JPWO2011155613A1 - 硬化性樹脂組成物およびその硬化物 - Google Patents
硬化性樹脂組成物およびその硬化物 Download PDFInfo
- Publication number
- JPWO2011155613A1 JPWO2011155613A1 JP2012519441A JP2012519441A JPWO2011155613A1 JP WO2011155613 A1 JPWO2011155613 A1 JP WO2011155613A1 JP 2012519441 A JP2012519441 A JP 2012519441A JP 2012519441 A JP2012519441 A JP 2012519441A JP WO2011155613 A1 JPWO2011155613 A1 JP WO2011155613A1
- Authority
- JP
- Japan
- Prior art keywords
- acid
- group
- resin composition
- curable resin
- zinc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/12—Polysiloxanes containing silicon bound to hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/22—Di-epoxy compounds
- C08G59/30—Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
- C08G59/306—Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/42—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/42—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
- C08G59/4215—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof cycloaliphatic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/20—Polysiloxanes containing silicon bound to unsaturated aliphatic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/56—Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Epoxy Resins (AREA)
- Silicon Polymers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
ところが、LED製品の発光波長の短波長化(主に青色発光をするLED製品で480nm以下)が進んだ結果、短波長の光の影響で前記封止材料がLEDチップ上で着色し最終的にはLED製品として、照度が低下してしまうという指摘がされている。
そこで、3,4−エポキシシクロヘキシルメチル−3′,4′エポキシシクロヘキシルカルボキシレートに代表される脂環式エポキシ樹脂は、芳香環を有するグリシジルエーテルタイプのエポキシ樹脂組成物と比較し透明性の点で優れていることから、LED封止材として積極的に検討がなされてきた。(特許文献1、2)
しかしながら上記脂環式酸無水物を硬化剤とした場合、これらの硬化剤は蒸気圧が高く、硬化時に一部が蒸発するため、これらをエポキシ樹脂の硬化剤として用いて開放系で熱硬化させる際には、このもの自体が大気中に揮発し、大気への有害物質の放出による環境汚染、人体への悪影響のみならず、生産ラインの汚染、硬化物中に所定量のカルボン酸無水物(硬化剤)が存在しないことに起因するエポキシ樹脂組成物の硬化不良が起こるという問題があるばかりか、硬化条件によってその特性が大幅に変わってしまい、安定して目的とした性能を有する硬化物を得ることが困難である。
一般に該シロキサン骨格を導入した樹脂はエポキシ樹脂よりも熱と光に対して安定であることが知られている。そのため、LED製品の封止材に適用した場合、LEDチップ上の着色という観点では、エポキシ樹脂よりも耐久性に優れると言われていた。
しかし、課題はある。
シロキサン骨格を導入した樹脂は通常のエポキシ樹脂に比べ、脆さが顕著に現れやすい。そのため、耐リフロー性が悪く、リフロー時のクラックが目立つ。
さらに、シロキサン骨格を導入した樹脂類は通常のエポキシ樹脂に比べ、耐ガス透過性に劣る。そのため、LED封止材としてシリコーン樹脂やシリコーン変性エポキシ樹脂を使用した場合には、LEDチップ上での着色は問題にならないものの、内部の構成部材の劣化、着色が起るという問題が生じている。特に生活環境の中で使用する場合、様々な化合物が浮遊しており、このような化合物が内部へ浸透することで不具合を生じさせるきっかけとなる。例えば照明用途に前記樹脂が用いられた場合、環境中のガス等がLEDの封止材を透過することで、LEDパッケージ内の構成部材である金属リードフレーム上にメッキされた銀成分(反射率を高めるために銀メッキが施されている)を変色または黒化させてしまい、最終的にLED製品としての性能を低下させるという課題を抱えている。(特許文献4、5)。
すなわち本発明は、下記のとおりである。
(1) エポキシ樹脂(A)と、多価カルボン酸(B)と、亜鉛塩および/または亜鉛錯体(C)と、を必須成分とする硬化性樹脂組成物。
ただし、多価カルボン酸(B)、亜鉛塩および/または亜鉛錯体(C)は各々以下の条件を満たす。
多価カルボン酸(B):
少なくとも2つ以上のカルボキシル基を有し、シロキサン骨格を主骨格とする多価カルボン酸
亜鉛塩および/または亜鉛錯体(C):
亜鉛カルボキシラート、燐酸エステル若しくは燐酸の亜鉛塩、および/またはこれらの酸あるいはエステルを配位子として有する亜鉛錯体
(2) 多価カルボン酸(B)が直鎖のポリシロキサン構造を有し、両末端にカルボン酸を有する上記(1)に記載の硬化性樹脂組成物。
(3) 多価カルボン酸(B)が直鎖のポリシロキサン構造を有するカルビノール変成体と環状飽和脂肪族酸無水物との反応により得られた化合物である上記(1)または(2)に記載の硬化性樹脂組成物。
(4) ヒンダートアミン系光安定剤とリン含有酸化防止剤を含有する上記(1)〜(3)のいずれか一項に記載の硬化性樹脂組成物。
(5) 上記(1)〜(4)のいずれか一項に記載の硬化性樹脂組成物を硬化してなる硬化物。
本発明の硬化性樹脂組成物は、エポキシ樹脂(A)と、多価カルボン酸(B)と、亜鉛塩および/または亜鉛錯体(C)と、を必須成分とする。
