JPWO2012144344A1 - 溶融塩電池装置 - Google Patents

溶融塩電池装置 Download PDF

Info

Publication number
JPWO2012144344A1
JPWO2012144344A1 JP2013510944A JP2013510944A JPWO2012144344A1 JP WO2012144344 A1 JPWO2012144344 A1 JP WO2012144344A1 JP 2013510944 A JP2013510944 A JP 2013510944A JP 2013510944 A JP2013510944 A JP 2013510944A JP WO2012144344 A1 JPWO2012144344 A1 JP WO2012144344A1
Authority
JP
Japan
Prior art keywords
molten salt
salt battery
temperature
battery
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013510944A
Other languages
English (en)
Inventor
篤史 福永
篤史 福永
稲澤 信二
信二 稲澤
新田 耕司
耕司 新田
将一郎 酒井
将一郎 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of JPWO2012144344A1 publication Critical patent/JPWO2012144344A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/399Cells with molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本発明は、溶融塩電池が異常に発熱した場合に、速やかに電池の温度を低下させることができる安全な溶融塩電池装置を提供することを解決すべき課題とする。本発明は、溶融塩を電解質として用いた溶融塩電池を備える溶融塩電池装置であって、前記溶融塩電池の温度を検出する温度検出手段と、前記溶融塩電池を冷媒で冷却させる冷却手段と、前記温度検出手段からの信号を入力し、前記冷却手段に動作指令を出力する制御手段とを備える。この溶融塩電池装置を用いれば、溶融塩電池が異常に発熱した場合に、冷媒によって溶融塩電池を冷却させるため、電池を安全な温度まで速やかに冷却することができる。

