JP2024055313A - ポリカーボネート共重合体およびそれからなる成形品 - Google Patents

ポリカーボネート共重合体およびそれからなる成形品 Download PDF

Info

Publication number
JP2024055313A
JP2024055313A JP2022162134A JP2022162134A JP2024055313A JP 2024055313 A JP2024055313 A JP 2024055313A JP 2022162134 A JP2022162134 A JP 2022162134A JP 2022162134 A JP2022162134 A JP 2022162134A JP 2024055313 A JP2024055313 A JP 2024055313A
Authority
JP
Japan
Prior art keywords
carbon atoms
group
formula
bis
tert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022162134A
Other languages
English (en)
Inventor
竜司 益子
Ryuji Masuko
秀幸 常守
Hideyuki Tsunemori
安彦 友成
Yasuhiko Tomonari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2022162134A priority Critical patent/JP2024055313A/ja
Priority to PCT/JP2023/035578 priority patent/WO2024075642A1/ja
Publication of JP2024055313A publication Critical patent/JP2024055313A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

【課題】耐傷つき性、耐熱性、アミン耐性および成形性に優れたポリカーボネート樹脂を提供する。【解決手段】式(1)で表される構成単位(A)、およびビスフェノールCに代表される構成単位(B)を全構成単位に対して70モル%以上含むポリカーボネート共重合体であって、全構成単位における構成単位(A)の割合が15~75モル%であることを特徴とするポリカーボネート共重合体とする。JPEG2024055313000030.jpg48112【選択図】なし

