesterification reaction to accelerate the reaction.
  • Examples of the carbonic acid diester used in the transesterification reaction include diphenyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate and the like. Of these, diphenyl carbonate is particularly preferable.
  • Monofunctional phenols usually used as a terminal terminator can be used. Especially in the case of reactions using phosgene as a carbonate precursor, monofunctional phenols are commonly used as terminal inhibitors for molecular weight regulation and the resulting polycarbonate resins are based on monofunctional phenols at the ends. Since it is sealed by a group, it has better thermal stability than those that do not.
  • Specific examples of the monofunctional phenols include, for example, phenol, m-methylphenol, p-methylphenol, m-propylphenol, p-propylphenol, 1-phenylphenol, 2-phenylphenol, p-tert-butylphenol, and the like. Examples thereof include p-cumylphenol, isooctylphenol, and p-long-chain alkylphenol.
  • the polycarbonate resin used in the present invention can be copolymerized with an aliphatic diol, if necessary.
  • the polycarbonate resin used in the present invention can copolymerize fatty acids as needed.
  • 1,10-dodecandioic acid (DDDA), adipic acid, hexanedioic acid, isophthalic acid, 1,3-benzenedicarboxylic acid, terephthalic acid, 1,4-benzenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid examples thereof include 3-hydroxybenzoic acid (mHBA) and 4-hydroxybenzoic acid (pHBA).
  • the polycarbonate resin used in the present invention contains a polyester carbonate copolymerized with an aromatic or aliphatic (including alicyclic) bifunctional carboxylic acid.
  • the aliphatic bifunctional carboxylic acid is preferably ⁇ , ⁇ -dicarboxylic acid.
  • Examples of aliphatic bifunctional carboxylic acids include linear saturated aliphatic dicarboxylic acids such as sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, and icosandioic acid, and cyclohexanedicarboxylic acid.
  • An alicyclic dicarboxylic acid such as an acid is preferably used. These carboxylic acids may be copolymerized as long as they do not impair the purpose.
  • the polycarbonate resin of the present invention can also copolymerize a structural unit containing a polyorganosiloxan
  • the polycarbonate resin used in the present invention can be obtained as a branched polycarbonate by copolymerizing a structural unit containing a trifunctional or higher polyfunctional aromatic compound, if necessary.
  • Trifunctional or higher polyfunctional aromatic compounds used in branched polycarbonate include 4,6-dimethyl-2,4,6-tris (4-hydroxidiphenyl) heptene-2,2,4,6-trimethyl-.
  • the structural unit derived from such a polyfunctional aromatic compound is preferably 0.03 to 1.5 mol%, more preferably 0.1, based on a total of 100 mol% with the structural unit from other divalent components. It is ⁇ 1.2 mol%, particularly preferably 0.2 ⁇ 1.0 mol%.
  • the branched structural unit is not only derived from the polyfunctional aromatic compound, but also derived without using the polyfunctional aromatic compound such as a side reaction occurring during the polymerization reaction by the melt transesterification method. You may.
  • the ratio of such a branched structure can be calculated by 1 1 H-NMR measurement.
  • the polycarbonate resin material used in the present invention may contain a functional agent known per se, such as a mold release agent, a heat stabilizer, a flow modifier, and an ultraviolet absorber, as long as the effects of the present invention are not impaired. .. (I) Release agent
  • a mold release agent may be used in combination with the polycarbonate resin material used in the present invention as long as the effects of the present invention are not impaired.
  • the release agent for example, fatty acid ester, polyolefin wax (polyethylene wax, 1-alkene polymer, etc., which is modified with a functional group-containing compound such as acid modification can also be used), fluorine compound (polyfluoroalkyl).
  • the ratio of the release agent to be used in combination with the silicone compound of the component B is preferably 0.005 to 0.2 parts by weight, more preferably 0.007 to 0 parts by weight, based on 100 parts by weight of the polycarbonate resin. It is 1 part by weight, more preferably 0.01 to 0.06 part by weight. If the content is less than the lower limit of the above range, the effect of improving the releasability is not clearly exhibited, and if it exceeds the upper limit, adverse effects such as mold contamination during molding are likely to occur.
  • Such fatty acid esters are esters of fatty alcohols and aliphatic carboxylic acids.
  • Such an aliphatic alcohol may be a monohydric alcohol or a divalent or higher polyhydric alcohol.
  • the carbon number of the alcohol is preferably in the range of 3 to 32, and more preferably in the range of 5 to 30.
  • Examples of such monohydric alcohols include dodecanol, tetradecanol, hexadecanol, octadecanol, eicosanol, tetracosanol, ceryl alcohol, and triacanthanol.
  • polyhydric alcohols examples include pentaerythritol, dipentaerythritol, tripentaerythritol, polyglycerol (triglycerol to hexaglycerol), ditrimethylolpropane, xylitol, sorbitol, and mannitol.
  • a polyhydric alcohol is more preferable.
  • the aliphatic carboxylic acid preferably has 3 to 32 carbon atoms, and particularly preferably an aliphatic carboxylic acid having 10 to 22 carbon atoms.
  • the aliphatic carboxylic acid include decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid (palmitic acid), heptadecanoic acid, octadecanoic acid (stearic acid), nonadecanoic acid, and icosanoic acid.
  • saturated aliphatic carboxylic acids such as docosanoic acid (bechenic acid), and unsaturated aliphatic carboxylic acids such as palmitoleic acid, oleic acid, linoleic acid, linolenic acid, eicosenoic acid, eicosapentaenoic acid, and sethalic acid.
  • the aliphatic carboxylic acid preferably has 14 to 20 carbon atoms. Of these, saturated aliphatic carboxylic acids are preferable.
  • aliphatic carboxylic acids are usually produced from natural fats and oils such as animal fats and oils (such as beef tallow and lard) and vegetable fats and oils (such as palm oil), these aliphatic carboxylic acids usually have carbon atoms. It is a mixture containing other carboxylic acid components different from each other.
  • the aliphatic carboxylic acid used in the present invention is also produced from such natural fats and oils, and is in the form of a mixture containing other carboxylic acid components.
  • the acid value of the fatty acid ester is preferably 20 or less (substantially 0 can be taken). However, in the case of all esters (full esters), it is preferable to contain not a small amount of free fatty acids in order to improve releasability, and in this respect, the acid value of full esters is preferably in the range of 3 to 15.
  • the iodine value of the fatty acid ester is preferably 10 or less (substantially 0 can be taken). These characteristics can be obtained by the method specified in JIS K0070.
  • the fatty acid ester described above may be either a partial ester or a full ester, but a partial ester is preferable in terms of better releasability and durability, and a glycerin monoester is particularly preferable.
  • Glycerin monoesters are mainly composed of monoesters of glycerin and fatty acids, and suitable fatty acids include saturated fatty acids such as stearic acid, partiminic acid, bechenic acid, araquinic acid, montanic acid, and lauric acid, and oleic acid and linoleic acid.
  • unsaturated fatty acids such as sorbic acid, and those containing glycerin monoesters of stearic acid, behenic acid, and partiminic acid as main components are particularly preferable.
  • the fatty acid is synthesized from a natural fatty acid and becomes a mixture as described above. Even in such a case, the ratio of the glycerin monoester in the fatty acid ester is preferably 60% by weight or more.
  • Partial esters are often inferior to full esters in terms of thermal stability.
  • the partial ester preferably has a sodium metal content of less than 20 ppm, more preferably less than 5 ppm, still more preferably less than 1 ppm.
  • the fatty acid partial ester having a sodium metal content of less than 1 ppm can be produced by producing the fatty acid partial ester by a usual method and then purifying it by molecular distillation or the like.
  • glycerin is used under the conditions of a distillation temperature of 120 to 150 ° C. and a vacuum degree of 0.01 to 0.03 kPa using a downflow film type distillation device. Etc., and then distilling a high-purity fatty acid partial ester under the conditions of a distillation temperature of 160 to 230 ° C. and a vacuum degree of 0.01 to 0.2 Torr using a centrifugal molecular distillation apparatus. Sodium metal can be removed as a distillation residue.
  • fatty acid esters can be obtained from specialists (for example, Riken Vitamin Co., Ltd.).
  • Phosphorus Stabilizer It is preferable that various phosphorus stabilizers are further blended in the polycarbonate resin material used in the present invention mainly for the purpose of improving the thermal stability during the molding process. Examples of such phosphorus-based stabilizers include phosphorous acid, phosphoric acid, phosphonic acid, phosphonic acid, and esters thereof. Further such phosphorus-based stabilizers include tertiary phosphine.
  • examples of the phosphite compound include triphenylphosphite, tris (nonylphenyl) phosphite, tridecylphosphite, trioctylphosphite, trioctadecylphosphite, didecylmonophenylphosphite, and dioctylmonophenyl.
  • Phenylphosphite diisopropylmonophenylphosphenyl, monobutyldiphenylphosphenyl, monodecyldiphenylphosphite, monooctyldiphenylphosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octylphosphite, tris ( Diethylphenyl) phosphite, tris (di-iso-propylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tris (2, 6-di-tert-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylpheny
  • phosphite compounds those having a cyclic structure that reacts with divalent phenols can also be used.
  • Phosphate compounds include tributyl phosphate, trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl phosphate, Examples thereof include diisopropyl phosphate, preferably triphenyl phosphate and trimethyl phosphate.
  • Phosphonite compounds include tetrakis (2,4-di-tert-butylphenyl) -4,4'-biphenylenediphosphonite and tetrakis (2,4-di-tert-butylphenyl) -4,3'-biphenylenedi.
  • Examples of the phosphonate compound include dimethyl benzenephosphonate, diethyl benzenephosphonate, and dipropyl benzenephosphonate.
  • Tertiary phosphines include triethylphosphine, tripropylphosphine, tributylphosphine, trioctylphosphine, triamylphosphine, dimethylphenylphosphine, dibutylphenylphosphine, diphenylmethylphosphine, diphenyloctylphosphine, triphenylphosphine, and tri-p-trill Examples include phosphine, triphenylphosphine, and diphenylbenzylphosphine. A particularly preferred tertiary phosphine is triphenylphosphine.
  • the phosphorus-based stabilizer can be used not only by one type but also by mixing two or more types.
  • a phosphite compound or a phosphonite compound is preferable.
  • tert-Butylphenyl) -phenyl-phenylphosphonite is preferred.
  • a combined use of these with a phosphate compound is also a preferable embodiment.
  • the polycarbonate resin material used in the present invention contains a hindered phenolic stabilizer mainly for the purpose of improving the thermal stability and heat aging resistance during molding. can do.
  • hindered phenol-based stabilizers include ⁇ -tocopherol, butylhydroxytoluene, cinapyl alcohol, vitamin E, n-octadecyl- ⁇ - (4'-hydroxy-3', 5'-di-tert-butylfell.
  • the amount of the (ii) phosphorus-based stabilizer and / or (iii) hindered phenol-based antioxidant is preferably 0.0001 to 1 part by weight, more preferably 0, based on 100 parts by weight of the polycarbonate resin. It is .001 to 0.5 parts by weight, more preferably 0.005 to 0.1 parts by weight. If the amount of stabilizer is too small, it is difficult to obtain a good stabilizing effect, and if it exceeds the above range, it causes deterioration of the physical properties of the material and contamination of the mold during molding. There is.
  • an antioxidant other than the above-mentioned hindered phenolic antioxidant can be appropriately used.
  • Other such antioxidants include, for example, pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-laurylthiopropionate), glycerol-3-stearylthiopropionate and the like.
  • the amount of these other antioxidants used is preferably 0.001 to 0.05 parts by weight with respect to 100 parts by weight of the polycarbonate resin.
  • the polycarbonate resin material used in the present invention may contain a fluid modifier as long as the effects of the present invention are not impaired.
  • flow modifiers include styrene-based oligomers, polycarbonate oligomers (including highly branched, hyperbranched and cyclic oligomers), and polyalkylene terephthalate oligomers (including highly branched, hyperbranched and cyclic oligomers). Branched and hyperbranched aliphatic polyester oligomers, terpene resins, polycaprolactone and the like are preferably exemplified.
  • the appropriate amount of the flow modifier is 0.1 to 30 parts by weight, preferably 1 to 20 parts by weight, and more preferably 2 to 15 parts by weight per 100 parts by weight of the polycarbonate resin.
  • Polycaprolactone is particularly preferable, and the composition ratio is 2 to 7 parts by weight, particularly preferably 2 to 7 parts by weight, per 100 parts by weight of the polycarbonate resin.
  • the molecular weight of polycaprolactone is 1,000 to 70,000 in terms of number average molecular weight, preferably 1,500 to 40,000, more preferably 2,000 to 30,000, and 2,500 to 15,000. More preferred.
  • V Ultraviolet absorber
  • the polycarbonate resin material used in the present invention may contain an ultraviolet absorber.
  • the ultraviolet absorber examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 2-hydroxy-4-benzyloxy.
  • Benzophenone, 2-hydroxy-4-methoxy-5-sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxitrihydrate benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2', 4,4'-Tetrahydroxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodium sulfoxybenzophenone, bis (5-) Examples thereof include benzoyl-4-hydroxy-2-methoxyphenyl) methane, 2-hydroxy-4-n-dodecyloxybenzophenone, and 2-hydroxy-4-methoxy-2'-carboxybenzophenone.
  • the ultraviolet absorber examples include 2- (2-hydroxy-5-methylphenyl) benzotriazole and 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole in the benzotriazole system.
  • 2-Hydroxyphenyl such as a copolymer with a system monomer or a copolymer of 2- (2'-hydroxy-5-acryloxyethylphenyl) -2H-benzotriazole and a vinyl-based monomer copolymerizable with the monomer.
  • Examples thereof include a polymer having a -2H-benzotriazole skeleton.
  • the ultraviolet absorber examples include 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-hexyloxyphenol and 2- (4) in the hydroxyphenyltriazine system. , 6-Diphenyl-1,3,5-triazine-2-yl) -5-methyloxyphenol, 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-ethyloxy Phenol, 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-propyloxyphenol, and 2- (4,6-diphenyl-1,3,5-triazine-2-yl) Il) -5-butyloxyphenol and the like are exemplified.
  • the phenyl group of the above-exemplified compound such as 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine-2-yl) -5-hexyloxyphenol is 2,4-dimethyl.
  • a compound that has become a phenyl group is exemplified.
  • the ultraviolet absorber examples include 2,2'-p-phenylenebis (3,1-benzoxazine-4-one) and 2,2'-(4,4'-diphenylene) in the cyclic iminoester system.
  • Bis (3,1-benzoxazine-4-one), 2,2'-(2,6-naphthalene) bis (3,1-benzoxazine-4-one) and the like are exemplified.
  • the ultraviolet absorber specifically, in the case of cyanoacrylate, for example, 1,3-bis-[(2'-cyano-3', 3'-diphenylacryloyl) oxy] -2,2-bis [(2-2-bis].
  • examples thereof include cyano-3,3-diphenylacryloyl) oxy] methyl) propane and 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene.
  • the above-mentioned ultraviolet absorber has a structure of a monomer compound capable of radical polymerization, thereby forming a photostable monomer having such an ultraviolet-absorbing monomer and / or a hindered amine structure and an alkyl (meth) acrylate. It may be a polymer type ultraviolet absorber copolymerized with a monomer such as.
  • a compound containing a benzotriazole skeleton, a benzophenone skeleton, a triazine skeleton, a cyclic imino ester skeleton, and a cyanoacrylate skeleton in the ester substituent of the (meth) acrylic acid ester is preferably exemplified. Ru.
  • benzotriazole-based and hydroxyphenyltriazine-based are preferable in terms of ultraviolet absorption ability
  • cyclic iminoester-based and cyanoacrylate-based are preferable in terms of heat resistance and hue.
  • the above-mentioned ultraviolet absorber may be used alone or in a mixture of two or more kinds.
  • the content of the ultraviolet absorber is preferably 0.1 to 2 parts by weight, more preferably 0.2 to 1.5 parts by weight, and further preferably 0.3 to 1 part by weight with respect to 100 parts by weight of the polycarbonate resin. is there.
  • the polycarbonate resin material used in the present invention can also contain various additives such as a bluing agent, a fluorescent dye, an antistatic agent, a flame retardant, and a dye pigment. These can be appropriately selected and contained as long as the effects of the present invention are not impaired.
  • the brewing agent preferably contains 0.05 to 3.0 ppm (weight ratio) in the resin material.
  • Typical examples of the bluing agent include Bayer's Macrolex Violet B and Macrolex Blue RR, and Clariant's Polysynthslen Blue RLS.
  • fluorescent dyes include coumarin-based fluorescent dyes, benzopyran-based fluorescent dyes, perylene-based fluorescent dyes, anthracinone-based fluorescent dyes, thioindigo-based fluorescent dyes, xanthene-based fluorescent dyes, and xantone-based fluorescent dyes.
  • the blending amount of the fluorescent dye (including the fluorescent whitening agent) is preferably 0.0001 to 0.1 parts by weight with respect to 100 parts by weight of the polycarbonate resin.
  • the flame retardant examples include a sulfonic acid metal salt-based flame retardant, a halogen-containing compound-based flame retardant, a phosphorus-containing compound-based flame retardant, and a silicon-containing compound-based flame retardant.
  • sulfonic acid metal salt-based flame retardants are preferable.
  • the blending amount of the flame retardant is usually preferably 0.01 to 1 part by weight, more preferably 0.05 to 1 part by weight, based on 100 parts by weight of polycarbonate.
  • the method of blending the additive with the polycarbonate resin used in the present invention is not particularly limited, and a known method can be used.
  • the most widely used method is to premix the polycarbonate resin and additives, then put them in an extruder for melt kneading, cool the extruded threads, and cut them with a pelletizer to produce pellet-shaped molding materials. There is a way to do it.
  • twin-screw extruder Both a single-screw extruder and a twin-screw extruder can be used as the extruder in the above method, but the twin-screw extruder is preferable from the viewpoint of productivity and kneading property.
  • ZSK manufactured by Werner & Pfreederer, trade name
  • Specific examples of similar types include TEX (manufactured by Japan Steel Works, Ltd., product name), TEM (manufactured by Toshiba Machine Co., Ltd., product name), KTX (manufactured by Kobe Steel, Ltd., product name), etc. Can be mentioned.
  • one having a vent capable of degassing the moisture in the raw material and the volatile gas generated from the melt-kneaded resin can be preferably used.
  • a vacuum pump is preferably installed from the vent to efficiently discharge the generated water and volatile gas to the outside of the extruder.
  • the additive can be independently supplied to the extruder, but it is preferable to premix it with the resin raw material as described above.
  • premixing means include a Nauter mixer, a V-type blender, a Henschel mixer, a mechanochemical device, and an extrusion mixer.
  • a more preferable method is, for example, to prepare a master agent by mixing a part of the raw material resin and the additive with a high-speed stirrer such as a Henschel mixer, and then leaving the remaining amount of the master agent such as a total amount of the resin raw material and a Nauter mixer. This is a method of mixing with a non-high speed stirrer.
  • the resin extruded from the extruder is directly cut and pelletized, or after forming the strands, the strands are cut with a pelletizer and pelletized.
  • a pelletizer and pelletized When it is necessary to reduce the influence of external dust and the like, it is preferable to clean the atmosphere around the extruder.
  • various methods already proposed for polycarbonate resins for optical discs are used to narrow the shape distribution of pellets, further reduce miscut substances, and generate fine powder during transportation or transportation. It is preferable to further reduce the amount of air bubbles (vacuum air bubbles) generated inside the strands and pellets.
  • the method for producing the substrate in the present invention is not particularly limited, and any molding method generally adopted for the polycarbonate resin material can be adopted.
  • any molding method generally adopted for the polycarbonate resin material can be adopted.
  • an injection molding method, an ultra-high speed injection molding method, an injection compression molding method, a two-color molding method, a hollow molding method such as gas assist, a molding method using a heat insulating mold, and a rapid heating mold were used.
  • Molding method foam molding (including supercritical fluid), insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermal molding method, rotary molding method, laminated molding method, press molding method, etc. Can be mentioned. Further, a molding method using a hot runner method can also be used.
  • the polycarbonate resin material used in the present invention can also be obtained as a sheet-shaped or film-shaped molded product by a method such as a melt extrusion method or a solution casting method (casting method).
  • a melt extrusion method for example, a polycarbonate resin material is quantitatively supplied to an extruder, melted by heating, and the molten resin is extruded from the tip of a T-die into a sheet on a mirror surface roll to form a plurality of rolls.
  • a method is used in which the plastic is taken up while cooling, and when it solidifies, it is cut to an appropriate size or wound up.
  • a specific method of the solution casting method is, for example, a solution (concentration of 5% to 40%) in which a polycarbonate resin material is dissolved in methylene chloride is poured from a T-die onto a mirror-polished stainless steel plate, and the temperature is gradually increased.
