JPWO2012111851A1 - 赤外線検知センサアレイおよび赤外線検知装置 - Google Patents

赤外線検知センサアレイおよび赤外線検知装置 Download PDF

Info

Publication number
JPWO2012111851A1
JPWO2012111851A1 JP2012558052A JP2012558052A JPWO2012111851A1 JP WO2012111851 A1 JPWO2012111851 A1 JP WO2012111851A1 JP 2012558052 A JP2012558052 A JP 2012558052A JP 2012558052 A JP2012558052 A JP 2012558052A JP WO2012111851 A1 JPWO2012111851 A1 JP WO2012111851A1
Authority
JP
Japan
Prior art keywords
infrared detection
infrared
substrate
sensor
sensor array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012558052A
Other languages
English (en)
Inventor
純一郎 又賀
純一郎 又賀
尚武 高橋
尚武 高橋
佐々木 康弘
康弘 佐々木
岩波 瑞樹
瑞樹 岩波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2012111851A1 publication Critical patent/JPWO2012111851A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/024Special manufacturing steps or sacrificial layers or layer structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • G01J5/0802Optical filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本発明における赤外線検知センサアレイは、基板と、基板を貫通する少なくとも1つの空孔と、基板の一方の面に設けられた第1赤外線検知素子と、基板の他方の面において空孔の少なくとも一部を覆うように設けられた第2赤外線検知素子とを備えることを特徴とする。

