JPWO2013002270A1 - 硬質合金および切削工具 - Google Patents

硬質合金および切削工具 Download PDF

Info

Publication number
JPWO2013002270A1
JPWO2013002270A1 JP2013522902A JP2013522902A JPWO2013002270A1 JP WO2013002270 A1 JPWO2013002270 A1 JP WO2013002270A1 JP 2013522902 A JP2013522902 A JP 2013522902A JP 2013522902 A JP2013522902 A JP 2013522902A JP WO2013002270 A1 JPWO2013002270 A1 JP WO2013002270A1
Authority
JP
Japan
Prior art keywords
region
phase
hard alloy
content ratio
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013522902A
Other languages
English (en)
Other versions
JP5815709B2 (ja
Inventor
秀吉 木下
秀吉 木下
勝弘 花木
勝弘 花木
浩司 広崎
浩司 広崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2013522902A priority Critical patent/JP5815709B2/ja
Publication of JPWO2013002270A1 publication Critical patent/JPWO2013002270A1/ja
Application granted granted Critical
Publication of JP5815709B2 publication Critical patent/JP5815709B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12146Nonmetal particles in a component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

WCの含有比率を低めるとともに、耐欠損性を向上させた硬質合金および切削工具を提供することを課題とする。上記課題を解決する硬質合金は、WCを50〜70質量%、TiCNを15〜30質量%と、WおよびTi以外の周期表第4、5、および6族金属のうちの1種以上の炭化物、窒化物および炭窒化物の少なくとも1種を0〜10質量%と、を主体として、WC相と複合硬質相を含有する硬質相と、CoおよびNiの少なくとも1種以上を6〜12質量%を主体とする結合相を含有して、表面に、WCの含有比率が硬質合金の内部領域に比べて低い表面領域が存在するとともに、表面領域におけるWC相の平均粒径が内部領域におけるWC相の平均粒径に対して大きい硬質合金である。