  • a method is used in which the sheet is peeled off while passing through a controlled oven to remove the solvent, and then cooled and wound up.
  • a laminated film can also be used as the substrate in the present invention. Any method may be used for producing the laminated film, and it is particularly preferable to use a thermocompression bonding method or a coextrusion method. Any method is adopted as the thermocompression bonding method. For example, a method of thermocompression bonding a film of a polycarbonate resin material with a laminating machine or a press machine, a method of thermocompression bonding immediately after extrusion, and particularly for a polycarbonate resin material immediately after extrusion. A method of continuously thermocompression bonding to a film is industrially advantageous.
  • the thickness of the substrate is preferably 1 to 500 ⁇ m, more preferably 10 to 300 ⁇ m, and most preferably 50 to 250 ⁇ m. If the thickness of the substrate is too thin, handling becomes difficult, which is not preferable. If the substrate is too thick, the flexibility will be impaired and the cost will increase, which is not preferable.
  • the substrate in the present invention has at least one surface selected from the group consisting of corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, and ozone treatment in order to improve the adhesiveness with the conductive film. It may be processed. Further, as a method for improving the adhesiveness with the conductive film, a hard coat layer can be provided on the surface of the base material.
  • the hard coat layer contains a cured resin product obtained by curing the resin composition.
  • the resin composition preferably contains at least one selected from a thermosetting resin composition, an ultraviolet curable resin composition, and an electron beam curable resin composition. Examples of the curable resin composition include epoxy resin, phenoxy resin, melamine resin, silicone resin and the like.
  • the conductive film in the present invention examples include metal thin films such as copper foil and silver foil, and carbon nanotube thin films. Among them, it is preferable to use a metal thin film from the viewpoint of transparency, and it is particularly preferable to use a copper foil. There are two types of copper foil, electrolytic foil and rolled foil, but either of them can be used. The thickness of the copper foil is preferably 1 to 70 ⁇ m. If the copper foil is thick, transparency will be impaired, which is not preferable. If the copper foil is too thin, the conductivity will be impaired, which is not preferable.
  • the copper foil surface may be an untreated copper foil surface, and the surface may be metal-plated, for example, one or more selected from nickel, iron, zinc, gold, silver, aluminum, chromium, titanium, palladium or tin. It may be plated with a metal, or the surface of the untreated copper foil or the surface of the metal-plated copper foil may be treated with a chemical such as a silane coupling agent.
  • the preferred metal plating treatment is one or more metal plating treatments selected from nickel, iron, zinc, gold and aluminum, and more preferably a metal plating treatment with nickel or aluminum.
  • the conductive film can take any antenna pattern shape such as a loop shape. Further, a terminal portion can be installed at the end portion of the conductive film.
  • the conductive film of the present invention has low dielectric properties and is excellent in adhesion to the conductive film, so that it can be suitably used for various antennas. For example, a monopole antenna, a dipole antenna, a whip antenna, a loop antenna, a slot antenna, and the like can be mentioned.
  • Applications of the antenna include WiFi antennas, GPS antennas, terrestrial digital antennas, one-segment and full-segment antennas, RFID antennas, small cell base station antennas, and the like.
  • the shape and use of the antenna are not limited to those described above.
  • Viscosity average molecular weight The viscosity average molecular weight of the polycarbonate resin material was measured by the following method. The specific viscosity ( ⁇ sp ) of the solution at 20 ° C. was measured from a solution prepared by dissolving 0.7 g of a polycarbonate resin in 100 ml of methylene chloride. Then, Mv calculated by the following formula was used as the viscosity average molecular weight.
  • Adhesive strength peeling strength between the transparent substrate and the metal thin film
  • peeling strength of the copper foil was measured by a tensile tester while peeling the copper foil in the direction of 90 ° with respect to the copper foil removing surface at a speed of 50 mm per minute. The obtained value was taken as the adhesive strength.
  • Flexibility The transparent substrate was cut into 50 mm ⁇ 100 mm, and the state after bending at 180 ° was visually evaluated. The case of breaking was evaluated as x, and the case of not breaking was evaluated as ⁇ .
  • Transmission loss A microstrap line having a length of 10 cm was prepared by etching a transparent conductive film, and the transmission loss at 10 GHz was measured using a network analyzer.
  • Total light transmittance The total light transmittance of the transparent conductive film was measured using a haze meter (product name: NDH-3000, manufactured by Nippon Denshoku Kogyo Co., Ltd.).
  • Example I-1 A reactor equipped with a thermometer, a stirrer and a reflux condenser was charged with 3844 parts of a 48% sodium hydroxide aqueous solution and 22,380 parts of ion-exchanged water, and 2,2-bis (4-hydroxy-3-methyl) was charged therein. After dissolving 3,984 parts of phenyl) propane (Bis-C, manufactured by Honshu Chemical Co., Ltd.) and 7.53 parts of hydroxide sulfite (manufactured by Wako Pure Chemical Industries, Ltd.), add 13,210 parts of methylene chloride, and under stirring, 15 to 15 to 2,000 parts of dichloromethane was blown at 25 ° C.
  • the product was diluted with methylene chloride and washed with water, acidified with hydrochloric acid and washed with water, and further washed with water until the conductivity of the aqueous phase became almost the same as that of ion-exchanged water. Obtained.
  • this solution was passed through a filter having an opening of 0.3 ⁇ m, and further dropped into warm water in a kneader with an isolation chamber having a foreign matter extraction port in the bearing portion, and the polycarbonate resin was flaked while distilling off methylene chloride, and subsequently, the said solution. The liquid-containing flakes were crushed and dried to obtain a powder.
  • ADEKA STAB LA-31 (made by ADEKA, benzotriazole-based ultraviolet absorber) was added by 0.5 part by weight, mixed uniformly, and then the powder was mixed with a vent type twin-screw extruder [Kobe Steel Co., Ltd.] KTX-46] was degassed and melt-kneaded and extruded to obtain polycarbonate resin composition pellets.
  • the obtained pellets were dried at 120 ° C. for 4 hours using a vacuum drying type shelf dryer. This was put into a heating hopper of a melt extruder heated to 110 ° C. and melt-extruded at 290 ° C.
  • a filter for removing foreign matter of the molten polymer a disk-shaped filter made of SUS non-woven fabric having an average opening of 10 ⁇ m was used.
  • the filtered molten resin was extruded onto a rotating cooling roll surface having a diameter of 800 mm and a roll surface length of 1800 mm by a die set at 290 ° C.
  • the lip width of the extrusion die was 1500 mm, and the lip gap was about 2 mm.
  • the entire width of the film was brought into close contact with the cooling roll surface by an electrostatic close contact method.
  • a cleanly polished stainless steel piano wire was used as the electrode for electrostatic adhesion.
  • a positive electrode of a DC power supply was connected to this piano wire, and the cooling drum side was grounded.
  • the applied voltage was 7 KV.
  • the film was passed through a roll suspension type heat treatment machine for heat treatment.
  • Rolls of 100 mm ⁇ were alternately arranged vertically in the roll suspension type heat treatment machine.
  • the distance between the upper and lower rolls was 1.6 m, and the distance from the adjacent roll placed one was 100 mm ⁇ , which is the same as the roll diameter.
  • the film to be processed was prepared so that the length of the film staying in the oven in the roll suspension type heat treatment machine was about 50 m (residence time 60 seconds).
  • the temperature of the hot air in the oven in the heat treatment machine was 145 ° C., and the film tension at the outlet of the oven was 3.0 kg / (thickness 100 ⁇ m ⁇ total film width 1440 mm) (2.1 kg / square centimeter per cross-sectional load).
  • the film was cooled to 60 ° C. or lower in the same manner with a roll suspension type processing machine, and then taken out to room temperature. Both ends of the heat-treated film were cut off by 70 mm to obtain a film having a width of 1300 mm.
  • Example I-2 A reactor equipped with a stirrer and a distillation column is charged with 5630 parts (22 mol) of BPC, 4920 parts (23 mol) of diphenyl carbonate, 0.000005 parts of sodium hydroxide and 0.0016 parts of tetramethylammonium hydroxide as catalysts, and nitrogen. Replaced. The mixture was dissolved while heating to 180 ° C.
  • the stirrer was rotated to keep the internal temperature of the reactor at 220 ° C.
  • the pressure in the reactor was reduced from 101.3 kPa to 13.3 kPa over 40 minutes while distilling off the by-produced phenol.
  • the transesterification reaction was carried out for 80 minutes while maintaining the pressure in the responder at 13.3 kPa and further distilling off phenol.
  • the internal pressure was reduced from 13.3 kPa to 2 kPa in absolute pressure, and the temperature was further raised to 260 ° C. to remove distilling phenol from the system. Further, the temperature was continuously raised, and after the inside of the reactor reached 0.3 Pa or less, the internal pressure was maintained and the polycondensation reaction was carried out. The final internal temperature in the reactor was 295 ° C. The polycondensation reaction was terminated when the stirrer of the reactor became a predetermined stirring power. The polymerization reaction time in the reactor was 140 minutes.
  • the release agent Riquester EW400 (pentaerythritols fustearate, manufactured by RIKEN Vitamin) 0.1 parts by weight, phosphorus-based antioxidant: Hostanox P-EPQ (Tetrakiss) (2,4-tert-Butylphenyl) -4,4'-biphenylenediphosphonite, manufactured by Clariant Japan) 0.05 parts by weight, hindered phenolic antioxidant: Irganox 1076 (3- [3,5-] Di-tert-butyl-4-hydroxyphenyl] octadecyl propionate, manufactured by BASF) Add 0.03 part by weight, and degas the inlet barrel temperature 230 ° C, outlet barrel temperature 270 ° C, polycarbonate resin outlet temperature 285 ° C.
  • phosphorus-based antioxidant Hostanox P-EPQ (Tetrakiss) (2,4-tert-Butylphenyl) -4,4'-biphenylenediphosphonite,
  • Example I-1 While being melt-kneaded and extruded, it was extruded into a strand shape from the outlet of a twin-screw extruder, cooled and solidified with water, and then pelletized with a rotary cutter to obtain polycarbonate resin pellets. After that, the same operation as in Example I-1 was performed, and the results are shown in Table 1.
  • Example I-3 As the monomers used, 2,2-bis (4-hydroxy-3-methylphenyl) propane (Bis-C, manufactured by Honshu Kagaku Kogyo), 1,992 parts (7.8 mol), 2,2-bis (4-) The same operation as in Example I-1 was carried out except that the amount was changed to 1,773 parts (7.8 mol) of hydroxyphenyl) propane (Bis-A, manufactured by Nippon Steel Chemical Co., Ltd.), and the results are shown in Table 1. ..
  • Example I-4 A reactor equipped with a thermometer, agitator and a reflux condenser was charged with 3844 parts of 48% sodium hydroxide aqueous solution and 22,380 parts of ion-exchanged water, and 2,2-bis (4-hydroxy-3-tert) was charged therein.
  • -Butyl) Propane (Bis-OTBA, manufactured by Honshu Kagaku Kogyo) 4,589 parts, and Hydrosulfite 9.18 parts (manufactured by Wako Pure Chemical Industries, Ltd.) are dissolved, followed by methylene chloride 12,144 parts, tetramethylammonium bromide (manufactured by Wako Pure Chemical Industries, Ltd.).
  • Example I-5 Same as Example I-4 except that 2,2-bis (4-hydroshiki-3,5-dimethylphenyl) propane (Bis-TMA, manufactured by Honshu Chemical Industry Co., Ltd.) was changed to 3828 parts instead of Bis-OTBA. The results are shown in Table 1.
  • Example I-6 As the polycarbonate resin pellets, 5000 g of the polycarbonate resin pellets of Example 1 and 5000 g of Panlite (registered trademark) L-1225L (manufactured by Teijin) were dry-blended, and a vent type twin-screw extruder [KTX-manufactured by Kobe Steel, Ltd.] 46] was carried out in the same manner as in Example I-1 except that the polycarbonate resin composition pellets were obtained by melt-kneading and extruding while degassing, and the results are shown in Table 1.
  • Example I-1 Similar to Example I-1 except that an aromatic polycarbonate resin (polycarbonate resin made of bisphenol A, Panlite (registered trademark) L-1225L (product name) manufactured by Teijin Limited) was used as the polycarbonate resin pellets. The operation was performed and the results are shown in Table 1.
  • Comparative Example I-2 The same operation as in Example I-1 was performed except that a polyethylene terephthalate resin (TRN-8550 (product name), manufactured by Teijin Ltd.) was used instead of the polycarbonate resin pellets, and the results are shown in Table 1.
  • TRN-8550 polyethylene terephthalate resin
  • Example I-4 As the polycarbonate resin pellets, 1500 g of the polycarbonate resin pellets of Example 1 and 3500 g of Panlite (registered trademark) L-1225L (manufactured by Teijin) were dry-blended, and a vent type twin-screw extruder [KTX-manufactured by Kobe Steel, Ltd.] 46] was carried out in the same manner as in Example I-1 except that the polycarbonate resin composition pellets were obtained by melt-kneading and extruding while degassing, and the results are shown in Table 1.
  • Panlite registered trademark
  • L-1225L manufactured by Teijin
  • Example II-1 A reactor equipped with a thermometer, agitator and a reflux condenser was charged with 4,760 parts of 48% sodium hydroxide aqueous solution and 20,779 parts of ion-exchanged water, and 1,1-bis (4-hydroxy-3) was charged therein.
  • -Methylphenyl) Cyclohexane manufactured by Honshu Kagaku Kogyo
  • 4,271 parts and Hydrosulfite 8.54 parts manufactured by Wako Pure Chemical Industries, Ltd.
  • the product was diluted with methylene chloride and washed with water, acidified with hydrochloric acid and washed with water, and further washed with water until the conductivity of the aqueous phase became almost the same as that of ion-exchanged water. Obtained.
  • this solution was passed through a filter having an opening of 0.3 ⁇ m, and further dropped into warm water in a kneader with an isolation chamber having a foreign matter extraction port in the bearing portion, and the polycarbonate resin was flaked while distilling off methylene chloride, and subsequently, the said solution. The liquid-containing flakes were crushed and dried to obtain a powder.
  • ADEKA STAB LA-31 (made by ADEKA, benzotriazole-based ultraviolet absorber) was added by 0.5 part by weight, mixed uniformly, and then the powder was mixed with a vent type twin-screw extruder [Kobe Steel Co., Ltd.] KTX-46 manufactured by the company] was melt-kneaded and extruded while degassing to obtain polycarbonate resin composition pellets (polycarbonate resin material).
  • the obtained pellets were dried at 120 ° C. for 4 hours using a vacuum drying type shelf dryer. This was put into a heating hopper of a melt extruder heated to 110 ° C. and melt-extruded at 290 ° C.
  • a filter for removing foreign matter of the molten polymer a disk-shaped filter made of SUS non-woven fabric having an average opening of 10 ⁇ m was used.
  • the filtered molten resin was extruded onto a rotating cooling roll surface having a diameter of 800 mm and a roll surface length of 1800 mm by a die set at 290 ° C.
  • the lip width of the extrusion die was 1500 mm, and the lip gap was about 2 mm.
  • the entire width of the film was brought into close contact with the cooling roll surface by an electrostatic close contact method.
  • a cleanly polished stainless steel piano wire was used as the electrode for electrostatic adhesion.
  • a positive electrode of a DC power supply was connected to this piano wire, and the cooling drum side was grounded.
  • the applied voltage was 7 KV.
  • the film was passed through a roll suspension type heat treatment machine for heat treatment.
  • Rolls of 100 mm ⁇ were alternately arranged vertically in the roll suspension type heat treatment machine.
  • the distance between the upper and lower rolls was 1.6 m, and the distance from the adjacent roll placed one was 100 mm ⁇ , which is the same as the roll diameter.
  • the film to be processed was prepared so that the length of the film staying in the oven in the roll suspension type heat treatment machine was about 50 m (residence time 60 seconds).
  • the temperature of the hot air in the oven in the heat treatment machine was 145 ° C., and the film tension at the outlet of the oven was 3.0 kg / (thickness 100 ⁇ m ⁇ total film width 1440 mm) (2.1 kg / square centimeter per cross-sectional load).
  • the film was cooled to 60 ° C. or lower in the same manner with a roll suspension type processing machine, and then taken out to room temperature. Both ends of the heat-treated film were cut off by 70 mm to obtain a film having a width of 1300 mm.
  • Example II-2 In a reactor equipped with a stirrer and a distillation column, 6510 parts (22 mol) of 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane, 4920 parts (23 mol) of diphenyl carbonate and sodium hydroxide as a catalyst 0.
  • the internal pressure was reduced from 13.3 kPa to 2 kPa in absolute pressure, and the temperature was further raised to 260 ° C. to remove distilling phenol from the system. Further, the temperature was continuously raised, and after the inside of the reactor reached 0.3 Pa or less, the internal pressure was maintained and the polycondensation reaction was carried out. The final internal temperature in the reactor was 295 ° C. The polycondensation reaction was terminated when the stirrer of the reactor became a predetermined stirring power. The polymerization reaction time in the reactor was 140 minutes.
  • the release agent Riquester EW400 (pentaerythritols fustearate, manufactured by RIKEN Vitamin) 0.1 parts by weight, phosphorus-based antioxidant: Hostanox P-EPQ (Tetrakiss) (2,4-tert-Butylphenyl) -4,4'-biphenylenediphosphonite, manufactured by Clariant Japan) 0.05 parts by weight, hindered phenolic antioxidant: Irganox 1076 (3- [3,5-] Di-tert-butyl-4-hydroxyphenyl] octadecyl propionate, manufactured by BASF) Add 0.03 part by weight, and degas the inlet barrel temperature 230 ° C, outlet barrel temperature 270 ° C, polycarbonate resin outlet temperature 285 ° C.
  • phosphorus-based antioxidant Hostanox P-EPQ (Tetrakiss) (2,4-tert-Butylphenyl) -4,4'-biphenylenediphosphonite,
  • Example II-1 While being melt-kneaded and extruded, it was extruded into a strand shape from the outlet of a twin-screw extruder, cooled and solidified with water, and then pelletized with a rotary cutter to obtain polycarbonate resin pellets. After that, the same operation as in Example II-1 was performed, and the results are shown in Table 2.
  • Example II-3 As the monomers used, 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane (manufactured by Honshu Chemical Industry Co., Ltd.) 2,136 parts (7.2 mol), 2,2-bis (4-hydroxyphenyl) propane The same operation as in Example II-1 was carried out except that the amount was changed to 1,647 parts (7.2 mol) (bisphenol A, manufactured by Nippon Steel Chemical Industry Co., Ltd.), and the results are shown in Table 2.
  • Example II-4 A reactor equipped with a thermometer, agitator and a reflux condenser was charged with 4,665 parts of a 48% sodium hydroxide aqueous solution and 19,394 parts of ion-exchanged water, which were charged with 1,1-bis (3-tert-butyl). After dissolving 5,125 parts of -4-hydroxyphenyl) cyclohexane (manufactured by Honshu Kagaku Kogyo) and 10.25 parts of hydrosulfite (manufactured by Wako Pure Chemical Industries, Ltd.), 14,882 parts of methylene chloride and tetrabutylammonium bromide (sum).
  • Example II-5 instead of 1,1-bis (3-tert-butyl-4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxy-3,5-dimethylphenyl) cyclohexane (manufactured by Honshu Chemical Industry Co., Ltd.) 4,370 parts The same operation as in Example II-4 was carried out except for the change to, and the results are shown in Table 2.
  • Example II-6 instead of 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane, 1,1-bis (4-hydroxy-3-methylphenyl) -3,3,5-trimethylcyclohexane (manufactured by Honshu Chemical Industry Co., Ltd.) The same operation as in Example II-1 was performed except that the number was changed to 4,844, and the results are shown in Table 2.
  • Example II-7 As the polycarbonate resin pellets, 5000 g of the polycarbonate resin pellets of Example 1 and 5000 g of aromatic polycarbonate resin (polycarbonate resin made of bisphenol A, Panlite (trade name registration) L-1225L (product name) manufactured by Teijin Co., Ltd.) are dry-blended.
  • Example II-1 The operation was the same as that of Example II-1 except that the polycarbonate resin composition pellets were obtained by melt-kneading and extruding while degassing with a vent-type twin-screw extruder [KTX-46 manufactured by Kobe Steel Co., Ltd.]. And the results are shown in Table 2.
  • Example II-1 The same operation as in Example II-1 was performed except that Panlite (registered trademark) L-1225L (manufactured by Teijin Limited) was used as the polycarbonate resin pellet, and the results are shown in Table 2.
  • Example II-2 The same operation as in Example II-1 was performed except that a polyethylene terephthalate resin (TRN-8550 (product name), manufactured by Teijin Ltd.) was used instead of the polycarbonate resin pellets, and the results are shown in Table 2.
  • TRN-8550 product name
  • Table 2 the results are shown in Table 2.
  • Example II-4 As the polycarbonate resin pellets, 1500 g of the polycarbonate resin pellets of Example 1 and 3500 g of Panlite (registered trademark) L-1225L (manufactured by Teijin Limited) were dry-blended, and a vent type twin-screw extruder [Kobe Steel, Ltd.] The same operation as in Example II-1 was carried out except that the polycarbonate resin composition pellets were obtained by melt-kneading and extruding while degassing with KTX-46 manufactured by KTX-46], and the results are shown in Table 2.
  • a conductive film having excellent antenna performance and capable of forming a flexible film antenna.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