エポキシ樹脂(A)としては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4’−ビフェノール、2,2’−ビフェノール、3,3’,5,5’−テトラメチル−[1,1’−ビフェニル]−4,4’−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’−ビス(クロルメチル)−1,1’−ビフェニル、4,4’−ビス(メトキシメチル)−1,1’−ビフェニル、1,4−ビス(クロロメチル)ベンゼン、1,4−ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、アルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂、オルガノポリシロキサン型のエポキシ樹脂(鎖状、環状、ラダー状、あるいはそれら少なくとも2種以上の混合構造のシロキサン構造にグリシジル基、および/またはエポキシシクロヘキサン構造を有するエポキシ樹脂)等の固形または液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。
脂環式エポキシ樹脂としては、シクロヘキセンカルボン酸とアルコール類とのエステル化反応あるいはシクロヘキセンメタノールとカルボン酸類とのエステル化反応(Tetrahedron vol.36p.2409(1980)、Tetrahedron Letter p.4475(1980)等に記載の手法)、あるいはシクロヘキセンアルデヒドのティシェンコ反応(日本国特開2003−170059号公報、日本国特開2004−262871号公報等に記載の手法)、さらにはシクロヘキセンカルボン酸エステルのエステル交換反応(日本国特開2006−052187号公報等に記載の手法)によって製造できる化合物を酸化した物などが挙げられる。
アルコール類としては、アルコール性水酸基を有する化合物であれば特に限定されないがエチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,2−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、シクロヘキサンジメタノール、2,4−ジエチルペンタンジオール、2−エチル−2−ブチル−1.3−プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2−ヒドロキシメチル−1,4−ブタンジオールなどのトリオール類、ペンタエリスリトール、ジトリメチロールプロパンなどのテトラオール類などが挙げられる。またカルボン酸類としてはシュウ酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、アジピン酸、シクロヘキサンジカルボン酸などが挙げられるがこれらに限定されない。
これらは単独で用いてもよく、2種以上併用してもよい。
具体的には日本国特開2004−256609号公報、日本国特開2004−346144号公報、国際公開第2004/072150号、日本国特開2006−8747号公報、国際公開第2006/003990号、日本国特開2006−104248号公報、国際公開第2007/135909号、日本国特開2004−10849号公報、日本国特開2004−359933号公報、国際公開第2005/100445号、日本国特開2008−174640号公報などに記載の三次元に広がる網の目状の構造を有したシルセスキオキサンタイプのオルガノポリシロキサンが挙げられる。
オルガノポリシロキサンの構造については特に限定されないが、単純な三次元網目構造のシロキサン化合物では硬すぎるため、硬さを緩和する構造が望まれる。
本発明においては特にシリコーンセグメントとゾル−ゲル反応により得られる前述のシルセスキオキサン構造とを1分子中に有するブロック構造体が好ましい。このような化合物の製造法としては国際公開第2010/026714号に記載されているような製造方法および構造が挙げられる。
具体的には本発明において、構造については特に限定されないが、単純な三次元網目構造のオルガノポリシロキサンの構造では硬すぎるため、硬さを緩和する構造が望まれる。本発明においては特にシリコーンセグメントとカップリング剤の前述のシルセスキオキサン構造とを1分子中に有するブロック構造体が好ましい(以下、ブロック型シロキサン化合物(A1)と称す)。
XSi(OR2)3 (1)
一般式(1)中のXとしては、エポキシ基を有する有機基であれば特に制限はない。例えば、β−グリシドキシエチル、γ−グリシドキシプロピル、γ−グリシドキシブチル等のグリシドキシ炭素数1〜4アルキル基、グリシジル基、β−(3,4−エポキシシクロヘキシル)エチル基、γ−(3,4−エポキシシクロヘキシル)プロピル基、β−(3,4−エポキシシクロヘプチル)エチル基、β−(3,4エポキシシクロヘキシル)プロピル基、β−(3,4−エポキシシクロヘキシル)ブチル基、β−(3,4−エポキシシクロヘキシル)ペンチル基等のオキシラン基を持った炭素数5〜8のシクロアルキル基で置換された炭素数1〜5のアルキル基が挙げられる。これらの中で、グリシドオキシ基で置換された炭素数1〜3のアルキル基、エポキシ基を有する炭素数5〜8のシクロアルキル基で置換された炭素数1〜3のアルキル基、例えば、β−グリシドキシエチル基、γ−グリシドキシプロピル基、β−(3,4−エポキシシクロヘキシル)エチル基が好ましく、特にβ−(3,4−エポキシシクロヘキシル)エチル基が好ましい。
一般式(2)中、複数存在するR3は互いに同一であっても異なっていてもよく、炭素数1〜10のアルキル基、炭素数6〜14のアリール基、炭素数2〜10のアルケニル基を示す。
炭素数1〜10のアルキル基としては、炭素数1〜10の直鎖状、分岐状もしくは環状のアルキル基が挙げられ、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、i−ペンチル基、アミル基、n−ヘキシル基、シクロペンチル基、シクロヘキシル基、オクチル基、2−エチルヘキシル基、ノニル基、デシル基等を挙げることができる。これらの中で、耐光性を考慮すると、メチル基、エチル基、シクロヘキシル基が好ましい。
炭素数6〜14のアリール基としては、例えば、フェニル基、o−トリル基、m−トリル基、p−トリル基、キシリル基等を挙げることができる。
炭素数2〜10のアルケニル基としては、ビニル基、1−メチルビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基等を挙げることができる。
R3は耐光性、耐熱性の観点から、メチル基、フェニル基、シクロヘキシル基、n−プロピル基が好ましく、特にメチル基、フェニル基が好ましい。
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF−G LF−804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
R4(OR5)3 (3)
一般式(3)中のR4は、メチル基又はフェニル基を示す。
当量値が200を超えるとブロック型シロキサン化合物(A1)を用いた硬化物が硬くなりすぎて目的の低弾性率特性が低下する。
製造工程(i):シラノール末端シリコーンオイルとアルコキシ基を有するケイ素化合物の脱アルコール縮合を行なう工程