Description

本発明は、赤外線検知素子を用いた空間の赤外線分布変化を検知するセンサアレイおよび赤外線検知装置に関する。
近年、情報通信技術の進展とネットワークインフラの拡充により、ビル空調の省エネルギー化や消費者行動の把握などに新たなセンサを利用する動きがある。また多数のセンサを利用するシステムを実現するために小型で製造コストの低い高感度なセンサデバイスが望まれている。
一般的に赤外線センサとしては、焦電効果を利用した焦電型赤外線センサ、材料の持つ抵抗の温度変化率を利用する抵抗変化型センサ、半導体pn接合の電気特性変化を利用するセンサ等が知られている。
特に、常温で動作可能な焦電型赤外線センサは、火災検知や人体検知に用いられるほかに、赤外線検知素子をアレイ状に配置することにより、赤外線空間分布を高い解像度で容易に画像化することができる。そのため焦電型赤外線センサは、暗所での安全確保や構造材料の探傷などに用いることができる。
特許文献1には、焦電型赤外線センサに光学回折レンズを設けた構造が記載されている。赤外線検知素子は基板に成膜プロセス、もしくは貼り付け等によりアレイ状に配置され、電気的接続を行う電極、配線を設けて密封形成している。そして密封されたパッケージは、検知対象に適した波長の赤外線のみ透過する光学フィルタと、広い視野角を確保するためにフレネルレンズなどの光学回折素子を設けている。
特開2007−292461
特許文献1に記載の焦電型赤外線センサは、小型化を行うために基板面積を減少させると、赤外線検知素子の実装面積も減少してしまう。赤外線検知センサの感度は、受光した赤外線による発熱の温度変化から発生する焦電電流と素子面積に比例する。そのため、小型化が行われ赤外線検知素子を実装する面積が小さくなると、素子ごとの感度が低くなり全体として感度は減少してしまうという問題があった。
本発明は、上記課題を解決する赤外線検知センサアレイおよび赤外線検知装置を提供することを目的とする。
本発明における赤外線検知センサアレイは、基板と、基板を貫通する少なくとも1つの空孔と、基板の一方の面に設けられた第1赤外線検知素子と、基板の他方の面において空孔の少なくとも一部を覆うように設けられた第2赤外線検知素子とを備えることを特徴とする。
本発明による赤外線検知センサアレイおよび赤外線検知装置は、感度を低下させることなく小型化を実現することができる。
図1は、第1の実施形態における赤外線検知センサアレイの斜視図である。
図2は、第1の実施形態における赤外線検知センサアレイの断面図である。
図3は、第1の実施形態における赤外線検知センサアレイの断面図である。
図4は、第2の実施形態における赤外線検知の断面図である。
図5Aは、実施例におけるセンサ(1)の斜視図である。
図5Bは、実施例においてセンサ(1)が検知したモザイク状画像である。
図6Aは、実施例におけるセンサ(2)の斜視図である。
図6Bは、実施例においてセンサ(2)が検知したモザイク状画像である。
図7は、実施例におけるセンサ(3)の斜視図である。
図8は、センサ(1)とセンサ(3)の電圧感度を示すグラフである。
以下に、本発明を実施するための好ましい形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。
〔第1の実施形態〕次に、本実施形態について図面を参照して詳細に説明する。図1は、本実施形態における赤外線検知センサアレイ1の斜視図であり、図2は図1のA−A′位置での切断図である。
〔構造の説明〕図1に示すように、本実施形態における赤外線検知センサアレイ1は、基板2と赤外線検知素子3とを備えている。
基板2は、平面形状であり2つの主面を有している。また基板2は、対向する2つの主面を貫通する空孔4を複数有している。空孔4の大きさは、電気配線が可能であれば良く、大きさによらない。
赤外線検知素子3は基板2の一方の面に格子状に配置され、基板2を貫通する空孔4を赤外線検知素子3の間に格子状に設けている。基板2上方から見ると赤外線検知素子3と空孔4が千鳥状に配置されている。図2に示すように、赤外線検知素子3は空孔4の端から一部はみ出して延在している。空孔4のそれ以外の部分は開口部5とする。
基板2の他方の面には、空孔4を塞ぐように赤外線検知素子3′を設けている。空孔4が格子状に配置しているので赤外線検知素子3′も格子状に配置されている。赤外線検知素子3′の面積は空孔4よりも大きくすることが望ましい。
空孔4は赤外線検知素子3,3′よりも小さくして、基板2の上方から見ると赤外線検知素子3,3′が、基板2を介して一部重なりあった領域Bが存在するように設けられている。なお赤外線検知素子3、3′は同じ寸法の矩形であり、同様の特性を持つものでもよい。
基板2の材料は、金属材料(アルミ合金、銅合金、鉄、鉄系合金、チタン、またはチタン合金など)や樹脂材料(エポキシ、アクリル、ポリイミド、ポリカーボネートなど)、セラミックス材料(アルミナ、シリカ、マグネシア、またはそれらの化合物、複合物など)などを所望の形状、使用環境にあわせて選択して用いることができる。