Description

本発明は硬質合金および切削工具に関する。
現在、切削工具としてWCを70質量%より多く含有する超硬合金やTiを主成分とするサーメットが使われている。超硬合金は耐摩耗性および耐欠損性が高くて、切削工具として広く使われているが、WC原料の高騰によりWCを他の材料で代替してWCの使用量を減らすことが検討されている。一方、サーメットは、超硬合金よりも高い耐摩耗性を有しながらも耐欠損性が超硬合金よりも悪くて、使用できる用途が限られているという問題があった。
例えば、特許文献1では、WC、Ti(C,N)、(Ta,Nb)Cの3種類の硬質相を所定の比率で含有するサーメットが開示されている。また、非特許文献1では、サーメット中にWC原料を20〜50体積%添加して、窒素気流雰囲気と真空雰囲気を調整しながら焼成することによって、焼結体の表面に所定厚みの表面領域(WC以外の周期表4、5および6族金属の炭化物、窒化物、炭窒化物の存在比率が低く、WCの存在比率が高い領域)が形成されることが開示されている。
特開2009−275237号公報
竹澤大輔、他4名,「WC相残存サーメットの表面領域形成に及ぼすWC添加量および焼成雰囲気の影響」,2010年度粉体粉末冶金秋季大会講演集、p105
しかしながら、特許文献1のように3種類の硬質相を分散させたサーメット(硬質合金)では、合金の硬度が高くなって工具の耐摩耗性が向上するものの、合金の耐欠損性が十分でなかった。また、非特許文献1のように合金の表面に表面領域が形成された硬質合金でも、合金の耐欠損性が超硬合金に対して劣るという問題があった。
本発明は、WCの含有比率を低めるとともに、耐欠損性を向上させた硬質合金および切削工具を提供することを目的とする。
本発明の硬質合金は、WCを50〜70質量%と、TiCNを15〜30質量%と、WおよびTi以外の周期表第4、5および6族金属のうちの1種以上の炭化物、窒化物および炭窒化物の少なくとも1種を0〜10質量%と、を主体として、WC相と複合硬質相とを含有する硬質相と、CoおよびNiの少なくとも1種以上を6〜12質量%を主体とする結合相を含有する硬質合金であって、該硬質合金の表面に、WCの含有比率が前記硬質合金の内部領域に比べて高い表面領域が存在するとともに、該表面領域におけるWC相の平均粒径が前記内部領域におけるWC相の平均粒径に対して大きいものである。
本発明の硬質合金および切削工具によれば、超硬合金に対してWCの含有比率が低いにも関わらず、従来のサーメットに対して耐欠損性を改善することができる。
本発明の硬質合金の一例について、(a)表面付近における断面についての走査型電子顕微鏡写真、(b)内部領域における断面についての走査型電子顕微鏡写真、(c)表面付近におけるビッカース硬度の分布を示す図である。 図1の硬質合金の表面付近における(a)走査型電子顕微鏡写真、(b)波長分散型X線分光分析(WDS)によるCoの分布図、(c)波長分散型X線分光分析(WDS)によるN(窒素)の分布図である。 図1、2の硬質合金の表面付近における電子線後方散乱回折(EBSD)データである。
本発明の硬質合金の一例について、図1の(a)表面付近における断面についての走査型電子顕微鏡写真、(b)内部領域における断面についての走査型電子顕微鏡写真、(c)表面付近におけるビッカース硬度Hvを示す図、図2の硬質合金の表面付近における(a)走査型電子顕微鏡写真、(b)波長分散型X線分光分析(WDS)によるCoの分布図、(c)波長分散型X線分光分析(WDS)によるN(窒素)の分布図、および図1、2の硬質合金の表面付近における電子線後方散乱回折(EBSD)データである図3を基に説明する。
図1の硬質合金1は、WCを50〜70質量%と、TiCNを15〜30質量%と、WおよびTi以外の周期表第4、5および6族金属のうちの1種以上の炭化物、窒化物および炭窒化物の少なくとも1種を0〜10質量%と、CoおよびNiの少なくとも1種以上を6〜12質量%との比率で含有する全体組成からなる。また、硬質合金1は、図1(a)(b)に示すように、WとTiおよびそれ以外の周期表第4、5および6族金属のうちの1種以上を含む炭化物、窒化物および炭窒化物の少なくとも1種からなる複合硬質相(図中灰色に観察される。β相とも言われる。)2と、WC相3(図中白色に観察される。)と、CoおよびNiの少なくとも1種以上を主体とする結合相4(図中黒色に観察される。)とを含有する組織からなる。なお、WC以外の周期表第4、5および6族金属は上記炭窒化物以外に、その一部が炭化物または窒化物として存在することもできる。
そして、本実施態様によれば、図1(a)に示すように、硬質合金1の表面側には、WC相3の含有比率が硬質合金1の内部領域に比べて高い表面領域6が存在している。表面領域6においては、WC以外の周期表第4、5および6族金属の炭化物、窒化物および炭窒化物の少なくとも1種の含有比率が、硬質合金1の内部領域7に比べて低くなっている。さらに、表面領域6におけるWC相の平均粒径が内部領域7におけるWC相3の平均粒径に対して大きくなっている。これによって、表面領域6中のWC相3を取り巻く結合相4の厚みに相当するWC相3、3間の平均自由工程が長く(厚く)なってWC相3の脱粒が抑制される結果、硬質合金1の表面における耐欠損性を向上させることができる。なお、表面領域6中でも、WC以外の周期表第4、5および6族金属は、上記炭窒化物以外に、その一部が炭化物または窒化物として存在することもできる。
また、図1(a)(c)に示すように、表面領域6の直下には、硬質合金1の内部領域7に対して硬度が高い高硬度領域8が存在している。これによって、硬質合金1の塑性変形を抑制できるとともに耐摩耗性を高める効果が顕著である。
つまり、本実施態様において、硬質合金1には、表面から、表面領域6、高硬度領域8、内部領域7の3つの領域が存在する。なお、表面領域6と高硬度領域8とは、図1から明らかなように、明確に組織が相違しており、それらの境界は明確である。もし、表面領域6と高硬度領域8との境界が不明瞭な場合には、硬質相の総量に占めるWC相の比率が80面積%以上の領域が表面領域6、硬質相の総量に占めるWC相の比率が80面積%未満の領域を高硬度領域8として分ける。また、高硬度領域8が存在しない場合でも、表面領域6と内部領域7とは明確に組織が相違しており、それらの境界は明確である。もし、表面領域6と内部領域7との境界が不明瞭な場合には、硬質相の総量に占めるWC相の比率が80面積%以上の領域が表面領域6、硬質相の総量に占めるWC相の比率が80面積%未満の領域を内部領域7として明確に分けることができる。一方、高硬度領域8が存在する場合、高硬度領域8と内部領域7との間は硬質合金1の全体として連続的に変化するために、境界は目視で明確に判別することが困難であり、図1の各測定点の硬度をつないだ硬度分布の結果から境界を決定する。すなわち、内部領域7は、硬度分布において、硬度がばらつきの範囲内で変化しない領域を指し、高硬度領域8と内部領域7との境界は、内部領域7内の硬度ばらつきの範囲の中間値と高硬度領域8の硬度曲線とが交わる点とする。なお、内部領域7の組成や組織等の性状を分析する際には、内部領域7の高硬度領域8との境界からはるかに離れた硬質合金1の表面から1000μmの深さ位置にて分析する。