主たる構成単位として下記式(1)で表される単位(A)および/または下記式(2)で表される単位(B)を含有するポリカーボネート樹脂を含むポリカーボネート樹脂材料からなる基体と導電膜とが積層されてなるアンテナ用導電フィルムであり、伝播損失の少ないアンテナを形成することが可能な低誘電特性および屈曲性を有し、導電膜との密着性に優れる。(式(1)中、R~Rは夫々独立して炭素原子数1~6のアルキル基またはハロゲン原子であり、R~Rは夫々独立して水素原子、炭素原子数1~6のアルキル基またはハロゲン原子である。)(式(2)中、R~Rは夫々独立して炭素原子数1~6のアルキル基またはハロゲン原子であり、R~Rは夫々独立して水素原子、炭素原子数1~6のアルキル基またはハロゲン原子であり、Rはハロゲン原子、炭素数1~20のアルキル基または炭素数3~20のシクロアルキル基を表し、nは0~10の整数を表す。)

Description

アンテナ用導電フィルムおよびアンテナ
 本発明は、導電膜との良好な密着性を有し、屈曲性および低誘電特性を兼ね備える導電フィルムに関する。
 また、本発明の導電フィルムを用いたマイクロ波やミリ波帯などの比較的高周波数帯域に使用できる広帯域なアンテナ、および該アンテナを有する電子装置に関する。
 アンテナは、高周波を空間に効率よく発信するとともに、空間を伝播してくる高周波を効率よく受信する必要がある。アンテナを構成する材料は、導電性に優れることが必要であるため、誘電体となるプラスチック材料に、導体を印刷や蒸着等で被覆した積層体が用いられている。また、導体としては従来から銅や銀等の導電膜が用いられている。一方で、外部及び室内でのネットワークの送受信が普及してきたことから、アンテナは様々な場所に設置されるようになってきた。このような状況下、設置場所の景観を損ねないようにするため、さらに透明性の高いアンテナが開発されている。
 例えば、特許文献1では、ポリエチレンテレフタレートフィルムからなる透明基材上に導電体メッシュ層で形成されるアンテナパターンを設ける技術が提案されている。また、特許文献2ではポリエチレンテレフタレートフィルムに銀を主成分とする導電膜を積層した透明導電フィルムが記載されている。
 また、電波が高周波数となるに従い、高周波伝播時の損失を低減させるため、誘電体の誘電特性が重要となる。特に、誘電体内での熱損失は、比誘電率と誘電正接の積で表される損失係数に比例するため、低誘電特性が必要である。誘電体となるプラスチック材料の誘電特性は、構成単位の分子構造によって決定されるため、誘電体には、低誘電特性、導電膜との密着性が良好な材料が求められている。
特開2011-66610号公報 国際公開第2018/139402号
 本発明の主要な目的は、伝播損失の少ないアンテナを形成することが可能な低誘電特性および屈曲性を有し、導電膜との密着性が良好なポリカーボネート樹脂を含むポリカーボネート樹脂材料からなる基体と導電膜からなる導電フィルムを提供することにある。
 また、本発明の副次的な目的は、上記に加えて高い透明性を有するポリカーボネート樹脂を含むポリカーボネート樹脂材料からなる透明基体と導電膜からなる透明導電フィルムを提供することにある。
 本発明者らは、鋭意研究を積み重ねた結果、驚くべきことに特定の構造単位を含有するポリカーボネート樹脂を含むポリカーボネート樹脂材料からなる基体を用いることにより、上記目的を達成することを見出した。かかる知見に基づき検討を進めた結果、本発明を完成するに至った。
 すなわち、本発明によれば、下記(構成1)~(構成20)が提供される。
(構成1)
 主たる構成単位として下記式(1)で表される単位(A)および/または下記式(2)で表される単位(B)を含有するポリカーボネート樹脂を含むポリカーボネート樹脂材料からなる基体と導電膜とが積層されてなるアンテナ用導電フィルム。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、R~Rは夫々独立して炭素原子数1~6のアルキル基またはハロゲン原子であり、R~Rは夫々独立して水素原子、炭素原子数1~6のアルキル基またはハロゲン原子である。)
Figure JPOXMLDOC01-appb-C000004
(式(2)中、R~Rは夫々独立して炭素原子数1~6のアルキル基またはハロゲン原子であり、R~Rは夫々独立して水素原子、炭素原子数1~6のアルキル基またはハロゲン原子であり、Rはハロゲン原子、炭素数1~20のアルキル基または炭素数3~20のシクロアルキル基を表し、nは0~10の整数を表す。)
(構成2)
 ポリカーボネート樹脂は、主たる構成単位として前記式(1)で表される単位(A)を含有するポリカーボネート樹脂である構成1記載のアンテナ用導電フィルム。
(構成3)
 ポリカーボネート樹脂は、全構成単位中前記式(1)で表される単位(A)を45モル%以上含有するポリカーボネート樹脂である構成1または2に記載のアンテナ用導電フィルム。
(構成4)
 単位(A)が、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパンから誘導された構成単位である構成1~3のいずれかに記載のアンテナ用導電フィルム。
(構成5)
 ポリカーボネート樹脂材料の粘度平均分子量が15,000~40,000である構成1~4のいずれかに記載のアンテナ用導電フィルム。
(構成6)
 ポリカーボネート樹脂は、主たる構成単位として前記式(2)で表される単位(B)を含有するポリカーボネート樹脂である構成1記載のアンテナ用導電フィルム。
(構成7)
 ポリカーボネート樹脂は、全構成単位中前記式(2)で表される単位(B)を45モル%以上含有するポリカーボネート樹脂である構成1または6に記載のアンテナ用導電フィルム。
(構成8)
 単位(B)が、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、1,1-ビス(3-tert-ブチル-4-ヒドロキシフェニル)シクロヘキサンまたは1,1-ビス(4-ヒドロキシ-3-メチルフェニル)-3,3,5-トリメチルシクロヘキサンから誘導された構成単位である構成1、6~7のいずれかに記載のアンテナ用導電フィルム。
(構成9)
 ポリカーボネート樹脂材料の粘度平均分子量が14,000~40,000である構成1、6~8のいずれかに記載のアンテナ用導電フィルム。
(構成10)
 ポリカーボネート樹脂材料は、空洞共振器摂動法に準拠して測定した周波数1~10GHzの誘電正接が0.0005~0.0030である構成1~9のいずれかに記載のアンテナ用導電フィルム。
(構成11)
 ポリカーボネート樹脂材料は、ポリカーボネート樹脂100重量部に対して、紫外線吸収剤を0.1重量部~2重量部含有する構成1~10のいずれかに記載のアンテナ用導電フィルム。
(構成12)
 ポリカーボネート樹脂材料は、ポリカーボネート樹脂100重量部に対して、リン系安定剤および/またはヒンダードフェノール系酸化防止剤を0.0001重量部~1重量部含有する構成1~11のいずれかに記載のアンテナ用導電フィルム。
(構成13)
 基体は、ポリカーボネート樹脂材料を用いて射出成形法または射出圧縮成形法により形成されたフィルムである構成1~12のいずれかに記載のアンテナ用導電フィルム。
(構成14)
 基体は、ポリカーボネート樹脂材料を用いて溶融押出法により形成されたフィルムである構成1~12のいずれかに記載のアンテナ用導電フィルム。
(構成15)
 基体の厚みが1~500μmであり、導電膜の厚みが1~70μmである構成1~14のいずれかに記載のアンテナ用導電フィルム。
(構成16)
 導電膜は金属薄膜である構成1~15のいずれかに記載のアンテナ用導電フィルム。
(構成17)
 金属薄膜が銅箔であり、銅箔によってアンテナパターンが形成されている構成16に記載のアンテナ用導電フィルム。
(構成18)
 基体に対して90度方向への導電膜引きはがし強さが0.8N/mm以上である構成1~17のいずれかに記載のアンテナ用導電フィルム。
(構成19)
 全光線透過率が50%以上である構成1~18のいずれかに記載のアンテナ用透明導電フィルム。
(構成20)
 構成1~19のいずれかに記載の導電フィルムからなるアンテナ。
 本発明の導電フィルムは、屈曲性と低電力損失を兼ね備えるアンテナを形成することが可能である。さらに、本発明の導電フィルムは、好適には良好な透明性を有し、設置場所の景観を損ねないアンテナを形成することが可能である。従って、その奏する産業上の効果は格別である。
 <導電フィルム>
 本発明の導電フィルムは、ポリカーボネート樹脂を含むポリカーボネート樹脂材料からなる基体と導電膜とが積層されてなる積層体よりなる。
 本発明の導電フィルムは、基材と銅箔の接着強度が0.8N/mm以上が好ましく、1.0N/mm以上がより好ましく、1.2N/mm以上が最も好ましい。接着強度が劣ると銅箔が剥離する場合がある。接着強度は、JIS C5016-1994に準拠して、毎分50mmの速度で厚み18μmの銅箔を銅箔除去面に対して90°の方向に引きはがしながら、引張試験機により引きはがし強さを測定することができる。
 本発明の導電フィルムの全光線透過率は、50%以上が好ましく、60%以上がより好ましく、70%以上がさらに好ましく、75%以上が最も好ましい。全光線透過率が低いと透明性が損なわれる場合がある。全光線透過率は、ISO 13468-1に準拠し、積分球を具備するヘーズメーターにて測定することができる。
 <ポリカーボネート樹脂材料>
 本発明のポリカーボネート樹脂材料は、その空洞共振器を用いて摂動法にて測定した誘電正接(周波数1~10GHz)が、好ましくは0.0005~0.0030の範囲であり、より好ましくは0.0005~0.0025の範囲であり、さらに好ましくは0.0010~0.0020の範囲である。誘電正接が上記範囲内であれば導電フィルムとして熱損失が小さくなり好ましい。
 [本発明の態様I]
 本発明の態様Iの基体を構成するポリカーボネート樹脂材料に使用されるポリカーボネート樹脂は、主たる構成単位として、(A)下記式(1)で表される単位(A)を含有する。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、R~Rは夫々独立して炭素原子数1~6のアルキル基またはハロゲン原子であり、R~Rは夫々独立して水素原子、炭素原子数1~6のアルキル基またはハロゲン原子である。)
 本発明の態様Iで使用されるポリカーボネート樹脂は、全構成単位に対する構成単位(A)の割合が45モル%以上であることが好ましく、50モル%以上であることがより好ましく、60モル%以上であることがさらに好ましく、70モル%以上であることが特に好ましく、80モル%以上であることがもっとも好ましい。構成単位(A)の割合が45モル%以上であると、誘電特性に優れるため好ましい。
 構成単位(A)を誘導する二価フェノールとしては、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(以下、ビスフェノールCと記載)、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、2,2-ビス(3-t-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス{(3,5-ジブロモ-4-ヒドロキシ)フェニル}プロパン、等が挙げられる。最も好適な二価フェノールは、ビスフェノールCである。
 また、本発明によれば、二価フェノールとして他の二価フェノールから誘導されるカーボネート結合繰り返し単位を、本発明の目的および特性を損なわない限り、共重合させてもよい。かかる他のニ価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’-ジヒドロキシジフェニル、ビス(4-ヒドロキシフェニル)メタン、ビス{(4-ヒドロキシ-3,5-ジメチル)フェニル}メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノール-A)、2,2-ビス{(4-ヒドロキシ-3-フェニル)フェニル}プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)-3,3-ジメチルブタン、2,4-ビス(4-ヒドロキシフェニル)-2-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、1,1-(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、9,9-ビス(4-ヒドロキシ-3メチルフェニル)フルオレン、1,1’-ビス-(4-ヒドロキシフェニル)-オルト-ジイソプロピルベンゼン、1,1’-ビス-(4-ヒドロキシフェニル)-メタ-ジイソプロピルベンゼン、1,1’-ビス-(4-ヒドロキシフェニル)-パラ-ジイソプロピルベンゼン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルエーテルおよび4,4’-ジヒドロキシジフェニルエステル、1,1-ビス(4-ヒドロキシフェニル)-2-メチルプロパン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン等が挙げられる、これらは単独または2種以上を混合して使用できる。最も好適な二価フェノールは、ビスフェノールAである。
 本発明の態様Iで使用されるポリカーボネート樹脂材料は、その粘度平均分子量(Mv)が、好ましくは15,000~40,000であり、より好ましくは16,000~30,000であり、さらに好ましくは18,000~28,000である。粘度平均分子量が15,000未満のポリカーボネート樹脂材料では、十分な靭性や割れ耐性が得られないことがある。一方、粘度平均分子量が40,000を超えるポリカーボネート樹脂材料は、高い成形加工温度を必要とするか、または特殊な成形方法を必要とすることから汎用性に劣る場合がある。更に溶融粘度の増加により、射出速度依存性も高くなりやすく、外観不良等により歩留まりが低下する場合がある。
 本発明の態様Iで使用されるポリカーボネート樹脂材料の粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
  比粘度(ηSP)=(t-t)/t
  [tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mvを算出したものである。
  ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
  [η]=1.23×10-4Mv0.83
  c=0.7
 [本発明の態様II]
 本発明の態様IIの基体を構成するポリカーボネート樹脂材料に使用されるポリカーボネート樹脂は、主たる構成単位として、(B)下記式(2)で表される単位(B)を含有する。
Figure JPOXMLDOC01-appb-C000006
(式(2)中、R~Rは夫々独立して炭素原子数1~6のアルキル基またはハロゲン原子であり、R~Rは夫々独立して水素原子、炭素原子数1~6のアルキル基またはハロゲン原子であり、Rはハロゲン原子、炭素数1~20のアルキル基または炭素数3~20のシクロアルキル基を表し、nは0~10の整数を表す。)
 本発明の態様IIで使用されるポリカーボネート樹脂は、全構成単位に対する構成単位(B)の割合が45モル%以上であることが好ましく、50モル%以上であることがより好ましく、60モル%以上であることがさらに好ましく、70モル%以上であることが特に好ましく、80モル%以上であることがもっとも好ましい。構成単位(B)の割合が45モル%以上であると、誘電特性に優れるため好ましい。
 構成単位(B)を誘導する二価フェノールとしては、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-イソプロピルフェニル)シクロヘキサン、1,1-ビス(3-tert-ブチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)シクロヘキサン、1,1-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシ-3-イソプロピルフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(3-tert-ブチル-4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン等が挙げられる。好適な二価フェノールは、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、1,1-ビス(3-tert-ブチル-4-ヒドロキシフェニル)シクロヘキサンまたは1,1-ビス(4-ヒドロキシ-3-メチルフェニル)-3,3,5-トリメチルシクロヘキサンから誘導された構成単位であり、特に好適な二価フェノールは、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサンおよび/または1,1-ビス(4-ヒドロキシ-3-メチルフェニル)-3,3,5-トリメチルシクロヘキサンである。
 また、本発明によれば、二価フェノールとして他の二価フェノールから誘導されるカーボネート結合繰り返し単位を、本発明の目的および特性を損なわない限り、共重合させてもよい。かかる他のニ価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’-ジヒドロキシジフェニル、ビス(4-ヒドロキシフェニル)メタン、ビス{(4-ヒドロキシ-3,5-ジメチル)フェニル}メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、2,2-ビス{(4-ヒドロキシ-3-メチル)フェニル}プロパン、2,2-ビス{(4-ヒドロキシ-3-フェニル)フェニル}プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)-3,3-ジメチルブタン、2,4-ビス(4-ヒドロキシフェニル)-2-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、1,1-(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、9,9-ビス(4-ヒドロキシ-3メチルフェニル)フルオレン、1,1’-ビス-(4-ヒドロキシフェニル)-オルト-ジイソプロピルベンゼン、1,1’-ビス-(4-ヒドロキシフェニル)-メタ-ジイソプロピルベンゼン、1,1’-ビス-(4-ヒドロキシフェニル)-パラ-ジイソプロピルベンゼン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルエーテルおよび4,4’-ジヒドロキシジフェニルエステル、1,1-ビス(4-ヒドロキシフェニル)-2-メチルプロパン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン等が挙げられる、これらは単独または2種以上を混合して使用できる。最も好適な二価フェノールは、ビスフェノールAである。