Description

本発明は、耐傷つき性、耐熱性、成形性に優れ、アミンを含む塩基性環境下に暴露された条件において、ポリマー分解を抑制することが可能なポリカーボネート樹脂に関する。また、本発明は、自動車用内装部品の製造に好適なポリカーボネート樹脂成形品(シート、フィルム等)に関する。さらに、本発明は特定の構成単位を有するポリカーボネート樹脂からなる耐傷つき性、耐熱性、成形性、アミン耐性に優れた自動車用内装部品に関する。
ポリウレタンフォームは、ポリオールとポリイソシアネートを主原料に製造され、発泡剤、整泡剤、触媒、着色剤などを混合し、樹脂化させながら発泡させたものであり、特に自動車分野において、座席用クッション、ドアトリム、ヘッドレスト、アームレスト、ハンドル、床天井等吸音・制振材、緩衝材、サンバイザ等広く用いられている。触媒として用いられる三級アミン化合物は、ポリウレタンフォームの樹脂化や発泡・膨張の反応において、不可欠な物質であるが、アミン触媒は製造後のポリウレタンフォームから徐々に揮発し、他内装部品の変色や白化を引き起こすことが知られている。
また、自動車分野において、環境負荷低減、生産効率の向上を目的に、内装部品の塗装レス化が検討されており、表面保護を目的としたコーティング処理を不要とした塗装レス材料が求められている。したがって、このような塗装レス材料には、耐傷つき性とアミン耐性が必要となる。
ポリカーボネート樹脂は、透明性、耐衝撃性、耐熱性、寸法安定性に優れていることから、エンジニアリングプラスチックとして、電気・電子機器の筐体、自動車内装・外装部品、建材、家具、楽器、雑貨類などの幅広い分野で使用されている。さらに、無機ガラスと比較し、比重が低く軽量化が可能であり、生産性に優れているため、自動車等の窓用途に使用されている。
さらに、ポリカーボネート樹脂を用いたシートやフィルムは、コーティング処理、積層体、表面修飾等の付加的な二次加工を施すことにより、自動車内装の各種表示装置、保護用部品として広く使用されている。
しかしながら、コーティング処理を施していないポリカーボネート樹脂は、アミンを含む塩基性環境下に暴露されるとポリマーが分解し、成形品表面が白化することが課題である。さらに、JIS K5600-5-4に記載の塗料一般試験方法-第5部:塗膜の機械的性質-第4節:引っかき硬度(鉛筆法)に準拠して測定したポリカーボネート樹脂の鉛筆硬度は2B程度に過ぎず、塗装レス材料として、表面に傷が付きやすいことが課題である。
そこで、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパンを構成単位とするポリカーボネートやコポリカーボネートが、耐傷つき性に優れていることが記載されている。(例えば、特許文献1~5)該ポリカーボネート樹脂は、耐傷つき性は向上するが、耐熱性が劣る。
そこで、2-フェニル-3,3-ビス(p-ヒドロキシフェニル)フタルイミジンを単独、またはビスフェノールAと共重合したポリカーボネート樹脂が高い耐熱性を有することが知られている。(例えば、特許文献6~9)該ポリカーボネート樹脂は、耐熱性は向上するが、アミン耐性に劣ることが課題である。更に、ガラス転移温度が200℃を超えるポリカーボネート樹脂は、成形時の流動性が悪く、成形品の外観不良や黄変を引き起こすため、成形性が劣る。
したがって、耐傷つき性、耐熱性、アミン耐性、および成形性に優れたポリカーボネート樹脂は未だ存在しない。
特開昭64-069625号公報 特開平08-183852号公報 特開平08-034846号公報 特開2002-117580号公報 特開2003-252978号公報 特開平06-82624号公報 特表2009-517537号公報 特表2009-517530号公報 特開2005-290378号公報
本発明の目的は、耐傷つき性、耐熱性、アミン耐性および成形性に優れたポリカーボネート樹脂を提供することにある。また、本発明の目的は、殊に自動車内装部品に好適なポリカーボネート樹脂成形品を提供することにある。
本発明者らは、驚くべきことにポリカーボネート樹脂であっても、特定の構造単位を含有することにより、上記目的を達成することを見出した。かかる知見に基づき更に検討を進めた結果、本発明を完成するに至った。
すなわち、本発明によれば、下記(構成1)~(構成10)が提供される。
(構成1)
下記式(1)で表される構成単位(A)、および
(式中、RおよびRは夫々独立して、炭素原子数1~6のアルキル基またはハロゲン原子であり、nは1~4の整数を表す。)
下記式(2)で表される構成単位(B)
(式中、Wは単結合、下記式(3)~(5)からなる群より選択される少なくとも1種の二価の有機残基、または下記式(6)のいずれかの結合を表し、xおよびyは夫々独立して0または1~4の整数であり、RおよびRは夫々独立して、ハロゲン原子、または炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数6~10のアリール基、炭素原子数7~20のアラルキル基、炭素原子数6~10のアリールオキシ基、および炭素原子数7~20のアラルキルオキシ基からなる群より選択される有機残基を表す。)
(式中、R、R、RおよびRは夫々独立して、水素原子、ハロゲン原子、または炭素原子数1~3のアルキル基を表す。)
(式中、RおよびR10は夫々独立して、水素原子、ハロゲン原子または炭素原子数1~3のアルキル基を表す。)
(式中、R11及びR12は夫々独立して、水素原子、メチル基を表し、Zは炭素原子と結合して置換基を有してもよい炭素原子数6~12の脂環式炭化水素を形成する基を示す。)
を全構成単位に対して70モル%以上含むポリカーボネート共重合体であって、全構成単位における構成単位(A)の割合が15~75モル%であることを特徴とするポリカーボネート共重合体。
(構成2)
前記式(1)で表される繰り返し単位(A)が下記式(7)で表される繰り返し単位である前記1に記載のポリカーボネート共重合体。
(式中、R13およびR14は夫々独立して炭素原子数1~6のアルキル基を表す。)
(構成3)
前記式(2)で表される繰り返し単位(B)が下記式(8)で表される繰り返し単位である前記1または2に記載のポリカーボネート共重合体。
(式中、R15およびR16は夫々独立して、水素原子、または炭素原子数1~10のアルキル基、Xは、単結合もしくは下記式(9)
で表される2価の少なくとも1つの基を示す。)
(構成4)
ガラス転移温度が130~200℃である前記1~3のいずれかに記載のポリカーボネート共重合体。
(構成5)
ISO/TS19278記載のプラスチック-硬さ測定のための計装化マイクロ押込み硬さ試験に準拠して測定された押し込み硬さが200~400(N/mm)の範囲であり、且つJIS K5600-5-4記載のひっかき硬度(鉛筆法)に準拠して測定された鉛筆硬度が3H以上である前記1~4のいずれかに記載のポリカーボネート共重合体。
(構成6)
粘度平均分子量が15,000~40,000である前記1~5のいずれかに記載のポリカーボネート共重合体。
(構成7)
前記1~6のいずれかに記載のポリカーボネート共重合体を射出成形してなる成形品。
(構成8)
前記1~6のいずれかに記載のポリカーボネート共重合体を押出成形してなるシートまたはフィルム。
(構成9)
前記7の成形品を用いた自動車用内装部品。
(構成10)
前記8のシートまたはフィルムを用いた自動車用内装部品。
本発明のポリカーボネート共重合体およびそれからなる成形品は、耐傷つき性、耐熱性、アミン耐性および成形性に優れ、殊にコーティング処理を必要とせず、室内照明用ランプレンズ、表示用メーターカバー、メーター文字盤、各種スイッチカバー、ディスプレイカバー、ヒートコントロールパネル、インストルメントパネル、センタークラスター、センターパネル、ルームランプレンズ、ヘッドアップディスプレイ等の各種表示装置、保護部品、透光部品などの自動車内装部品に好適である。
合成例1で得られた2-フェニル-3,3-ビス(4-ヒドロキシ-3-メチルフェニル)フタルイミジンのプロトンNMRである。
以下、本発明の詳細について説明する。
<ポリカーボネート共重合体(ポリカーボネート樹脂)>
本発明のポリカーボネート共重合体(以下、ポリカーボネート樹脂と称することがある)は、下記式(1)で表される構成単位(A)、および
(式中、RおよびRは夫々独立して、炭素原子数1~6のアルキル基またはハロゲン原子であり、nは1~4の整数を表す。)
下記式(2)で表される構成単位(B)
(式中、Wは単結合、下記式(3)~(5)からなる群より選択される少なくとも1種の二価の有機残基、または下記式(6)のいずれかの結合を表し、xおよびyは夫々独立して0または1~4の整数であり、RおよびRは夫々独立して、ハロゲン原子、または炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数6~10のアリール基、炭素原子数7~20のアラルキル基、炭素原子数6~10のアリールオキシ基、および炭素原子数7~20のアラルキルオキシ基からなる群より選択される有機残基を表す。)
(式中、R、R、RおよびRは夫々独立して、水素原子、ハロゲン原子、または炭素原子数1~3のアルキル基を表す。)
(式中、RおよびR10は夫々独立して、水素原子、ハロゲン原子または炭素原子数1~3のアルキル基を表す。)
(式中、R11及びR12は夫々独立して、水素原子、メチル基を表し、Zは炭素原子と結合して置換基を有してもよい炭素原子数6~12の脂環式炭化水素を形成する基を示す。)
を全構成単位に対して70モル%以上含むポリカーボネート共重合体であって、全構成単位における構成単位(A)の割合が15~75モル%であることを特徴とするポリカーボネート共重合体から実質的に構成される。
ここで、“実質的に”とは、末端を除く全構成単位100モル%中、70モル%以上、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上、最も好ましくは100モル%の割合であることを示す。
前記式(1)で表される構成単位(A)において、RおよびRは夫々独立して、炭素原子数1~6のアルキル基、ハロゲン原子であり、炭素原子数1~4のアルキル基であることが好ましく、メチル基が最も好ましい。また、nは1~4の整数であり、1~2の整数が好ましく、1の整数が最も好ましい。
構成単位(A)を誘導する二価フェノールとしては、2-フェニル-3,3-ビス(4-ヒドロキシ-3-メチルフェニル)フタルイミジン、2-フェニル-3,3-ビス(4-ヒドロキシ-3-イソプロピルフェニル)フタルイミジン等が挙げられる。最も好適な二価フェノールは、2-フェニル-3,3-ビス(4-ヒドロキシ-3-メチルフェニル)フタルイミジンである。
本発明のポリカーボネート樹脂において、全構成単位100モル%に対する構成単位(A)の割合は15~75モル%であり、20~70モル%が好ましく、25~60モル%が好ましく、30~50モル%がより好ましい。構成単位(A)の割合が上記上限を超えると耐熱性は向上するが、成形性やアミン耐性が劣るため好ましくない。構成単位(A)の割合が上記下限未満では、耐熱性や耐傷つき性が劣るため好ましくない。
前記式(2)で表される構成単位(B)において、下記式(8)で表される繰り返し単位であるものが好ましい。
(式中、R15およびR16は夫々独立して、水素原子、または炭素原子数1~10のアルキル基、Xは、単結合もしくは下記式(9)
で表される2価の少なくとも1つの基を示す。)
前記式(2)で表される構成単位(B)において、Wが単結合である構成単位を誘導する化合物としては、4,4’-ビフェノールおよび4,4’-ビス(2,6-ジメチル)ジフェノール等が挙げられる。
Wが前記式(3)である構成単位を誘導する化合物としては、α,α’-ビス(4-ヒドロキシフェニル)-o-ジイソプロピルベンゼン、α,α’-ビス(4-ヒドロキシフェニル)-m-ジイソプロピルベンゼン(通常“ビスフェノールM”と称される)、およびα,α’-ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン等が挙げられる。
Wが前記式(4)である構成単位を誘導する化合物としては、9,9-ビス(4-ヒドロキシフェニル)フルオレン、および9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等が挙げられる。
Wが前記式(5)である構成単位を誘導する化合物としては、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)-3,3,5-トリメチルシクロヘキサン(以下、ビスフェノールOCTMCと記載することがある)、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン(以下、ビスフェノールOCZと記載することがある)、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)メタン、2,4’-ジヒドロキシジフェニルメタン、ビス(2-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-2,6-ジメチル-3-メトキシフェニル)メタン、ビス(4-ヒドロキシフェニル)シクロヘキシルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシ-2-フェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-2-クロロフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、ビスフェノールAと記載することがある)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(以下、ビスフェノールCと記載することがある)、2,2-ビス(3-フェニル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-エチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、2,2-ビス(3-t-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(4-ヒドロキシフェニル)-1-フェニルプロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、1,1-ビス(4-ヒドロキシフェニル)デカン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)デカン、および1,1-ビス(2,3-ジメチル-4-ヒドロキシフェニル)デカン等が挙げられる。