ここで、表面領域6におけるWC相3の平均粒径が、内部領域7におけるWC相3の平均粒径に対して1.1〜1.5倍であれば、硬質合金1の耐欠損性および耐摩耗性をよりバランスよく維持できる。なお、本実施態様では、内部領域7におけるWC相3の平均粒径は1.5〜4.0μmであり、特に望ましい平均粒径は2.7〜3.5μmである。
また、図2(b)の波長分散型X線分光分析(WDS)によるCoの分布図より、Coは点在して存在していることがわかる。そして、図1、図2のデータを加味すると、表面領域6において最もCo含有比率が高く(図中、白色の割合が多い)、次に、内部領域7(図2では高硬度領域8に近い側を内部領域7として指している。)においてCo含有比率が高く、高硬度領域8においてはCo含有比率が低い(図2(b)中、白色の割合が少ない)ことがわかる。また、図2(b)の前記Coの分布図と(c)のNの分布図とを比較すると、Coの含有比率が高い部分、すなわち結合相4の位置でN(窒素)の含有比率が高く(図2(c)中、白色の割合が多い)、次に複合硬質相2の位置で含有比率が高く、WC相3の位置では含有比率が低い(図中、白色の割合が少ない)ことがわかる。
つまり、図2によれば、表面領域6に含有される結合相の含有比率が内部領域7に含有される結合相の含有比率よりも多く、かつ表面領域6において結合相4に含有される窒素含有比率がWC相3に含有される窒素含有比率よりも多い。それゆえ、表面領域6の結合相4に含有される窒素含有比率が内部領域7の結合相4に含有される窒素含有比率よりも高くなっている。その結果、表面領域6のWC相3を取り巻く結合相4の耐塑性変形性が向上してWC相3の脱粒が抑制される結果、硬質合金1の表面における耐欠損性を向上させることができる。
ここで、内部領域7は、硬質合金1の全体組成と同じ組成からなる。表面領域6は、内部領域7に対してWC相3の含有比率が高く、複合硬質相2の含有比率が低い組成からなる。高硬度領域8は、内部領域7および表面領域6に比較して、複合硬質相2の含有比率が高く、WC相3、Coおよび窒素の含有比率が低い組成からなる。
また、本実施態様では、表面領域6における窒素含有比率が内部領域7における窒素含有比率に対して1.1倍以上である。これによって、硬質合金1の耐欠損性および耐摩耗性をともにバランスよく維持できる。表面領域6における窒素含有比率が内部領域7における窒素含有比率の望ましい範囲は1.08〜1.10である。
なお、本実施態様では、表面領域6の厚みは5〜20μmである。これによって、硬質合金1の表面における靭性を高めることができるとともに、硬質合金1の表面における塑性変形を抑制できる。また、表面領域6がこの厚みであれば、硬質合金1中の成分が硬質合金1の表面に後述する化学蒸着(CVD)膜を成膜した際に、構成する結晶の一部が異常成長することを抑制して、硬質合金1の表面に良好なCVD膜を形成することができる。表面領域6の特に望ましい厚みは10〜20μmである。
本実施態様によれば、高硬度領域8の厚みは30〜200μm、特に望ましくは50〜150μmであり、硬質合金1の耐塑性変形性を向上させるとともに、耐摩耗性を高めることができる。
また、本実施態様では、表面領域6の厚み方向の中央におけるビッカース硬度が、内部領域7における平均ビッカース硬度に対して0.8〜1.0倍の範囲であり、高硬度領域8のビッカース硬度の極大値が内部領域7における平均ビッカース硬度に対して1.2〜1.3倍の範囲である。この範囲であれば、硬質合金1の耐摩耗性および耐欠損性をともに高めることができる。
さらに、本実施態様では、図3の硬質合金1の表面付近における電子線後方散乱回折(EBSD)データに示すように、表面領域6の直下の高硬度領域8の中でも複合硬質相2の平均粒径が表面から内部領域に向かって減少しており、高硬度領域8の表面における硬度を高めて耐摩耗性に優れるという効果を発揮する。さらに、本実施態様では、高硬度領域8には内部領域7に対してWC相3の含有比率が低く、高硬度領域8の硬度が高くなる。なお、図3のEBSDデータでは、複合硬質相2が白色、WC相3が灰色、結合相4が黒色で表される。
また、上記硬質合金1の表面には、所望により、化学蒸着(CVD)法、もしくはイオンプレーティング法やスパッタリング法等の物理蒸着(PVD)法による被覆層が成膜される。上記硬質合金1によれば、表面領域6が存在することによって、被覆層がすぐにチッピングしてしまうことを抑制することができ、密着性も良好である。特に、CVD膜は高速切削に対する耐摩耗性に優れているが、表面領域6が存在することによって、CVD膜が異常な粒成長をすることもなく、正常な粒子からなる被覆層を作製することができる。
本実施態様における被覆層は、硬質合金1側からTiCN層を4〜10μmと、Al層を3〜8μmとを具備する。被覆層のより具体的な構成は、硬質合金1側から、TiN層を0.1〜0.3μm、TiCN層を4〜10μm、TiCNO層を0.1〜0.5μm、Al層を3〜8μm、TiN層を0.1〜0.5μmが挙げられる。特に、Al層の厚みが4〜8μmであれば、すくい面にクレータ摩耗が発生するような切削速度が250m/分以上、特に300m/分以上の高速切削条件においても優れた耐欠損性および耐摩耗性を発揮する。
なお、上記硬質合金1は優れた耐摩耗性および耐欠損性を有することから、各種の構造部材や耐摩工具、切削工具等に適用可能であり、特に、高い耐摩耗性および耐欠損性が要求される切削工具として好適に応用可能である。
(製造方法)
次に、上述した硬質合金の製造方法の一例について説明する。
まず、平均粒径0.5〜2.0μm、望ましくは0.6〜1.5μmのTiCN粉末と、平均粒径0.5〜5μmのWC粉末と、平均粒径0.1〜2μmの上述した他の周期表第4、5および6族金属の炭化物粉末、窒化物粉末または炭窒化物粉末のいずれか1種と、平均粒径1.0〜3.0μmのCo粉末と平均粒径0.3〜0.8μmのNi粉末との少なくとも1種と、を混合した混合原料粉末を作製する。なお、この混合原料粉末中にTiCN粉末ととともにTiC粉末やTiN粉末を添加することもあるが、これらの原料粉末は焼成中に固溶して、焼成後の複合硬質相においてともにTiCNを構成する。
次に、上記混合原料粉末を用いて切削工具形状等の所定の形状に成形する。成形方法としては、プレス成形、押出成形、鋳込み成形、射出成形等の公知の成形方法が採用できる。そして、上記成形体を下記の条件で焼成することにより、上述した所定組織の硬質合金を作製することができる。具体的な焼成条件の一例としては、
(a)1050〜1250℃まで昇温し、
(b)真空雰囲気で5〜10℃/分の昇温速度rで1300〜1400℃まで昇温し、(c)窒素(N)を1000〜3000Pa充填した雰囲気で0.1〜5℃/分の昇温速度rで1500〜1600℃の焼成温度Tまで昇温するとともに、