製造工程(ii):水を添加しアルコキシ基を有するケイ素化合物のアルコキシ基同士の加水分解縮合を行なう工程
製造工程(i)(ii)は各工程を経由すれば、どのような順に反応を行ってもかまわない。
<製造方法(イ)>
まず、製造工程(i)として末端にシラノール基を有するシリコーンオイル(b)とアルコキシ基を有するケイ素化合物であるアルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))との脱アルコール縮合反応により、シリコーンオイル末端をアルコキシシラン変性することにより、アルコキシシラン変性体(d)を得る工程を行う。
次いで製造工程(ii)としてアルコキシ基を有するケイ素化合物であるアルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))、および製造工程(i)で得られたシリコーンオイルのアルコキシシラン変性体(d)に水を添加してアルコキシ基同士の加水分解縮合反応を行う工程を経ることによりブロック型シロキサン化合物(A1)を製造する方法。
<製造方法(ロ)>
まず、製造工程(ii)としてアルコキシ基を有するケイ素化合物であるアルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))の水の添加によるアルコキシ基同士の加水分解縮合反応を行うことで分子内にアルコキシ基を有するシルセスキオキサン(e)を得る工程を行う。
次いで製造工程(i)として末端にシラノール基を有するシリコーンオイル(b)とシルセスキオキサン(e)との反応により、シルセスキオキサン構造に残存するアルコキシ基とシラノール基の脱アルコール縮合反応させる工程を経ることにより、ブロック型シロキサン化合物(A1)を製造する方法。
<製造方法(ハ)>
まず、製造工程(i)として末端にシラノール基を有するシリコーンオイル(b)とアルコキシ基を有するケイ素化合物であるアルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))との脱アルコール縮合反応により、シリコーンオイル末端をアルコキシシラン変性することによりアルコキシシラン変性体(d)とした後、系内に水を添加し、製造工程(ii)として、残存するアルコキシシラン(a)(アルコキシシラン(c))およびアルコキシラン変性体(d)のアルコキシ基同士の加水分解縮合反応をワンポットで行うことによりブロック型シロキサン化合物(A1)を製造する方法。
以下、さらに具体的に製造方法(ハ)について述べる。
ワンポットで反応させる場合、前述の製造方法(ハ)と逆の順番、すなわち、製造工程(ii)の後に製造工程(i)を行なうと、製造工程(ii)で形成されたアルコキシ基を有するシルセスキオキサンオリゴマーとシリコーンオイル(b)とが、相溶せず、後の製造工程(i)において脱アルコール縮合重合が進行せず、シリコーンオイルが取り残されてしまう可能性が高い。一方で、製造方法(ハ)のように製造工程(i)の後にワンポットで製造工程(ii)を行なう方法を用いれば、シリコーンオイル(b)とアルコキシシラン(a)やアルコキシシラン(c)との相溶性比較的高いため、前述のように相溶せずに反応が進行しない、という問題は回避できる。さらにはシラノール基に対して未反応の低分子アルコキシシランが多量に存在することになるため、反応性の観点からも好ましい。ワンポットで行なう場合の製造工程(i)を第1段階反応、製造工程(ii)を第2段階反応とすると、まず第1段階反応(製造工程(i))において、シリコーンオイル(b)とアルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))の脱アルコール縮合を行ない、シリコーンオイルの末端をアルコキシシリル変性させ、アルコキシシラン変性体(d)を得る。第1段反応においては水を添加していないので、アルコキシ基同士の加水分解縮合は起こらず、シラノール基1当量に対して、アルコキシ基を3当量以上用いて反応させた場合、アルコキシシラン変性体(d)は下記式(4)で示されるような構造で存在していると考えられる。
(I)系中に残存しているアルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))のアルコキシ基同士の縮合反応。
(II)第1段階反応で得られたアルコキシシラン変性体(d)とアルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))のアルコキシ基同士の縮合反応。
(III)第1段階反応で得られたアルコキシシラン変性体(d)と(I)で生成したアルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))の部分縮合物のアルコキシ基同士の縮合反応。
第2段階反応においては上記反応が複合して起こり、シルセスキオキサンセグメントの形成と、さらにシリコーンオイル由来の鎖状シリコーンセグメントとの縮合が同時に行なわれる。
触媒の添加方法は、直接添加するか、可溶性の溶剤等に溶解させた状態で使用する。その中でもメタノール、エタノール、プロパノール、ブタノール等のアルコール類に触媒をあらかじめ溶解させた状態で添加するのが好ましい。この際に、水などを用いた水溶液として添加することは、前記したように、アルコキシシラン(a)(必要に応じて添加されるアルコキシシラン(c))の縮合を一方的に進行させ、それにより生成したシルセスキオキサンオリゴマーと、シリコーンオイル(b)とが相溶せず白濁する可能性がある。
中和反応には酸性または塩基性を示す化合物であれば使用する事ができる。酸性を示す化合物の例としては、塩酸、硫酸、硝酸等の無機酸や蟻酸、酢酸、蓚酸等の有機酸が挙げられる。また、塩基性を示す化合物の例としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウムのようなアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムのようなアルカリ金属炭酸塩、燐酸、燐酸二水素ナトリウム、燐酸水素二ナトリウム、燐酸トリナトリウム、ポリ燐酸、トリポリ燐酸ナトリウムのようなリン酸塩類等の無機塩基、アンモニア、トリエチルアミン、ジエチレントリアミン、n−ブチルアミン、ジメチルアミノエタノール、トリエタノールアミン、テトラメチルアンモニウムハイドロオキサイド等の有機塩基を使用することができる。これらの中でも、特に生成物からの除去が容易である点で無機塩基もしくは無機酸が好ましく、さらに好ましくは中性付近へのpHの調整がより容易である燐酸塩類などである。