赤外線検知素子3は、基板2の両主面にそれぞれ複数設けられており、基板2と接合している。なお説明を分かりやすくするために、基板2の一方の面に設けられた赤外線検知素子を第1赤外線検知素子(以下、赤外線検知素子3)と示す。同様に、他方の面に設けられた赤外線検知素子を第2赤外線検知素子(以下、赤外線検知素子3′)と示す。
しかし赤外線検知素子3と赤外線検知素子3′とは、配置場所以外に違いはない。図1では、赤外線検知素子3、3′は矩形であり、基板2上に格子状で配置された構造を記載しているが、配置・形状は特に限定されない。なお図1では、基板2上に設けられた赤外線検知素子3と空孔4とが千鳥状に配置されているが、これに限定されない。少なくとも一部に、赤外線検知素子3,3′が、基板2を介して一部重なりあった領域Bを設けていればよい。
赤外線検知素子3(赤外線検知素子3′も含む)の構成を詳細に説明する。赤外線検知素子3は、2つの主面を有する焦電体セラミックス膜と、焦電体セラミックス膜の主面に形成した上下電極層で構成される。上下電極は、電気的接続が可能であればよく、実装または配線の引き出し、その材質、または形状を限定しない。なお赤外線検知素子3厚みは、例えば1μm以上100μm以下であることが望ましい。
焦電体セラミックス膜は、赤外線が照射されると、赤外線照射量・波長に応じて表面の面積に比例して、焦電効果に起因する電荷が誘起される。そして誘起された電荷は、電気回路において電気信号として計測されることで赤外線の検知を行う。つまり、焦電体セラミックス膜において誘起される電荷が大きければ、センサとしての検知精度を高めるこができる。
焦電体セラミックス膜の材質は特に限定されず、チタン酸ジルコン酸鉛系セラミックスやタンタル酸リチウム系セラミックス、ポリフッ化ビニリデンなどの有機焦電体材料であってもよい。例えば焦電係数が高く、分極処理によって焦電効果を最大限引き出せるチタン酸ジルコン酸鉛系セラミック材料が望ましい。
基板2への焦電体セラミックス膜の形成方法は特に限定されない。例えばセラミックス微粒子を高速で吹き付けるエアロゾルデポジション法や溶液法(ゾルゲル法など)、気相法(MOCVD法など)などにより基板2の材質や形状によって適宜選択して利用することができる。
他の焦電体セラミックス膜の基板2への形成方法として、テープキャスティング法などの方法で焦電体セラミックス膜を作製して、基板2に接着する方法も利用できる。接着材には例えばエポキシ系接着材を利用可能である。接着剤層の厚みは特に限定されるものではないが、過剰な厚みでは不要な電気抵抗成分の増大の原因となり、赤外線検知感度が低下するので、たとえば20μm以下であることが望ましい。
〔作用・効果の説明〕次に、本実施形態における作用・効果について説明を行う。
赤外線検知センサアレイ1は、検知対象を基板2の一方の面側に配置されるように設ける。一方の面に設けられ赤外線検知素子3は、検知対象が発する赤外線を検知すると、焦電体セラミック膜において、赤外線照射量、波長に応じて面積に比例した電荷が誘起される。そして誘起された電荷は、電気回路において電気信号として計測することで、赤外線の検知を行う。
ここで基板2に空孔4を有していない、つまり基板2の一方の面、つまり片面のみに赤外線検知素子3を設けた場合を比較例として考える。このとき基板2の一方の面側から赤外線が照射されると、赤外線検知素子3は、赤外線照射量、波長に応じて面積に比例した電荷を誘起する。
赤外線検知素子3において誘起される電荷量は面積に依存するので、基板2全体にわたって赤外線検知素子3が設けられている場合、誘起される電荷は最大となる。しかし、基板2の面積を大きくすれば、誘起される電荷も大きくすることができるが、小型化の観点から、基板2を大幅に大きくすることはできない。
そこで本実施形態では、基板2に空孔4を有しており、一方の面において少なくとも1つの空孔4は、赤外線検知素子3に覆われておらず、開口部5を有している。そして他方の面において、開口部5を有する空孔4は、赤外線検知素子3′に覆われている。赤外線検知素子3と赤外線検知素子3′は、基板2を介して重なり合った領域Bを設けている。
そして図3に示すように、一方の面に検知対象を設けると、開口部5に照射された赤外線は、空孔4を通り、赤外線検知素子3′に照射される。なお赤外線検知素子3′も同様に、赤外線照射量、波長に応じて面積に比例した電荷を誘起する。
赤外線検知素子3′が誘起する電荷量は面積に依存するが、その面積は赤外線が照射する面積ではなく、赤外検知素子3′の全体の面積に依存する。つまり空孔4を介して、赤外線検知素子3′の一部にのみ赤外線が照射されたとしても、誘起される電荷は赤外線検知素子3′の全体の面積で決まる。
図2の矢印Bで示すように、基板2の一方の面に設けられた赤外線検知素子3と、他方の面において空孔4を覆うように設けられた赤外線検知素子3′とは、少なくとも一部が、重なりあった領域B、つまり対向した領域を備えている。
ここで図3に示すように、基板2の一方の面から赤外線が照射されると、赤外線検知素子3、3′とでそれぞれで電荷が誘起される。そして、赤外線検知素子3と赤外線検知素子3′とは、重なり合った領域を有している。そのため、赤外線が直接照射される面積、つまり基板2上に複数配置した赤外線検知素子3の合計面積と開口部5の合計面積よりも、重なり合った領域Bの合計面積分だけ、誘起される電荷量が増加する。