(d)真空雰囲気、または不活性ガスを充填した雰囲気で0.5〜1時間維持し、(e)3〜15℃/分の冷却速度で冷却する工程にて焼成する。
ここで、(b)工程における雰囲気が窒素(N)などの不活性ガス雰囲気であると合金内部領域にガスが多量に発生して残存しボイドとなるために、緻密な合金が得られずに合金の靭性が低下する恐れがあり、(b)工程における昇温速度が5℃/分より遅いとTiCNの分解が合金の内部領域まで進んで表面領域が形成されず、10℃/分より速いと合金内部領域にTiCNの分解によるガスが多量に発生してボイドが残存するために緻密な焼結体が得られない。また、(c)工程における雰囲気が真空であると、TiCNの分解が進みすぎて過焼結となり異常粒成長が発生してWC相3の粒径制御が困難であり、(c)工程における昇温速度が0.1℃/分より遅いことは現実的でなく、5℃/分より速いと表面領域の厚みが薄くなるとともに、表面領域のおけるWC相の粒成長が不十分となる。
なお、表面領域の結合相の窒素含有比率が内部領域の結合相の窒素含有比率よりも多く、かつ表面領域において結合相に含有される窒素含有比率が複合硬質相に含有される窒素含有比率よりも多い構成とするためには、上記(e)工程における冷却時の雰囲気が窒素(N)を3000〜10000Paの加圧状態となるように導入した雰囲気に制御する必要があり、(e)工程における窒素(N)含有量が3000Pa未満であると、表面領域の結合相の窒素含有比率が内部領域の結合相の窒素含有比率に比べて著しく少なくなる傾向にある。また、焼成後の冷却速度を5〜12℃/分とすることにより、高硬度領域において表面から内部領域に向かって複合硬質相の平均粒径が減少する構成とできる。
そして、所望により、硬質合金の表面に被覆層を成膜する。被覆層の成膜方法として、化学蒸着(CVD)法にて成膜する場合には、まず、硬質合金1の直上に第1層としてTiN層を形成する。TiN層の成膜条件としては、混合ガス組成として四塩化チタン(TiCl)ガスを0.5〜10体積%、窒素(N)ガスを10〜60体積%の割合で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を800〜940℃(チャンバ内)、圧力を8〜50kPaにて成膜される。
次に、第2層としてTiCN層を形成する。ここでは、TiCN層が、平均結晶幅が小さい微細柱状結晶層と、この層よりも平均結晶幅が大きい粗柱状結晶層とのMT−TiCN層と、HT−TiCN層との3層にて構成する場合の成膜条件について説明する。
MT−TiCN層のうちの微細柱状結晶層の成膜条件は、四塩化チタン(TiCl)ガスを0.5〜10体積%、窒素(N)ガスを10〜60体積%、アセトニトリル(CHCN)ガスを0.1〜0.4体積%の割合で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を780〜900℃、圧力を5〜25kPaとする。MT−TiCN層のうちの粗柱状結晶層の成膜条件は、四塩化チタン(TiCl)ガスを0.5〜4.0体積%、窒素(N)ガスを10〜40体積%、アセトニトリル(CHCN)ガスを0.4〜2.0体積%の割合で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を780〜900℃、圧力を5〜25kPaとする。
HT−TiCN層は、四塩化チタン(TiCl)ガスを0.1〜4体積%、メタン(CH)ガスを0.1〜10体積%、窒素(N)ガスを5〜25体積%の割合で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を950〜1100℃、圧力を5〜40kPaとして成膜する。
TiCNOからなる中間層は、チャンバ内を950〜1100℃、5〜40kPaとし、四塩化チタン(TiCl)ガスを1〜5体積%、メタン(CH)ガスを4〜10体積%、窒素(N)ガスを10〜30体積%、一酸化炭素(CO)ガスを4〜8体積%、残りが水素(H)ガスからなる混合ガスを調整して、チャンバ内に10〜60分導入して成膜する。なお、このCOガスを含む混合ガスを流す工程を経ることなく中間層を形成することもできるが、α型Al層を構成する結晶を微細なものとするためには、COガスを含む混合ガスを流す工程を経ることが望ましい。
Al層の成膜条件は、三塩化アルミニウム(AlCl)ガスを0.5〜5.0体積%、塩化水素(HCl)ガスを0.5〜3.5体積%、二酸化炭素(CO)ガスを0.5〜5.0体積%、硫化水素(HS)ガスを0〜0.5体積%、残りが水素(H)ガスからなる混合ガスをチャンバ内に導入し、成膜温度を950〜1100℃、圧力を5〜10kPaとして成膜する。
さらに、α型Al層の上層にTiN層を形成する。混合ガス組成としてTiClガスを0.1〜10体積%、Nガスを10〜60体積%の比率で含み、残りがHガスからなる混合ガスを用い、反応チャンバ内の温度を800〜1010℃、圧力を10〜85kPaとして成膜する。
マイクロトラック法による測定で平均粒径(d50値)が1.1μmのWC粉末、平均粒径2.0μmのTiCN粉末、平均粒径1.5μmのTiN粉末、平均粒径2μmのTaC粉末、平均粒径1.5μmのNbC粉末、平均粒径1.8μmのZrC粉末、平均粒径1.0μmのMoC粉末、平均粒径2.4μmのNi粉末、および平均粒径1.9μmのCo粉末を用いて、表1に示す割合で調製した混合粉末に、イソプロピルアルコール(IPA)を添加して、ステンレス製ボールミルと超硬ボールを用いて湿式混合し、パラフィンを3質量%添加、混合した後、スプレードライヤにて顆粒とした。
そして、この成形用の顆粒を用いて200MPaで加圧してCNMA120408の工具形状にプレス成形した。
さらに、この成形体を焼成炉に投入して、(a)10℃/分の昇温速度で1200℃まで昇温し、(b)真空雰囲気で表2に示す昇温速度rで1400℃まで昇温し、(c)表2に示す窒素(N)ガスを充填した雰囲気(表中、雰囲気(Pa)と記載)、昇温速度rで、焼成温度Tまで昇温するとともに、その状態で1時間維持し、(d)10℃/分の冷却速度で冷却する工程にて焼成する焼成条件で焼成した。
得られた硬質合金について、走査型電子顕微鏡(SEM)観察および表面付近における電子線後方散乱回折(EBSD)測定を行い、10000倍の写真にて、表面および内部領域のそれぞれ任意5箇所について市販の画像解析ソフトを用いて8μm×8μmの領域で画像解析を行い、硬質相の存在状態、表面領域の存在を確認するとともにこれらの面積比率および平均粒径を算出した。なお、面積比率は写真の一視野における画像データをグレースケールに変換して、各ドットにおける明度に基づいて明度の頻度グラフを作成し、明度が最も高い集合をWC相、次に高い集合を複合粒子、明度が最も低い集合を結合相と特定して、そのドットの数の比率を面積比率として算出した。また、各集合の間の遷移領域については、その中間の明度を閾値として計算した。さらに、高硬度領域の表面領域および内部領域との界面から20μmの深さを境界として、表面領域側と内部領域側における複合硬質相の平均粒径を測定した。結果は表2〜4に示した。