Wが前記式(6)のいずれかである構成単位を誘導する化合物としては、4,4’-ジヒドロキシジフェニルエ-テル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエ-テル、4,4’-ジヒドロキシジフェニルスルホン、2,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルフィド、3,3’-ジメチル-4,4’-ジヒドロキシジフェニルスルフィドおよびビス(3,5-ジメチル-4-ヒドロキシフェニル)スルホン等が挙げられる。
上記二価フェノールの中でも、式(3)ではビスフェノールM、式(4)では9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、式(5)ではビスフェノールOCZ、ビスフェノールOCTMC、ビスフェノールA、ビスフェノールC、式(6)では3,3’-ジメチル-4,4’-ジヒドロキシジフェニルスルフィドが好ましい。
構成単位(B)を誘導する二価フェノールとしては、ビスフェノールC、ビスフェノールOCZ、ビスフェノールOCTMCがより好ましく、最も好適な二価フェノールは、ビスフェノールCである。
本発明のポリカーボネート樹脂において、全構成単位100モル%に対する構成単位(B)の割合は25~85モル%が好ましく、30~80モル%がより好ましく、40~75モル%がさらに好ましく、50~70モル%が最も好ましい。構成単位(B)の割合が上記範囲であると、耐熱性、耐傷つき性、アミン耐性、成形性のバランスに優れるため好ましい。
また、本発明によれば、さらに二価フェノールとして他の二価フェノールから誘導されるカーボネート結合繰り返し単位を、本発明の目的および特性を損なわない限り、共重合させてもよい。かかる他のニ価フェノールの代表的な例としては、2,6-ジヒドロキシナフタレン、ヒドロキノン、レゾルシノール、炭素原子数1~3のアルキル基で置換されたレゾルシノール、3-(4-ヒドロキシフェニル)-1,1,3-トリメチルインダン-5-オール、1-(4-ヒドロキシフェニル)-1,3,3-トリメチルインダン-5-オール、6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチルスピロインダン、1-メチル-1,3-ビス(4-ヒドロキシフェニル)-3-イソプロピルシクロヘキサン、1-メチル-2-(4-ヒドロキシフェニル)-3-[1-(4-ヒドロキシフェニル)イソプロピル]シクロヘキサン、1,6-ビス(4-ヒドロキシフェニル)-1,6-ヘキサンジオン、およびエチレングリコールビス(4-ヒドロキシフェニル)エーテル等が例示される。これらは単独または2種以上を混合して使用できる。これらの他の二価フェノールは全構成単位100モル%に対して、30モル%以下が好ましく、20モル%以下がより好ましく、10モル%以下がさらに好ましく、5モル%以下が特に好ましい。
本発明で使用されるポリカーボネート樹脂は、二価フェノールと、カーボネート前駆体とを反応させて得られるものである。反応の方法としては界面重縮合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。界面重縮合の場合は通常一価フェノール類の末端停止剤が使用される。また、3官能成分を重合させた分岐ポリカーボネートであってもよく、更に脂肪族ジカルボン酸や芳香族ジカルボン酸、並びにビニル系単量体を共重合させた共重合ポリカーボネートであってもよい。
カーボネート前駆物質として例えばホスゲンを使用する反応では、通常酸結合剤および溶媒の存在下に反応を行う。酸結合剤としては例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物またはピリジン等のアミン化合物が用いられる。溶媒としては例えば塩化メチレン、クロロベンゼン等のハロゲン化炭化水素が用いられる。また反応促進のために例えば第三級アミンまたは第四級アンモニウム塩等の触媒を用いることもできる。その際、反応温度は通常0~40℃であり、反応時間は数分~5時間である。
カーボネート前駆物質として例えば炭酸ジエステルを用いるエステル交換反応は、不活性ガス雰囲気下所定割合の芳香族ジヒドロキシ成分を炭酸ジエステルと加熱しながら撹拌して、生成するアルコールまたはフェノール類を留出させる方法により行われる。反応温度は生成するアルコールまたはフェノール類の沸点等により異なるが、通常120~300℃の範囲である。反応はその初期から減圧にして生成するアルコールまたはフェノール類を留出させながら反応を完結させる。また反応を促進するために通常エステル交換反応に使用される触媒を使用することもできる。前記エステル交換反応に使用される炭酸ジエステルとしては、例えばジフェニルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート等が挙げられる。これらのうち特にジフェニルカーボネートが好ましい。
末端停止剤として通常使用される単官能フェノール類を使用することができる。殊にカーボネート前駆物質としてホスゲンを使用する反応の場合、単官能フェノール類は末端停止剤として分子量調節のために一般的に使用され、また得られたポリカーボネート樹脂は、末端が単官能フェノール類に基づく基によって封鎖されているので、そうでないものと比べて熱安定性に優れている。前記単官能フェノール類の具体例としては、例えばフェノール、m-メチルフェノール、p-メチルフェノール、m-プロピルフェノール、p-プロピルフェノール、1-フェニルフェノール、2-フェニルフェノール、p-tert-ブチルフェノール、p-クミルフェノール、イソオクチルフェノール、p-長鎖アルキルフェノール等が挙げられる。
本発明で使用されるポリカーボネート樹脂は、必要に応じて脂肪族ジオールを共重合することができる。例えば、イソソルビド:1,4:3,6-ジアンヒドロ-D-ソルビトール、トリシクロデカンジメタノール(TCDDM)、4,8-ビス(ヒドロキシメチル)トリシクロデカン、テトラメチルシクロブタンジオール(TMCBD)、2,2,4,4-テトラメチルシクロブタン-1,3-ジオール、混合異性体、シス/トランス-1,4-シクロヘキサンジメタノール(CHDM)、シス/トランス-1,4-ビス(ヒドロキシメチル)シクロヘキサン、シクロヘクス-1,4-イルエンジメタノール、トランス-1,4-シクロヘキサンジメタノール(tCHDM)、トランス-1,4-ビス(ヒドロキシメチル)シクロヘキサン、シス-1,4-シクロヘキサンジメタノール(cCHDM)、シス-1,4-ビス(ヒドロキシメチル)シクロヘキサン、シス-1,2-シクロヘキサンジメタノール、1,1’-ビ(シクロヘキシル)-4,4’-ジオール、スピログリコール、ジシクロヘキシル-4,4’-ジオール、4,4’-ジヒドロキシビシクロヘキシル、及びポリ(エチレングリコール)が挙げられる。
本発明で使用されるポリカーボネート樹脂は、必要に応じて脂肪酸を共重合することができる。例えば、1,10-ドデカンジオン酸(DDDA)、アジピン酸、ヘキサンジオン酸、イソフタル酸、1,3-ベンゼンジカルボン酸、テレフタル酸、1,4-ベンゼンジカルボン酸、2,6-ナフタレンジカルボン酸、3-ヒドロキシ安息香酸(mHBA)、及び4-ヒドロキシ安息香酸(pHBA)が挙げられる。
本発明で使用されるポリカーボネート樹脂は、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネートを含む。脂肪族の二官能性のカルボン酸は、α,ω-ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、およびイコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環式ジカルボン酸が好ましく挙げられる。これらのカルボン酸は、目的を阻害しない範囲で共重合してもよい。本発明のポリカーボネート樹脂は、必要に応じてポリオルガノシロキサン単位を含有する構成単位を、共重合することもできる。
本発明で使用されるポリカーボネート樹脂は、必要に応じて三官能以上の多官能性芳香族化合物を含有する構成単位を、共重合し、分岐ポリカーボネートとすることもできる。分岐ポリカーボネートに使用される三官能以上の多官能性芳香族化合物としては、4,6-ジメチル-2,4,6-トリス(4-ヒドロキシジフェニル)ヘプテン-2、2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、および4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノール等のトリスフェノールが好適に例示される。中でも1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。かかる多官能性芳香族化合物から誘導される構成単位は、他の二価成分からの構成単位との合計100モル%中、好ましくは0.03~1.5モル%、より好ましくは0.1~1.2モル%、特に好ましくは0.2~1.0モル%である。
また分岐構造単位は、多官能性芳香族化合物から誘導されるだけでなく、溶融エステル交換法による重合反応時に生じる副反応の如き、多官能性芳香族化合物を用いることなく誘導されるものであってもよい。尚、かかる分岐構造の割合についてはH-NMR測定により算出することが可能である。
本発明のポリカーボネート樹脂は、その粘度平均分子量(Mv)が、好ましくは15,000~40,000であり、より好ましくは15,500~35,000であり、さらに好ましくは16,000~30,000であり、特に好ましくは17,000~25,000である。粘度平均分子量が上記下限未満のポリカーボネート樹脂では、実用上十分な靭性が得られないことがある。一方、粘度平均分子量が上記上限を超えるポリカーボネート樹脂は、高い成形加工温度を必要とするか、または特殊な成形方法を必要とすることから汎用性に劣り、更に溶融粘度の増加により、射出速度依存性も高くなりやすく、外観不良等により歩留まりが低下することがある。
本発明におけるポリカーボネート樹脂の粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート樹脂0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t-t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量(Mv)を算出したものである。
ηSP/c=[η]+0.45×[η]c(但し、[η]は極限粘度)
[η]=1.23×10-4Mv0.83
c=0.7
<ポリカーボネート共重合体(ポリカーボネート樹脂)以外の成分>
本発明のポリカーボネート樹脂は、本発明の効果を損なわない範囲で、離型剤、熱安定剤、紫外線吸収剤、流動改質剤および帯電防止剤などのそれ自体公知の機能剤を含有できる。
(i)離型剤
本発明のポリカーボネート樹脂は、本発明の効果を損なわない範囲で、離型剤を併用しても良い。離型剤としては、例えば、脂肪酸エステル、ポリオレフィン系ワックス(ポリエチレンワックス、1-アルケン重合体などであり、酸変性などの官能基含有化合物で変性されているものも使用できる)、フッ素化合物(ポリフルオロアルキルエーテルに代表されるフッ素オイルなど)、パラフィンワックス、蜜蝋などを挙げることができる。これらの中でも入手の容易さ、離型性および透明性の点から脂肪酸エステルが好ましい。離型剤を含有させる割合は、ポリカーボネート樹脂100重量部に対して、好ましくは0.005~0.5重量部、より好ましくは0.007~0.4重量部、さらに好ましくは0.01~0.3重量部である。含有量が上記範囲の下限以上では、離型性の改良効果が明確に発揮され、上限以下の場合、成形時の金型汚染などの悪影響が低減され好ましい。
上記の中でも好ましい離型剤として用いられる脂肪酸エステルについて、さらに詳述する。かかる脂肪酸エステルは、脂肪族アルコールと脂肪族カルボン酸とのエステルである。かかる脂肪族アルコールは1価アルコールであっても2価以上の多価アルコールであってもよい。また該アルコールの炭素原子数としては、好適には3~32の範囲、より好適には5~30の範囲である。かかる一価アルコールとしては、例えばドデカノール、テトラデカノール、ヘキサデカノール、オクタデカノール、エイコサノール、テトラコサノール、セリルアルコール、およびトリアコンタノールなどが例示される。かかる多価アルコールとしては、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ポリグリセロール(トリグリセロール~ヘキサグリセロール)、ジトリメチロールプロパン、キシリトール、ソルビトール、およびマンニトールなどが挙げられる。脂肪酸エステルにおいては多価アルコールがより好ましい。
一方、脂肪族カルボン酸は炭素原子数3~32であることが好ましく、特に炭素原子数10~22の脂肪族カルボン酸が好ましい。該脂肪族カルボン酸としては、例えばデカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸、オクタデカン酸(ステアリン酸)、ノナデカン酸、イコサン酸、およびドコサン酸(ベヘン酸)などの飽和脂肪族カルボン酸、並びにパルミトレイン酸、オレイン酸、リノール酸、リノレン酸、エイコセン酸、エイコサペンタエン酸、およびセトレイン酸などの不飽和脂肪族カルボン酸を挙げることができる。上記の中でも脂肪族カルボン酸は、炭素原子数14~20であるものが好ましい。なかでも飽和脂肪族カルボン酸が好ましい。かかる脂肪族カルボン酸は通常、動物性油脂(牛脂および豚脂など)や植物性油脂(パーム油など)などの天然油脂類から製造されるため、これらの脂肪族カルボン酸は、通常炭素原子数の異なる他のカルボン酸成分を含む混合物である。したがって脂肪族カルボン酸の製造においてもかかる天然油脂類から製造され、他のカルボン酸成分を含む混合物の形態からなる。脂肪酸エステルにおける酸価は、20以下(実質的に0を取り得る)であることが好ましい。しかしながら全エステル(フルエステル)の場合には、離型性を向上させるため、少なくからず遊離の脂肪酸を含有することが好ましく、この点においてフルエステルにおける酸価は3~15の範囲が好ましい。また脂肪酸エステルのヨウ素価は、10以下(実質的に0を取り得る)が好ましい。これらの特性はJIS K 0070に規定された方法により求めることができる。
前述の脂肪酸エステルは、部分エステルおよびフルエステルのいずれであってもよいが、より良好な離型性および耐久性の点で部分エステルが好ましく、特にグリセリンモノエステルが好ましい。グリセリンモノエステルは、グリセリンと脂肪酸のモノエステルが主成分であり、好適な脂肪酸としてはステアリン酸、パルチミン酸、ベヘン酸、アラキン酸、モンタン酸、およびラウリン酸等の飽和脂肪酸やオレイン酸、リノール酸、およびソルビン酸等の不飽和脂肪酸が挙げられ、特にステアリン酸、ベヘン酸、およびパルチミン酸のグリセリンモノエステルを主成分としたものが好ましい。尚、かかる脂肪酸は、天然の脂肪酸から合成されたものであり、上述のとおり混合物となる。そのような場合でも、脂肪酸エステル中のグリセリンモノエステルの割合は60重量%以上であることが好ましい。
なお、部分エステルは、熱安定性の点ではフルエステルに対して劣る場合が多い。かかる部分エステルの熱安定性を向上するため、部分エステルは、好ましくは20ppm未満、より好ましくは5ppm未満、更に好ましくは1ppm未満のナトリウム金属含有量とすることが好ましい。ナトリウム金属含有量が1ppm未満の脂肪酸部分エステルは、脂肪酸部分エステルを通常の方法で製造した後、分子蒸留などにより精製して製造することができる。
具体的には、スプレーノズル式脱ガス装置によりガス分および低沸点物質を除去した後に流下膜式蒸留装置を用い蒸留温度120~150℃、真空度0.01~0.03kPaの条件にてグリセリン等の多価アルコール分を除去し、更に遠心式分子蒸留装置を用いて、蒸留温度160~230℃、真空度0.01~0.2Torrの条件にて高純度の脂肪酸部分エステルを留出分として得る方法などがあり、ナトリウム金属は蒸留残渣として除去できる。得られた留出分に対し、繰り返し分子蒸留を行うことにより、更に純度を上げ、ナトリウム金属含有量の更に少ない脂肪酸部分エステルを得ることもできる。また前もって適切な方法にて分子蒸留装置内を十分に洗浄し、また気密性を高めるなどにより外部環境からのナトリウム金属成分の混入を防ぐことも肝要である。かかる脂肪酸エステルは、専門業者(例えば理研ビタミン(株))から入手可能である。
(ii)リン系安定剤
本発明のポリカーボネート樹脂には、その成形加工時の熱安定性を向上させることを主たる目的として各種のリン系安定剤が更に配合されることが好ましい。かかるリン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステルなどが例示される。更にかかるリン系安定剤は第3級ホスフィンを含む。
具体的にはホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ-iso-プロピルフェニル)ホスファイト、トリス(ジ-n-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-エチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられる。
更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2,4-ジ-tert-ブチルフェニル)ホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-エチリデンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイトなどを挙げることができる。
ホスフェート化合物としては、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどを挙げることができ、好ましくはトリフェニルホスフェート、トリメチルホスフェートである。
ホスホナイト化合物としては、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト等があげられ、テトラキス(ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイト、ビス(ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトが好ましく、テトラキス(2,4-ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。
ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。
第3級ホスフィンとしては、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリアミルホスフィン、ジメチルフェニルホスフィン、ジブチルフェニルホスフィン、ジフェニルメチルホスフィン、ジフェニルオクチルホスフィン、トリフェニルホスフィン、トリ-p-トリルホスフィン、トリナフチルホスフィン、およびジフェニルベンジルホスフィンなどが例示される。特に好ましい第3級ホスフィンは、トリフェニルホスフィンである。
上記リン系安定剤は、1種のみならず2種以上を混合して用いることができる。上記リン系安定剤の中でも、ホスファイト化合物またはホスホナイト化合物が好ましい。殊にトリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイトおよびビス(2,4-ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトが好ましい。またこれらとホスフェート化合物との併用も好ましい態様である。
(iii)ヒンダードフェノール系安定剤(酸化防止剤)
本発明のポリカーボネート樹脂には、その成形加工時の熱安定性、および耐熱老化性を向上させることを主たる目的としてヒンダードフェノール系安定剤を配合することができる。かかるヒンダードフェノール系安定剤としては、例えば、α-トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n-オクタデシル-β-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェル)プロピオネート、2-tert-ブチル-6-(3’-tert-ブチル-5’-メチル-2’-ヒドロキシベンジル)-4-メチルフェニルアクリレート、2,6-ジ-tert-ブチル-4-(N,N-ジメチルアミノメチル)フェノール、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホネートジエチルエステル、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-シクロヘキシルフェノール)、2,2’-ジメチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)2,2’-エチリデン-ビス(4,6-ジ-tert-ブチルフェノール)、2,2’-ブチリデン-ビス(4-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、トリエチレングリコール-N-ビス-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート、1,6-へキサンジオールビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ビス[2-tert-ブチル-4-メチル6-(3-tert-ブチル-5-メチル-2-ヒドロキシベンジル)フェニル]テレフタレート、3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1,-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、4,4’-チオビス(6-tert-ブチル-m-クレゾール)、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-チオビス(4-メチル-6-tert-ブチルフェノール)、ビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)スルフィド、4,4’-ジ-チオビス(2,6-ジ-tert-ブチルフェノール)、4,4’-トリ-チオビス(2,6-ジ-tert-ブチルフェノール)、2,2-チオジエチレンビス-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3’,5’-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン、N,N’-ヘキサメチレンビス-(3,5-ジ-tert-ブチル-4-ヒドロキシヒドロシンナミド)、N,N’-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)イソシアヌレート、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌレート、1,3,5-トリス2[3(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、およびテトラキス[メチレン-3-(3’,5’-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンなどが例示される。これらはいずれも入手容易である。上記ヒンダードフェノール系酸化防止剤は、単独でまたは2種以上を組み合わせて使用することができる。
上記(ii)リン系安定剤および/または(iii)ヒンダードフェノール系酸化防止剤の量は、ポリカーボネート樹脂100重量部に対して、好ましくは0.0001~1重量部、より好ましくは0.001~0.5重量部、さらに好ましくは0.005~0.1重量部である。安定剤が上記範囲よりも少なすぎる場合には良好な安定化効果を得ることが難しく、上記範囲を超えて多すぎる場合は、逆に材料の物性低下や、成形時の金型汚染を起こす場合がある。
本発明のポリカーボネート樹脂には、適宜上記ヒンダードフェノール系酸化防止剤以外の他の酸化防止剤を使用することもできる。かかる他の酸化防止剤としては、例えばペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)、およびグリセロール-3-ステアリルチオプロピオネートなどが挙げられる。これら他の酸化防止剤の使用量は、ポリカーボネート樹脂100重量部に対して0.001~0.05重量部が好ましい。
(iv)紫外線吸収剤
本発明に使用されるポリカーボネートは紫外線吸収剤を含有することができる。本発明の紫外線吸収剤としては、具体的にはベンゾフェノン系では、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-ベンジロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシトリハイドライドレイトベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシ-5-ソジウムスルホキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2-ヒドロキシ-4-n-ドデシルオキシベンソフェノン、および2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノンなどが例示される。
紫外線吸収剤としては、具体的に、ベンゾトリアゾール系では、例えば、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジクミルフェニル)フェニルベンゾトリアゾール、2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾール、2,2’-メチレンビス(4-クミル-6-ベンゾトリアゾールフェニル)、2,2’-p-フェニレンビス(1,3-ベンゾオキサジン-4-オン)、および2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミドメチル)-5-メチルフェニル]ベンゾトリアゾール、並びに2-(2’-ヒドロキシ-5-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や2-(2’-ヒドロキシ-5-アクリロキシエチルフェニル)-2H-ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2-ヒドロキシフェニル-2H-ベンゾトリアゾール骨格を有する重合体などが例示される。
紫外線吸収剤としては、具体的に、ヒドロキシフェニルトリアジン系では、例えば、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-メチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-エチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-プロピルオキシフェノール、および2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ブチルオキシフェノールなどが例示される。さらに2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4-ジメチルフェニル基となった化合物が例示される。
紫外線吸収剤としては、具体的に環状イミノエステル系では、例えば2,2’-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(4,4’-ジフェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、および2,2’-(2,6-ナフタレン)ビス(3,1-ベンゾオキサジン-4-オン)などが例示される。