 本発明の態様IIで使用されるポリカーボネート樹脂材料は、その粘度平均分子量(Mv)が、好ましくは14,000~40,000であり、より好ましくは15,000~30,000であり、さらに好ましくは17,000~28,000である。粘度平均分子量が14,000未満のポリカーボネート樹脂材料では、十分な靭性や割れ耐性が得られないことがある。一方、粘度平均分子量が40,000を超えるポリカーボネート樹脂材料は、高い成形加工温度を必要とするか、または特殊な成形方法を必要とすることから汎用性に劣る場合がある。更に溶融粘度の増加により、射出速度依存性も高くなりやすく、外観不良等により歩留まりが低下する場合がある。
 本発明の態様IIでポリカーボネート樹脂材料の粘度平均分子量は、上述した態様Iで使用されるポリカーボネート樹脂材料の粘度平均分子量と同様の測定方法で求められる。
 <ポリカーボネート樹脂の製造方法>
 本発明で使用されるポリカーボネート樹脂は、二価フェノールと、カーボネート前駆体とを反応させて得られるものである。反応の方法としては界面重縮合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。界面重縮合の場合は通常一価フェノール類の末端停止剤が使用される。また、3官能成分を重合させた分岐ポリカーボネートであってもよく、更に脂肪族ジカルボン酸や芳香族ジカルボン酸、並びにビニル系単量体を共重合させた共重合ポリカーボネートであってもよい。
 カーボネート前駆物質として例えばホスゲンを使用する反応では、通常酸結合剤および溶媒の存在下に反応を行う。酸結合剤としては例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物またはピリジン等のアミン化合物が用いられる。溶媒としては例えば塩化メチレン、クロロベンゼン等のハロゲン化炭化水素が用いられる。また反応促進のために例えば第三級アミンまたは第四級アンモニウム塩等の触媒を用いることもできる。その際、反応温度は通常0~40℃であり、反応時間は数分~5時間である。
 カーボネート前駆物質として例えば炭酸ジエステルを用いるエステル交換反応は、不活性ガス雰囲気下所定割合の芳香族ジヒドロキシ成分を炭酸ジエステルと加熱しながら撹拌して、生成するアルコールまたはフェノール類を留出させる方法により行われる。反応温度は生成するアルコールまたはフェノール類の沸点等により異なるが、通常120~300℃の範囲である。反応はその初期から減圧にして生成するアルコールまたはフェノール類を留出させながら反応を完結させる。また反応を促進するために通常エステル交換反応に使用される触媒を使用することもできる。前記エステル交換反応に使用される炭酸ジエステルとしては、例えばジフェニルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート等が挙げられる。これらのうち特にジフェニルカーボネートが好ましい。
 末端停止剤として通常使用される単官能フェノール類を使用することができる。殊にカーボネート前駆物質としてホスゲンを使用する反応の場合、単官能フェノール類は末端停止剤として分子量調節のために一般的に使用され、また得られたポリカーボネート樹脂は、末端が単官能フェノール類に基づく基によって封鎖されているので、そうでないものと比べて熱安定性に優れている。前記単官能フェノール類の具体例としては、例えばフェノール、m-メチルフェノール、p-メチルフェノール、m-プロピルフェノール、p-プロピルフェノール、1-フェニルフェノール、2-フェニルフェノール、p-tert-ブチルフェノール、p-クミルフェノール、イソオクチルフェノール、p-長鎖アルキルフェノール等が挙げられる。
 本発明で使用されるポリカーボネート樹脂は、必要に応じて脂肪族ジオールを共重合することができる。例えば、イソソルビド:1,4:3,6-ジアンヒドロ-D-ソルビトール、トリシクロデカンジメタノール(TCDDM)、4,8-ビス(ヒドロキシメチル)トリシクロデカン、テトラメチルシクロブタンジオール(TMCBD)、2,2,4,4-テトラメチルシクロブタン-1,3-ジオール、混合異性体、シス/トランス-1,4-シクロヘキサンジメタノール(CHDM)、シス/トランス-1,4-ビス(ヒドロキシメチル)シクロヘキサン、シクロヘクス-1,4-イルエンジメタノール、トランス-1,4-シクロヘキサンジメタノール(tCHDM)、トランス-1,4-ビス(ヒドロキシメチル)シクロヘキサン、シス-1,4-シクロヘキサンジメタノール(cCHDM)、シス-1,4-ビス(ヒドロキシメチル)シクロヘキサン、シス-1,2-シクロヘキサンジメタノール、1,1’-ビ(シクロヘキシル)-4,4’-ジオール、スピログリコール、ジシクロヘキシル-4,4’-ジオール、4,4’-ジヒドロキシビシクロヘキシル、及びポリ(エチレングリコール)が挙げられる。
 本発明で使用されるポリカーボネート樹脂は、必要に応じて脂肪酸を共重合することができる。例えば、1,10-ドデカンジオン酸(DDDA)、アジピン酸、ヘキサンジオン酸、イソフタル酸、1,3-ベンゼンジカルボン酸、テレフタル酸、1,4-ベンゼンジカルボン酸、2,6-ナフタレンジカルボン酸、3-ヒドロキシ安息香酸(mHBA)、及び4-ヒドロキシ安息香酸(pHBA)が挙げられる。
 本発明で使用されるポリカーボネート樹脂は、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネートを含む。脂肪族の二官能性のカルボン酸は、α,ω-ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、およびイコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環式ジカルボン酸が好ましく挙げられる。これらのカルボン酸は、目的を阻害しない範囲で共重合してもよい。本発明のポリカーボネート樹脂は、必要に応じてポリオルガノシロキサン単位を含有する構成単位を、共重合することもできる。
 本発明で使用されるポリカーボネート樹脂は、必要に応じて三官能以上の多官能性芳香族化合物を含有する構成単位を、共重合し、分岐ポリカーボネートとすることもできる。分岐ポリカーボネートに使用される三官能以上の多官能性芳香族化合物としては、4,6-ジメチル-2,4,6-トリス(4-ヒドロキジフェニル)ヘプテン-2、2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、および4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノール等のトリスフェノールが好適に例示される。中でも1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。かかる多官能性芳香族化合物から誘導される構成単位は、他の二価成分からの構成単位との合計100モル%中、好ましくは0.03~1.5モル%、より好ましくは0.1~1.2モル%、特に好ましくは0.2~1.0モル%である。
 また分岐構造単位は、多官能性芳香族化合物から誘導されるだけでなく、溶融エステル交換法による重合反応時に生じる副反応の如き、多官能性芳香族化合物を用いることなく誘導されるものであってもよい。尚、かかる分岐構造の割合についてはH-NMR測定により算出することが可能である。
 <ポリカーボネート樹脂以外の成分>
 本発明で使用されるポリカーボネート樹脂材料には、本発明の効果を損なわない範囲で、離型剤、熱安定剤、流動改質剤、および紫外線吸収剤などのそれ自体公知の機能剤を含有できる。
(i)離型剤
 本発明で使用されるポリカーボネート樹脂材料には、本発明の効果を損なわない範囲で、離型剤を併用しても良い。離型剤としては、例えば、脂肪酸エステル、ポリオレフィン系ワックス(ポリエチレンワックス、1-アルケン重合体など。酸変性などの官能基含有化合物で変性されているものも使用できる)、フッ素化合物(ポリフルオロアルキルエーテルに代表されるフッ素オイルなど)、パラフィンワックス、蜜蝋などを挙げることができる。これらの中でも入手の容易さ、離型性および透明性の点から脂肪酸エステルが好ましい。かかるB成分のシリコーン化合物と併用する他の離型剤を含有させる割合は、ポリカーボネート樹脂100重量部に対して、好ましくは0.005~0.2重量部、より好ましくは0.007~0.1重量部、更に好ましくは0.01~0.06重量部である。含有量が上記範囲の下限未満では、離型性の改良効果が明確に発揮されず、上限を超える場合、成形時の金型汚染などの悪影響を与えやすい。
 上記の中でも好ましい離型剤として用いられる脂肪酸エステルについて、さらに詳述する。かかる脂肪酸エステルは、脂肪族アルコールと脂肪族カルボン酸とのエステルである。かかる脂肪族アルコールは1価アルコールであっても2価以上の多価アルコールであってもよい。また該アルコールの炭素数としては、好適には3~32の範囲、より好適には5~30の範囲である。かかる一価アルコールとしては、例えばドデカノール、テトラデカノール、ヘキサデカノール、オクタデカノール、エイコサノール、テトラコサノール、セリルアルコール、およびトリアコンタノールなどが例示される。かかる多価アルコールとしては、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ポリグリセロール(トリグリセロール~ヘキサグリセロール)、ジトリメチロールプロパン、キシリトール、ソルビトール、およびマンニトールなどが挙げられる。本発明の脂肪酸エステルにおいては多価アルコールがより好ましい。
 一方、脂肪族カルボン酸は炭素数3~32であることが好ましく、特に炭素数10~22の脂肪族カルボン酸が好ましい。該脂肪族カルボン酸としては、例えばデカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸、オクタデカン酸(ステアリン酸)、ノナデカン酸、イコサン酸、およびドコサン酸(ベヘン酸)などの飽和脂肪族カルボン酸、並びにパルミトレイン酸、オレイン酸、リノール酸、リノレン酸、エイコセン酸、エイコサペンタエン酸、およびセトレイン酸などの不飽和脂肪族カルボン酸を挙げることができる。上記の中でも脂肪族カルボン酸は、炭素原子数14~20であるものが好ましい。なかでも飽和脂肪族カルボン酸が好ましい。かかる脂肪族カルボン酸は通常、動物性油脂(牛脂および豚脂など)や植物性油脂(パーム油など)などの天然油脂類から製造されるため、これらの脂肪族カルボン酸は、通常炭素原子数の異なる他のカルボン酸成分を含む混合物である。
 したがって、本発明で使用される脂肪族カルボン酸の製造においてもかかる天然油脂類から製造され、他のカルボン酸成分を含む混合物の形態からなる。脂肪酸エステルにおける酸価は、20以下(実質的に0を取り得る)であることが好ましい。しかしながら全エステル(フルエステル)の場合には、離型性を向上させるため、少なくからず遊離の脂肪酸を含有することが好ましく、この点においてフルエステルにおける酸価は3~15の範囲が好ましい。また脂肪酸エステルのヨウ素価は、10以下(実質的に0を取り得る)が好ましい。これらの特性はJIS K 0070に規定された方法により求めることができる。
 前述の脂肪酸エステルは、部分エステルおよびフルエステルのいずれであってもよいが、より良好な離型性および耐久性の点で部分エステルが好ましく、特にグリセリンモノエステルが好ましい。グリセリンモノエステルは、グリセリンと脂肪酸のモノエステルが主成分であり、好適な脂肪酸としてはステアリン酸、パルチミン酸、ベヘン酸、アラキン酸、モンタン酸、およびラウリン酸等の飽和脂肪酸やオレイン酸、リノール酸、およびソルビン酸等の不飽和脂肪酸が挙げられ、特にステアリン酸、ベヘン酸、およびパルチミン酸のグリセリンモノエステルを主成分としたものが好ましい。尚、かかる脂肪酸は、天然の脂肪酸から合成されたものであり、上述のとおり混合物となる。そのような場合でも、脂肪酸エステル中のグリセリンモノエステルの割合は60重量%以上であることが好ましい。
 なお、部分エステルは、熱安定性の点ではフルエステルに対して劣る場合が多い。かかる部分エステルの熱安定性を向上するため、部分エステルは、好ましくは20ppm未満、より好ましくは5ppm未満、更に好ましくは1ppm未満のナトリウム金属含有量とすることが好ましい。ナトリウム金属含有量が1ppm未満の脂肪酸部分エステルは、脂肪酸部分エステルを通常の方法で製造した後、分子蒸留などにより精製して製造することができる。
 具体的には、スプレーノズル式脱ガス装置によりガス分および低沸点物質を除去した後に流下膜式蒸留装置を用い蒸留温度120~150℃、真空度0.01~0.03kPaの条件にてグリセリン等の多価アルコール分を除去し、更に遠心式分子蒸留装置を用いて、蒸留温度160~230℃、真空度0.01~0.2Torrの条件にて高純度の脂肪酸部分エステルを留出分として得る方法などがあり、ナトリウム金属は蒸留残渣として除去できる。得られた留出分に対し、繰り返し分子蒸留を行うことにより、更に純度を上げ、ナトリウム金属含有量の更に少ない脂肪酸部分エステルを得ることもできる。また前もって適切な方法にて分子蒸留装置内を十分に洗浄し、また気密性を高めるなどにより外部環境からのナトリウム金属成分の混入を防ぐことも肝要である。かかる脂肪酸エステルは、専門業者(例えば理研ビタミン(株))から入手可能である。
(ii)リン系安定剤
 本発明で使用されるポリカーボネート樹脂材料には、その成形加工時の熱安定性を向上させることを主たる目的として各種のリン系安定剤が更に配合されることが好ましい。かかるリン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステルなどが例示される。更にかかるリン系安定剤は第3級ホスフィンを含む。
 具体的にはホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ-iso-プロピルフェニル)ホスファイト、トリス(ジ-n-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-エチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられる。
 さらに、他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2,4-ジ-tert-ブチルフェニル)ホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-エチリデンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイトなどを挙げることができる。
 ホスフェート化合物としては、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどを挙げることができ、好ましくはトリフェニルホスフェート、トリメチルホスフェートである。
 ホスホナイト化合物としては、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト等があげられ、テトラキス(ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイト、ビス(ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトが好ましく、テトラキス(2,4-ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。
 ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。
 第3級ホスフィンとしては、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリアミルホスフィン、ジメチルフェニルホスフィン、ジブチルフェニルホスフィン、ジフェニルメチルホスフィン、ジフェニルオクチルホスフィン、トリフェニルホスフィン、トリ-p-トリルホスフィン、トリナフチルホスフィン、およびジフェニルベンジルホスフィンなどが例示される。特に好ましい第3級ホスフィンは、トリフェニルホスフィンである。
 上記リン系安定剤は、1種のみならず2種以上を混合して用いることができる。上記リン系安定剤の中でも、ホスファイト化合物またはホスホナイト化合物が好ましい。殊にトリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイトおよびビス(2,4-ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトが好ましい。またこれらとホスフェート化合物との併用も好ましい態様である。
(iii)ヒンダードフェノール系安定剤
 本発明で使用されるポリカーボネート樹脂材料には、その成形加工時の熱安定性、および耐熱老化性を向上させることを主たる目的としてヒンダードフェノール系安定剤を配合することができる。かかるヒンダードフェノール系安定剤としては、例えば、α-トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n-オクタデシル-β-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェル)プロピオネート、2-tert-ブチル-6-(3’-tert-ブチル-5’-メチル-2’-ヒドロキシベンジル)-4-メチルフェニルアクリレート、2,6-ジ-tert-ブチル-4-(N,N-ジメチルアミノメチル)フェノール、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホネートジエチルエステル、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-シクロヘキシルフェノール)、2,2’-ジメチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)2,2’-エチリデン-ビス(4,6-ジ-tert-ブチルフェノール)、2,2’-ブチリデン-ビス(4-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、トリエチレングリコール-N-ビス-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート、1,6-へキサンジオールビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ビス[2-tert-ブチル-4-メチル6-(3-tert-ブチル-5-メチル-2-ヒドロキシベンジル)フェニル]テレフタレート、3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1,-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、4,4’-チオビス(6-tert-ブチル-m-クレゾール)、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-チオビス(4-メチル-6-tert-ブチルフェノール)、ビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)スルフィド、4,4’-ジ-チオビス(2,6-ジ-tert-ブチルフェノール)、4,4’-トリ-チオビス(2,6-ジ-tert-ブチルフェノール)、2,2-チオジエチレンビス-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3’,5’-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン、N,N’-ヘキサメチレンビス-(3,5-ジ-tert-ブチル-4-ヒドロキシヒドロシンナミド)、N,N’-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)イソシアヌレート、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌレート、1,3,5-トリス2[3(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、およびテトラキス[メチレン-3-(3’,5’-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンなどが例示される。これらはいずれも入手容易である。上記ヒンダードフェノール系酸化防止剤は、単独でまたは2種以上を組み合わせて使用することができる。
 上記(ii)リン系安定剤および/または(iii)ヒンダードフェノール系酸化防止剤の量は、ポリカーボネート樹脂100重量部に対して、好ましくは0.0001~1重量部であり、より好ましくは0.001~0.5重量部であり、さらに好ましくは0.005~0.1重量部である。安定剤が上記範囲よりも少なすぎる場合には良好な安定化効果を得ることが難しく、上記範囲を超えて多すぎる場合は、逆に材料の物性低下や、成形時の金型汚染を起こす場合がある。
 本発明で使用されるポリカーボネート樹脂材料には、適宜上記ヒンダードフェノール系酸化防止剤以外の他の酸化防止剤を使用することもできる。かかる他の酸化防止剤としては、例えばペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)、およびグリセロール-3-ステアリルチオプロピオネートなどが挙げられる。これら他の酸化防止剤の使用量は、ポリカーボネート樹脂100重量部に対して0.001~0.05重量部が好ましい。
 (iv)流動改質剤
 本発明で使用されるポリカーボネート樹脂材料には、本発明の効果を損なわない範囲で、流動改質剤を含むことができる。かかる流動改質剤としては、スチレン系オリゴマー、ポリカーボネートオリゴマー(高度分岐型、ハイパーブランチ型および環状オリゴマー型を含む)、ポリアルキレンテレフタレートオリゴマー(高度分岐型、ハイパーブランチ型および環状オリゴマー型を含む)高度分岐型およびハイパーブランチ型の脂肪族ポリエステルオリゴマー、テルペン樹脂、並びにポリカプロラクトン等が好適に例示される。かかる流動改質剤は、ポリカーボネート樹脂100重量部当たり、0.1~30重量部が適切であり、好ましくは1~20重量部、より好ましくは2~15重量部である。特にポリカプロラクトンが好適であり、組成割合はポリカーボネート樹脂100重量部あたり、特に好ましくは2~7重量部である。ポリカプロラクトンの分子量は数平均分子量で表して1,000~70,000であり、1,500~40,000が好ましく、2,000~30,000がより好ましく、2,500~15,000がさらに好ましい。
(v)紫外線吸収剤
 本発明で使用されるポリカーボネート樹脂材料には、紫外線吸収剤を配合することができる。紫外線吸収剤としては、具体的にはベンゾフェノン系では、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-ベンジロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシトリハイドライドレイトベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシ-5-ソジウムスルホキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2-ヒドロキシ-4-n-ドデシルオキシベンソフェノン、および2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノンなどが例示される。
 紫外線吸収剤としては、具体的に、ベンゾトリアゾール系では、例えば、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジクミルフェニル)フェニルベンゾトリアゾール、2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾール、2,2’-メチレンビス(4-クミル-6-ベンゾトリアゾールフェニル)、2,2’-p-フェニレンビス(1,3-ベンゾオキサジン-4-オン)、および2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミドメチル)-5-メチルフェニル]ベンゾトリアゾール、並びに2-(2’-ヒドロキシ-5-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や2-(2’-ヒドロキシ-5-アクリロキシエチルフェニル)-2H-ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2-ヒドロキシフェニル-2H-ベンゾトリアゾール骨格を有する重合体などが例示される。
 紫外線吸収剤としては、具体的に、ヒドロキシフェニルトリアジン系では、例えば、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-メチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-エチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-プロピルオキシフェノール、および2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ブチルオキシフェノールなどが例示される。さらに2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4-ジメチルフェニル基となった化合物が例示される。
 紫外線吸収剤としては、具体的に環状イミノエステル系では、例えば2,2’-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(4,4’-ジフェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、および2,2’-(2,6-ナフタレン)ビス(3,1-ベンゾオキサジン-4-オン)などが例示される。
 また紫外線吸収剤としては、具体的にシアノアクリレート系では、例えば1,3-ビス-[(2’-シアノ-3’,3’-ジフェニルアクリロイル)オキシ]-2,2-ビス[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3-ビス-[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。
 さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/またはヒンダードアミン構造を有する光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。上記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。
 上記の中でも紫外線吸収能の点においてはベンゾトリアゾール系およびヒドロキシフェニルトリアジン系が好ましく、耐熱性や色相の点では、環状イミノエステル系およびシアノアクリレート系が好ましい。上記紫外線吸収剤は単独であるいは2種以上の混合物で用いてもよい。
 紫外線吸収剤の含有量は、ポリカーボネート樹脂100重量部に対して好ましくは0.1~2重量部、より好ましくは0.2~1.5重量部、さらに好ましくは0.3~1重量部である。
 本発明で使用されるポリカーボネート樹脂材料には、他にも、ブルーイング剤、蛍光染料、帯電防止剤、難燃剤、および染顔料などの各種の添加剤を含有することができる。これらは、本発明の効果を損なわない範囲で、適宜選択して含有することができる。
 ブルーイング剤は、樹脂材料中0.05~3.0ppm(重量割合)含んでなることが好ましい。ブルーイング剤としては代表例として、バイエル社のマクロレックスバイオレットB及びマクロレックスブルーRR、並びにクラリアント社のポリシンスレンブルーRLSなどが挙げられる。
 蛍光染料(蛍光増白剤を含む)としては、例えば、クマリン系蛍光染料、ベンゾピラン系蛍光染料、ペリレン系蛍光染料、アンスラキノン系蛍光染料、チオインジゴ系蛍光染料、キサンテン系蛍光染料、キサントン系蛍光染料、チオキサンテン系蛍光染料、チオキサントン系蛍光染料、チアジン系蛍光染料、およびジアミノスチルベン系蛍光染料などを挙げることができる。蛍光染料(蛍光増白剤を含む)の配合量は、ポリカーボネート樹脂100重量部に対して0.0001~0.1重量部が好ましい。
 難燃剤としては、例えば、スルホン酸金属塩系難燃剤、ハロゲン含有化合物系難燃剤、燐含有化合物系難燃剤、および珪素含有化合物系難燃剤などを挙げることができる。これらの中でも、スルホン酸金属塩系難燃剤が好ましい。難燃剤の配合量は、通常、ポリカーボネート100重量部に対し、0.01~1重量部が好ましく、0.05~1重量部の範囲がより好ましい。
 本発明で使用されるポリカーボネート樹脂に添加剤を配合させる方法は、特に限定されるものではなく公知の方法が利用できる。最も汎用される方法として、ポリカーボネート樹脂および添加剤を予備混合した後、押出機に投入して溶融混練を行い、押出されたスレッドを冷却し、ペレタイザーにより切断して、ペレット状の成形材料を製造する方法が挙げられる。
 上記方法における押出機は単軸押出機、および二軸押出機のいずれもが利用できるが、生産性や混練性の観点からは二軸押出機が好ましい。かかる二軸押出機の代表的な例としては、ZSK(Werner & Pfleiderer社製、商品名)を挙げることができる。同様のタイプの具体例としてはTEX((株)日本製鋼所製、商品名)、TEM(東芝機械(株)製、商品名)、KTX((株)神戸製鋼所製、商品名)などを挙げることができる。押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部手前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。
 更に添加剤は、独立して押出機に供給することもできるが、前述のとおり樹脂原料と予備混合することが好ましい。かかる予備混合の手段には、ナウターミキサー、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、および押出混合機などが例示される。より好適な方法は、例えば原料樹脂の一部と添加剤とをヘンシェルミキサーの如き高速攪拌機で混合してマスター剤を作成した後、かかるマスター剤物を残る全量の樹脂原料とナウターミキサーの如き高速でない攪拌機で混合する方法である。
 押出機より押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。更にかかるペレットの製造においては、光学ディスク用ポリカーボネート樹脂において既に提案されている様々な方法を用いて、ペレットの形状分布の狭小化、ミスカット物の更なる低減、運送または輸送時に発生する微小粉の更なる低減、並びにストランドやペレット内部に発生する気泡(真空気泡)の低減を行うことが好ましい。ミスカットの低減には、ペレタイザーでの切断時のスレッドの温度管理、切断時のイオン風の吹き付け、ペレタイザーのすくい角の適正化、および離型剤の適切な配合などの手段、並びに切断されたペレットと水との混合物を濾過してペレットと水およびミスカットとを分離する方法などが挙げられる。
<基体>
 本発明における基体の製造方法は、特に限定されず、ポリカーボネート樹脂材料について一般に採用されている成形法を任意に採用できる。その例を挙げると、射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法などが挙げられる。また、ホットランナー方式を使用した成形法を用いることも出来る。
 また、本発明で使用されるポリカーボネート樹脂材料は、溶融押出法、溶液キャスティング法(流延法)等などの方法によりシート状、フィルム状の成形品を得ることもできる。溶融押出法の具体的な方法は、例えば、ポリカーボネート樹脂材料を押出機に定量供給して、加熱溶融し、Tダイの先端部から溶融樹脂をシート状に鏡面ロール上に押出し、複数のロールにて冷却しながら引き取り、固化した時点で適当な大きさにカットするか巻き取る方式が用いられる。溶液キャスティング法の具体的な方法は、例えば、ポリカーボネート樹脂材料を塩化メチレンに溶解した溶液(濃度5%~40%)を鏡面研磨されたステンレス板上にTダイから流延し、段階的に温度制御されたオーブンを通過させながらシートを剥離し、溶媒を除去した後、冷却して巻き取る方式が用いられる。
 本発明における基体は、積層フィルムを用いることもできる。積層フィルムの製法としては、任意の方法を用いればよく、特に熱圧着法または共押出法で行うことが好ましい。熱圧着法としては任意の方法が採用されるが、例えばポリカーボネート樹脂材料のフィルムをラミネート機やプレス機で熱圧着する方法、押出し直後に熱圧着する方法が好ましく、特に押出し直後のポリカーボネート樹脂材料のフィルムに連続して熱圧着する方法が工業的に有利である。
 基体の厚みは、1~500μmが好ましく、10~300μmがより好ましく、50~250μmが最も好ましい。基体の厚みが薄すぎるとハンドリングが難しくなるため好ましくない。基体が厚すぎるとフレキシブル性が損なわれるとともにコストアップとなるため好ましくない。
 本発明における基体は、導電膜との接着性を向上させるため、コロナ放電処理、グロー放電処理、火炎処理、紫外線照射処理、電子線照射処理、及びオゾン処理からなる群より選ばれる少なくとも一つの表面処理が施されたものであってもよい。また、導電膜との接着性を向上させる手法として基材表面にハードコート層を設けることもできる。ハードコート層は、樹脂組成物を硬化し得られる樹脂硬化物を含有する。樹脂組成物は、熱硬化性樹脂組成物、紫外線硬化性樹脂組成物、及び電子線硬化性樹脂組成物から選ばれる少なくとも一種を含むことが好ましい。硬化性樹脂組成物の例としては、エポキシ樹脂、フェノキシ樹脂、メラミン系樹脂、シリコン系樹脂等が挙げられる。
<導電膜>
 本発明における導電膜としては銅箔、銀箔等の金属薄膜やカーボンナノチューブ薄膜などが挙げられる。なかでも透明性の観点から金属薄膜を用いることが好ましく、特に銅箔を用いることが好ましい。銅箔の種類には電解箔と圧延箔があるが、どちらでも使用することができる。銅箔の厚みは1~70μmが好ましい。銅箔が厚いと透明性が損なわれるため好ましくない。銅箔が薄すぎると導電性が損なわれるため好ましくない。銅箔表面は、無処理の銅箔表面でもよく、また、該表面が金属メッキ処理、例えばニッケル、鉄、亜鉛、金、銀、アルミニウム、クロム、チタン、パラジウムまたはスズより選ばれる1種以上の金属でメッキ処理されていてもよく、また、無処理の銅箔表面もしくは前記金属メッキ処理された銅箔表面にシランカップリング剤などの薬剤で処理されていてもよい。好ましい金属メッキ処理としては、ニッケル、鉄、亜鉛、金またはアルミニウムより選ばれる1種以上の金属メッキ処理であり、より好ましくはニッケルまたはアルミニウムでの金属メッキ処理である。
 導電膜は、ループ形状など、任意のアンテナパターン形状をとることができる。さらに、導電膜の端部には端子部を設置することができる。
<アンテナ>
 本発明の導電フィルムは、低誘電特性を有し、導電膜との密着性に優れるため各種アンテナに好適に用いることができる。例えば、モノポールアンテナ、ダイポールアンテナ、ホイップアンテナ、ループアンテナ、及びスロットアンテナ等が挙げられる。アンテナの用途としては、WiFiアンテナ、GPS用アンテナ、地デジアンテナ、ワンセグ及びフルセグアンテナ、RFIDアンテナ、スモールセル用基地局アンテナ等が挙げられる。但し、アンテナの形状、用途は、上述のものに限定されることはない。
 以下、実施例をあげて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。以下の実施例、および比較例において、各特性の測定法は次のとおりである。
(1)粘度平均分子量
 ポリカーボネート樹脂材料の粘度平均分子量を、以下の方法で測定した。ポリカーボネート樹脂0.7gを塩化メチレン100mlに溶解した溶液から、その溶液の20℃における比粘度(ηsp)を測定した。そして、下記式により算出されるMvを粘度平均分子量とした。
  ηsp/c=[η]+0.45×[η]
  [η]=1.23×10-4Mv0.83
  ηsp:比粘度
  η:極限粘度
  c:定数(=0.7)
  Mv:粘度平均分子量
(2)比誘電率および誘電正接
 KEYCOM誘電率計(ネットワークアナライザー:Anritsu MS4622B)を用いて空洞共振器により、ポリカーボネート樹脂材料の1、10GHzの比誘電率および誘電正接を測定した。
(3)透明基体と金属薄膜との接着強度(ピール強度)
 JIS C5016-1994に準拠して、毎分50mmの速度で銅箔を銅箔除去面に対して90°の方向に引き剥がしながら、引張試験機により、銅箔の引き剥がし強さを測定し、得られた値を接着強度とした。
(4)屈曲性
 透明基体を50mm×100mmにカットし、180°に折り曲げた後の状態を目視評価した。破断した場合を×、破断しない場合を〇とした。
(5)伝送損失
 透明導電フィルムをエッチングにより、長さ10cmのマイクロストラップラインを作成し、ネットワークアナライザーを用いて10GHzにおける伝送損失を測定した。
(6)全光線透過率
 ヘイズメーター(製品名:NDH-3000、日本電色工業社製)を用いて、透明導電フィルムの全光線透過率を測定した。
 <本発明の態様I>
[実施例I-1]
 温度計、撹拌機および還流冷却器の付いた反応器に、48%水酸化ナトリウム水溶液3844部およびイオン交換水22,380部を仕込み、これに2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(Bis-C、本州化学製)3,984部、およびハイドロサルファイト7.53部(和光純薬製)を溶解した後、塩化メチレン13,210部を加え、撹拌下、15~25℃でホスゲン2,000部を約60分かけて吹き込んだ。ホスゲンの吹き込み終了後、48%水酸化ナトリウム水溶液640部およびp-tert-ブチルフェノール93.2部を加え、撹拌を再開、乳化後トリエチルアミン3.24部を加え、さらに28~33℃で1時間撹拌して反応を終了した。
 反応終了後生成物を塩化メチレンで希釈して水洗した後、塩酸酸性にして水洗し、さらに水相の導電率がイオン交換水とほぼ同じになるまで水洗を繰り返し、ポリカーボネート樹脂の塩化メチレン溶液を得た。次いで、この溶液を目開き0.3μmのフィルターに通過させ、さらに軸受け部に異物取り出し口を有する隔離室付きニーダー中の温水に滴下、塩化メチレンを留去しながらポリカーボネート樹脂をフレーク化し、引続き該含液フレークを粉砕・乾燥してパウダーを得た。
 その後、該パウダー100重量部に対して、イルガノックス1076(BASFジャパン製、ヒンダードフェノール系酸化防止剤)、を0.05重量部、アデカスタブPEP-36(ADEKA製、リン系安定剤)を0.1重量部、アデカスタブLA-31(ADEKA製、ベンゾトリアゾール系紫外線吸収剤)を0.5重量部添加し、均一に混合した後、かかるパウダーをベント式二軸押出機[(株)神戸製鋼所製KTX-46]により脱気しながら溶融混錬押出し、ポリカーボネート樹脂組成物ペレットを得た。
 得られたペレットを減圧乾燥式の棚段乾燥機を用いて、120℃で4時間乾燥した。これを110℃に加熱した溶融押出機の加熱ホッパーに投入して、290℃で溶融押出した。溶融ポリマーの異物を除去するためのフィルタは平均目開きが10μmであるSUS不織布製のディスク状フィルタを用いた。濾過後の溶融樹脂を290℃に設定したダイにより、回転する直径800mm、ロール面長1800mmの冷却ロール面に押出した。押出しダイのリップ幅は1500mm、リップ間隙は約2mmとした。フィルムを均一に冷却して引き取るために、フィルム全幅を静電密着法により冷却ロール面に密着させた。静電密着のための電極にはステンレス製ピアノ線を清浄に磨いたものを用いた。このピアノ線に直流電源のプラス電極をつなぎ、冷却ドラム側は接地した。印加電圧は7KVとした。冷却ロール回転速度を調整することによりテイクオフロールを介して引き取りを行い所定の厚み(150μm)のフィルムを得た。
 さらに引き続いて、フィルムをロール懸垂型熱処理機に通膜して熱処理した。ロール懸垂型熱処理機内に100mmφのロールを上下交互に配置した。上下ロール間距離を1.6m、ひとつ置いた隣のロールとの距離をロール径と同じ100mmφとした。そして、処理すべきフィルムが、このロール懸垂型熱処理機内のオーブン中にとどまる長さを約50mになるように作成した(滞留時間60秒)。熱処理機内のオーブン中の熱風温度は145℃、オーブン出口でのフィルム張力は3.0Kg/(厚み100μm×フィルム全幅1440mm)であった(断面荷重あたり2.1Kg/平方センチメートルであった)。オーブンを出た後のフィルムを60℃以下まで同様にロール懸垂型処理機で冷却してのち室温に取り出した。熱処理後のフィルムの両端部を70mmずつ切り除いて1300mm幅のフィルムを得た。
 その後、厚み18μmの銅箔(福田金属箔粉工業株式会社製 製品名CF-T9DA-SV-18)をコロナ放電処理したポリカーボネートフィルム(透明基体)に接着し、透明導電フィルムを作成した。各種評価した結果を表1に示した。
[実施例I-2]
 攪拌機および蒸留塔を備えた反応器に、BPC5630部(22モル)、ジフェニルカーボネート4920部(23モル)および触媒として水酸化ナトリウム0.000005部とテトラメチルアンモニウムヒドロキシド0.0016部を仕込み、窒素置換した。この混合物を180℃まで加熱しながら溶解させた。その後、撹拌機を回転させ、反応器の内温を220℃に保った。副生するフェノールを留去しながら、40分間かけて反応器内の圧力を101.3kPaから13.3kPaまで減圧した。続いて、応器内の圧力を13.3kPaに保持し、フェノールをさらに留去させながら、80分間、エステル交換反応を行った。
 内圧を絶対圧で13.3kPaから2kPaまで減圧し、さらに260℃まで温度を上げ、留出するフェノールを系外に除去した。さらに、昇温を続け、反応器内が0.3Pa以下に到達後、内圧を保持し、重縮合反応を行った。反応器内の最終的な内部温度は295℃とした。反応器の攪拌機が予め定めた所定の攪拌動力となったときに、重縮合反応を終了した。反応器での重合反応時間は140分であった。次に溶融状態のままで、触媒中和剤としてドデシルベンゼンスルホン酸テトラブチルホスホニウム塩を0.0023部(4×10-5モル/ビスフェノール1モル)添加して295℃、10Torr以下で10分間反応を継続し、得られたポリマーをギアポンプでベント式二軸押出機[(株)神戸製鋼所製KTX-46]に送った。押出機の途中で、ポリマー100重量部に対して、離型剤:リケスターEW400(ペンタエリスリトールスフステアレート、理研ビタミン製)0.1重量部、リン系酸化防止剤:ホスタノックスP-EPQ(テトラキス(2,4-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、クラリアントジャパン製)0.05重量部、ヒンダードフェノール系酸化防止剤:イルガノックス1076(3-[3,5-ジ-tert-ブチル-4-ヒドロキシフェニル]プロピオン酸オクタデシル、BASF製)0.03重量部を加え、入口のバレル温度230℃、出口のバレル温度270℃、ポリカーボネート樹脂出口温度285℃、脱気しながら溶融混錬押出し、2軸押出機の出口からストランド状に押し出し、水で冷却固化させた後、回転式カッターでペレット化し、ポリカーボネート樹脂ペレットを得た。以降は、実施例I-1と同様の操作を行い、結果を表1に示した。
[実施例I-3]
 使用するモノマーとして、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(Bis-C、本州化学工業製)1,992部(7.8モル)、2,2-ビス(4-ヒドロキシフェニル)プロパン(Bis-A、新日鐵化学製)1,773部(7.8モル)に変更した以外は、実施例I-1と同様の操作を行い、結果を表1に示した。
[実施例I-4]
 温度計、撹拌機および還流冷却器の付いた反応器に、48%水酸化ナトリウム水溶液3844部およびイオン交換水22,380部を仕込み、これに2,2-ビス(4-ヒドロキシ-3-tert-ブチル)プロパン(Bis-OTBA、本州化学工業製)4,589部、およびハイドロサルファイト9.18部(和光純薬製)を溶解した後、塩化メチレン12,144部、テトラメチルアンモニウムブロミド(和光純薬製)43.5部を加え、撹拌下、15~25℃でホスゲン2,000部を約60分かけて吹き込んだ。ホスゲンの吹き込み終了後、48%水酸化ナトリウム水溶液640部およびp-tert-ブチルフェノール60.7部を加え、撹拌を再開、乳化後トリエチルアミン6.82部を加え、さらに28~33℃で1時間撹拌して反応を終了した。以降は、実施例I-1と同様の操作を行い、結果を表1に示した。
[実施例I-5]
 Bis-OTBAの代わりに、2,2-ビス(4-ヒドロシキ-3,5-ジメチルフェニル)プロパン(Bis-TMA、本州化学工業製)3828部に変更した以外は、実施例I-4と同様の操作を行い、結果を表1に記載した。
[実施例I-6]
 ポリカーボネート樹脂ペレットとして、実施例1のポリカーボネート樹脂ペレットを5000g、パンライト(商標登録)L-1225L(帝人製)5000gをドライブレンドし、ベント式二軸押出機[(株)神戸製鋼所製KTX-46]により脱気しながら溶融混錬押出し、ポリカーボネート樹脂組成物ペレットを得た以外は、実施例I-1と同様の操作を行い、結果を表1に記載した。
[比較例I-1]
 ポリカーボネート樹脂ペレットとして、芳香族ポリカーボネート樹脂(ビスフェノールAからなるポリカーボネート樹脂、帝人(株)製 パンライト(商標登録)L-1225L(製品名))を用いた以外は、実施例I-1と同様の操作を行い、結果を表1に記載した。
[比較例I-2]
 ポリカーボネート樹脂ペレットの代わりに、ポリエチレンテレフタレート樹脂(TRN-8550(製品名)、帝人製)を用いた以外は、実施例I-1と同様の操作を行い、結果を表1に記載した。
[比較例I-3]
 使用するモノマーとして、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン1,593部(6.2モル)、2,2-ビス(4-ヒドロキシフェニル)プロパン2,128部(9.3モル)、p-tert-ブチルフェノール186.4部に変更した以外は、実施例I-1と同様の操作を行い、結果を表1に示した。
[比較例I-4]
 ポリカーボネート樹脂ペレットとして、実施例1のポリカーボネート樹脂ペレットを1500g、パンライト(商標登録)L-1225L(帝人製)3500gをドライブレンドし、ベント式二軸押出機[(株)神戸製鋼所製KTX-46]により脱気しながら溶融混錬押出し、ポリカーボネート樹脂組成物ペレットを得た以外は、実施例I-1と同様の操作を行い、結果を表1に記載した。
Figure JPOXMLDOC01-appb-T000007
 <本発明の態様II>
[実施例II-1]
 温度計、撹拌機および還流冷却器の付いた反応器に、48%水酸化ナトリウム水溶液4,760部およびイオン交換水20,779部を仕込み、これに1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン(本州化学工業製)4,271部、およびハイドロサルファイト8.54部(和光純薬製)を溶解した後、塩化メチレン15,945部を加え、撹拌下、15~25℃でホスゲン2,000部を約60分かけて吹き込んだ。ホスゲンの吹き込み終了後、48%水酸化ナトリウム水溶液595部およびp-tert-ブチルフェノール86.6部を加え、撹拌を再開、乳化後トリエチルアミン5.01部を加え、さらに26~33℃で1時間撹拌して反応を終了した。
 反応終了後生成物を塩化メチレンで希釈して水洗した後、塩酸酸性にして水洗し、さらに水相の導電率がイオン交換水とほぼ同じになるまで水洗を繰り返し、ポリカーボネート樹脂の塩化メチレン溶液を得た。次いで、この溶液を目開き0.3μmのフィルターに通過させ、さらに軸受け部に異物取り出し口を有する隔離室付きニーダー中の温水に滴下、塩化メチレンを留去しながらポリカーボネート樹脂をフレーク化し、引続き該含液フレークを粉砕・乾燥してパウダーを得た。
 その後、該パウダー100重量部に対して、イルガノックス1076(BASFジャパン製、ヒンダードフェノール系酸化防止剤)、を0.05重量部、アデカスタブPEP-36(ADEKA製、リン系安定剤)を0.1重量部、アデカスタブLA-31(ADEKA製、ベンゾトリアゾール系紫外線吸収剤)を0.5重量部添加し、均一に混合した後、かかるパウダーをベント式二軸押出機[(株)神戸製鋼所製KTX-46]により脱気しながら溶融混錬押出し、ポリカーボネート樹脂組成物ペレット(ポリカーボネート樹脂材料)を得た。
 得られたペレットを減圧乾燥式の棚段乾燥機を用いて、120℃で4時間乾燥した。これを110℃に加熱した溶融押出機の加熱ホッパーに投入して、290℃で溶融押出した。溶融ポリマーの異物を除去するためのフィルタは平均目開きが10μmであるSUS不織布製のディスク状フィルタを用いた。濾過後の溶融樹脂を290℃に設定したダイにより、回転する直径800mm、ロール面長1800mmの冷却ロール面に押出した。押出しダイのリップ幅は1500mm、リップ間隙は約2mmとした。フィルムを均一に冷却して引き取るために、フィルム全幅を静電密着法により冷却ロール面に密着させた。静電密着のための電極にはステンレス製ピアノ線を清浄に磨いたものを用いた。このピアノ線に直流電源のプラス電極をつなぎ、冷却ドラム側は接地した。印加電圧は7KVとした。冷却ロール回転速度を調整することによりテイクオフロールを介して引き取りを行い所定の厚み(150μm)のフィルムを得た。
 さらに引き続いて、フィルムをロール懸垂型熱処理機に通膜して熱処理した。ロール懸垂型熱処理機内に100mmφのロールを上下交互に配置した。上下ロール間距離を1.6m、ひとつ置いた隣のロールとの距離をロール径と同じ100mmφとした。そして、処理すべきフィルムが、このロール懸垂型熱処理機内のオーブン中にとどまる長さを約50mになるように作成した(滞留時間60秒)。熱処理機内のオーブン中の熱風温度は145℃、オーブン出口でのフィルム張力は3.0Kg/(厚み100μm×フィルム全幅1440mm)であった(断面荷重あたり2.1Kg/平方センチメートルであった)。オーブンを出た後のフィルムを60℃以下まで同様にロール懸垂型処理機で冷却してのち室温に取り出した。熱処理後のフィルムの両端部を70mmずつ切り除いて1300mm幅のフィルムを得た。
 その後、厚み18μmの銅箔(福田金属箔粉工業株式会社製 製品名CF-T9DA-SV-18)をコロナ放電処理したポリカーボネートフィルム(透明基体)に接着し、透明導電フィルムを作成した。各種評価した結果を表2に示した。
[実施例II-2]
 攪拌機および蒸留塔を備えた反応器に、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン6510部(22モル)、ジフェニルカーボネート4920部(23モル)および触媒として水酸化ナトリウム0.000005部とテトラメチルアンモニウムヒドロキシド0.0016部を仕込み、窒素置換した。この混合物を180℃まで加熱しながら溶解させた。その後、撹拌機を回転させ、反応器の内温を220℃に保った。副生するフェノールを留去しながら、40分間かけて反応器内の圧力を101.3kPaから13.3kPaまで減圧した。続いて、応器内の圧力を13.3kPaに保持し、フェノールをさらに留去させながら、80分間、エステル交換反応を行った。
 内圧を絶対圧で13.3kPaから2kPaまで減圧し、さらに260℃まで温度を上げ、留出するフェノールを系外に除去した。さらに、昇温を続け、反応器内が0.3Pa以下に到達後、内圧を保持し、重縮合反応を行った。反応器内の最終的な内部温度は295℃とした。反応器の攪拌機が予め定めた所定の攪拌動力となったときに、重縮合反応を終了した。反応器での重合反応時間は140分であった。次に溶融状態のままで、触媒中和剤としてドデシルベンゼンスルホン酸テトラブチルホスホニウム塩を0.0023部(4×10-5モル/ビスフェノール1モル)添加して295℃、10Torr以下で10分間反応を継続し、得られたポリマーをギアポンプでベント式二軸押出機[(株)神戸製鋼所製KTX-46]に送った。押出機の途中で、ポリマー100重量部に対して、離型剤:リケスターEW400(ペンタエリスリトールスフステアレート、理研ビタミン製)0.1重量部、リン系酸化防止剤:ホスタノックスP-EPQ(テトラキス(2,4-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、クラリアントジャパン製)0.05重量部、ヒンダードフェノール系酸化防止剤:イルガノックス1076(3-[3,5-ジ-tert-ブチル-4-ヒドロキシフェニル]プロピオン酸オクタデシル、BASF製)0.03重量部を加え、入口のバレル温度230℃、出口のバレル温度270℃、ポリカーボネート樹脂出口温度285℃、脱気しながら溶融混錬押出し、2軸押出機の出口からストランド状に押し出し、水で冷却固化させた後、回転式カッターでペレット化し、ポリカーボネート樹脂ペレットを得た。以降は、実施例II-1と同様の操作を行い、結果を表2に示した。
[実施例II-3]
 使用するモノマーとして、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン(本州化学工業製)2,136部(7.2モル)、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA、新日鐵化学製)1,647部(7.2モル)に変更した以外は、実施例II-1と同様の操作を行い、結果を表2に示した。
[実施例II-4]
 温度計、撹拌機および還流冷却器の付いた反応器に、48%水酸化ナトリウム水溶液4,665部およびイオン交換水19,394部を仕込み、これに1,1-ビス(3-tert-ブチル-4-ヒドロキシフェニル)シクロヘキサン(本州化学工業製)5,125部、およびハイドロサルファイト10.25部(和光純薬製)を溶解した後、塩化メチレン14,882部、テトラブチルアンモニウムブロミド(和光純薬製)43.5部を加え、撹拌下、15~25℃でホスゲン2,000部を約60分かけて吹き込んだ。ホスゲンの吹き込み終了後、48%水酸化ナトリウム水溶液555部およびp-tert-ブチルフェノール60.6部を加え、撹拌を再開、乳化後トリエチルアミン6.80部を加え、さらに26~33℃で1時間撹拌して反応を終了した。以降は、実施例II-1と同様の操作を行い、結果を表2に示した。
[実施例II-5]
 1,1-ビス(3-tert-ブチル-4-ヒドロキシフェニル)シクロヘキサンの代わりに、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)シクロヘキサン(本州化学工業製)4,370部に変更した以外は、実施例II-4と同様の操作を行い、結果を表2に記載した。
[実施例II-6]
1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサンの代わりに、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)-3,3,5-トリメチルシクロヘキサン(本州化学工業製)4,844部に変更した以外は、実施例II-1と同様の操作を行い、結果を表2に記載した。
[実施例II-7]
 ポリカーボネート樹脂ペレットとして、実施例1のポリカーボネート樹脂ペレットを5000g、芳香族ポリカーボネート樹脂(ビスフェノールAからなるポリカーボネート樹脂、帝人(株)製 パンライト(商標登録)L-1225L(製品名))5000gをドライブレンドし、ベント式二軸押出機[(株)神戸製鋼所製KTX-46]により脱気しながら溶融混錬押出し、ポリカーボネート樹脂組成物ペレットを得た以外は、実施例II-1と同様の操作を行い、結果を表2に記載した。
[比較例II-1]
 ポリカーボネート樹脂ペレットとして、パンライト(商標登録)L-1225L(帝人(株)製)を用いた以外は、実施例II-1と同様の操作を行い、結果を表2に記載した。
[比較例II-2]
 ポリカーボネート樹脂ペレットの代わりに、ポリエチレンテレフタレート樹脂(TRN-8550(製品名)、帝人製)を用いた以外は、実施例II-1と同様の操作を行い、結果を表2に記載した。
[比較例II-3]
 使用するモノマーとして、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン1,709部(5.8モル)、2,2-ビス(4-ヒドロキシフェニル)プロパン1,977部(8.7モル)、p-tert-ブチルフェノール129.9部に変更した以外は、実施例II-1と同様の操作を行い、結果を表2に示した。
[比較例II-4]
 ポリカーボネート樹脂ペレットとして、実施例1のポリカーボネート樹脂ペレットを1500g、パンライト(商標登録)L-1225L(帝人(株)製)3500gをドライブレンドし、ベント式二軸押出機[(株)神戸製鋼所製KTX-46]により脱気しながら溶融混錬押出し、ポリカーボネート樹脂組成物ペレットを得た以外は、実施例II-1と同様の操作を行い、結果を表2に記載した。
Figure JPOXMLDOC01-appb-T000008
 本発明によれば、優れたアンテナ性能を兼ね備え、フレキシブル性を有したフィルムアンテナを形成することが可能な導電フィルムが提供される。

Claims (20)

  1.  主たる構成単位として下記式(1)で表される単位(A)および/または下記式(2)で表される単位(B)を含有するポリカーボネート樹脂を含むポリカーボネート樹脂材料からなる基体と導電膜とが積層されてなるアンテナ用導電フィルム。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R~Rは夫々独立して炭素原子数1~6のアルキル基またはハロゲン原子であり、R~Rは夫々独立して水素原子、炭素原子数1~6のアルキル基またはハロゲン原子である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R~Rは夫々独立して炭素原子数1~6のアルキル基またはハロゲン原子であり、R~Rは夫々独立して水素原子、炭素原子数1~6のアルキル基またはハロゲン原子であり、Rはハロゲン原子、炭素数1~20のアルキル基または炭素数3~20のシクロアルキル基を表し、nは0~10の整数を表す。)
  2.  ポリカーボネート樹脂は、主たる構成単位として前記式(1)で表される単位(A)を含有するポリカーボネート樹脂である請求項1記載のアンテナ用導電フィルム。
  3.  ポリカーボネート樹脂は、全構成単位中前記式(1)で表される単位(A)を45モル%以上含有するポリカーボネート樹脂である請求項1または2に記載のアンテナ用導電フィルム。
  4.  単位(A)が、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパンから誘導された構成単位である請求項1~3のいずれかに記載のアンテナ用導電フィルム。
  5.  ポリカーボネート樹脂材料の粘度平均分子量が15,000~40,000である請求項1~4のいずれかに記載のアンテナ用導電フィルム。
  6.  ポリカーボネート樹脂は、主たる構成単位として前記式(2)で表される単位(B)を含有するポリカーボネート樹脂である請求項1記載のアンテナ用導電フィルム。
  7.  ポリカーボネート樹脂は、全構成単位中前記式(2)で表される単位(B)を45モル%以上含有するポリカーボネート樹脂である請求項1または6に記載のアンテナ用導電フィルム。
  8.  単位(B)が、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、1,1-ビス(3-tert-ブチル-4-ヒドロキシフェニル)シクロヘキサンまたは1,1-ビス(4-ヒドロキシ-3-メチルフェニル)-3,3,5-トリメチルシクロヘキサンから誘導された構成単位である請求項1、6~7のいずれかに記載のアンテナ用導電フィルム。
  9.  ポリカーボネート樹脂材料の粘度平均分子量が14,000~40,000である請求項1、6~8のいずれかに記載のアンテナ用導電フィルム。
  10.  ポリカーボネート樹脂材料は、空洞共振器摂動法に準拠して測定した周波数1~10GHzの誘電正接が0.0005~0.0030である請求項1~9のいずれかに記載のアンテナ用導電フィルム。
  11.  ポリカーボネート樹脂材料は、ポリカーボネート樹脂100重量部に対して、紫外線吸収剤を0.1重量部~2重量部含有する請求項1~10のいずれかに記載のアンテナ用導電フィルム。
  12.  ポリカーボネート樹脂材料は、ポリカーボネート樹脂100重量部に対して、リン系安定剤および/またはヒンダードフェノール系酸化防止剤を0.0001重量部~1重量部含有する請求項1~11のいずれかに記載のアンテナ用導電フィルム。
  13.  基体は、ポリカーボネート樹脂材料を用いて射出成形法または射出圧縮成形法により形成されたフィルムである請求項1~12のいずれかに記載のアンテナ用導電フィルム。
  14.  基体は、ポリカーボネート樹脂材料を用いて溶融押出法により形成されたフィルムである請求項1~12のいずれかに記載のアンテナ用導電フィルム。
  15.  基体の厚みが1~500μmであり、導電膜の厚みが1~70μmである請求項1~14のいずれかに記載のアンテナ用導電フィルム。
  16.  導電膜は金属薄膜である請求項1~15のいずれかに記載のアンテナ用導電フィルム。
  17.  金属薄膜が銅箔であり、銅箔によってアンテナパターンが形成されている請求項16に記載のアンテナ用導電フィルム。
  18.  基体に対して90度方向への導電膜引きはがし強さが0.8N/mm以上である請求項1~17のいずれかに記載のアンテナ用導電フィルム。
  19.  全光線透過率が50%以上である請求項1~18のいずれかに記載のアンテナ用透明導電フィルム。
  20.  請求項1~19のいずれかに記載の導電フィルムからなるアンテナ。
PCT/JP2020/037828 2019-10-29 2020-10-06 アンテナ用導電フィルムおよびアンテナ WO2021085051A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20882436.7A EP4052904A4 (en) 2019-10-29 2020-10-06 CONDUCTIVE LAYER FOR ANTENNAS AND AERIALS
CN202080075233.1A CN114616096B (zh) 2019-10-29 2020-10-06 天线用导电薄膜和天线
US17/768,974 US11936103B2 (en) 2019-10-29 2020-10-06 Conductive film for antennas, and antenna
JP2021554241A JP7265031B2 (ja) 2019-10-29 2020-10-06 アンテナ用導電フィルムおよびアンテナ
JP2022196764A JP7376671B2 (ja) 2019-10-29 2022-12-09 アンテナ用導電フィルムおよびアンテナ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-196288 2019-10-29
JP2019196288 2019-10-29
JP2020051079 2020-03-23
JP2020-051079 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021085051A1 true WO2021085051A1 (ja) 2021-05-06

Family

ID=75715200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037828 WO2021085051A1 (ja) 2019-10-29 2020-10-06 アンテナ用導電フィルムおよびアンテナ

Country Status (6)

Country Link
US (1) US11936103B2 (ja)
EP (1) EP4052904A4 (ja)
JP (2) JP7265031B2 (ja)
CN (1) CN114616096B (ja)
TW (1) TW202129661A (ja)
WO (1) WO2021085051A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195846A (ja) * 2009-02-23 2010-09-09 Mitsubishi Engineering Plastics Corp 誘電体用ポリカーボネート樹脂組成物及び成形品
JP2016056224A (ja) * 2014-09-05 2016-04-21 帝人株式会社 被膜形成用樹脂、塗液、加飾樹脂成形品およびその製造方法
WO2017073508A1 (ja) * 2015-10-29 2017-05-04 帝人株式会社 アミン耐性を有するポリカーボネート樹脂

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2066269B (en) * 1979-12-28 1983-08-17 Asahi Chemical Ind Cathodically depositable acrylic coating compositions
JPS60258297A (ja) * 1984-06-05 1985-12-20 Daido Metal Kogyo Kk 耐摩耗性にすぐれた摺動材料
CN1029122C (zh) * 1988-08-12 1995-06-28 拜尔公司 二羟基二苯基环烷烃,其制备方法及其在制备高分子量聚碳酸酯中的应用
KR100251572B1 (ko) 1993-05-19 2000-04-15 야스이 쇼사꾸 금속 라미네이트용 필름
JPH07252414A (ja) * 1993-05-20 1995-10-03 Teijin Ltd 金属ラミネート用フィルム
JP2684342B2 (ja) * 1994-07-29 1997-12-03 株式会社コスモ総合研究所 高周波用樹脂組成物
TW311990B (ja) 1995-03-13 1997-08-01 Akzo Nobel Nv
CN1178585A (zh) * 1995-03-13 1998-04-08 阿克佐诺贝尔公司 非线性光学聚碳酸酯
WO1997020878A1 (fr) * 1995-12-04 1997-06-12 Idemitsu Kosan Co., Ltd. Resine de polycarbonate, resine de polycarbonate reticulee et photorecepteur electrophotographique
JP4550983B2 (ja) * 2000-09-08 2010-09-22 帝人株式会社 ポリカーボネート樹脂組成物およびラミネート物
WO2007096260A1 (en) 2006-02-21 2007-08-30 Ciba Holding Inc. Aromatic phosphate acid ester flame retardant compositions
JP5421548B2 (ja) * 2008-05-19 2014-02-19 出光興産株式会社 ガラス繊維強化難燃性ポリカーボネート樹脂組成物及び該樹脂組成物を用いた成形品
JP5447813B2 (ja) 2009-09-16 2014-03-19 大日本印刷株式会社 透明アンテナ
JP5204795B2 (ja) 2010-01-15 2013-06-05 帝人化成株式会社 ポリカーボネート樹脂組成物
CA2787096C (en) 2010-01-15 2018-02-13 Teijin Chemicals Ltd. Polycarbonate resin composition
JP2012108298A (ja) * 2010-11-17 2012-06-07 Teijin Chem Ltd 輝度上昇フィルム
JP5902409B2 (ja) 2011-07-14 2016-04-13 帝人株式会社 難燃性ポリカーボネート樹脂組成物の製造方法およびその成形品の製造方法
DE102012203251B8 (de) 2012-03-01 2013-11-07 Bundesdruckerei Gmbh Kontaktlose Datenübertragungseinrichtung, diese enthaltendes Sicherheits- bzw. Wertdokument
JP5847292B2 (ja) 2012-03-21 2016-01-20 帝人株式会社 光拡散性樹脂組成物
JP2013221072A (ja) 2012-04-16 2013-10-28 Teijin Ltd ガラス繊維強化ポリカーボネート樹脂組成物
JP5616470B2 (ja) * 2013-02-12 2014-10-29 帝人株式会社 ポリカーボネート樹脂組成物
CN105051110B (zh) * 2013-03-21 2018-05-25 帝人株式会社 玻璃纤维强化聚碳酸酯树脂组合物
JP6676529B2 (ja) * 2014-08-15 2020-04-08 ユニチカ株式会社 樹脂組成物およびそれを用いた積層体
CN107429400B (zh) * 2015-03-31 2019-06-21 富士胶片株式会社 被镀覆层形成用组合物、带被镀覆层前体层膜、带图案状被镀覆层膜、导电性膜、触控面板
JP6563782B2 (ja) * 2015-10-29 2019-08-21 帝人株式会社 アミン耐性を有する自動車内装部品
JP6890923B2 (ja) * 2015-12-14 2021-06-18 帝人株式会社 多層体
JP7211698B2 (ja) 2016-08-30 2023-01-24 大阪ガスケミカル株式会社 繊維強化樹脂組成物並びにその成形体
JP6873674B2 (ja) 2016-12-08 2021-05-19 帝人株式会社 ポリカーボネート樹脂組成物およびそれからなる樹脂金属複合成形体
JPWO2018139402A1 (ja) 2017-01-25 2019-11-21 Tdk株式会社 アンテナ用透明導電フィルム
CN110225934B (zh) * 2017-01-27 2021-08-03 帝人株式会社 聚碳酸酯共聚物
JP7041741B2 (ja) * 2018-03-26 2022-03-24 富士フイルム株式会社 前駆体フィルム、被めっき層付き基板、導電性フィルム、タッチパネルセンサー、タッチパネル、導電性フィルムの製造方法、および、被めっき層形成用組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195846A (ja) * 2009-02-23 2010-09-09 Mitsubishi Engineering Plastics Corp 誘電体用ポリカーボネート樹脂組成物及び成形品
JP2016056224A (ja) * 2014-09-05 2016-04-21 帝人株式会社 被膜形成用樹脂、塗液、加飾樹脂成形品およびその製造方法
WO2017073508A1 (ja) * 2015-10-29 2017-05-04 帝人株式会社 アミン耐性を有するポリカーボネート樹脂

Also Published As

Publication number Publication date
EP4052904A4 (en) 2022-12-21
US11936103B2 (en) 2024-03-19
CN114616096A (zh) 2022-06-10
EP4052904A1 (en) 2022-09-07
JPWO2021085051A1 (ja) 2021-05-06
JP7376671B2 (ja) 2023-11-08
TW202129661A (zh) 2021-08-01
JP7265031B2 (ja) 2023-04-25
US20230006341A1 (en) 2023-01-05
JP2023029362A (ja) 2023-03-03
CN114616096B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
KR102544571B1 (ko) 방향족 폴리카르보네이트 수지, 방향족 폴리카르보네이트 수지 조성물 및 방향족 폴리카르보네이트 수지 성형체의 제조 방법
JP6580699B2 (ja) アミン耐性を有するポリカーボネート樹脂
JP2009079190A (ja) 表面保護フィルムまたはシート
JP6563782B2 (ja) アミン耐性を有する自動車内装部品
JP7265031B2 (ja) アンテナ用導電フィルムおよびアンテナ
JP7264683B2 (ja) ポリカーボネート樹脂組成物
JP6684931B2 (ja) ポリカーボネート共重合体
JP7211694B2 (ja) 樹脂組成物ならびにそれを含む光学レンズ、シートおよびフィルム
JP7179040B2 (ja) ポリカーボネート共重合体
WO2024075642A1 (ja) ポリカーボネート共重合体およびそれからなる成形品
JP7335369B2 (ja) ポリカーボネート樹脂およびポリカーボネート樹脂の製造方法
JPWO2019163964A1 (ja) ポリカーボネート樹脂及び製造方法
JP2006063212A (ja) ポリカーボネート樹脂組成物
JP2019173027A (ja) アミン耐性を有する自動車内装部品
JP7096030B2 (ja) ポリカーボネート樹脂およびポリカーボネート樹脂の製造方法
JP2024055313A (ja) ポリカーボネート共重合体およびそれからなる成形品
JP2022021028A (ja) ポリカーボネート樹脂組成物および成形品
JP2012108298A (ja) 輝度上昇フィルム
JP2024055312A (ja) ポリカーボネート共重合体およびそれからなる成形品
JP2022061290A (ja) ポリカーボネート樹脂組成物
JP2022087564A (ja) ポリカーボネート樹脂組成物および通信機器用回路成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554241

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020882436

Country of ref document: EP

Effective date: 20220530