つまり本実施形態における赤外線検知センサアレイ1は、一方の面側にのみ赤外線検知素子3を設けた場合の実装面積に比べ、重なり合った面積の大きさ分、誘起される電荷量が多くなることで、感度を向上することができる。
換言すると、赤外線検知素子3と赤外線検知素子3′とが、重なり合った領域を増加させることで、基板2上に実装する赤外線検知素子3の面積を増加させることなく、小型化かつ高密度に実装した赤外線検知センサアレイ1を実現することができる。
なお本実施形態では、格子状に配置した赤外線検知素子3の間すべてに空孔4と赤外線検知素子3′を配置したが、最低限は空孔4と赤外線検知素子3′を1つずつ設けていればよい。
また本実施形態では、赤外線検知素子3′は空孔4を塞ぐように配置したが、重なりあった領域8を確保できれば空孔4は一部開口していてもよい。また本実施形態では基板2,赤外線検知素子3,3’はいずれも矩形であるが、円形、楕円形でもよい。さらに赤外線検知素子3は平面形状に限らず曲面でもよい。
〔第2の実施形態〕次に、第2の実施形態について図4を参照して詳細に説明する。図4は、本実施形態における赤外線検知センサアレイ1の断面図である。
〔構造の説明〕図4に示すように、本実施形態における赤外線検知センサアレイ1は、赤外線フィルタ6と光学回折素子7とを備えている。それ以外の構造、接続関係は、第1の実施形態と同様であり、基板2、赤外線検知素子3、空孔4、開口部5を備えている。
赤外線フィルタ6と光学回折素子7とは、基板2の一方の面上に設けられている。そして赤外線フィルタ6と光学回折素子7は、それぞれ基板2と対向している。なお赤外線フィルタ6、および光学回折素子7は、基板2上に設けられた赤外線検知素子3の少なくとも一部を覆うように設けられている。
赤外線フィルタ6は、赤外線つまり波長が780nm以上の光のみを透過させ、可視光線をシャットアウトする機能をもつ。また光学回折素子7は、透過光を集光する機能を持つ。
〔作用・効果の説明〕次に、本実施形態における作用・効果について説明する。
赤外線検知素子3は、赤外線を検知すると、放射量・波長に応じて面積に比例した電荷を誘起する。本実施形態では、基板2の一方の面上、つまり赤外線検知素子3が設けられている面上に、赤外線フィルタ6を設けている。上記構成により、赤外線以外の可視光をシャットダウンすることができるため、検知対象が発する赤外線を効率よく検知することができる。
また本実施形態は、赤外線フィルタ6上、つまり赤外線フィルタ6の基板2が設けられている側とは反対側に光学回折素子7を設けている。光学回折素子7は、透過光を集光する機能を有しているため、赤外線検知素子3は広い視野角で検知対象の赤外線を検知することができる。
〔実施例〕次に、実施例について図面を参照して詳細に説明する。
本実施例における赤外線検知センサアレイ1の特性評価を、以下に詳細を記載した3種類のセンサ(1)〜(3)を用いて行った。以下にセンサ(1)〜(3)について、詳細に説明する。
図5Aに示すようにセンサ(1)は、第1の実施形態と同様に、空孔4を有する基板2の表面(一方の面)に、赤外線検知素子3を配列した構造である。そして少なくとも1つの空孔4上に設けられた赤外線検知素子3は開口部5を有しており、つまり少なくとも1つの空孔4は表面において赤外線検知素子3に覆われていない。
上記開口部5を有する空孔4は、裏面(他方の面)において、赤外線検知素子3′に覆われており、表面と裏面に設けられた赤外線検知素子3は、互いに少なくとも一部が重なる領域を備えている。
図6Aは比較例のセンサ(2)を示す。このセンサ(2)は、空孔4のない基板2を備えており、表面(一方の面)のみに赤外線検知素子3を設けた構造である。なおセンサ(2)の基板2表面に複数配置した赤外線検知素子3の合計面積は、センサ(1)と同じである。
センサ(1)と比較すると、センサ(2)は、基板2表面において赤外線検知素子3を同じ配列で設けている。しかしセンサ(1)は、空孔4がある箇所においては、裏面側に赤外線検知素子3′を設けている。そのため、センサ(2)が基板2表面の空孔4に赤外線検知素子3を設けたとしても、センサ(1)は表面に設けられた赤外線検知素子3と3′が重なる領域の面積の大きさだけ、赤外線検知素子3の面積をセンサ(2)より大きくすることができる。
図7は図6とは別の比較例のセンサ(3)を示す。このセンサ(3)は、空孔4のない基板2を備えており、表面(一方の面)のみに赤外線検知素子73を設けた構造である。なおセンサ(3)は、センサ(1)と同じ実装面積である基板の表面に、センサ(1)の基板2両面に設けられた同じ数の赤外線検知素子73を設けている。
センサ(1)と比較すると、センサ(3)は、基板2の表面の同じ実装領域に、センサ(1)で基板2の一方の面に設けた15個の赤外線検知素子3の数と、基板2の他方の面に設けた8個の赤外線検知素子3′の数を合計した数の23個の赤外線検知素子73を実装している。そのためそれぞれの赤外線検知素子73の面積は、センサ(1)を構成する赤外線検知素子3に比べて小さい。