活性白土としては、例えば、東新化成社製として、活性白土SA35、SA1、T、R−15、E、ニッカナイトG−36、G−153、G−168が、水沢化学工業社製として、ガレオンアース、ミズカエースなどが挙げられる。活性炭としては、例えば、味の素ファインテクノ社製として、CL−H、Y−10S、Y−10SFがフタムラ化学社製として、S、Y、FC、DP、SA1000、K、A、KA、M、CW130BR、CW130AR、GM130Aなどが挙げられる。ゼオライトとしては、例えば、ユニオン昭和社製として、モレキュラーシーブ3A、4A、5A、13Xなどが挙げられる。合成吸着剤としては、例えば、協和化学社製として、キョーワード100、200、300、400、500、600、700、1000、2000や、ローム・アンド・ハース社製として、アンバーリスト15JWET、15DRY、16WET、31WET、A21、アンバーライトIRA400JCl、IRA403BLCl、IRA404JClや、ダウ・ケミカル社製、ダウエックス66、HCR−S、HCR−W2、MAC−3などが挙げられる。
吸着剤を反応液に加え、攪拌、加熱等の処理を行い、触媒を吸着した後に、吸着剤をろ過、さらには残渣を水洗することによって、触媒、吸着剤を除くことができる。
重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)を用いて下記条件下測定されたポリスチレン換算の重量平均分子量(Mw)である。
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF−G LF−804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
存在するケイ素原子の割合は、ブロック型シロキサン化合物(A1)の1H NMR、29Si NMR、元素分析等によって求めることができる。
本発明における多価カルボン酸(B)は、少なくとも2つ以上のカルボキシル基を有し、シロキサン骨格を主骨格とする多価カルボン酸であり、好ましくは直鎖のポリシロキサン構造を有し、両末端にカルボン酸を有する骨格である。より好ましくは、直鎖のポリシロキサン構造を有するカルビノール変成体と酸無水物との反応により得られた化合物である。シロキサン構造を有することで、硬化剤の液状化の保持と粘度調整が容易となり、封止材として使用する場合に作業性が良好となる。
本発明に使用する多価カルボン酸はシリコーン化合物(f)と分子内に1個以上のカルボン酸無水物基をもつ酸無水物(g)との反応により製造されるものが好ましい。
シリコーン化合物(f)としては下記式(5)
酸無水物(g)は1種又は2種以上混合して用いることができる。この中でも環状飽和脂肪族酸無水物が好ましく、中でも、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、ノルボルナン−2,3−ジカルボン酸無水物、メチルノルボルナン−2,3−ジカルボン酸無水物、1,2,4−シクロヘキサントリカルボン酸−1,2−無水物、1,2,3,4−ブタンテトラカルボン酸二無水物が好ましい。好ましい理由は、これらから得られる多価カルボン酸(B)が室温で液状であるとともに、該多価カルボン酸(B)とエポキシ樹脂(A)とを硬化してなる硬化物の透明性が優れるためである。
中でも、メチルヘキサヒドロフタル酸無水物、1,2,4−シクロヘキサントリカルボン酸−1,2−無水物がさらに好ましく、メチルヘキサヒドロフタル酸無水物が特に好ましい。
本発明における多価カルボン酸(B)は前述のシリコーン化合物(f)および酸無水物(g)との反応物以外に、他の多価カルボン酸を併用することもできる。
併用できる他の多価カルボン酸としては、特に2〜6官能のカルボン酸が好ましく、炭素数5以上の2〜6官能の多価アルコールと酸無水物との反応により得られた化合物がより好ましい。さらには上記酸無水物が環状飽和脂肪族酸無水物であるポリカルボン酸が好ましい。
2〜6官能の多価アルコールとしてはアルコール類としては、アルコール性水酸基を有する化合物であれば特に限定されないがエチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,2−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、シクロヘキサンジメタノール、2,4−ジエチルペンタンジオール、2−エチル−2−ブチル−1,3−プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2−ヒドロキシメチル−1,4−ブタンジオールなどのトリオール類、ペンタエリスリトール、ジトリメチロールプロパンなどのテトラオール類、ジペンタエリスリトールなどのヘキサオール類などが挙げられる。
特に好ましいアルコール類としては炭素数が5以上のアルコールであり、特に1,6-ヘキサンジオール、1,4−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,2−シクロヘキサンジメタノール、2,4−ジエチルペンタンジオール、2−エチル−2−ブチル−1,3−プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどの化合物が好ましく、中でも2−エチル−2−ブチル−1.3−プロパンジオール、ネオペンチルグリコール、2,4−ジエチルペンタンジオール、1,4−シクロヘキサンジメタノール、トリシクロデカンジメタノール、ノルボルネンジオールなどの分岐鎖状構造や環状構造を有するアルコール類がより好ましい。
酸無水物としては特にメチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、シクロヘキサン−1,2,4−トリカルボン酸−1,2−無水物などが好ましく、中でもメチルヘキサヒドロ無水フタル酸、シクロヘキサン−1,2,4−トリカルボン酸−1,2−無水物が好ましい。
付加反応の条件としては特に限定はないが、具体的な反応条件の1つとしては酸無水物、多価アルコールを無触媒、無溶剤の条件下、40〜150℃で反応させ加熱し、反応終了後、そのまま取り出すという手法が挙げられる。
特にメチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、シクロヘキサン−1,2,4−トリカルボン酸−1,2−無水物などが好ましい。
特に好ましくは下記式(6)
亜鉛塩および/または亜鉛錯体(C)としては亜鉛イオンを中心元素とした塩および/または錯体であって、好ましくは、カルボン酸亜鉛、燐酸亜鉛、燐酸エステル亜鉛等、カウンターおよび/または配位子としてカルボン酸、燐酸エステル、燐酸等のイオンを有する化合物が挙げられる。
カルボン酸亜鉛としては炭素数1〜30のカルボン酸亜鉛が挙げられ、2−エチルヘキシル酸、オクチル酸、イソデシル酸、ステアリン酸、イソステアリン酸、ヒドロキシステアリン酸、ウンデシレン酸、ベヘン酸、ウンデカン酸、デカン酸などが挙げられる。
本発明においては特に炭素数3〜20のカルボン酸が好ましく、より好ましくは5〜15である。
リン酸亜鉛、燐酸エステル亜鉛としては、燐酸、炭素数1〜30の燐酸エステル(モノエステル体、ジエステル体、トリエステル体、もしくはそれらの混合物)の亜鉛塩および/または亜鉛錯体が好ましく、具体的なエステルのアルキルの事例としてはメチル、イソプロピル、ブチル、2−エチルヘキシル、オクチル、イソデシル、イソステアリル、デカニル、セチルなどが挙げられる。