Description

本発明は、溶融塩電池を備えた溶融塩電池装置に関する。
近年、携帯電話やモバイルパソコン、デジタルカメラなどの電子機器が急速に普及し、小型の二次電池の需要が急速に増加している。一方、電力・エネルギーの世界では、太陽光や風力などの自然エネルギーを利用した発電が盛んに行われており、気候や天候に左右される不安定な電力供給を平準化させるためには電力貯蔵用の二次電池が不可欠である。
この目的に対応した二次電池として、高エネルギー密度で大容量の溶融塩電池が着目されている。この溶融塩電池は、溶融塩を電解質として用いており、この溶融塩を所定温度で融解することにより、充放電ができるようになっている(例えば、特許文献1参照)。
また特許文献2に開示されたナトリウム−硫黄電池や鉛蓄電池、さらに最近提案され、特許文献3に開示された比較的低温で動作する溶融塩電池等がある。
この溶融塩電池は、溶融塩を電解質として用いており、この溶融塩を所定温度で融解することにより、充放電ができるようになっている。
特開平8−138732号公報 特開2007−273297号公報 WO/2011/036907
溶融塩電池は、短絡などの原因で温度が異常に上昇した場合、化学反応により各種のガスが発生するため、電池容器内の圧力が上昇する恐れがある。このような異常発熱時には、溶融塩電池を所定温度(例えば、80℃〜95℃)に加温するために備えている加温ヒータの電源を切っていた。
一方、溶融塩電池は、電解質として用いている溶融塩が融解する温度以上に保持させておく必要があるため、溶融塩電池を断熱容器で収容するなど、溶融塩電池の外周は断熱構造になっていることが一般的である。したがって、異常発熱時に加温ヒータの電源を切り、加温を止めるだけでは、溶融塩電池の温度が低下するのに時間を要し、ガス発生によって電池容器が破裂するなどの事態を防止するには、十分でないという課題があった。
また、溶融塩電池で急速放電を行なうと、電池内の温度が急上昇し電池特性が変化するという問題があった。
この様な、異常なトラブル発生時や急速放電時などにおいて発生する急な温度上昇に対応可能な溶融塩電池装置が求められていた。
本発明は、以上の問題を鑑みてなされたものであり、その目的は、溶融塩電池が異常に発熱した場合に、速やかに電池の温度を低下させることができる安全な溶融塩電池装置を供給することである。
本発明に係る溶融塩電池装置は、溶融塩を電解質として用いた溶融塩電池を備えており、前記溶融塩電池の温度を検出する温度検出手段と、前記溶融塩電池を冷媒で冷却させる冷却手段と、前記温度検出手段からの信号を入力し、前記冷却手段に動作指令を出力する制御手段とを備える(請求項1)。
この溶融塩電池装置を用いれば、溶融塩電池が異常に発熱した場合に、冷媒によって溶融塩電池を冷却させるため、電池を安全な温度まで速やかに低下させることができる。
また本発明に係る溶融塩電池装置は、さらに前記溶融塩電池を加温する加温手段と、前記加温手段の電源を遮断する加温遮断手段とを備え、前記制御手段は、さらに前記加温遮断手段に動作指令を出力することが好ましい(請求項2)。
溶融塩電池が異常に発熱した場合に、溶融塩電池を所定温度に加温するために備えている加温手段の電源を遮断することで、溶融塩電池はさらに加温されることはなく、より効率的に電池の温度を低下させることができる。
また本発明に係る溶融塩電池装置は、前記溶融塩電池の温度が、所定の第一温度以上になった場合に、前記制御手段は、前記加温遮断手段に動作指令を出力し、前記溶融塩電池の温度が、第一温度よりも高い第二温度以上になった場合に、前記制御手段は、前記冷却手段に動作指令を出力することが好ましい(請求項3)。
溶融塩電池が異常に発熱して、所定の第一温度以上になった場合、まず加温手段の電源を遮断することによって、電池の温度を低下させることを試みる。電池の温度が低下して安全な温度になった場合は、冷媒を用いて冷却させることはないが、加温手段の電源を遮断しても、電池の温度がさらに上昇し、第一温度よりも高い第二温度以上になった場合は、さらに冷媒を用いて電池を冷却させる。
このようにすれば、加温手段の電源遮断だけでは温度が低下しないような大きな発熱の場合は、速やかに安全な温度に低下させるために、冷媒を用いて冷却させるが、加温手段の電源遮断で温度が低下するような軽微な発熱の場合は、過度に電池の温度を低下させず、再度電池を運転する際に、速やかに溶融塩が融解する温度以上に加温させることができるので、効率的である。
また本発明に係る溶融塩電池装置の冷却手段は、少なくとも前記溶融塩が凝固する温度まで、前記溶融塩電池を冷却させることが好ましい(請求項4)。
溶融塩電池は、電解質として用いている溶融塩が融解した状態で、充放電を行う。言い換えれば、溶融塩が所定温度以下(例えば室温)となって、融解していた溶融塩が凝固してしまうと、充放電やガス発生などの反応は起こらない。一方、リチウム電池やニッケル水素電池などは、室温よりも低い温度(例えばマイナス20℃)になっても電池反応は継続される。したがって、何らかの原因で電池の温度が異常に上昇した場合、リチウム電池やニッケル水素電池などは、冷却しても必ずしも安全であるとは言えないのに対して、溶融塩電池は、例えば室温程度に冷却することで、充放電やガス発生などの反応は起こらないため安全であると言える。
また本発明に係る溶融塩電池装置の冷却に用いる冷媒は、液体窒素であることが好ましい(請求項5)。
液体窒素は、他の冷媒(例えば水など)と比べて温度が低いため、溶融塩電池を効果的に冷却することができる。また、液体窒素よりも温度が低い液体水素や液体ヘリウムなどと比べると、汎用性も高く、取り扱いも容易である。また窒素は、溶融塩電池の塩とは反応しないため、電池が劣化や損傷することはなく、再度電池の温度を上昇させて溶融塩を融解させれば、再び充放電させることが可能である。
この冷却手段としては、一搬的な方法である水冷式もしくは空冷式が望ましい(請求項6)。この方法は実績があり、運用コストが安い。
また本発明に係る溶融塩電池装置の溶融塩電池は、断熱容器に収容されていることが好ましい(請求項7)。
溶融塩電池が断熱容器に収容されていると、加温手段の電源を遮断するだけでは、電池の温度が低下するのに時間を要するため、冷媒によって電池を冷却させるのが効果的である。