なお、センサ(1)〜(3)は、実装面積が同じ基板2を用い、基板2についても同一のものを用い、赤外線検知素子3は同じ特性のものを用いた。また使用する電源についても、同じ電力を供給し、同一の使用環境下において動作を行った。
なお赤外線検知素子3は、1辺5mmの正方形状、厚み15μmの焦電体セラミックス膜の上下面に厚み5μmの電極層を形成したものを用いた。また基板2は、辺の長さがそれぞれ45mm、30mmの長方形状、厚み=100μm(0.05mm)のMgO基板を用いた。また空孔4のある基板においては直径3mmの空孔4を設けた。
赤外線検知素子3の焦電体セラミックス膜は、チタン酸ジルコン酸鉛系セラミックを用い、電極層には銀/パラジウム合金(重量比70%:30%)を使用した。また裏面の素子と基板との間には熱伝導性の低い材料を挿入した。
〔比較1〕まず比較1として、センサ(1)とセンサ(2)の比較を行った、
図5Aはセンサ(1)の斜視図、図5Bはセンサ(1)の赤外線検知素子3が検知した電気信号をモザイク状画像に示したものである。また図6Aはセンサ(2)の斜視図と、図6Bはセンサ(2)の赤外線検知素子3が検知した電気信号をモザイク状画像に示したものである。
センサ(1)とセンサ(2)とは、赤外線検知素子3を同じように配列しているが、センサ(1)は空孔4がある箇所において、基板2の裏面に赤外線検知素子3′を設けている。そして裏面に設けられた赤外線検知素子3′の少なくとも一部は、表面に設けられた赤外線検知素子3と重なる領域を有している。
赤外線検知素子3が誘起する電荷量は、面積の大きさに依存する。そのためセンサ(1)は、センサ(2)に比べて、基板2の両面に設けられた赤外線検知素子3と赤外線検知素子3′とが重なる領域の面積の大きさの分、誘起する電荷量を増やすことができる。その結果、センサ(1)はよりきめ細かい画像を表示することができる。
〔比較2〕次に比較2として、センサ(1)とセンサ(3)の比較を行った、
図8はセンサ(1)、およびセンサ(3)の赤外線検知素子3が検知した電圧感度である。より詳細に説明すると、Aはセンサ(1)の基板2表面に設けられた赤外線検知素子3、Bはセンサ(1)の基板2裏面に設けられた赤外線検知素子3′、Cはセンサ(3)の基板2表面に設けられた赤外線検知素子73がそれぞれ検知した電圧感度を示す。
センサ(1)とセンサ(3)は、基板2上に設けている赤外線検知素子3の数は同じである。しかしセンサ(3)は、センサ(1)の表と裏の両面に設けられた同じ数の赤外線素子3を基板2表面に設けている。そのため、それぞれの赤外線検知素子3の大きさがセンサ(1)に比べて小さい。
図8に示すように、基板2表面の赤外線検知素子3が検知した電圧感度Aは、センサ(3)にくらべ実装した数は少ないが、一素子あたりの感度面積を大きくすることができるため、より高い電圧感度を実現することができる。
また基板2裏面の赤外線検知素子3が検知した電圧感度Bは、赤外線を受光する面積は少ない。しかし、受光部分からの素子熱伝導により、基板2裏面に設けられた赤外線検知素子3′全体で電荷を誘起することができるため、高い電圧感度を実現することができる。
一方、基板2表面に設けられたセンサ(3)は、センサ(1)の表面と裏面に設けられた赤外線検知素子3を基板2表面に設けているため、多くの赤外線検知素子3を設けることができる。しかし各赤外線検知素子3の面積を小さくする必要がある。その結果、電圧感度Cは、誘起する電荷量が少なく、高い電圧感度を実現することができない。
上記比較の結果、第1の実施形態の赤外線検知センサアレイ1は、電圧感度AとBとを得ることができるので、より高感度な検出を実現することができる。
ところで、本実施形態の赤外線検知センサアレイ1を、人体の移動を検知する人体検知センサとして利用した場合、プライバシーに配慮した人体検知用センサが実現することができる。図5Bに示すように、配置した赤外線検知素子3からは、適切な信号増幅回路、信号処理回路の利用によってモザイク状の画像を取り出すことができる。
人体の動きに応じて各赤外線検知素子3の赤外線受光量は変動する。このアレイ状に配置された赤外線検知素子3は、時間変動データを分析することで人体の移動を検知でき、さらに、モザイク状データでは個人の特定が不可能であるため、プライバシーに配慮した人体検知用センサを備えた赤外線検知装置を実現できる。
以上、本発明を上記実施の形態及び実施例に即して説明したが、本発明は、上記実施の形態、及び実施例の構成のみに限定されるものでなく、本発明の範囲内で当業者であればなし得るであろう各種変形、修正を含むことはもちろんである。
なお、この出願は、2011年2月18日に出願された日本出願特願2011−033256を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 第1導体
1 赤外線検知センサアレイ
2 基板
3 赤外線検知素子
4 空孔
5 開口部
6 赤外線フィルタ
7 光学回折素子
73 赤外線検知素子