このような燐酸エステル化号物はアルコールにリン酸化剤として五酸化リン、オキシ塩化リン、三塩化リンなどを用いてエステル化することで得ることができる。また、これらリン酸は例えば炭酸亜鉛、水酸化亜鉛などと反応させることで得られる(特許文献 EP699708号公報)。
併用できる硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。用いうる硬化剤の具体例としては、アミン類やポリアミド化合物(ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂など)、多価フェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’−ビフェノール、2,2’−ビフェノール、3,3’,5,5’−テトラメチル−[1,1’−ビフェニル]−4,4’−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’−ビス(クロロメチル)−1,1’−ビフェニル、4,4’−ビス(メトキシメチル)−1,1’−ビフェニル、1,4’−ビス(クロロメチル)ベンゼン、1,4’−ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、テルペンとフェノール類の縮合物)、その他(イミダゾール、トリフルオロボラン−アミン錯体、グアニジン誘導体、など)などが挙げられるが、これらに限定されるものではない。
これらは単独で用いてもよく、2種以上を用いてもよい。
前記アミン化合物としては、例えば、テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)=1,2,3,4−ブタンテトラカルボキシラート、テトラキス(2,2,6,6−トトラメチル−4−ピペリジル)=1,2,3,4−ブタンテトラカルボキシラート、1,2,3,4−ブタンテトラカルボン酸と1,2,2,6,6−ペンタメチル−4−ピペリジノール及び3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物、デカン二酸ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1−ウンデカンオキシ−2,2,6,6−テトラメチルピペリジン−4−イル)カーボネート、2,2,6,6,−テトラメチル−4−ピペリジルメタクリレート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン、1−〔2−〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕エチル〕−4−〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕−2,2,6,6−テトラメチルピペリジン、1,2,2,6,6−ペンタメチル−4−ピペリジニル−メタアクリレート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)〔〔3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル〕メチル〕ブチルマロネート、デカン二酸ビス(2,2,6,6−テトラメチル−1(オクチルオキシ)−4−ピペリジニル)エステル,1,1−ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、N,N′,N″,N″′−テトラキス−(4,6−ビス−(ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ)−トリアジン−2−イル)−4,7−ジアザデカン−1,10−ジアミン、ジブチルアミン・1,3,5−トリアジン・N,N′−ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物、ポリ〔〔6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル〕〔(2,2,6,6−テトラメチル−4−ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6−テトラメチル−4−ピペリジル)イミノ〕〕、コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物、2,2,4,4−テトラメチル−20−(β−ラウリルオキシカルボニル)エチル−7−オキサ−3,20−ジアザジスピロ〔5・1・11・2〕ヘネイコサン−21−オン、β−アラニン,N,−(2,2,6,6−テトラメチル−4−ピペリジニル)−ドデシルエステル/テトラデシルエステル、N−アセチル−3−ドデシル−1−(2,2,6,6−テトラメチル−4−ピペリジニル)ピロリジン−2,5−ジオン、2,2,4,4−テトラメチル−7−オキサ−3,20−ジアザジスピロ〔5,1,11,2〕ヘネイコサン−21−オン、2,2,4,4−テトラメチル−21−オキサ−3,20−ジアザジシクロ−〔5,1,11,2〕−ヘネイコサン−20−プロパン酸ドデシルエステル/テトラデシルエステル、プロパンジオイックアシッド,〔(4−メトキシフェニル)−メチレン〕−ビス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)エステル、2,2,6,6−テトラメチル−4−ピペリジノールの高級脂肪酸エステル、1,3−ベンゼンジカルボキシアミド,N,N′−ビス(2,2,6,6−テトラメチル−4−ピペリジニル)等のヒンダートアミン系、オクタベンゾン等のベンゾフェノン系化合物、2−(2H−ベンゾトリアゾール−2−イル)−4−(1,1,3,3−テトラメチルブチル)フェノール、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−〔2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミド−メチル)−5−メチルフェニル〕ベンゾトリアゾール、2−(3−tert−ブチル−2−ヒドロキシ−5−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)ベンゾトリアゾール、メチル3−(3−(2H−ベンゾトリアゾール−2−イル)−5−tert−ブチル−4−ヒドロキシフェニル)プロピオネートとポリエチレングリコールの反応生成物、2−(2H−ベンゾトリアゾール−2−イル)−6−ドデシル−4−メチルフェノール等のベンゾトリアゾール系化合物、2,4−ジ−tert−ブチルフェニル−3,5−ジ−tert−ブチル−4−ヒドロキシベンゾエート等のベンゾエート系、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−〔(ヘキシル)オキシ〕フェノール等のトリアジン系化合物等が挙げられるが、特に好ましくは、ヒンダートアミン系化合物である。