本発明によれば、溶融塩電池が異常に発熱した場合に、速やかに電池の温度を低下させ、安全に電池反応を停止させることができる。
溶融塩電池装置の構成の一例を示すブロック図である。 冷却手段の一例を模式的に示す図である。 冷却手段の一例を模式的に示す図である。 冷却手段の一例を模式的に示す図である。 溶融塩電池の構成例を模式的に示す上面図である。 溶融塩電池の模式的な正面視の透視図である。 溶融塩電池ユニットおよび冷却手段の構成を模式的に示す斜視図である。
1 溶融塩電池装置、11 正極、12、22 タブ、13、23 タブリード、15 溶融塩電池ユニット、18 溶融塩電池、21 負極、31 セパレータ、4 制御手段、5 冷却手段、51 冷媒、53、55、57 冷媒容器、54 噴射口、56 底板、58 ノズル、59 槽、6 電池容器、61、62 側壁、7 溶融塩、81、加温手段 82 加温遮断手段、83 ヒータ、85 温度検出手段、9 断熱容器
以下、本発明を実施の形態に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。
図1は溶融塩電池装置1の構成の一例を示すブロック図である。溶融塩電池装置1は、溶融塩電池18と、溶融塩電池18の温度を検出する温度検出手段85と、溶融塩電池18を冷媒で冷却させる冷却手段5とを備えている。温度検出手段85としては、市販の温度センサーや熱電対などを用いれば良く、特に限られたものではない。また溶融塩電池装置1は、制御手段4を備えており、制御手段4は、温度検出手段85からの信号を入力し、冷却手段5に動作指令を出力する。
さらに溶融塩電池装置1は、溶融塩電池18を加温する加温手段81と、加温手段81の電源を遮断する加温遮断手段82とを備え、制御手段4は、さらに加温遮断手段82にも動作指令を出力する。
溶融塩電池18が何らかの原因により異常に温度が上昇した場合を想定し、予め、通常の運転温度よりも高い所定の上限温度(例えば、100℃)を設定し、制御手段4に記憶させておく。温度検出手段85から制御手段4に入力される温度が上限温度になった場合、制御手段4は冷却手段5に動作指令を出力し、冷却手段5は溶融塩電池18を冷媒で冷却する。このようにすれば、溶融塩電池18が異常に発熱した場合に、冷媒によって溶融塩電池18を冷却させるため、溶融塩電池18を安全な温度まで速やかに低下させることができる。
また制御手段4は冷却手段5に動作指令を出力すると同時に、加温遮断手段82にも動作指令を出力しても良い。この場合、溶融塩電池18は冷媒によって冷却されると共に、加温も停止する。このようにすれば、溶融塩電池18が異常に発熱した場合に、溶融塩電池18を所定温度に加温するために備えている加温手段81の電源を遮断することで、溶融塩電池18はさらに加温されることはなく、より効率的に溶融塩電池18の温度を低下させることができる。
また溶融塩電池18の上限温度を2段階とし、例えば、通常の運転温度よりも高い第一の上限温度を第一温度(例えば、100℃)とし、さらに第一温度よりも高い第二の上限温度を第二温度(例えば、120℃)として、温度検出手段85から制御手段4に入力される温度が、第一温度になった場合は、加温遮断手段82に動作指令を出力し、第二温度になった場合は、冷却手段5に動作指令を出力するようにしても良い。この場合、溶融塩電池18が異常に発熱して第一温度になった時点では加温を停止するのみであるが、加温の停止だけでは溶融塩電池18の温度が低下せず、温度が第二温度になるような場合は、さらに冷媒を用いて冷却することになる。このようにすれば、加温手段81の電源遮断だけでは温度が低下しないような重度の発熱の場合は、速やかに安全な温度に低下させるために、冷媒を用いて冷却させるが、加温手段81の電源遮断で温度が低下するような軽微な発熱の場合は、過度に溶融塩電池18の温度を低下させず、再度溶融塩電池18を運転する際に、速やかに溶融塩が融解する温度以上に加温させることができるので、効率的である。
次に溶融塩電池を冷媒によって冷却する手段について、図2〜図4を用いて説明する。図2〜図4はいずれも冷却手段5の一例を模式的に示す図である。図2に示す冷却手段5は、冷媒容器53に貯められた冷媒51を、噴射口54から溶融塩電池18に向けて噴射するものである。
図3に示す冷却手段5は、冷媒51を貯めている冷媒容器55を溶融塩電池18の上方に配置しておき、冷媒容器55の底板56を外すことによって、冷媒51を溶融塩電池18にふりかけるものである。
図4に示す冷却手段5は、溶融塩電池18を槽59の内部に配置しておき、冷媒容器57に貯められた冷媒51を、ノズル58を通じて槽59の内部に注入するこによって、溶融塩電池18を冷媒51に浸すものである。
図2〜図4に示す冷媒51は、溶融塩電池18を冷却させることができれば、特に限られたものではない。本発明の溶融塩電池装置の冷却手段5は、図2〜図4の方法以外に、通常の水冷式もしくは空冷式が適用出来る。
水冷式では例えば冷却水を溶融塩電池18に配する様に構成した冷却水コイルに導入した冷却手段5とすれば実現することが出来る。空冷式では、図7の断熱容器9の断熱を解放・停止し、溶融塩電池18を送風機などによって空冷することができる。
特に溶融塩電池18を急速に冷却するためには、液体窒素を用いるのが好ましい。液体窒素は、他の冷媒(例えば水など)と比べて温度が低いため、溶融塩電池18を効果的に冷却することができる。また、液体窒素よりも温度が低い液体水素や液体ヘリウムなどと比べると、汎用性も高く、取り扱いも容易である。また窒素は、溶融塩電池の塩とは反応しないため、電池が劣化や損傷することはなく、再度電池の温度を上昇させて溶融塩を融解させれば、再び充放電させることが可能である。
また冷却手段5は、少なくとも溶融塩が凝固する温度まで、溶融塩電池18を冷却すれば良い。溶融塩電池18は、溶融塩が所定温度以下(例えば室温)となって、融解していた溶融塩が凝固してしまうと、充放電やガス発生などの反応は起こらないので安全でなる。
なお図2〜図4に示す冷却手段5に用いる冷媒51の量や、噴射口54の向き、底板56の数や位置などは、いずれも溶融塩電池装置1の構成や位置などによって適宜設計すれば良い。また冷却手段5の形態は、図2〜4に示す形態に限られたものではない。