Claims (9)

  1. 基板と、
    前記基板を貫通する少なくとも1つの空孔と、
    前記基板の一方の面に設けられた第1赤外線検知素子と、
    前記基板の他方の面において前記空孔の少なくとも一部を覆うように設けられた第2赤外線検知素子とを備えることを特徴とする赤外線検知センサアレイ。
  2. 前記一方の面に設けられた前記第1赤外線検知素子と、他方の面に設けられた前記第2赤外線検知素子とは、少なくとも一部が前記基板を介して重なっている領域を有していることを特徴とする請求項1に記載の赤外線検知センサアレイ。
  3. 前記他方の面において前記空孔を覆う前記第2赤外線検知素子は、前記空孔の面積より大きいことを特徴とする請求項1または2に記載の赤外線検知センサアレイ。
  4. 前記第1赤外線検知素子と前記第2赤外線検知素子は、格子状に配列されていることを特徴とする請求項1乃至3に記載の赤外線検知センサアレイ。
  5. 前記空孔は、前記基板の一方の面において、前記第1赤外線検知素子に覆われていない開口部を有していることを特徴とする請求項1乃至4に記載の赤外線検知センサアレイ。
  6. 前記赤外線検知素子は、焦電体セラミックス膜と、電極とで構成され、
    前記焦電体セラミックス膜は、表面の面積に応じた電荷を誘起することを特徴とする請求項1乃至3に記載の赤外線検知センサアレイ。
  7. 前記基板の一方の面上に、赤外線フィルタと光学回折素子とを備え、
    前記赤外線フィルタと、前記光学回折素子とは前記基板と対向して設けていることを特徴とする請求項1乃至4に記載の赤外線検知センサアレイ。
  8. 前記焦電体セラミックス膜は、チタン酸ジルコン酸鉛系セラミックス、タンタル酸リチウム系セラミックス、またはポリフッ化ビニリデンのどれか1つで構成されることを特徴とする請求項1乃至7に記載の赤外線検知センサアレイ。
  9. 請求項1乃至8に記載の赤外線検知センサアレイにより、人体の動きを検出することを行う人体検知用センサを備えた赤外線検知装置。
JP2012558052A 2011-02-18 2012-02-16 赤外線検知センサアレイおよび赤外線検知装置 Pending JPWO2012111851A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011033256 2011-02-18
JP2011033256 2011-02-18
PCT/JP2012/054339 WO2012111851A1 (ja) 2011-02-18 2012-02-16 赤外線検知センサアレイおよび赤外線検知装置

Publications (1)

Publication Number Publication Date
JPWO2012111851A1 true JPWO2012111851A1 (ja) 2014-07-07

Family

ID=46672754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012558052A Pending JPWO2012111851A1 (ja) 2011-02-18 2012-02-16 赤外線検知センサアレイおよび赤外線検知装置

Country Status (5)

Country Link
US (1) US20130320213A1 (ja)
EP (1) EP2677288A4 (ja)
JP (1) JPWO2012111851A1 (ja)
CN (1) CN103415758A (ja)
WO (1) WO2012111851A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110784A (zh) * 2013-12-20 2014-10-22 广东美的制冷设备有限公司 一种空调自动控制方法以及装置
US9881966B2 (en) * 2015-07-17 2018-01-30 International Business Machines Corporation Three-dimensional integrated multispectral imaging sensor
CN107167851B (zh) * 2017-05-18 2023-12-26 深圳通感微电子有限公司 分区式红外探测器及分区式红外探测方法
WO2019210520A1 (zh) * 2018-05-04 2019-11-07 深圳钶钽智能技术有限公司 一种空间分区探测装置、系统及方法
JP2024051663A (ja) * 2022-09-30 2024-04-11 横河電機株式会社 センサ装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842276A (en) * 1973-06-15 1974-10-15 Rca Corp Thermal radiation detector
US4032783A (en) * 1975-06-09 1977-06-28 Hughes Aircraft Company Pyroelectric radiation sensor and imaging device utilizing same
JPH0223782A (ja) * 1988-07-12 1990-01-25 Mitsubishi Electric Corp 固体撮像装置
JPH0222973A (ja) * 1988-07-12 1990-01-25 Mitsubishi Electric Corp 固体撮像装置
JPH02284028A (ja) * 1989-04-24 1990-11-21 Nippon Ceramic Co Ltd 双方向型赤外線センサ
JPH03148175A (ja) * 1989-11-02 1991-06-24 Fujitsu Ltd 赤外線検知装置
JPH0513741A (ja) * 1991-06-28 1993-01-22 Yokogawa Electric Corp 半導体光検出装置
JPH06331435A (ja) * 1993-05-21 1994-12-02 Murata Mfg Co Ltd 簡易赤外線結像装置
FR2712693B1 (fr) * 1993-11-17 1995-12-15 Commissariat Energie Atomique Dispositif de détection de rayonnement, à éléments de détection aboutés, et procédé de fabrication de ce dispositif.
JPH08271333A (ja) * 1995-03-31 1996-10-18 Nohmi Bosai Ltd 焦電型赤外線センサ
KR100530397B1 (ko) * 1998-02-13 2005-11-22 마츠시타 덴끼 산교 가부시키가이샤 적외선 검출 소자, 이 적외선 검출 소자를 이용한 적외선 센서 유닛 및 적외선 검출 장치
US6541772B2 (en) * 2000-12-26 2003-04-01 Honeywell International Inc. Microbolometer operating system
US6627892B2 (en) * 2000-12-29 2003-09-30 Honeywell International Inc. Infrared detector packaged with improved antireflection element
JP4456385B2 (ja) * 2004-03-19 2010-04-28 株式会社堀場製作所 赤外線アレイセンサ
JP2007292461A (ja) * 2004-05-28 2007-11-08 Murata Mfg Co Ltd 焦電素子および焦電型赤外線センサ
US7718967B2 (en) * 2005-01-26 2010-05-18 Analog Devices, Inc. Die temperature sensors
FR2883417B1 (fr) * 2005-03-16 2007-05-11 Ulis Soc Par Actions Simplifie Detecteur bolometrique, dispositif de detection infrarouge mettant en oeuvre un tel detecteur et procede de fabrication de ce detecteur
JP2009120127A (ja) * 2007-11-16 2009-06-04 Mazda Motor Corp 車両用駆動装置
CN101566502B (zh) * 2009-04-15 2011-11-16 中国科学院上海微系统与信息技术研究所 热光型红外探测器及其制作方法
WO2010134255A1 (ja) * 2009-05-18 2010-11-25 日本電気株式会社 赤外線センサ、電子機器、及び赤外線センサの製造方法
CN101923051B (zh) * 2009-06-17 2012-05-23 中国科学院微电子研究所 基于阵列波导分光的红外光谱式mems气敏传感器
JP2011033256A (ja) 2009-07-31 2011-02-17 Sanyo Electric Co Ltd 厨房用空気処理装置
TW201308172A (zh) * 2011-08-09 2013-02-16 Chunghwa Picture Tubes Ltd 觸控感測面板

Also Published As

Publication number Publication date
US20130320213A1 (en) 2013-12-05
EP2677288A1 (en) 2013-12-25
WO2012111851A1 (ja) 2012-08-23
CN103415758A (zh) 2013-11-27
EP2677288A4 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
US8530841B2 (en) Infrared sensor, electronic device, and manufacturing method of infrared sensor
WO2012111851A1 (ja) 赤外線検知センサアレイおよび赤外線検知装置
TWI567370B (zh) 熱電型紅外線感測器
TWI536000B (zh) Infrared sensor
TWI526677B (zh) Infrared sensor
TWI443317B (zh) Photodetector
CN103293548A (zh) 放射线检测设备
JPWO2019171488A1 (ja) 電磁波センサ
KR20150114347A (ko) 방사능 센서
US8921791B2 (en) Infrared ray sensor, infrared ray detection device, and electronic apparatus
JP2013057526A (ja) 赤外線検出素子、赤外線検出素子の製造方法及び電子機器
JP2014235145A (ja) テラヘルツ波検出装置、カメラ、イメージング装置および計測装置
JP5325312B2 (ja) 視野角制限カバー及びそれを備えた赤外線センサ
JP2014235146A (ja) テラヘルツ波検出装置、カメラ、イメージング装置および計測装置
JP5830877B2 (ja) 焦電型検出器、焦電型検出装置及び電子機器
JP2014235144A (ja) テラヘルツ波検出装置、カメラ、イメージング装置および計測装置
WO2012029974A1 (ja) 赤外線検知センサおよび電子機器
JP5296353B2 (ja) センサ
JP2010197162A (ja) 温度センサ
JP6413070B2 (ja) 赤外線検出素子、及び赤外線検出装置
EP4012364A1 (en) Electromagnetic wave sensor
JP2010507097A (ja) 赤外線マイクロボロメータセンサの伝導構造
JP7173125B2 (ja) 熱利用デバイス
JP5915020B2 (ja) 赤外線検出素子及び電子機器
JP2013096787A (ja) 焦電型光検出器、焦電型光検出装置および電子機器