市販されているアミン系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製として、TINUVIN765、TINUVIN770DF、TINUVIN144、TINUVIN123、TINUVIN622LD、TINUVIN152、CHIMASSORB944、アデカ製として、LA−52、LA−57、LA−62、LA−63P、LA−77Y、LA−81、LA−82、LA−87などが挙げられる。
注入方法としては、ディスペンサー、トランスファー成形、射出成形等が挙げられる。
加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。
加熱条件は例えば80〜230℃で1分〜24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80〜120℃、30分〜5時間予備硬化させた後に、120〜180℃、30分〜10時間の条件で後硬化させることができる。
(1)分子量:ゲルパーミエーションクロマトグラフィー(GPC)法により、下記条件下測定されたポリスチレン換算、重量平均分子量を算出した。
・GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF−G LF−804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
(2)エポキシ当量:JISK−7236に記載の方法で測定。
(3)粘度:東機産業株式会社製E型粘度計(TV−20)を用いて25℃で測定。
工程1として、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン375部、重量平均分子量1700(GPC測定値)のシラノール末端メチルフェニルシリコーンオイル475部(シラノール当量850、GPCを用いて測定した重量平均分子量の半分として算出した。)、0.5%水酸化カリウム(KOH)メタノール溶液40部を反応容器に仕込み、還流下にて8時間反応させた。
工程2として、メタノールを655部追加後、50%蒸留水メタノール溶液144部を60分かけて滴下し、還流下、8時間反応させた。反応終了後、5%リン酸2水素ナトリウム水溶液で中和後、メタノールの約90%を蒸留回収した。次いで、メチルイソブチルケトン(MIBK)750部を添加し、水洗を3回繰り返した。得られた有機相を減圧下、100℃で溶媒を除去することにより本発明に使用するエポキシ樹脂(A−1)647部を得た。得られた化合物のエポキシ当量は541g/eq、重量平均分子量は2100、外観は無色透明の液状樹脂であった。
工程1として、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン263部、重量平均分子量1900(GPC測定値)のシラノール末端メチルフェニルシリコーンオイル475部(シラノール当量950、GPCを用いて測定した重量平均分子量の半分として算出した。)、0.5%水酸化カリウム(KOH)メタノール溶液40部を反応容器に仕込み、還流下にて8時間反応させた。
工程2として、メタノールを655部追加後、50%蒸留水メタノール溶液115部を60分かけて滴下し、還流下、8時間反応させた。反応終了後、5%リン酸2水素ナトリウム水溶液で中和後、メタノールの約90%を蒸留回収した。次いで、メチルイソブチルケトン(MIBK)750部を添加し、水洗を3回繰り返した。得られた有機相を減圧下、100℃で溶媒を除去することにより本発明に使用するエポキシ樹脂(A−2)605部を得た。得られた化合物のエポキシ当量は636g/eq、重量平均分子量は2090、外観は無色透明の液状樹脂であった。
工程1として、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン285部、重量平均分子量1700(GPC測定値)のシラノール末端メチルフェニルシリコーンオイル475部(シラノール当量850、GPCを用いて測定した重量平均分子量の半分として算出した。)、0.5%水酸化カリウム(KOH)メタノール溶液40部を反応容器に仕込み、還流下にて8時間反応させた。
工程2として、メタノールを655部追加後、50%蒸留水メタノール溶液123部を60分かけて滴下し、還流下、8時間反応させた。反応終了後、5%リン酸2水素ナトリウム水溶液で中和後、メタノールの約90%を蒸留回収した。次いで、メチルイソブチルケトン(MIBK)750部を添加し、水洗を3回繰り返した。得られた有機相を減圧下、100℃で溶媒を除去することにより本発明に使用するエポキシ樹脂(A−3)620部を得た。得られた化合物のエポキシ当量は605g/eq、重量平均分子量は2120、外観は無色透明の液状樹脂であった。
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらメチルヘキサヒドロフタル酸無水物(新日本理化(株)製、リカシッドMH 以下、酸無水物H−1と称す)84部とカルビノール変性シリコーンオイル(信越化学製 X22−160AS)239部を加え、60℃で2時間反応後90℃で3時間加熱撹拌を行うことで下記式(7)で表される多価カルボン酸(B−1)が323部得られた。得られた無色の液状樹脂であり、官能基当量は646g/eq.であった。
式(7)
エポキシ樹脂として合成例1〜3で得られたエポキシ樹脂(A−1)(A−2)(A−3)、硬化剤として合成例4で得られた多価カルボン酸(B−1)、比較例用硬化剤として酸無水物(H−1)、亜鉛塩として2−エチルヘキシル酸亜鉛(ホープ製薬(株)製、18%オクトープZn 以下、亜鉛塩C−1と称す。)、硬化促進剤として硬化促進剤(日本合成化学製 ヒシコーリンPX4MP 以下、触媒I−1と称す。)、添加剤としてヒンダートアミン(アデカ製 LA−81 以下、添加剤J−1と称す。)、リン化合物(アデカ製 アデカ260 以下、添加剤J−2と称す。)を使用し、下記表1に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明または比較用の硬化性樹脂組成物を得た。
実施例及び比較例で得られた硬化性樹脂組成物を真空脱泡20分間実施後、シリンジに充填し精密吐出装置を使用して、発光波長465nmを持つ発光素子を搭載した表面実装型(SMD型5mmφ)LEDに注型した。その後、120℃で1時間、さらに150℃で3時間の硬化条件で硬化させることで、試験用LEDを得た。
・評価項目
(a)揮発性:封止した後の硬化物表面の凹みの有無を目視で評価した。表中、○;凹みが認められない、△;凹みが少し認められる、×;凹みが多く認められる。
(b)タック:べたつきがない○ べたつきが無い×(指触試験)
(c)リフロー試験:得られた試験用LEDを30℃70%×72時間吸湿後、高温観察装置(SMT Scope SK−5000 山陽精工株式会社製)を用い、以下のリフロー条件下でのLEDのクラック発生の有無を確認した。テストはn=3で行い、(NG数)/(テスト数)で評価した。
条件は25℃より2℃/秒で150℃まで昇温、その後2分間150℃で保持し、さらに2℃/秒で260℃まで昇温し、10秒の温度保持後、1.3℃/秒で室温まで冷却する、というものである。