次に溶融塩電池18の構成について説明する。図5は溶融塩電池18の構成例を模式的に示す上面図であり、図6は溶融塩電池18の模式的な正面視の透視図である。図中6は、アルミニウム合金からなる電池容器であり、電池容器6は、中空で有底の略直方体形状をなしている。電池容器6の内側は、フッ素コートやアルマイト処理によって絶縁処理が施されている。電池容器6内には、6つの負極21と、袋状のセパレータ31に各別に収容された5つの正極11とが、横方向(図では前後方向)に並設されている。負極21、セパレータ31および正極11が、1つの発電要素を構成しており、図5では、5つの発電要素が積層されている。
負極21の上端部には、電池容器6の一方の側壁61に近い側に、電流を取り出すための矩形のタブ(導線)22の下端部が接合されている。タブ22の上端部は、矩形平板状のタブリード23の下面に接合されている。正極11の上端部には、電池容器6の他方の側壁62に近い側に、電流を取り出すための矩形のタブ12の下端部が各別に接合されている。タブ12の上端部は、矩形平板状のタブリード13の下面に接合されている。これにより、負極21、セパレータ31および正極11からなる発電要素が、5つ並列に接続される。
タブリード13、23は、積層された正極11及び負極21を含む発電要素全体と外部の電気回路とを接続するための外部電極の役割を果たすものであり、溶融塩7の液面より上側に位置するようにしてある。
セパレータ31は、溶融塩電池18が動作する温度で溶融塩7に対する耐性を有するガラス不織布からなり、多孔質に且つ袋状をなすように形成されている。セパレータ31は、負極21及び正極11と共に、略直方体状の電池容器6内に満たされた溶融塩7の液面下約10mmの位置から下側に浸漬されている。これにより多少の液面低下が許容される。
溶融塩7は、FSI(ビスフルオロスルフォニルイミド)またはTFSI(ビストリフルオロメチルスルフォニルイミド)系アニオンと、ナトリウムおよび/またはカリウムのカチオンとからなるが、これに限定されるものではない。
本発明は、単体の溶融塩電池18に対して、図1に示すブロック図のような構成の溶融塩電池装置1としても良いし、複数の溶融塩電池18を組み合わせて溶融塩電池ユニットを構成し、溶融塩電池ユニットに対して、図1に示すブロック図のような構成の溶融塩電池装置1としても良い。以下に複数の溶融塩電池18を用いた溶融塩電池ユニットの構成の一例を説明する。 図7は溶融塩電池ユニット15の構成を模式的に示した斜視図である。溶融塩電池18をY方向に4台接続し、それらをX方向に9組並べているが、X方向には3組ずつを接触させ、3組ごとに板状のヒータ83を挿入している。またX方向の両端にも同様のヒータ83を配置している。図7では、36台の溶融塩電池18と4個のヒータ83で、溶融塩電池ユニット15を構成している。
溶融塩電池ユニット15を構成する溶融塩電池18は、電気的に直列や並列に接続されている。例えば図7では、Y方向の4台は直列に接続し、X方向の9組は並列に接続されている。またヒータ83は、図1で説明した加温手段81として機能している。つまり本例の溶融塩電池ユニット15は図1の溶融塩電池18と加温手段81を備えている。
さらに溶融塩電池ユニット15を、断熱容器9に収納することにより、溶融塩電池18は効率的に加温および保温される。このように溶融塩電池18が断熱容器9に収容されていると、加温手段81の電源を遮断するだけでは、溶融塩電池18の温度が低下するのに時間を要するため、冷媒によって溶融塩電池18を冷却させるのが効果的である。
次に、本発明を実施例に基づいてさらに詳細に説明する。
(実施例1)
実施例として、図5および図6と同様の溶融塩電池18を構成し、さらに図7に示す溶融塩電池ユニット15および冷却手段5を構成した。加温手段としては、図7に示すような板状のヒータ83を用いた。温度検出手段としては、熱電対を用い、各溶融塩電池18の表面に貼り付けた。冷却は断熱容器9の断熱を解放し、冷却手段5から、冷媒51を噴射することにより溶融塩電池18を冷却する構成とした。なお冷媒51には液体窒素を用いた。
ヒータ83で溶融塩電池が80℃になるように加温し、充放電運転を行った。その後、充放電運転中に、液体窒素を溶融塩電池18の表面に噴射したところ、約30秒で溶融塩電池ユニット15全体の溶融塩が固化し、電池反応が停止した。
さらにその後、ヒータ83で溶融塩電池18を80℃まで再度加温したところ、液体窒素を噴射する前と同様に、充放電運転を行うことができた。
(実施例2)
先の実施例1に示した構成の溶融塩電池で、冷却手段5だけを変更した2種類の溶融塩電池装置を構成した。その一つは、水冷式で図7に示した溶融塩電池18の各電池間に冷却水が導入できる冷却コイルを設けた。他の一つは、空冷式で図7の断熱容器9の断熱を解放・停止し、溶融塩電池18が送風ファンにより冷却できる構成とした。
この状態で、異常な温度上昇を想定して、二つの溶融塩電池装置を、通常の運転温度より高い100℃に制御した後、加熱手段を停止した。そして直ちに、一つは室温の水道水供給による冷却、他の一つは断熱容器9の断熱を解放・停止し、溶融塩電池18への室温の空気による送風ファンにより冷却をそれぞれ開始した。
その結果、冷却による溶融塩電解質の融点に達するに要した時間が、水冷式では約5分、空冷式では約30分であることが解った。
(比較例1)
比較例として、実施例1と同様の溶融塩電池ユニットを構成した。加温手段および温度検出手段についても、実施例1と同様の構成とした。
ヒータで溶融塩電池が80℃になるように加温し、充放電運転を行った。その後、充放電運転中に、ヒータの電源を遮断したところ、溶融塩電池ユニット全体の溶融塩が固化して電池反応が停止するのに約2時間を要した。
上記実施例1,2および比較例1の結果から、溶融塩電池に液体窒素などの冷媒を噴射することによって、あるいは水冷式もしくは空冷式により冷却することで、ヒータの電源を遮断するのみの場合と比較して、速やかに電池の温度が低下し、安全に電池反応が停止することを確認できた。
この結果より、本発明の冷却手段を設けた溶融塩電池装置は、極めて短い時間で溶融塩電池本体の温度を低下させることが明らかとなり、急速放電時の温度上昇を素早く設定温度に制御できると共に、仮に内部短絡などの異常事態の温度上昇に対しても、安全性が高い効果的な制御が可能となる。

Claims (7)

  1. 溶融塩を電解質として用いた溶融塩電池を備える溶融塩電池装置であって、
    前記溶融塩電池の温度を検出する温度検出手段と、
    前記溶融塩電池を冷媒で冷却させる冷却手段と、
    前記温度検出手段からの信号を入力し、前記冷却手段に動作指令を出力する制御手段と、
    を備えることを特徴とする溶融塩電池装置。
  2. さらに前記溶融塩電池を加温する加温手段と、前記加温手段の電源を遮断する加温遮断手段とを備え、
    前記制御手段は、さらに前記加温遮断手段に動作指令を出力することを特徴とする請求項1に記載の溶融塩電池装置。
  3. 前記溶融塩電池の温度が、所定の第一温度以上になった場合に、前記制御手段は、前記加温遮断手段に動作指令を出力し、
    前記溶融塩電池の温度が、第一温度よりも高い第二温度以上になった場合に、前記制御手段は、前記冷却手段に動作指令を出力することを特徴とする請求項2に記載の溶融塩電池装置。
  4. 前記冷却手段は、少なくとも前記溶融塩が凝固する温度まで、前記溶融塩電池を冷却させることを特徴とする請求項1ないし請求項3のいずれか1項に記載の溶融塩電池装置。
  5. 前記冷媒は液体窒素であることを特徴とする請求項1ないし請求項4のいずれか1項に記載の溶融塩電池装置。
  6. 前記冷却手段は、水冷もしくは空冷のいずれかである請求項1ないし請求項4のいずれか1項に記載の溶融塩電池装置。
  7. 前記溶融塩電池は、断熱容器に収容されていることを特徴とする請求項1ないし請求項6のいずれか1項に記載の溶融塩電池装置。
JP2013510944A 2011-04-18 2012-04-06 溶融塩電池装置 Pending JPWO2012144344A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011091778 2011-04-18
JP2011091778 2011-04-18
PCT/JP2012/059456 WO2012144344A1 (ja) 2011-04-18 2012-04-06 溶融塩電池装置