なお、焼成後の硬質合金中の組成は、TiNが焼成中にTiCNに変化する以外は表1の混合原料粉末に記載された組成と同じであった。すなわち、WCの含有量は表1の混合原料粉末中のWCの含有量と同じであり、TiCNの含有量は表1の混合原料粉末中のTiCNおよびTiNの合計の含有量(Ti化合物総量)と同じであった。また、WおよびTi以外の周期表4、5および6族金属のうちの1種以上の炭窒化物の含有量は表1の混合原料粉末中の他の化合物の合計の金属含有量と同じであるが、すべてが炭窒化物となっていた。さらに、CoおよびNiの含有量は表1の混合原料粉末中のCoおよびNiの合計の含有量と同じであった。
また、硬質合金の表面から斜め研磨した状態で、硬質合金の表面からの距離に対応する各位置にて荷重50gでビッカース硬度を測定し、ビッカース硬度の分布を図1(c)のようなグラフとした。このグラフから、表面領域の厚み方向の中央におけるビッカース硬度Hvd、内部領域における平均ビッカース硬度Hvi、高硬度領域中のビッカース硬度の極大値Hvhを求めた。結果は表2〜4に示した。
次に、得られた硬質合金にCVD法によって、表5の成膜条件で、TiNを0.2μm−TiCNをTiCN1〜3の合計で10μm−TiCNOを0.1μm−Alを3μm−TiNを0.1μmの順に積層して切削工具を作製した。この切削工具を用いて以下の切削条件にて切削試験を行った。結果は表4に併せて示した。
(摩耗評価)
被削材:SCM435
切削速度:250m/分
送り:0.30 mm/rev
切込み:2.0mm
切削状態:湿式(水溶性切削液使用)
評価方法:摩耗量が0.2mmに達するまでの時間
(欠損評価)
被削材:SCM440(5mm幅×4本溝入り)
切削速度:250m/分
送り:0.30 mm/rev
切込み:1.5mm
切削状態:湿式(水溶性切削液使用)
評価方法:刃先が欠損するまでの衝撃回数
表1〜5より、(b)工程における昇温速度が5℃/分より遅い試料No.I−6では、TiCNの分解が合金の内部領域まで進んで表面領域が形成されなかった。また、(b)工程における昇温速度が10℃/分より速い試料No.I−5では、合金内部領域にTiCNの分解によるガスが多量に発生してボイドが残存して緻密な焼結体が得られなかった。そして、試料No.I−5では、表面領域におけるWC相の平均粒径が合金内部領域におけるWC相の平均粒径に対して小さく、試料No.I−6では、表面領域が生成されず、いずれも耐摩耗性および耐欠損性とも劣るものであった。また、(c)工程におけるN雰囲気が1000Paより低い試料No.I−7では、TiCNの分解が進みすぎて過焼結となり異常粒成長が発生してWC相の粒径制御が困難であり、表面領域におけるWC相の平均粒径と内部領域におけるWC相の平均粒径が同じであった。また、(c)工程における昇温速度が5℃/分より速い試料No.I−8では、表面領域の厚みが薄く、かつ表面領域におけるWC相の平均粒径が合金内部領域におけるWC相の平均粒径に対して小さいものであった。そして、試料No.I−7、8のいずれも耐摩耗性および耐欠損性とも劣るものであった。
これに対し、本発明の範囲内の組織となったサーメットからなる試料No.I−1〜4では、優れた耐摩耗性を発揮するとともに耐欠損性も良好であり、工具寿命が長いものであった。
実施例1と同じ原料粉末を用いて、表6に示す割合で調製した混合粉末を実施例1と同様に混合して、造粒、成形した。
さらに、この成形体を焼成炉に投入して、(b)工程を表7に示す昇温速度rで1400℃まで昇温し、(c)工程を表7に示す窒素(N)ガスを充填した雰囲気(表中、雰囲気(Pa)と記載)、昇温速度rで、焼成温度Tまで昇温し、さらに、(e)工程を表7に示すN雰囲気で10℃/分の冷却速度で冷却すること以外は、実施例1と同様にして焼成した。
得られた硬質合金について、実施例1と同様に、硬質相の存在状態、表面領域の存在を確認するとともにこれらの面積比率を算出した。また、同領域で波長分散型X線分光分析(WDS)によるCoおよびN(窒素)の分布状態を確認し、さらに、同領域にてオージェ分光分析(AES)にて各部位に含まれる窒素含有比率を測定した。結果は表7−9に示した。なお、焼成後の硬質合金中の組成は、TiNが焼成中にTiCNに変化する以外は表6の混合原料粉末に記載された組成と同じであった。
また、実施例1と同様に、ビッカース硬度を測定し、ビッカース硬度の分布を図1(c)のようなグラフとした。このグラフから、表面領域の厚み方向の中央におけるビッカース硬度Hvd、内部領域における平均ビッカース硬度Hvi、高硬度領域のビッカース硬度の極大値Hvhを求めた。結果は表7−9に示した。
次に、得られた硬質合金に実施例1と同じ仕様の被覆層を成膜して切削工具を作製した。この切削工具を用いて実施例1と同じ切削条件にて切削試験を行った。結果は表9に併せて示した。
表6〜9より、(b)工程における昇温速度が5℃/分より遅い試料No.II−6では、TiCNの分解が合金の内部領域まで進んで表面領域が形成されなかった。(b)工程における昇温速度が10℃/分より速い試料No.II−5では、合金内部領域にTiCNの分解によるガスが多量に発生してボイドが残存して緻密な焼結体が得られず、表面領域の結合相の窒素含有比率が合金内部領域の結合相の窒素含有比率と同じであった。そして、いずれも耐摩耗性および耐欠損性とも劣るものであった。また、(c)工程におけるN雰囲気が1000Paより低い試料No.II−7では、TiCNの分解が進みすぎて過焼結となり異常粒成長が発生して結合相の窒素含有比率の制御が困難であり、表面領域の結合相の窒素含有比率が合金内部領域の結合相の窒素含有比率に対して少ないものであった。(c)工程における昇温速度が5℃/分より速い試料No.II−8では、表面領域の厚みが薄く、かつ表面領域の結合相の窒素含有比率が合金内部領域の結合相の窒素含有比率に対して少ないものであった。試料No.II−7、8のいずれも耐摩耗性および耐欠損性とも劣るものであった。さらに、冷却時の雰囲気として窒素3000Pa以上の加圧雰囲気にしなかった試料No.II−9では、表面領域の結合相の窒素含有比率が内部領域の結合相の窒素含有比率に比べて少ないため、耐摩耗性と耐欠損性に劣る結果となった。試料No.5、7〜9のいずれの試料においても、表面領域におけるWC相の平均粒径が合金内部領域におけるWC相の平均粒径に対して小さいものであった。
これに対し、本発明の範囲内の組織となったサーメットからなる試料No.II−1〜4では、優れた耐摩耗性を発揮するとともに耐欠損性も良好であり、工具寿命が長いものであった。
被覆層の構成を、TiNを0.2μm−TiCNを9μm−TiCNOを0.1μm−Alを5μm−TiNを0.1μmの厚みに変更する以外は、実施例2のNo.II−1の試料と同様にして、切削工具を作製し、実施例2と同様に切削性能を評価したところ、摩耗評価では22分、欠損評価では2200回となった。
1 硬質合金
2 複合硬質相
3 WC相
4 結合相
6 表面領域
7 内部領域
8 高硬度領域