得られた硬化性樹脂組成物を用い、シリンジに充填し精密吐出装置を用いて、中心発光波465nmのチップを搭載した外径5mm角表面実装型LEDパッケージ(内径4.4mm、外壁高さ1.25mm)に注型した。その注型物を加熱炉に投入して、120℃、1時間さらに150℃、3時間の硬化処理をしてLEDパッケージを作成した。下記条件でLEDパッケージを腐食性ガス中に放置し、封止内部の銀メッキされたリードフレーム部の色の変化を観察した。結果については、表1に示した。
・測定条件
腐食ガス:硫化アンモニウム20%水溶液(硫黄成分が銀と反応した場合に黒く変色する)
接触方法:広口ガラス瓶の中に、硫化アンモニウム水溶液の容器と前記LEDパッケージを混在させ、広口ガラス瓶の蓋をして密閉状況下、揮発した硫化アンモニウムガスとLEDパッケージを接触させた。
腐食の判定:LEDパッケージ内部のリードフレームが黒く変色(黒化という)した時間を観察し、その変色時間が長い物ほど、耐腐食ガス性にすぐれていると判断した。
観察は1時間毎に行い、5時間まで評価をおこなった。評価は変色までの時間を評価した。
得られた硬化性樹脂組成物をシリンジに充填し精密吐出装置を使用して、発光波長465nmを持つ発光素子を搭載した表面実装型LED(SMD型5mmφ 規定電流30mA)に注型した。その後、120℃で1時間、さらに150℃で3時間の硬化条件で硬化させることで、点灯試験用LEDを得る。点灯試験は、規定電流である30mAを大幅に超える230mA、220mAの電流での点灯試験を行った。詳細な条件は下記に示した。測定項目としては、40時間点灯前後の照度を積分球を使用して測定し、試験用LEDの照度の保持率を算出した。結果を表1に示す。
・点灯詳細条件
発光波長:中心発光波長、465nm
駆動方式:定電流方式、220mA、230mA(発光素子規定電流は30mA)直列で3ヶ同時に点灯
駆動環境:85℃、85%湿熱機内での点灯
評価:40時間後の照度保持率
上記シリコーン樹脂S−1、S−2は具体的に下記の構造を有する。
S−1:白金触媒を触媒量(0.1%以下)で含み、オルガノ基として、フェニル基:メチル基:ビニル基をモル換算で0.4:1:1で有するオルガノハイドロジェンポリシロキサン
S−2:オルガノ基として、フェニル基、メチル基、ビニル基を有するオルガノハイドロジェンポリシロキサンで、モル換算で、フェニル基:メチル基:ビニル基:ヒドロシリル基における水素原子の含有比が2:2:1:1であるオルガノハイドロジェンポリシロキサン。
尚、比較例3では、配合比(質量比)をS−1:S−2=1:20とし、硬化条件を150℃1時間とした。
なお、本出願は、2010年6月11日付で出願された日本特許出願(特願2010−134465)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Claims (5)
- エポキシ樹脂(A)と、多価カルボン酸(B)と、亜鉛塩および/または亜鉛錯体(C)と、を必須成分とする硬化性樹脂組成物。
ただし、多価カルボン酸(B)、亜鉛塩および/または亜鉛錯体(C)は各々以下の条件を満たす。
多価カルボン酸(B):
少なくとも2つ以上のカルボキシル基を有し、シロキサン骨格を主骨格とする多価カルボン酸
亜鉛塩および/または亜鉛錯体(C):
亜鉛カルボキシラート、燐酸エステル若しくは燐酸の亜鉛塩、および/またはこれらの酸あるいはエステルを配位子として有する亜鉛錯体 - 多価カルボン酸(B)が直鎖のポリシロキサン構造を有し、両末端にカルボン酸を有する請求項1に記載の硬化性樹脂組成物。
- 多価カルボン酸(B)が直鎖のポリシロキサン構造を有するカルビノール変成体と環状飽和脂肪族酸無水物との反応により得られた化合物である請求項1または2に記載の硬化性樹脂組成物。
- ヒンダートアミン系光安定剤とリン含有酸化防止剤を含有する請求項1〜3のいずれか一項に記載の硬化性樹脂組成物。
- 請求項1〜4のいずれか一項に記載の硬化性樹脂組成物を硬化してなる硬化物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012519441A JP5768047B2 (ja) | 2010-06-11 | 2011-06-10 | 硬化性樹脂組成物およびその硬化物 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010134465 | 2010-06-11 | ||
JP2010134465 | 2010-06-11 | ||
PCT/JP2011/063412 WO2011155613A1 (ja) | 2010-06-11 | 2011-06-10 | 硬化性樹脂組成物およびその硬化物 |
JP2012519441A JP5768047B2 (ja) | 2010-06-11 | 2011-06-10 | 硬化性樹脂組成物およびその硬化物 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2011155613A1 true JPWO2011155613A1 (ja) | 2013-08-15 |
JP5768047B2 JP5768047B2 (ja) | 2015-08-26 |
Family
ID=45098215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012519441A Expired - Fee Related JP5768047B2 (ja) | 2010-06-11 | 2011-06-10 | 硬化性樹脂組成物およびその硬化物 |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP5768047B2 (ja) |
KR (1) | KR20130098876A (ja) |
CN (1) | CN102939315A (ja) |
SG (1) | SG186254A1 (ja) |
TW (1) | TWI504628B (ja) |
WO (1) | WO2011155613A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5472924B2 (ja) * | 2010-10-21 | 2014-04-16 | 日本化薬株式会社 | 硬化性樹脂組成物およびその硬化物 |
JP6006725B2 (ja) * | 2011-09-09 | 2016-10-12 | 日本化薬株式会社 | 光半導体素子封止用硬化性樹脂組成物およびその硬化物 |
JP6602170B2 (ja) * | 2015-11-16 | 2019-11-06 | 日本化薬株式会社 | 多価カルボン酸樹脂およびそれを含有する多価カルボン酸樹脂組成物、エポキシ樹脂組成物、熱硬化性樹脂組成物、それらの硬化物並びに半導体装置 |
JP6951323B2 (ja) * | 2016-03-31 | 2021-10-20 | 太陽インキ製造株式会社 | 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板 |