Publications (1)

Publication Number Publication Date
JPWO2012144344A1 true JPWO2012144344A1 (ja) 2014-07-28

Family

ID=47041456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013510944A Pending JPWO2012144344A1 (ja) 2011-04-18 2012-04-06 溶融塩電池装置

Country Status (6)

Country Link
US (1) US20140038011A1 (ja)
JP (1) JPWO2012144344A1 (ja)
KR (1) KR20140012731A (ja)
CN (1) CN103503222A (ja)
TW (1) TW201308719A (ja)
WO (1) WO2012144344A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11387497B2 (en) 2012-10-18 2022-07-12 Ambri Inc. Electrochemical energy storage devices
US11721841B2 (en) 2012-10-18 2023-08-08 Ambri Inc. Electrochemical energy storage devices
US11211641B2 (en) 2012-10-18 2021-12-28 Ambri Inc. Electrochemical energy storage devices
US10541451B2 (en) 2012-10-18 2020-01-21 Ambri Inc. Electrochemical energy storage devices
WO2015058010A1 (en) 2013-10-16 2015-04-23 Ambri Inc. Seals for high temperature reactive material devices
US10270139B1 (en) 2013-03-14 2019-04-23 Ambri Inc. Systems and methods for recycling electrochemical energy storage devices
WO2015058165A1 (en) * 2013-10-17 2015-04-23 Ambri Inc. Battery management systems for energy storage devices
JP6356902B2 (ja) * 2015-02-23 2018-07-11 日本碍子株式会社 蓄電池制御装置
WO2016141354A2 (en) 2015-03-05 2016-09-09 Ambri Inc. Ceramic materials and seals for high temperature reactive material devices
KR102403512B1 (ko) 2015-04-30 2022-05-31 삼성전자주식회사 공기 조화기의 실외기, 이에 적용되는 컨트롤 장치
US20170294242A1 (en) * 2015-11-05 2017-10-12 Elysium Industries Limited In situ probe for measurement of liquidus temperature in a molten salt reactor
EP3185038B1 (de) * 2015-12-23 2018-02-14 Sick Ag Optoelektronischer sensor und verfahren zur messung einer entfernung
US11516887B2 (en) * 2016-07-05 2022-11-29 International Engineered Environmental Solutions Inc. Heat-generated device and method for producing same
US11929466B2 (en) 2016-09-07 2024-03-12 Ambri Inc. Electrochemical energy storage devices
CN106532165A (zh) * 2016-12-15 2017-03-22 安徽扬能电子科技有限公司 一种电池智能高效控制系统
EP3607603A4 (en) 2017-04-07 2021-01-13 Ambri Inc. MOLTEN SALT BATTERY WITH SOLID METAL CATHODE
CN109149010A (zh) * 2018-09-13 2019-01-04 南京工业大学 新能源汽车锂离子电池模块热失控自动冷却降温系统及其实现方法
DE102020131111A1 (de) * 2020-11-24 2022-05-25 Audi Aktiengesellschaft Verfahren und Kühlanordnung zum Kühlen und Löschen eines überhitzten Batteriemoduls einer Hochvoltbatterie für ein Kraftfahrzeug

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069372A (en) * 1976-11-30 1978-01-17 Battelle Development Corporation Electric accumulator with a solid electrolyte
JPH03203170A (ja) * 1989-12-29 1991-09-04 Ngk Insulators Ltd 高温電池装置の保護方法
JPH08222280A (ja) * 1995-02-15 1996-08-30 Fujikura Ltd Na−S電池モジュールの冷却構造
JPH09106830A (ja) * 1995-10-13 1997-04-22 Mitsubishi Heavy Ind Ltd 二次電池構造
JP3130238B2 (ja) * 1995-12-18 2001-01-31 日本碍子株式会社 ナトリウム−硫黄電池
DE19649691C2 (de) * 1996-11-29 1998-10-15 Siemens Ag Flüssigkeitsgekühlte Brennstoffzellenbatterie sowie Verfahren zu deren Kühlung
JP2001333994A (ja) * 2000-05-26 2001-12-04 Hitachi Ltd 液体金属火災消火装置
JP2007066647A (ja) * 2005-08-30 2007-03-15 Toyota Motor Corp 電池冷却構造および電池モジュール
JP2010212099A (ja) * 2009-03-11 2010-09-24 Tokyo Electric Power Co Inc:The 電池システム
US9209495B2 (en) * 2009-03-25 2015-12-08 Lava Energy Systems, Inc. System and method for the thermal management of battery-based energy storage systems
US8329325B2 (en) * 2010-02-18 2012-12-11 Denso International America, Inc. Battery cooling with mist evaporation and condensation

Also Published As

Publication number Publication date
KR20140012731A (ko) 2014-02-03
WO2012144344A1 (ja) 2012-10-26
TW201308719A (zh) 2013-02-16
CN103503222A (zh) 2014-01-08
US20140038011A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
WO2012144344A1 (ja) 溶融塩電池装置
Chen et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards
JP5729306B2 (ja) 溶融塩電池装置
JP6567553B2 (ja) 電池パック
JP5520320B2 (ja) 電池モジュール
CA2709111C (en) Vehicle with a battery system
JP5846812B2 (ja) 蓄電池システム
JP6400027B2 (ja) 内部相変化材料を有する電池および前記電池の作動方法
KR20100067688A (ko) 전지 팩 및 전지 탑재 기기
RU2313158C2 (ru) Твердотельный химический источник тока и способ повышения разрядной мощности
KR101769109B1 (ko) 이차 전지용 카트리지를 포함하는 배터리 팩
JP2015220177A (ja) 蓄電装置
CN109962183A (zh) 电池盖板组件、单体电池、电池模组、动力电池包和电动汽车
CN217468561U (zh) 电池模块、包括该电池模块的电池架以及能量存储设备
KR101312102B1 (ko) 리튬 이차 전지
KR102073850B1 (ko) 배터리 모듈의 절연 물질 형성 방법 및 이를 위한 시스템
RU2573860C1 (ru) Батарея элементов тепловых химических источников тока
KR101440593B1 (ko) 나트륨 2차 전지용 전지 모듈
JP2014137953A (ja) 溶融塩電池システム、および溶融塩電池システムの運転方法
KR101769108B1 (ko) 이차 전지용 카트리지
JP2019185846A (ja) 充填部材、組電池、及び熱伝達の制御方法
JP7223721B2 (ja) ニッケル水素蓄電池の製造方法
JP2013080663A (ja) 非常用溶融塩組電池及びその使用方法並びに非常用電源装置
KR101629755B1 (ko) 이차 전지의 저온 출력 특성을 제어하기 위한 장치 및 그 방법
CN111463517A (zh) 蓄电池组和具有蓄电池组的地面处理设备