また紫外線吸収剤としては、具体的にシアノアクリレート系では、例えば1,3-ビス-[(2’-シアノ-3’,3’-ジフェニルアクリロイル)オキシ]-2,2-ビス[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3-ビス-[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。
さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/またはヒンダードアミン構造を有する光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。上記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。
上記の中でも紫外線吸収能の点においてはベンゾトリアゾール系およびヒドロキシフェニルトリアジン系が好ましく、耐熱性や色相の点では、環状イミノエステル系およびシアノアクリレート系が好ましい。上記紫外線吸収剤は単独であるいは2種以上の混合物で用いてもよい。
紫外線吸収剤の含有量は、ポリカーボネート樹脂100重量部に対して好ましくは0.01~2重量部、より好ましくは0.03~2重量部、さらに好ましくは0.04~1重量部、特に好ましくは0.05~0.5重量部である。
(v)流動改質剤
本発明のポリカーボネート樹脂は、本発明の効果を損なわない範囲で、流動改質剤を含むことができる。かかる流動改質剤としては、スチレン系オリゴマー、ポリカーボネートオリゴマー(高度分岐型、ハイパーブランチ型および環状オリゴマー型を含む)、ポリアルキレンテレフタレートオリゴマー(高度分岐型、ハイパーブランチ型および環状オリゴマー型を含む)高度分岐型およびハイパーブランチ型の脂肪族ポリエステルオリゴマー、テルペン樹脂、並びにポリカプロラクトン等が好適に例示される。かかる流動改質剤は、ポリカーボネート樹脂100重量部当たり、好ましくは0.1~30重量部、より好ましくは1~20重量部、さらに好ましくは2~15重量部である。特にポリカプロラクトンが好適であり、組成割合はポリカーボネート樹脂100重量部あたり、特に好ましくは2~7重量部である。ポリカプロラクトンの分子量は数平均分子量で表して1,000~70,000であり、1,500~40,000が好ましく、2,000~30,000がより好ましく、2,500~15,000が更に好ましい。
(vi)帯電防止剤
本発明のポリカーボネート樹脂は、帯電防止性を向上させることを主たる目的として帯電防止剤を配合することができる。帯電防止剤としては、スルホン酸ホスホニウム塩、亜リン酸エステル、カプロラクトン系重合体等を使用することができ、スルホン酸ホスホニウム塩が好ましく使用される。かかるスルホン酸ホスホニウム塩の具体例としては、ドデシルスルホン酸テトラブチルホスホニウム、ドデシルベンゼンスルホン酸テトラブチルホスホニウム、ドデシルベンゼンスルホン酸トリブチルオクチルホスホニウム、ドデシルベンゼンスルホン酸テトラオクチルホスホニウム、オクタデシルベンゼンスルホン酸テトラエチルホスホニウム、ジブチルベンゼンスルホン酸トリブチルメチルホスホニウム、ジブチルナフチルスルホン酸トリフェニルホスホニウム、ジイソプロピルナフチルスルホン酸トリオクチルメチルホスホニウム等が挙げられる。中でも、ポリカーボネートとの相溶性及び入手が容易な点で、ドデシルベンゼンスルホン酸テトラブチルホスホニウムが好ましい。帯電防止剤の量は、ポリカーボネート樹脂100重量部に対し、好ましくは0.1~5.0重量部、より好ましくは0.2~3.0重量部、さらに好ましくは0.3~2.0重量部、特に好ましくは0.5~1.8重量部配合される。0.1重量部以上では、帯電防止の効果が得られ、5.0重量部以下であると透明性や機械的強度に優れ、成形品表面にシルバーや剥離が生じず外観不良を引き起こし難い。
本発明のポリカーボネート樹脂は、他にも、ブルーイング剤、蛍光染料、難燃剤、および染顔料などの各種の添加剤を含有することができる。これらは、本発明の効果を損なわない範囲で、適宜選択して含有することができる。
ブルーイング剤は、ポリカーボネート樹脂中0.05~3.0ppm(重量割合)含んでなることが好ましい。ブルーイング剤としては代表例として、バイエル社のマクロレックスバイオレットB及びマクロレックスブルーRR、並びにクラリアント社のポリシンスレンブルーRLSなどが挙げられる。
蛍光染料(蛍光増白剤を含む)としては、例えば、クマリン系蛍光染料、ベンゾピラン系蛍光染料、ペリレン系蛍光染料、アンスラキノン系蛍光染料、チオインジゴ系蛍光染料、キサンテン系蛍光染料、キサントン系蛍光染料、チオキサンテン系蛍光染料、チオキサントン系蛍光染料、チアジン系蛍光染料、およびジアミノスチルベン系蛍光染料などを挙げることができる。蛍光染料(蛍光増白剤を含む)の配合量は、ポリカーボネート樹脂100重量部に対して0.0001~0.1重量部が好ましい。
難燃剤としては、例えば、スルホン酸金属塩系難燃剤、ハロゲン含有化合物系難燃剤、燐含有化合物系難燃剤、および珪素含有化合物系難燃剤などを挙げることができる。これらの中でも、スルホン酸金属塩系難燃剤が好ましい。難燃剤の配合量は、通常、ポリカーボネート樹脂100重量部に対し、0.01~1重量部が好ましく、0.05~1重量部の範囲がより好ましい。
本発明のポリカーボネート樹脂組成物は、本発明の効果を著しく損なわない限り、適宜、上述したもの以外にその他の成分を含有していてもよい。その他の成分の例を挙げると、ポリカーボネート樹脂以外の樹脂が挙げられる。なお、その他の成分は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。その他の樹脂としては、例えば、ポリエチレンテレフタレート樹脂(PET樹脂)、ポリトリメチレンテレフタレート(PTT樹脂)、ポリブチレンテレフタレート樹脂(PBT樹脂)等の熱可塑性ポリエステル樹脂;ポリスチレン樹脂(PS樹脂)、高衝撃ポリスチレン樹脂(HIPS)、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、アクリロニトリル-スチレン-アクリルゴム共重合体(ASA樹脂)、アクリロニトリル-エチレンプロピレン系ゴム-スチレン共重合体(AES樹脂)等のスチレン系樹脂;ポリエチレン樹脂(PE樹脂)、ポリプロピレン樹脂(PP樹脂)、環状シクロオレフィン樹脂(COP樹脂)、環状シクロオレフィン共重合体(COP)樹脂等のポリオレフィン樹脂;ポリアミド樹脂(PA樹脂);ポリイミド樹脂(PI樹脂);ポリエーテルイミド樹脂(PEI樹脂);ポリウレタン樹脂(PU樹脂);ポリフェニレンエーテル樹脂(PPE樹脂);ポリフェニレンサルファイド樹脂(PPS樹脂);ポリスルホン樹脂(PSU樹脂);ポリメタクリレート樹脂(PMMA樹脂);等が挙げられる。
本発明のポリカーボネート樹脂に添加剤等を配合させる方法は、特に限定されるものではなく公知の方法が利用できる。最も汎用される方法として、ポリカーボネート樹脂および添加剤を予備混合した後、押出機に投入して溶融混練を行い、押出されたスレッドを冷却し、ペレタイザーにより切断して、ペレット状の成形材料を製造する方法が挙げられる。
上記方法における押出機は単軸押出機、および二軸押出機のいずれもが利用できるが、生産性や混練性の観点からは二軸押出機が好ましい。かかる二軸押出機の代表的な例としては、ZSK(Werner & Pfleiderer社製、商品名)を挙げることができる。同様のタイプの具体例としてはTEX((株)日本製鋼所製、商品名)、TEM(東芝機械(株)製、商品名)、KTX((株)神戸製鋼所製、商品名)などを挙げることができる。押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部手前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。
更に添加剤は、独立して押出機に供給することもできるが、前述のとおり樹脂原料と予備混合することが好ましい。かかる予備混合の手段には、ナウターミキサー、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、および押出混合機などが例示される。より好適な方法は、例えば原料樹脂の一部と添加剤とをヘンシェルミキサーの如き高速攪拌機で混合してマスター剤を作成した後、かかるマスター剤物を残る全量の樹脂原料とナウターミキサーの如き高速でない攪拌機で混合する方法である。
押出機より押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。更にかかるペレットの製造においては、光学ディスク用ポリカーボネート樹脂において既に提案されている様々な方法を用いて、ペレットの形状分布の狭小化、ミスカット物の更なる低減、運送または輸送時に発生する微小粉の更なる低減、並びにストランドやペレット内部に発生する気泡(真空気泡)の低減を行うことが好ましい。ミスカットの低減には、ペレタイザーでの切断時のスレッドの温度管理、切断時のイオン風の吹き付け、ペレタイザーのすくい角の適正化、および離型剤の適切な配合などの手段、並びに切断されたペレットと水との混合物を濾過してペレットと水およびミスカットとを分離する方法などが挙げられる。その測定方法の一例は例えば特開2003-200421号公報に開示されている。これらの処方により成形のハイサイクル化、およびシルバーの如き不良発生割合の低減を行うことができる。
成形材料(ペレット)におけるミスカット量は、好ましくは10ppm以下、より好ましくは5ppm以下である。ここで、ミスカットとは、目開き1.0mmのJIS標準篩を通過する所望の大きさのペレットより細かい粉粒体を意味する。ペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱(楕円柱を含む)であり、かかる円柱の直径は好ましくは1.5~4mm、より好ましくは2~3.5mmである。楕円柱において長径に対する短径の割合は、好ましくは60%以上、より好ましくは65%以上である。一方、円柱の長さは好ましくは2~4mm、より好ましくは2.5~3.5mmである。
<ポリカーボネート共重合体(ポリカーボネート樹脂)の特性>
本発明のポリカーボネート樹脂は、アミンを含む塩基性環境下でポリマー分解を抑制することが可能である。種々検討の結果、アミン化合物によるポリカーボネートの解重合反応は、アミン化合物がポリカーボネートのカーボネート結合に作用し、カルバミン酸エステルオリゴマーを中間体として生成しながら、解重合が進行することを見出した。そこで、アミン化合物によるカーボネート結合への反応を抑制するために、殊に前記式(1)で表される構成単位(A)から構成されることにより、芳香環の置換基がカーボネート結合に対する立体障害の役割を果たすことを見出した。
また、本発明のポリカーボネート樹脂は、前記式(1)で表される構成単位(A)および前記式(2)で表される構成単位(B)を特定割合で構成することにより、アミン耐性を保持しながら、耐傷つき性、耐熱性、成形性のバランスに優れることを見出した。
本発明のポリカーボネート樹脂は、ガラス転移温度が130~200℃であることが好ましく、135~195℃であることがより好ましく、140~190℃であることがさらに好ましく、145~180℃であることが特に好ましい。ガラス転移温度が上記下限以上であると耐熱性に優れ、上記上限以下であると成形加工温度を過度に高温とする必要が無く、成形が容易となる。
本発明のポリカーボネート樹脂は、ISO/TS19278記載のプラスチック-硬さ測定のための計装化マイクロ押込み硬さ試験に準拠して測定された押し込み硬さが200~400(N/mm)であることが好ましく、210~350(N/mm)であることがより好ましく、220~300(N/mm)であることがさらに好ましい。押込み硬さが上記下限未満であると耐傷つき性が劣る場合がある。押込み硬さが上記上限を超えると材料が極端に脆くなることがある。押込み硬さはISO/TS 19278に基づき、ダイナミック超微小硬度計(島津製作所、型式DUH-210S)を使用して、樹脂成形品表面に対して負荷と押し込み深さの関係をリアルタイムに測定することができる。
本発明のポリカーボネート樹脂は、JIS K5600-5-4記載のひっかき硬度(鉛筆法)に準拠して、測定された鉛筆硬度が3H以上であることが好ましい。成形品表面を人間の爪で”引掻く”摩耗抵抗試験において、鉛筆硬度が3H以上であると傷がつきにくいため好ましい。鉛筆硬度は、9H、8H、7H、6H、5H、4H、3H、2H、H、F、HB、B、2B、3B、4B、5B、6Bの順で柔らかくなり、最も硬いものが9H、最も軟らかいものが6Bである。
<アミン耐性およびポリウレタンフォーム形成に用いられるアミン化合物>
本発明のポリカーボネート樹脂は、その成形品を座席クッション材に使用されている軟質ウレタンフォームを縦横50mm、厚み5mmの形状に切削し、ともにガラス製密閉容器に封入し、85℃に設定した熱風式乾燥機内で1,000時間放置した後の試験片外観が変化しないことが、アミン耐性に優れるため好ましい。
ポリウレタン樹脂は、一般に、ポリオールとポリイソシアネートとを触媒及び必要に応じて発泡剤、界面活性剤、難燃剤、架橋剤等の存在下に反応させて製造される。ポリウレタン樹脂の製造には数多くの金属系化合物や第3級アミン化合物を触媒として用いることが知られている。これら触媒は単独又は併用することにより工業的にも多用されている。発泡剤として、水、低沸点有機化合物、又はそれらの両方を用いるポリウレタンフォームの製造においては、生産性、成形性に優れることから、これら触媒のうち、とりわけ第3級アミン化合物が広く用いられている。このような第3級アミン化合物としては、例えば、従来公知のトリエチレンジアミン、N,N,N’,N’-テトラメチルヘキサンジアミン、N,N,N’,N’-テトラメチルプロパンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、ビス(2-ジメチルアミノエチル)エーテル、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、N,N’,N’-トリメチルアミノエチルピペラジン、N,N-ジメチルベンジルアミン、N-メチルモルホリン、N-エチルモルホリン、N,N-ジメチルエタノールアミン等が挙げられる。
<ポリカーボネート樹脂成形品、自動車内装部品>
本発明のポリカーボネート樹脂から成形品を成形するための製造方法は、特に限定されず、ポリカーボネート樹脂について一般に採用されている成形法を任意に採用できる。その例を挙げると、射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法などが挙げられる。また、ホットランナー方式を使用した成形法を用いることも出来る。
また、本発明のポリカーボネート樹脂は、溶融押出法、溶液キャスティング法(流延法)等などの方法によりシート状、フィルム状の成形品を得ることもできる。溶融押出法の具体的な方法は、例えば、ポリカーボネート樹脂を押出機に定量供給して、加熱溶融し、Tダイの先端部から溶融樹脂をシート状に鏡面ロール上に押出し、複数のロールにて冷却しながら引き取り、固化した時点で適当な大きさにカットするか巻き取る方式が用いられる。溶液キャスティング法の具体的な方法は、例えば、ポリカーボネート樹脂を塩化メチレンに溶解した溶液(濃度5%~40%)を鏡面研磨されたステンレス板上にTダイから流延し、段階的に温度制御されたオーブンを通過させながらシートを剥離し、溶媒を除去した後、冷却して巻き取る方式が用いられる。
さらに、本発明のポリカーボネート樹脂は、成形して積層体とすることもできる。積層体の製法としては、任意の方法を用いればよく、特に熱圧着法または共押出法で行うことが好ましい。熱圧着法としては任意の方法が採用されるが、例えばポリカーボネート樹脂シートをラミネート機やプレス機で熱圧着する方法、押出し直後に熱圧着する方法が好ましく、特に押出し直後のポリカーボネート樹脂シートに連続して熱圧着する方法が工業的に有利である。
そして、本発明のポリカーボネート樹脂は、耐傷つき性、耐熱性、アミン耐性、および成形性に優れるため自動車内装部品として使用される。自動車内装部品としては、室内照明用ランプレンズ、表示用メーターカバー、メーター文字盤、各種スイッチカバー、ディスプレイカバー、ヒートコントロールパネル、インストルメントパネル、センタークラスター、センターパネル、ルームランプレンズ、ヘッドアップディスプレイ等の各種表示装置、保護部品、透光部品などが挙げられる。また、本発明の自動車内装部品は上記特性を有するためコーティング処理を必要とせずポリカーボネート樹脂成形品をそのまま使用できる利点がある。
以下、実施例をあげて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。以下の実施例、および比較例において、各特性の測定法は次のとおりである。
(1)組成比
ポリカーボネート樹脂(共重合体)40mgを0.6ml重クロロホルム溶液に溶解し、日本電子製400MHzの核磁気共鳴装置により、H-NMRスペクトルを測定し、各構成単位に特徴のあるスペクトルピークの面積積分比より、ポリカーボネート樹脂(共重合体)の組成比を算出した。
(2)粘度平均分子量
ポリカーボネート樹脂の粘度平均分子量は、以下の方法で測定・算出したものである。まず、押出により得られたポリカーボネート樹脂ペレットを、30倍重量の塩化メチレンと混合して溶解させ、可溶分をセライト濾過により採取した。その後得られた溶液から溶媒を除去した後の得られた固体を十分に乾燥し、該固体0.7gを塩化メチレン100mlに溶解した溶液から、その溶液の20℃における比粘度(ηsp)を測定した。そして、下記式により算出されるMvを粘度平均分子量とした。
ηsp/c=[η]+0.45×[η]
[η]=1.23×10-4Mv0.83
ηsp:比粘度
η:極限粘度
c:定数(=0.7)
Mv:粘度平均分子量
(3)ガラス転移温度
TAインスツルメント社製の熱分析システムDSC-2910を使用して、JIS K7121に従い窒素雰囲気下(窒素流量:40ml/min)、昇温速度:20℃/minの条件下で測定した。
(4)鉛筆硬度
得られたポリカーボネート樹脂を熱プレス成形機((神藤金属工業所(株)製 圧縮成形機:SFV-10、真空ポンプユニット:GXD-360)でプレス成形し、厚さ約3mmの円盤状の樹脂プレートを得た。プレス成形条件は、金型温度150~350℃、1次圧:1MPa(30秒)、2次圧:1.5MPa(12分)とした。この樹脂プレートを用いてJIS K5600-5-4記載のひっかき硬度(鉛筆法)に基づき、雰囲気温度23℃の恒温室内で樹脂プレートの表面に対して鉛筆を45度の角度を保ちつつ750gの荷重をかけた状態で線を引き、表面状態を目視観察することによって評価した。
荷重:750g
測定速度:50mm/min
測定距離:7mm
鉛筆:三菱鉛筆製Hi―uni
(5)押込み硬さ(Hit)
得られたポリカーボネート樹脂を熱プレス成形機((神藤金属工業所(株)製 圧縮成形機:SFV-10、真空ポンプユニット:GXD-360)でプレス成形し、厚さ約3mmの円盤状の樹脂プレートを得た。プレス成形条件は、金型温度150~350℃、1次圧:1MPa(30秒)、2次圧:1.5MPa(12分)とした。この樹脂プレートを用いてISO/TS19278記載のプラスチック-硬さ測定のための計装化マイクロ押込み硬さ試験に基づき、ダイナミック超微小硬度計(島津製作所、型式DUH-210S)を使用して、樹脂プレートの表面に対して、負荷と押しこみ深さの関係をリアルタイムに計測し、押し込み硬さ(N/mm)を測定した。
(測定条件)
測定圧子:バーコビッチ圧子(ダイヤモンド製)
試験力:500mN
最小試験力:4.9mN
負荷/除荷時間:30sec
負荷保持時間:40sec
除荷保持時間:0sec
試験回数:5
(押し込み硬さ算出方法)
押し込み硬さ(Hit)は、半永久的な変形あるいは損傷に関する抵抗を測定したものである。押し込み硬さは以下の式で算出される。
Hit=Fmax/A
max:最大試験力
:圧子と試験片が接している投影面積
=23.96×h (三角錐圧子(115°)の場合)
=hmax-ε(hmax-h
ε=3/4(三角錐の場合)
:試験力―深さ曲線のFmaxにおける除荷曲線の接線が深さ軸と交わる切片
(6)アミン耐性
算術平均粗さ(Ra)が0.03μmとしたキャビティ面を持つ金型を使用し、日本製鋼所製の射出成形機 J-75E3を用いてシリンダ温度300℃、金型温度80℃の条件で、保圧時間20秒および冷却時間20秒にて幅50mm、長さ90mm、厚みがゲート側から3mm(長さ20mm)、2mm(長さ45mm)、1mm(長さ25mm)である3段型プレートを成形した。自動車座席クッション材に使用されている軟質ウレタンフォームを縦横50mm、厚み5mmの形状にカッターを用いて切削し、3段型プレートとともにガラス製密閉容器に封入し、85℃に設定した熱風式乾燥機内で1000時間放置した後の試験片外観を目視観察した。
(7)成形性
東芝機械株式会社製射出成形機EC100N2-2Yを用い、アルキメデス型スパイラルフロー金型(流路厚さ2mm、流路幅8mm)にて流動長を評価した。条件は、シリンダ温度330℃、金型温度100℃ 、射出圧力100MPaとした。
判定方法は、〇:20cm以上、△:10cm以上20cm未満、×:10cm未満とした。
(8)1H-NMR測定
合成例1で得られた化合物を下記の装置、溶媒にて測定した。
装置:日本電子社製 JNM-AL400(400MHz)
溶媒:(CDSO
(9)高速液体クロマトグラフィー(HPLC)
日立製高速液体クロマトグラフィーChromasterを用いて下記表1記載の測定条件で測定した。合成例1中、特に断らない限り%はHPLCにおける溶媒を除いて補正した面積百分率値である。
[合成例1]
オルトクレゾールフタレイン(東京化成工業製)150g(0.4モル)、アニリン(富士フイルム和光純薬製)826g(8.9モル)を仕込んだのち、36%濃塩酸(富士フイルム和光純薬製)86mL(1.0モル)をゆっくりと滴下しながら加えた。滴下終了後、反応液が160±5℃になるよう加熱しながら水を留去した。反応の進行具合はHPLCで追跡し、原料のオルトクレゾールフタレインがほぼ消失するまで撹拌を続けた。反応終了後、反応液を室温まで冷やしたのち、酢酸エチルを加え5%塩酸水溶液で分液水洗し未反応のアニリンを除去し、さらに水層が中性になるまで水洗を続けた。有機層を濃縮した際に得られた薄黄色結晶をトルエン/メタノール(v/v=10/1)で再結晶したのち目的物である2-フェニル-3,3-ビス(4-ヒドロキシ-3-メチルフェニル)フタルイミジン(以下、PCP-BPと記載)の白色結晶を137g、収率75%で得た。得られたPCP-BPをH-NMRにより分析し目的物であることを確認した(図1参照)。また、HPLCを測定したところ、純度は98.3%であった。
[実施例1]
温度計、撹拌機および還流冷却器の付いた反応器に、48%水酸化ナトリウム水溶液5,032部およびイオン交換水14,030部を仕込み、これに合成例1で得られたPCP-BP1,261部、ビスフェノールC(本州化学製、以下、BPCと記載)3,067部、およびハイドロサルファイト8.7部(和光純薬製)を溶解した後、塩化メチレン16,550部を加え、撹拌下、15~25℃でホスゲン2,000部を約90分かけて吹き込んだ。ホスゲンの吹き込み終了後、48%水酸化ナトリウム水溶液3,355部およびp-tert-ブチルフェノール67部を加え、撹拌を再開、乳化後トリエチルアミン4部を加え、さらに28~35℃で1時間撹拌して反応を終了した。
反応終了後生成物を塩化メチレンで希釈して水洗した後、塩酸を加え、酸性にして水洗し、さらに水相の導電率がイオン交換水とほぼ同じになるまで水洗を繰り返し、ポリカーボネート樹脂の塩化メチレン溶液を得た。次いで、この溶液を目開き0.3μmのフィルターに通過させ、さらに軸受け部に異物取出口を有する隔離室付きニーダー中の温水に滴下、塩化メチレンを留去しながらポリカーボネート樹脂をフレーク化し、引続き該含液フレークを粉砕・乾燥してパウダーを得た。
その後、該パウダー100重量部に対して、アデカスタブPEP-36A(ADEKA製、リン系安定剤)を0.05重量部、イルガノックス1076(チバスペシャリティケミカルズ製、ヒンダードフェノール系酸化防止剤)を0.05重量部、リケスターEW-400(理研ビタミン製、脂肪酸エステル)を0.1重量部、ケミソーブ79 0.3部(ケミプロ化成製、ベンゾトリアゾール系紫外線吸収剤)添加し、均一に混合した後、かかるパウダーをベント式二軸押出機[(株)神戸製鋼所製KTX-46]により脱気しながら溶融混錬押出し、ポリカーボネート樹脂組成物ペレットを得た。該ペレットを用いて各種評価を行い、結果を表2に記載した。
[実施例2]
PCP-BP2,207部、BPC2,492部、p-tert-ブチルフェノール79部とした以外は実施例1と同様の手法にてポリカーボネート樹脂組成物ペレットを得た。該ペレットを用いて評価した結果を表2に示した。
[実施例3]
PCP-BP3,153部、BPC1,917部、p-tert-ブチルフェノール63部とした以外は実施例1と同様の手法にてポリカーボネート樹脂組成物ペレットを得た。該ペレットを用いて評価した結果を表2に示した。
[実施例4]
PCP-BP4,414部、BPC1,150部、p-tert-ブチルフェノール157部とした以外は実施例1と同様の手法にてポリカーボネート樹脂組成物ペレットを得た。該ペレットを用いて評価した結果を表2に示した。
[実施例5]
PCP-BP3,153部、p-tert-ブチルフェノール63部とし、BPCの代わりにビスフェノールA1,707gとした以外は実施例1と同様の手法にてポリカーボネート樹脂組成物ペレットを得た。該ペレットを用いて評価した結果を表2に示した。
[実施例6]
PCP-BP1,892部、p-tert-ブチルフェノール67部とし、BPCの代わりにビスフェノールOCZ(オー・ジー社製、以下BP-OCZと記載することがある)3,103部を使用した以外は実施例1と同様の手法にてポリカーボネート樹脂組成物ペレットを得た。該ペレットを用いて評価した結果を表2に示した。
[実施例7]
PCP-BP1,892部、BPC383部、p-tert-ブチルフェノール58部とし、さらにビスフェノールOCTMC(オー・ジー社製、以下BP-OCTMCと記載することがある)3.037部を使用した以外は実施例1と同様の手法にてポリカーボネート樹脂組成物ペレットを得た。該ペレットを用いて評価した結果を表2に示した。
[比較例1]
BPCを使用せず、PCP-BPの代わりに2-フェニル-3,3-ビス(p-ヒドロキシフェニル)フタルイミジン(オー・ジー社製、以下、PPPBPと記載)5,886部、p-tert-ブチルフェノール67部とした以外は実施例1と同様の手法にてポリカーボネート樹脂組成物ペレットを得た。該ペレットを用いて評価した結果を表3に示した。
[比較例2]
PCP-BPを使用せず、BPC3,834部、p-tert-ブチルフェノール63部とした以外は実施例1と同様の手法にてポリカーボネート樹脂組成物ペレットを得た。該ペレットを用いて評価した結果を表3に示した。
[比較例3]
ビスフェノールA型ポリカーボネート樹脂ペレット(帝人製パンライトL-1225Z100M)を用いて評価した結果を表3に示した。
[比較例4]
PCP-BPの変わりにPPPBP1,177部、BPCの代わりにビスフェノールA(三井化学製)2,732部、p-tert-ブチルフェノール67部とした以外は実施例1と同様の手法にてポリカーボネート樹脂組成物ペレットを得た。該ペレットを用いて評価した結果を表3に示した。
[比較例5]
PCP-BP5,044部、BPC767部、p-tert-ブチルフェノール70部とした以外は実施例1と同様の手法にてポリカーボネート樹脂組成物ペレットを得た。該ペレットを用いて評価した結果を表3に示した。
[比較例6]
PCP-BP631部、BPC3,451部、p-tert-ブチルフェノール70部とした以外は実施例1と同様の手法にてポリカーボネート樹脂組成物ペレットを得た。該ペレットを用いて評価した結果を表3に示した。
[比較例7]
BPCを使用せず、PCP-BP6,305部、p-tert-ブチルフェノール101部とした以外は実施例1と同様の手法にてポリカーボネート樹脂組成物ペレットを得た。該ペレットを用いて評価した結果を表3に示した。
本発明のポリカーボネート樹脂は、コーティング処理を必要とせず、室内照明用ランプレンズ、表示用メーターカバー、メーター文字盤、各種スイッチカバー、ディスプレイカバー、ヒートコントロールパネル、インストルメントパネル、センタークラスター、センターパネル、ルームランプレンズ、ヘッドアップディスプレイ等の各種表示装置、保護部品、透光部品などの自動車内装部品に利用できる。

Claims (10)

  1. 下記式(1)で表される構成単位(A)、および
    (式中、RおよびRは夫々独立して、炭素原子数1~6のアルキル基またはハロゲン原子であり、nは1~4の整数を表す。)
    下記式(2)で表される構成単位(B)
    (式中、Wは単結合、下記式(3)~(5)からなる群より選択される少なくとも1種の二価の有機残基、または下記式(6)のいずれかの結合を表し、xおよびyは夫々独立して0または1~4の整数であり、RおよびRは夫々独立して、ハロゲン原子、または炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数6~10のアリール基、炭素原子数7~20のアラルキル基、炭素原子数6~10のアリールオキシ基、および炭素原子数7~20のアラルキルオキシ基からなる群より選択される有機残基を表す。)
    (式中、R、R、RおよびRは夫々独立して、水素原子、ハロゲン原子、または炭素原子数1~3のアルキル基を表す。)
    (式中、RおよびR10は夫々独立して、水素原子、ハロゲン原子または炭素原子数1~3のアルキル基を表す。)
    (式中、R11及びR12は夫々独立して、水素原子、メチル基を表し、Zは炭素原子と結合して置換基を有してもよい炭素原子数6~12の脂環式炭化水素を形成する基を示す。)
    を全構成単位に対して70モル%以上含むポリカーボネート共重合体であって、全構成単位における構成単位(A)の割合が15~75モル%であることを特徴とするポリカーボネート共重合体。
  2. 前記式(1)で表される繰り返し単位(A)が下記式(7)で表される繰り返し単位である請求項1に記載のポリカーボネート共重合体。
    (式中、R13およびR14は夫々独立して炭素原子数1~6のアルキル基を表す。)
  3. 前記式(2)で表される繰り返し単位(B)が下記式(8)で表される繰り返し単位である請求項1に記載のポリカーボネート共重合体。
    (式中、R15およびR16は夫々独立して、水素原子、または炭素原子数1~10のアルキル基、Xは、単結合もしくは下記式(9)
    で表される2価の少なくとも1つの基を示す。)
  4. ガラス転移温度が130~200℃である請求項1に記載のポリカーボネート共重合体。
  5. ISO/TS19278記載のプラスチック-硬さ測定のための計装化マイクロ押込み硬さ試験に準拠して測定された押し込み硬さが200~400(N/mm)の範囲であり、且つJIS K5600-5-4記載のひっかき硬度(鉛筆法)に準拠して測定された鉛筆硬度が3H以上である請求項1に記載のポリカーボネート共重合体。
  6. 粘度平均分子量が15,000~40,000である請求項1に記載のポリカーボネート共重合体。
  7. 請求項1~6のいずれかに記載のポリカーボネート共重合体を射出成形してなる成形品。
  8. 請求項1~6のいずれかに記載のポリカーボネート共重合体を押出成形してなるシートまたはフィルム。
  9. 請求項7の成形品を用いた自動車用内装部品。
  10. 請求項8のシートまたはフィルムを用いた自動車用内装部品。
JP2022162134A 2022-10-07 2022-10-07 ポリカーボネート共重合体およびそれからなる成形品 Pending JP2024055313A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022162134A JP2024055313A (ja) 2022-10-07 2022-10-07 ポリカーボネート共重合体およびそれからなる成形品
PCT/JP2023/035578 WO2024075642A1 (ja) 2022-10-07 2023-09-29 ポリカーボネート共重合体およびそれからなる成形品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022162134A JP2024055313A (ja) 2022-10-07 2022-10-07 ポリカーボネート共重合体およびそれからなる成形品

Publications (1)

Publication Number Publication Date
JP2024055313A true JP2024055313A (ja) 2024-04-18

Family

ID=90716441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022162134A Pending JP2024055313A (ja) 2022-10-07 2022-10-07 ポリカーボネート共重合体およびそれからなる成形品

Country Status (1)

Country Link
JP (1) JP2024055313A (ja)

Similar Documents

Publication Publication Date Title
JP6580699B2 (ja) アミン耐性を有するポリカーボネート樹脂
JP6563782B2 (ja) アミン耐性を有する自動車内装部品
JP7264683B2 (ja) ポリカーボネート樹脂組成物
JP6684931B2 (ja) ポリカーボネート共重合体
JP7136668B2 (ja) 熱可塑性樹脂組成物およびその成形品
JP7179040B2 (ja) ポリカーボネート共重合体
WO2024075642A1 (ja) ポリカーボネート共重合体およびそれからなる成形品
JP2024055313A (ja) ポリカーボネート共重合体およびそれからなる成形品
JP2019173027A (ja) アミン耐性を有する自動車内装部品
JP2024055312A (ja) ポリカーボネート共重合体およびそれからなる成形品
JP7495288B2 (ja) ポリカーボネート樹脂組成物および成形品
CN111683991B (zh) 聚碳酸酯树脂和制造方法
JP7335369B2 (ja) ポリカーボネート樹脂およびポリカーボネート樹脂の製造方法
JP7376671B2 (ja) アンテナ用導電フィルムおよびアンテナ
JP7096030B2 (ja) ポリカーボネート樹脂およびポリカーボネート樹脂の製造方法