Claims (13)

  1. WCを50〜70質量%と、TiCNを15〜30質量%と、WおよびTi以外の周期表第4、5および6族金属のうちの1種以上の炭化物、窒化物および炭窒化物の少なくとも1種を0〜10質量%と、を主体として、WC相と複合硬質相とを含有する硬質相と、CoおよびNiの少なくとも1種以上を6〜12質量%を主体とする結合相を含有する硬質合金であって、該硬質合金の表面に、WCの含有比率が前記硬質合金の内部領域に比べて高い表面領域が存在するとともに、該表面領域におけるWC相の平均粒径が前記内部領域におけるWC相の平均粒径に対して大きい硬質合金。
  2. 前記表面領域におけるWC相の平均粒径が前記内部領域におけるWC相の平均粒径に対して1.1〜1.5倍である請求項1記載の硬質合金。
  3. 前記表面領域の厚みが5〜20μmである請求項1または2記載の硬質合金。
  4. 前記表面領域の直下に、前記硬質合金の内部領域に対して硬度が高い高硬度領域が存在する請求項1乃至3のいずれか記載の硬質合金。
  5. 前記高硬度領域中では前記内部領域に対して前記WC相の含有比率が低い請求項4記載の硬質合金。
  6. 前記高硬度領域における複合硬質相の平均粒径が表面から内部領域に向かって減少している請求項4または5記載の硬質合金。
  7. 前記表面領域の厚み方向の中央におけるビッカース硬度が、前記内部領域における平均ビッカース硬度に対して0.8〜1.0倍の範囲である請求項1乃至6のいずれか記載の硬質合金。
  8. 前記高硬度領域中のビッカース硬度の極大値が前記内部領域における平均ビッカース硬度に対して1.2〜1.3倍の範囲である請求項4乃至7のいずれか記載の硬質合金。
  9. 前記表面領域の前記結合相の窒素含有比率が前記内部領域の前記結合相の窒素含有比率よりも多く、かつ前記表面領域において前記結合相に含有される窒素含有比率が前記複合硬質相に含有される窒素含有比率よりも多い請求項1乃至8のいずれか記載の硬質合金。
  10. 前記表面領域の結合相に含有される窒素含有比率が内部領域の前記結合相に含有される窒素含有比率に対して1.1倍以上高い請求項9記載の硬質合金。
  11. 請求項1乃至10のいずれか記載の硬質合金からなる切削工具。
  12. 前記硬質合金の表面に被覆層を設けた請求項11記載の切削工具。
  13. 前記被覆層は、前記硬質合金側から、TiCN層を4〜10μmと、Al層を3〜8μmとを順に具備する請求項12記載の切削工具。
JP2013522902A 2011-06-27 2012-06-27 硬質合金および切削工具 Active JP5815709B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013522902A JP5815709B2 (ja) 2011-06-27 2012-06-27 硬質合金および切削工具

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011141916 2011-06-27
JP2011141916 2011-06-27
JP2011204787 2011-09-20
JP2011204787 2011-09-20
JP2011237452 2011-10-28
JP2011237452 2011-10-28
PCT/JP2012/066409 WO2013002270A1 (ja) 2011-06-27 2012-06-27 硬質合金および切削工具
JP2013522902A JP5815709B2 (ja) 2011-06-27 2012-06-27 硬質合金および切削工具

Publications (2)

Publication Number Publication Date
JPWO2013002270A1 true JPWO2013002270A1 (ja) 2015-02-23
JP5815709B2 JP5815709B2 (ja) 2015-11-17

Family

ID=47424161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013522902A Active JP5815709B2 (ja) 2011-06-27 2012-06-27 硬質合金および切削工具

Country Status (5)

Country Link
US (1) US9228252B2 (ja)
EP (1) EP2725111B1 (ja)
JP (1) JP5815709B2 (ja)
CN (1) CN103635599B (ja)
WO (1) WO2013002270A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084389A1 (ja) * 2012-11-29 2014-06-05 京セラ株式会社 総形刃物および木材用総形工具
JP6169913B2 (ja) * 2013-07-26 2017-07-26 京セラ株式会社 切削工具
JP6227517B2 (ja) * 2014-11-20 2017-11-08 日本特殊合金株式会社 超硬合金
DE112015005350T5 (de) * 2014-11-27 2017-08-10 Kyocera Corporation Cermet und Schneidwerkzeug
JP2016108668A (ja) * 2014-12-05 2016-06-20 株式会社日立製作所 複合部材および複合部材の製造方法
US10837104B2 (en) * 2015-08-29 2020-11-17 Kyocera Corporation Coated tool
CN106041092A (zh) * 2016-08-19 2016-10-26 合肥东方节能科技股份有限公司 一种基于WC‑10Co硬质合金低压烧结成型导卫导轮的方法
CN106216673A (zh) * 2016-08-22 2016-12-14 合肥东方节能科技股份有限公司 一种基于放电等离子的硬质合金烧结成型导轮的方法
CN106077668A (zh) * 2016-08-22 2016-11-09 合肥东方节能科技股份有限公司 一种基于热等静压的硬质合金烧结成型导轮的方法
CN106312075A (zh) * 2016-08-22 2017-01-11 合肥东方节能科技股份有限公司 一种基于还原碳化的硬质合金烧结成型导卫导轮的方法
CN107385302A (zh) * 2017-07-24 2017-11-24 苏州宏久航空防热材料科技有限公司 一种高硬度Ti(C,N)基金属陶瓷刀具复合材料
CN112399898A (zh) * 2019-06-13 2021-02-23 住友电工硬质合金株式会社 切削工具
WO2021079561A1 (ja) * 2019-10-25 2021-04-29 住友電気工業株式会社 超硬合金及びそれを基材として含む切削工具
JP6969732B1 (ja) * 2020-04-15 2021-11-24 住友電工ハードメタル株式会社 超硬合金およびそれを含む切削工具
WO2022091343A1 (ja) * 2020-10-30 2022-05-05 住友電工ハードメタル株式会社 超硬合金及びそれを備える切削工具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471104A (en) * 1977-11-18 1979-06-07 Toshiba Tungaloy Co Ltd Antiiseparating surface coating of super hard alloy
JPH04285287A (ja) * 1991-03-13 1992-10-09 Mitsubishi Materials Corp 炭化タングステン基超硬合金製鉱山・建設用工具
JPH04294907A (ja) * 1991-03-25 1992-10-19 Mitsubishi Materials Corp 硬質層被覆炭化タングステン基超硬合金製切削工具
JPH0711375A (ja) * 1992-10-26 1995-01-13 Kobe Steel Ltd 超硬合金、硬質炭素膜被覆超硬合金および超硬合金の製造方法並びにこれらの合金を応用した工具
JPH10138027A (ja) * 1996-11-11 1998-05-26 Shinko Kobelco Tool Kk ドリル用超硬合金および該合金を用いたプリント基板穿孔用ドリル
JP2009275237A (ja) * 2008-05-12 2009-11-26 Dijet Ind Co Ltd 超硬質合金
WO2011002008A1 (ja) * 2009-06-30 2011-01-06 株式会社タンガロイ サーメットおよび被覆サーメット

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066553A (en) * 1989-04-12 1991-11-19 Mitsubishi Metal Corporation Surface-coated tool member of tungsten carbide based cemented carbide
EP0560212B2 (en) * 1992-03-05 1999-12-15 Sumitomo Electric Industries, Limited Coated cemented carbides
US5716170A (en) * 1996-05-15 1998-02-10 Kennametal Inc. Diamond coated cutting member and method of making the same
SE517474C2 (sv) * 1996-10-11 2002-06-11 Sandvik Ab Sätt att tillverka hårdmetall med bindefasanrikad ytzon
SE9802487D0 (sv) * 1998-07-09 1998-07-09 Sandvik Ab Cemented carbide insert with binder phase enriched surface zone
SE522730C2 (sv) * 2000-11-23 2004-03-02 Sandvik Ab Metod för tillverkning av en belagd hårdmetallkropp avsedd för skärande bearbetning
US6660329B2 (en) * 2001-09-05 2003-12-09 Kennametal Inc. Method for making diamond coated cutting tool
DE10342364A1 (de) * 2003-09-12 2005-04-14 Kennametal Widia Gmbh & Co.Kg Hartmetall-oder Cermetkörper und Verfahren zu seiner Herstellung
EP2184122A1 (en) * 2008-11-11 2010-05-12 Sandvik Intellectual Property AB Cemented carbide body and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471104A (en) * 1977-11-18 1979-06-07 Toshiba Tungaloy Co Ltd Antiiseparating surface coating of super hard alloy
JPH04285287A (ja) * 1991-03-13 1992-10-09 Mitsubishi Materials Corp 炭化タングステン基超硬合金製鉱山・建設用工具
JPH04294907A (ja) * 1991-03-25 1992-10-19 Mitsubishi Materials Corp 硬質層被覆炭化タングステン基超硬合金製切削工具
JPH0711375A (ja) * 1992-10-26 1995-01-13 Kobe Steel Ltd 超硬合金、硬質炭素膜被覆超硬合金および超硬合金の製造方法並びにこれらの合金を応用した工具
JPH10138027A (ja) * 1996-11-11 1998-05-26 Shinko Kobelco Tool Kk ドリル用超硬合金および該合金を用いたプリント基板穿孔用ドリル
JP2009275237A (ja) * 2008-05-12 2009-11-26 Dijet Ind Co Ltd 超硬質合金
WO2011002008A1 (ja) * 2009-06-30 2011-01-06 株式会社タンガロイ サーメットおよび被覆サーメット

Also Published As

Publication number Publication date
EP2725111B1 (en) 2019-10-02
US20140127527A1 (en) 2014-05-08
JP5815709B2 (ja) 2015-11-17
CN103635599B (zh) 2016-03-30
EP2725111A1 (en) 2014-04-30
WO2013002270A1 (ja) 2013-01-03
EP2725111A4 (en) 2015-07-22
US9228252B2 (en) 2016-01-05
CN103635599A (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5815709B2 (ja) 硬質合金および切削工具
US10953473B2 (en) Surface-coated cutting tool and method of producing the same
EP1935999A2 (en) Coated cemented carbide endmill
US10259048B2 (en) Surface-coated cutting tool and method of producing the same
US9074270B2 (en) Sintered cermet and cutting tool
US20190010583A1 (en) Cutting tool
JP4474646B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
EP3415255B1 (en) Surface-coated cutting tool and method for producing same
WO2014208447A1 (ja) サーメットおよびその製造方法並びに切削工具
CN104726848B (zh) 表面包覆切削工具
JP2017159409A (ja) すぐれた耐摩耗性を発揮する表面被覆切削工具
JP5170828B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP5003308B2 (ja) 表面被覆切削工具
KR101302374B1 (ko) 내마모성과 내치핑성이 우수한 초경합금
JP2018161739A (ja) 硬質被覆層が優れた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP7385829B2 (ja) 耐塑性変形性、耐欠損性にすぐれたwc基超硬合金製切削工具および表面被覆wc基超硬合金製切削工具
JP2018149668A (ja) 硬質被覆層が優れた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP2018144115A (ja) 硬質被覆層がすぐれた耐チッピング性、耐剥離性を発揮する表面被覆切削工具
JP2007160464A (ja) 硬質被覆層が高速断続切削ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP5682500B2 (ja) 硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP5682501B2 (ja) 硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP5742572B2 (ja) 硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP2020110891A (ja) 耐塑性変形性、耐チッピング性にすぐれたwc基超硬合金製切削工具および表面被覆wc基超硬合金製切削工具
JP2023095013A (ja) サーメット焼結体
JP2021152201A (ja) すぐれた耐欠損性、耐塑性変形性を発揮する切削工具

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150924

R150 Certificate of patent or registration of utility model

Ref document number: 5815709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150