KR102624978B1 (ko) | 2016-11-28 | 2024-01-15 | 에이치엘만도 주식회사 | 디스크 브레이크 |
CN107742286B (zh) * | 2017-09-28 | 2021-01-29 | 河北工业大学 | 一种多晶硅太阳能电池片el测试裂纹缺陷检测方法 |
CN112442256B (zh) * | 2020-11-03 | 2021-12-17 | 南京大学 | 一种环氧树脂基高分子材料及其制备方法和应用 |
CN112708277A (zh) * | 2020-12-23 | 2021-04-27 | 北京化工大学 | 一种高强度柔性聚硅氧烷气凝胶及制备方法 |
CN113461359B (zh) * | 2021-06-29 | 2022-05-10 | 江苏先帅科技有限公司 | 一种管片预制件用复合聚羧酸减水剂及其制备方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH089658B2 (ja) * | 1988-12-13 | 1996-01-31 | 新日本理化株式会社 | エポキシ樹脂用硬化促進剤及びその硬化剤組成物ならびにエポキシ樹脂組成物 |
JPH07108935B2 (ja) * | 1989-01-10 | 1995-11-22 | 新日本理化株式会社 | エポキシ樹脂用硬化剤組成物及びエポキシ樹脂組成物 |
JP3012358B2 (ja) * | 1991-04-30 | 2000-02-21 | 東レ・ダウコーニング・シリコーン株式会社 | 加熱硬化性エポキシ樹脂組成物 |
US6335304B1 (en) * | 1999-11-09 | 2002-01-01 | King Industries, Inc | Metal salts of phosphoric acid esters as cross linking catalysts |
JP2003124529A (ja) * | 2002-09-24 | 2003-04-25 | Nichia Chem Ind Ltd | 発光ダイオードおよびその形成方法 |
JP2004292706A (ja) * | 2003-03-27 | 2004-10-21 | Nof Corp | 光半導体封止用エポキシ樹脂組成物及び光半導体装置 |
US7279223B2 (en) * | 2003-12-16 | 2007-10-09 | General Electric Company | Underfill composition and packaged solid state device |
JP5109873B2 (ja) * | 2008-08-27 | 2012-12-26 | 日油株式会社 | 熱硬化性樹脂組成物 |
JP5141499B2 (ja) * | 2008-10-31 | 2013-02-13 | 日油株式会社 | 熱硬化性樹脂組成物 |
JP5574447B2 (ja) * | 2009-10-06 | 2014-08-20 | 日本化薬株式会社 | 多価カルボン酸組成物およびその製造方法、ならびに該多価カルボン酸組成物を含有してなる硬化性樹脂組成物 |
-
2011
- 2011-06-10 KR KR1020127031395A patent/KR20130098876A/ko not_active Application Discontinuation
- 2011-06-10 SG SG2012090577A patent/SG186254A1/en unknown
- 2011-06-10 TW TW100120614A patent/TWI504628B/zh not_active IP Right Cessation
- 2011-06-10 WO PCT/JP2011/063412 patent/WO2011155613A1/ja active Application Filing
- 2011-06-10 CN CN2011800288827A patent/CN102939315A/zh active Pending
- 2011-06-10 JP JP2012519441A patent/JP5768047B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP5768047B2 (ja) | 2015-08-26 |
KR20130098876A (ko) | 2013-09-05 |
WO2011155613A1 (ja) | 2011-12-15 |
TW201200536A (en) | 2012-01-01 |
SG186254A1 (en) | 2013-01-30 |
TWI504628B (zh) | 2015-10-21 |
CN102939315A (zh) | 2013-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5878862B2 (ja) | 硬化性樹脂組成物、及びその硬化物 | |
JP5768047B2 (ja) | 硬化性樹脂組成物およびその硬化物 | |
JP5730852B2 (ja) | オルガノポリシロキサンの製造方法、該製造方法により得られるオルガノポリシロキサン、該オルガノポリシロキサンを含有する組成物 | |
JP5626856B2 (ja) | 硬化性樹脂組成物およびその硬化物 | |
JP5433705B2 (ja) | 硬化性樹脂組成物およびその硬化物 | |
JP5698453B2 (ja) | エポキシ樹脂組成物 | |
JP5348764B2 (ja) | 光半導体封止用硬化性樹脂組成物、及びその硬化物 | |
JP5948317B2 (ja) | 多価カルボン酸樹脂およびその組成物 | |
JP5300148B2 (ja) | エポキシ樹脂組成物、硬化性樹脂組成物 | |
JP5561778B2 (ja) | 硬化性樹脂組成物およびその硬化物 | |
JP5472924B2 (ja) | 硬化性樹脂組成物およびその硬化物 | |
JP5700618B2 (ja) | エポキシ樹脂組成物、硬化性樹脂組成物 | |
JP2014237861A (ja) | エポキシ樹脂組成物、硬化性樹脂組成物 | |
JP5832601B2 (ja) | 硬化性樹脂組成物およびその硬化物 | |
JP6377445B2 (ja) | エポキシ樹脂組成物およびその硬化物 | |
JP2017031247A (ja) | 硫黄系酸化防止剤を含有する硬化性樹脂組成物およびエポキシ樹脂組成物とその硬化物 | |
JP6016697B2 (ja) | 発光半導体被覆保護材用硬化性樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150622 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5768047 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |