JPWO2011114765A1 - アクチュエータの制御装置およびこれを備えた作業機械 - Google Patents

アクチュエータの制御装置およびこれを備えた作業機械 Download PDF

Info

Publication number
JPWO2011114765A1
JPWO2011114765A1 JP2012505542A JP2012505542A JPWO2011114765A1 JP WO2011114765 A1 JPWO2011114765 A1 JP WO2011114765A1 JP 2012505542 A JP2012505542 A JP 2012505542A JP 2012505542 A JP2012505542 A JP 2012505542A JP WO2011114765 A1 JPWO2011114765 A1 JP WO2011114765A1
Authority
JP
Japan
Prior art keywords
current
command
actuator
electric motor
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012505542A
Other languages
English (en)
Other versions
JP5453522B2 (ja
Inventor
秀一 森木
秀一 森木
金子 悟
金子  悟
枝穂 泉
泉  枝穂
伊君 高志
高志 伊君
弘幸 山田
弘幸 山田
信夫 正野
信夫 正野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2012505542A priority Critical patent/JP5453522B2/ja
Publication of JPWO2011114765A1 publication Critical patent/JPWO2011114765A1/ja
Application granted granted Critical
Publication of JP5453522B2 publication Critical patent/JP5453522B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F19/00Hoisting, lifting, hauling or pushing, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20569Type of pump capable of working as pump and motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/275Control of the prime mover, e.g. hydraulic control

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Geology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Control Of Ac Motors In General (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

【課題】回生時の振動を抑制することが可能なアクチュエータの制御装置を提供する。【解決手段】電動機の目標回転数を演算する目標速度演算手段(121)と、アクチュエータにかかる負荷を検出する負荷検出手段(2)と、負荷に基づいて電動機のトルク指令を演算するトルク指令演算手段(123)と、トルク指令から電動機に流す電流ベクトル指令を演算する電流指令演算手段(131)と、電流検出手段(5a)と、電流を電流ベクトルに変換する電流変換手段(132)と、電流ベクトル指令と電流ベクトルとの偏差に応じて電圧ベクトル指令を演算する電圧指令演算手段(133)と、電圧ベクトル指令を電圧指令に変換すると共に電圧指令を電動機の制御部に出力する電圧変換手段(134)とを備え、電流変換手段および電圧変換手段は、目標速度演算手段が演算した目標回転数に基づいて、それぞれの変換を行う。【選択図】図5

Description

本発明は、アクチュエータの制御装置に関し、特に電動機で駆動するアクチュエータを制御するのに好適な制御装置に関する。
電動機でアクチュエータを駆動する技術では、力行時において、電動機の発生するトルクによってアクチュエータを駆動する。また、回生時において、アクチュエータの反力トルクによって電動機を駆動し、電動機を発電機動作させることによって回生電力を得る。
特開2006−336846号公報 特開2006−336843号公報
このような電動機でアクチュエータを駆動する技術では、アクチュエータの反力トルクに対して電動機のトルクを調節することでアクチュエータの速度を制御するため、アクチュエータにかかる負荷の変動により、アクチュエータや電動機に振動が発生する可能性がある。また、回生時においては力行時よりも振動が発生しやすい。
回生時に振動が発生しやすくなる原因を、図1を用いて説明する。図中の横軸は電動機の回転数を、縦軸は電動機のトルクを示しており、等パワー曲線L1およびL2はそれぞれ一定パワーで力行および回生を行った場合の電動機の回転数に対する電動機のトルクの変化を表している。また、図中の直線L0は反力トルクを表しており、反力トルクよりも電動機のトルクが大きければ電動機の動作点は正転方向(図の右向き)へ移動し、反力トルクよりも電動機のトルクが小さければ電動機の動作点は逆転方向(図の左向き)へ移動する。
ここで、図右半面の力行時において、アクチュエータにかかる負荷が変動し、反力トルクが電動機のトルクよりも大きくなった場合を考えると、電動機の動作点は逆転方向へ移動するため、等パワー曲線L1上で電動機のトルクが自然と大きくなり、電動機のトルクと反力トルクが釣り合って電動機の回転数が一定となる。すなわち力行時は安定系であることが分かる。
一方で、図左半面の回生時において、アクチュエータにかかる負荷が変動し、反力トルクが電動機のトルクよりも大きくなった場合を考えると、電動機の動作点は逆転方向へ移動するため、等パワー曲線L2上で電動機のトルクが小さくなり、電動機の動作点はさらに逆転方向へ移動して電動機の回転数が一定にならない。すなわち回生時は不安定系であることが分かる。特に、回生時で反力トルクが電動機のトルクよりも大きくなっている場合においては、電動機の回転数が大きくなるほど、電動機の動作は益々不安定となり、大きな振動が発生する可能性が高い。このことは、電動機やアクチュエータの故障の原因となったり、あるいは、アクチュエータを駆動して何らかの作業を行っている場合には、作業の安全上の問題を引き起こす要因となったりする。よって、回生時の振動を抑えることが、非常に重要な課題となっている。
アクチュエータや電動機に発生する振動を抑制するために、例えば、特許文献1に記載の流体圧回路では、流体圧アクチュエータからの戻り流体が有するエネルギーを電動機により円滑に吸収できるとともに流体圧アクチュエータの安定した動作が得られるように、流量を制御する電磁弁を有している。しかしながら、特許文献1に記載の流体圧回路は、電磁弁により戻り流体の流量を絞るため圧力損失が比較的大きく、圧力損失分だけ回生電力が減るという課題が残されている。
また、特許文献2に記載の作業機械の制御装置では、流体圧アクチュエータと閉回路により接続された可変容量型ポンプの容量可変制御により、流体圧アクチュエータの少なくとも速度制御および圧力変動の抑制制御をするとともに、電動機の回転速度を大略的に制御する制御器を有している。しかしながら、特許文献2に記載の作業機械の制御装置は、可変容量型ポンプの容量を変化させるためのアクチュエータが必要であり、回路が複雑になるという課題がある。また、アクチュエータにかかる負荷の変動の周期が、可変容量型ポンプの容量可変制御の制御周期よりも早い場合は、流体圧アクチュエータの圧力変動を抑制できない可能性がある。
本発明の目的は、アクチュエータや電動機に発生する振動、特に回生時の振動を抑制することが可能なアクチュエータの制御装置およびこれを備えた作業機械を提供することにある。
上記した課題を解決するために、第1の発明は、電動機で駆動するアクチュエータを制御するためのアクチュエータの制御装置であって、前記アクチュエータの操作信号に基づいて前記電動機の目標回転数を演算する目標速度演算手段と、前記アクチュエータにかかる負荷を検出する負荷検出手段と、前記負荷検出手段により検出された負荷に基づいて、前記電動機のトルク指令を演算するトルク指令演算手段と、前記トルク指令から前記電動機に流す電流ベクトル指令を演算する電流指令演算手段と、前記電動機に流れている三相電流を検出する電流検出手段と、前記電流検出手段が検出した三相電流をd軸電流およびq軸電流(以下、d軸電流およびq軸電流を「電流ベクトル」と言う)に変換する電流変換手段と、前記電流ベクトル指令と前記電流ベクトルとの偏差に応じて電圧ベクトル指令を演算する電圧指令演算手段と、前記電圧ベクトル指令を電圧指令に変換すると共に当該電圧指令を前記電動機の制御部に出力する電圧変換手段とを備え、前記電流変換手段および前記電圧変換手段は、前記目標速度演算手段が演算した目標回転数に基づいて、それぞれの変換を行うことを特徴とするアクチュエータの制御装置である。
また、第2の発明は、上記した発明において、前記トルク指令演算手段は、前記アクチュエータにかかる負荷の定常的な変化に対する電流の変化量よりも、前記アクチュエータにかかる負荷の瞬間的な変化に対する電流の変化量の方が小さくなるように、前記負荷検出手段が検出した負荷を平滑化した値を用いて前記電動機のトルク指令を演算することを特徴とするものである。
また、第3の発明は、上記した発明において、前記負荷検出手段が検出した負荷と前記目標速度演算手段が演算した目標回転数とに基づいて前記電動機の動作が力行または回生の何れであるかを判定する力行回生判定手段をさらに備え、前記力行回生判定手段による判定が回生の場合には、前記電流変換手段および前記電圧変換手段は、それぞれの変換を前記目標速度演算手段が演算した目標回転数に基づいて行う一方、前記力行回生判定手段による判定が力行の場合には、前記電流変換手段および前記電圧変換手段は、それぞれの変換を前記電動機の実回転数に基づいて行い、さらに、前記目標速度演算手段が演算した目標回転数および前記電動機の実回転数を積分する積分手段を備え、前記電流変換手段および前記電圧変換手段は、前記積分手段が積分した値に基づいてそれぞれの変換を行うことを特徴とするものである。
また、第4の発明は、上記した発明において、前記電動機として誘導機が用いられることを特徴とするものである。
また、第5の発明は、上記した発明において、前記トルク指令演算手段は、前記目標速度演算手段が演算した目標回転数をさらに参照してトルク指令を演算することを特徴とするものである。
また、第6の発明は、上記した発明において、前記トルク指令演算手段は、前記アクチュエータにかかる負荷に応じたトルクの時間平均値に、前記アクチュエータにかかる負荷の変動分に応じたトルクを予め足し合わせてトルク指令を演算することを特徴とするものである。
また、第7の発明は、上記した発明に係るアクチュエータの制御装置を備えた作業機械である。
本発明によれば、目標回転数に基づき電流変換および電圧変換を行うことで、電動機に印加される3相電圧の位相が目標速度に応じた角速度で変化するため、3相電圧の位相の変化速度すなわち目標回転数に応じた角速度に略同期して電動機が回転し、電動機およびアクチュエータの振動を抑制できる。また、アクチュエータの負荷を平滑化してトルク指令の演算を行うことによっても、アクチュエータにかかる負荷の定常的な変化に対する電流の変化量よりも、アクチュエータにかかる負荷の瞬間的な変化に対する電流の変化量の方が小さくなるように制御できるので、電動機およびアクチュエータの振動を抑制できることとなる。
また、本発明によれば、負荷に応じたトルクの時間平均値に負荷の変動分に応じたトルクを予め足し合わせるため、負荷に応じたトルクよりも電動機のトルクの方が大きくなり、電動機の脱調を防止できる。
回生時に振動が発生しやすくなる原因を示す図である。 本発明の第1の実施形態にかかるアクチュエータの制御装置を示す図である。 本発明の第1の実施形態に示すアクチュエータの制御装置を備えたフォークリフトの外観図である。 図2に示すコントローラの構成を説明するための図である。 図4に示す速度制御器の構成を説明するための図である。 図4に示すモータ制御器の構成を説明するための図である。 電動機として誘導機を用いた場合の効果を説明するための図である。 リフト下降時にPI制御を行った結果を示す図である。 リフト下降時に第1の実施形態に示す制御を行った結果を示す図である。 リフト下降時に第1の実施形態に示す制御を行い瞬間的に外力を加えた結果を示す図である。 本発明の第2の実施形態にかかるアクチュエータの制御装置を示す図である。 図11に示すコントローラの構成を説明するための図である。 図12に示す速度制御器の構成を説明するための図である。 本発明の第3の実施形態にかかるアクチュエータの制御装置を示す図である。 図14に示すコントローラの構成を説明するための図である。 図15に示す速度制御器の構成を説明するための図である。 本発明の第4の実施形態にかかるアクチュエータの制御装置を示す図である。 本発明の第4の実施形態に示すアクチュエータの制御装置を備えたバッテリショベルの外観図である。
図2は、第1の実施形態にかかるアクチュエータの制御装置を説明する図である。アクチュエータの制御装置としてのコントローラ100は、レバー1に取り付けられた図示しないポテンショメータからレバー1の操作量に応じたレバー信号を受信し、圧力センサ(負荷検出手段)2から油圧シリンダ(アクチュエータ)3の圧力に応じた圧力信号を受信し、電動機4に取り付けられた図示しないエンコーダから電動機4の回転数を受信し、インバータ5が有する電流センサ(電流検出手段)5aから3相電流を受信する。
コントローラ100は、受信したレバー信号、圧力信号、回転数、3相電流を基に3相電圧指令と保持解除信号を演算して、3相電圧指令をインバータ5へ送信し、保持解除信号を電磁式切換弁6へ送信する。コントローラ100で行う演算の詳細は後述する。また、インバータ5は、3相電圧指令に応じて、電動機4に電圧を印加し電動機4を駆動する。電磁式切換弁6は通常は閉じており、保持解除信号に応じて(つまり、保持解除信号がONで)開き、油圧ポンプモータ7と油圧シリンダ3を連通する。
レバー1がリフト上昇側へ操作されると、インバータ5は蓄電装置8の電力を消費して電動機4を正転力行させる。油圧ポンプモータ7は電動機4に連結されており、正転することでオイルタンク9のオイルを吸い上げ、油圧シリンダ3側へ吐出する。なお、油圧ポンプモータ7の吐出圧力が配管の耐圧を超えないように、油圧ポンプモータ7と電磁式切換弁6の間にリリーフ弁10を備えている。
油圧シリンダ3は、油圧ポンプモータ7から供給されるオイルにより伸張し、図示しないマスト外枠に沿って図示しないマスト内枠を上昇させる。マスト内枠の上部には動滑車11が備え付けられており、マスト内枠と共に動滑車11が動くと、動滑車11にかけられたリフトチェーン12を介してリフトチェーン12の先端に備え付けられたフォーク13が上昇する。
レバー1がリフト下降側へ操作されると、フォーク13は自重および荷重により下降し、リフトチェーン12、動滑車11、マスト内枠を介して油圧シリンダ3を圧縮する。油圧シリンダ3は、圧縮されることによりオイルを吐出し、電磁式切換弁6を介して油圧ポンプモータ7へオイルを供給する。油圧ポンプモータ7は供給されるオイルによりモータ動作を行って、電動機4を逆転させる。このとき、インバータ5は電動機4を発電制御し、発電した電力を蓄電装置8へ供給する。
図2を用いて説明したアクチュエータの制御装置を備えたフォークリフト(作業機械)の外観図を図3に示す。オペレータはレバー1を操作することでマスト外枠に沿って図示しない油圧シリンダを伸縮させ、フォーク13を上昇、下降させることができる。
次に、コントローラ(アクチュエータの制御装置)100の構成を図4に示す。コントローラ100は、保持解除判定器110、速度制御器120、モータ制御器130から構成される。保持解除判定器110は、レバー信号の絶対値が予め設定された閾値以上で一定時間T1経過すると保持解除信号をONとし、レバー信号の絶対値が予め設定された閾値よりも小さくなると保持解除信号をOFFにする。ここで、一定時間T1は、電磁切換弁6前後の圧力を釣り合わせるまでの時間を考慮して予め設定されるものである。そのため、圧力信号に応じて、圧力信号が大きいほど一定時間T1が大きくなるようにしてもよいし、電動機4の回転数が高いほど一定時間T1が小さくなるようにしてもよい。また、油圧ポンプモータ7と電磁式切換弁6の間の圧力を検出、若しくは推定する手段を別途備え、電磁式切換弁6前後の圧力が略一致すると保持解除信号をONにするようにしてもよい。
速度制御器120は、保持解除信号、レバー信号、圧力信号および回転数を基にトルク指令と変換用回転数を演算し、出力する。速度制御器120で行う演算の詳細は後述する。また、モータ制御器130は、トルク指令、変換用回転数および3相電流を基に3相電圧指令を演算し、出力する。モータ制御器130で行う演算の詳細も後述する。
速度制御器120の構成を図5に示す。速度制御器120は、目標速度演算器(目標速度演算手段)121、力行回生判定器122、トルク指令演算器(トルク指令演算手段)123および回転数切換器124で構成される。
目標速度演算器121は、保持解除信号vvとレバー信号vlを基に(1)式から目標回転数ntを演算する。
Figure 2011114765
ただし、 K1はレバー操作量に対して適度なリフト速度が得られるように予め設定する比例定数である。またK0は油圧ポンプモータ7を予圧する速度に関係する比例定数で、レバー操作に対してリフトが適度な範囲で遅れて動作するように予め設定する。なお、目標速度演算器121は、上記したように電動機4の目標回転数ntを演算しているが、(1)式から明らかなように、目標回転数ntの演算には、比例定数K1 またはK0を用いていることから、電動機4の目標回転数ntの演算は、アクチュエータである油圧シリンダ3の目標速度に基づいて定められていると言うこともできる。
上記の(1)式から、保持解除信号vvがONの場合はレバー信号vlの符号に応じた方向に目標回転数ntが設定され、保持解除信号vvがOFFの場合はレバー信号vlの符号に因らず目標回転数ntが正転方向に設定される。そのため、レバー信号vlが入力され、保持解除信号vvがOFFの場合は油圧ポンプモータ7と電磁式切換弁6の間の圧力が徐々に高くなる。ここで、保持解除信号vvがOFFからONへ変化したとき、目標回転数ntが急激に変化することに起因するリフト速度の急変を防止するため、(1)式の目標回転数ntにローパスフィルタまたはレートリミッタを施した値を改めて目標回転数ntにしてもよい。
力行回生判定器122は、目標回転数ntと圧力信号pcを基に(2)式から力行回生判定fdを演算する。
Figure 2011114765
ただしsignは符号関数で、引数が正であれば1、負であれば-1、0であれば0を返す。ptはオイルタンク9内の圧力で大気圧に設定する。力行回生判定fdが1または0であれば力行、-1であれば回生を表す。
トルク指令演算器123は、圧力信号pc、目標回転数ntおよび回転数nmを基に(3)式および(4)式からトルク指令Ttを演算する。なお、力行回生判定fdに応じて力行時は(3)式を用い、回生時は(4)式を用いる。
Figure 2011114765
Figure 2011114765
ただし、Dpは油圧ポンプモータ7の単位角度当たりの押しのけ容積を表しており、(3)式の右辺第1項はリフト静止時の油圧ポンプモータ7の反力トルクに相当する。sはラプラス演算子である。Kp、Kiは公知のPI制御のそれぞれ比例ゲイン、積分ゲインであり、予め適切な値に設定しておく。また、Kcは目標回転数に対するフィードフォワードゲインであり、(4)式の右辺第2項が電磁式切換弁6の圧力損失分に見合ったトルクとなるように予め適切な値に設定しておく。τ1は時定数であり、圧力信号を平滑化できるように予め適切な値に設定しておく。
また、Tvは変動吸収トルクであり、リフト速度の変動によって油圧ポンプモータ7の反力トルクが一時的に変動した場合であっても、電動機4が脱調しないように予め適切な値に設定しておく。つまり、トルク指令演算器123は、油圧シリンダ3にかかる負荷に応じたトルクの時間平均値に、油圧シリンダ3にかかる負荷の変動分に応じたトルクを予め足し合わせてトルク指令Ttを演算しているのである。
回転数切換器124は、力行回生判定fdに応じて、力行時は回転数nmを回生時は目標回転数ntを変換用回転数として出力する。
モータ制御器130の構成を図6に示す。モータ制御器130は、電流指令演算器(電流指令演算手段)131、電流変換器(電流変換手段)132、電流制御器(電圧指令演算手段)133、電圧変換器(電圧変換手段)134および積分器(積分手段)135で構成される。積分器135は、変換用回転数を積分した角度を、等価な0〜2πの値に変換し、回転子位相φmとして出力する。電流指令演算器131ではトルク指令Ttを基に予め設定したトルク-電流変換マップから電流ベクトル指令(idt, iqt)Tを演算する。ただし、添え字のTは転置を表す。ここで、トルク-電流変換マップは、高効率に所望のトルクが得られる電流ベクトル指令(idt, iqt)Tのマップとして、実験などにより予め設定しておく。
電流変換器132は、検出した3相電流(iu, iv, iw) Tを基に回転子位相φmを用いて(5)式から公知の三相二相変換および公知のdq変換を行って、電流ベクトル(id, iq)Tを演算し、出力する。
Figure 2011114765
電流制御器133は、電流ベクトル(id, iq)Tが電流ベクトル指令(idt, iqt)Tに一致するように、公知のPI制御などにより電圧ベクトル指令(vdt, vqt)Tを演算する。
電圧変換器134は、電圧ベクトル指令(vdt, vqt)Tを基に回転子位相φmを用いて(6)式から公知のdq逆変換および公知の二相三相変換を行って、3相電圧指令(vu, vv, vw) Tを演算し、出力する。
Figure 2011114765
以上のように、モータ制御器130は、トルク指令および3相電流から3相電圧指令を演算し、3相電圧指令の位相は速度制御器120から与えられる変換用回転数に応じて変化する。回生時に目標回転数が変換用回転数に設定された場合、3相電圧指令の位相は目標回転数に応じた角速度で変化する。そのため、電動機4は3相電圧指令の位相の変化速度すなわち目標回転数と略同期して回転し、電動機4の振動を抑制できる。
このとき、速度制御器120のトルク指令演算器123で、電動機4のトルクが油圧ポンプモータ7の反力トルク以上となるようにトルク指令を演算している。より詳細に言うと、(4)式に示すように、変動吸収トルクTvを正の値として加えてトルク指令Ttが演算されている。これにより、電動機4の脱調を防止できることとなる。なお、電動機4として誘導機を用いた場合には、電動機4として同期機を用いた場合に比べて、その変動吸収トルクTvの値を小さくすることができる。
次に、電動機4として誘導機を用いて、目標回転数ntを変換用回転数とした場合の効果を、図7を使って説明する。図7(a)の点線で示した軸は目標回転数ntを積分して得た回転子位相(以下、目標回転子位相と称す)上に固定した目標回転子座標である。電流ベクトル指令は、目標回転子座標上のd軸(磁束方向の軸)に対してある電流位相を持った第1象限にあるベクトルであり、図中のd軸電流指令、q軸電流指令はそれぞれ電流ベクトル指令のidt、iqtに相当する。また、電動機4のトルクTmは電流ベクトルを基に(7)式によって決まることが知られている。
Figure 2011114765
ただし、Pfは極対数、Mは相互インダクタンス、L2は2次巻線のインダクタンスである。
また、Ψは磁束であり、d軸電流を基に(8)式によって決まる。
Figure 2011114765
ただし、r2は2次巻線抵抗である。
ここで、油圧ポンプモータ7の反力トルクが一時的に変動し、図7(b)の実線で示した軸のように実回転子座標が目標回転子座標から一時的に位相偏差分ずれた場合を考える。電流ベクトル指令は目標回転子座標を基準に電流位相を持ったベクトルとして与えられるが、実際の電流ベクトルは実回転子座標を基準に形成されるため、実際のd軸電流id、q軸電流iqは位相偏差分だけ指令値よりも増減する。目標回転子位相よりも実回転子位相が遅れた場合はd軸電流idが減少し、q軸電流iqが増加し、目標回転子位相よりも実回転子位相が進んだ場合はd軸電流idが増加し、q軸電流iqが減少する。
このとき(8)式から磁束Ψはd軸電流idの変化から遅れて変化するため、瞬間的には磁束Ψは変化することはなく、(7)式からq軸電流iqの変化によって電動機4のトルクTmが増減する。例えば、図7(b)に示すように、目標回転子位相よりも実回転子位相が遅れた場合には、q軸電流iqが増加する。q軸電流iqの値が増加すると、(7)式から明らかなように、電動機4のトルクTmが増加する。この増加したトルクTmの作用により、実回転子位相は、図7(b)の座標の中心から反時計回りの方向に進んで目標回転子位相に一致するようになる。
この効果により、目標回転子位相と実回転子位相が一致する方向に電動機4のトルクTmが自動調節され、油圧ポンプモータ7の反力トルクが一時的に変動した場合であっても、電動機4の回転数nmを目標回転数ntと略一致させ、電動機4の振動を抑制できる。
リフト下降時においても、力行時の制御方法として示したPI制御を行った結果を図8に、本実施形態に示した制御を行った結果を図9に示す。図8を見ると、時間Tからリフト下降を始め、実リフト速度が負となっているが、実リフト速度が目標リフト速度に一致せず、振動的になっている。なお、目標リフト速度は目標回転数を基に別途算出したものを示している。また、実リフト速度を目標リフト速度に一致させるように電動機4のトルク指令を増減させるため、インバータ5の直流側電流であるDC電流も振動的になっている。これはPI制御のゲインが適切に設定されていないためであると考えられる。しかし、電動機のトルクに対するリフト速度の応答特性は、荷物質量やリフト揚程およびオイルの温度などに応じて大きく変わるため、すべての条件に対してPI制御のゲインを適切に設定することは困難である。
一方で図9を見ると、時間TBでリフト下降を始めてから停止するまで、実リフト速度が目標リフト速度に略一致しており、安定したリフト速度が得られている。また、目標リフト速度に対してトルク指令が略一定に保たれるため、DC電流も安定している。
リフト下降時において、本実施形態に示した制御を行い、途中で荷物に対して瞬間的に外力を加えた結果を図10に示す。図中の点線で囲まれたCにおいて、荷物に外力を加えており、瞬間的に圧力信号が大きくなっている。しかしながら、トルク指令演算器において圧力信号を平滑化した値を使ってトルク指令を演算しているため、トルク指令はほぼ変化せず、DC電流もほぼ変化していない。また、油圧ポンプモータ7の反力トルクの変動に対して予め変動吸収トルクを設定していること、さらに電動機4として誘導機を用いた場合は前述した効果によって電動機4のトルクが自動調節されることから、安定したリフト速度を得られている。
次に、図11は、第2の実施形態にかかるアクチュエータの制御装置を説明する図である。第2の実施形態では、第1の実施形態で用いた油圧シリンダに替えて、機械式アクチュエータ21を用いる。以下、第1の実施形態と同一の箇所には同一の符号を付けて、その詳しい説明は省略する。コントローラ(アクチュエータの制御装置)200は、レバー1に取り付けられた図示しないポテンショメータからレバー1の操作量に応じたレバー信号を受信し、ロードセル(負荷検出手段)22から機械式アクチュエータ21の負荷に応じた負荷信号を受信し、電動機4に取り付けられた図示しないエンコーダから電動機4の回転数を受信し、インバータ5が有する電流センサ5aから3相電流を受信する。ここで、機械式アクチュエータ21は公知のボールねじであってもよく、回転運動を並進運動に変換できる機構であればよい。
コントローラ200は、受信したレバー信号、負荷信号、回転数、3相電流を基に3相電圧指令と保持解除信号を演算して、3相電圧指令をインバータ5へ送信し、保持解除信号を保持機23へ送信する。ここで保持機23は例えば摩擦ブレーキであり、電動機4に内蔵されていてもよい。コントローラ200で行う演算の詳細は後述する。また、インバータ5は3相電圧指令に応じて、電動機4に電圧を印加して電動機4を駆動する。保持機23は通常は保持状態であり、保持解除信号に応じて(保持解除信号がONになると)保持を解除し、ギア24を介して電動機4の動力を機械式アクチュエータ21へ伝える。
レバー1がリフト上昇側へ操作されると、インバータ5は蓄電装置8の電力を消費して電動機4を正転力行させる。ギア24は電動機4に連結されており、正転することで機械式アクチュエータ21へ電動機4の動力を伝える。機械式アクチュエータ21は電動機4からギア24を介して伝えられる動力により伸張し、マスト外枠25に沿ってマスト内枠26を上昇させる。マスト内枠26の上部には動滑車11が備え付けられており、マスト内枠26と共に動滑車11が動くと、動滑車11にかけられたリフトチェーン12を介してリフトチェーン12の先端に備え付けられたフォーク13が上昇する。
レバー1がリフト下降側へ操作されると、フォーク13は自重および荷重により下降し、リフトチェーン12、動滑車11、マスト内枠26を介して機械式アクチュエータ21を下側へ押す。機械式アクチュエータ21は、下側へ押されることによりギア24を逆転させる動力を発生し、発生した動力はギア24を介して電動機4へ伝えられる。このときインバータ5は電動機4を発電制御し、蓄電装置8へ電力を供給する。
コントローラ200の構成を図12に示す。コントローラ200は、保持解除判定器110、速度制御器220、モータ制御器130から構成される。コントローラ200で行う演算は圧力信号が負荷信号に変わった点以外は第1の実施形態に示したコントローラ100で行う演算と同一であり、異なる点のみを説明する。
速度制御器220の構成を図13に示す。速度制御器220は目標速度演算器121、力行回生判定器222、トルク指令演算器(トルク指令演算手段)223および回転数切換器124で構成される。力行回生判定器222は目標回転数ntと負荷信号fcを基に(9)式から力行回生判定fdを演算する。
Figure 2011114765
トルク指令演算器223は、負荷信号fc、目標回転数ntおよび回転数nmを基に(10)式および(11)式からトルク指令Ttを演算する。なお、力行回生判定fdに応じて力行時は(10)式を用い、回生時は(11)式を用いる。
Figure 2011114765
Figure 2011114765
ただし、Rrは比例定数でギアの減速比や機械式アクチュエータ21のリードから予め算出する。また(3)式と同様に(10)式の右辺第1項はリフト静止時の電動機4にかかる反力トルクに相当する。Kc2は目標回転数に対するフィードフォワードゲインであり、(11)式の右辺第2項がギア24や機械式アクチュエータ21の摩擦損失に見合ったトルクとなるように予め適切な値に設定しておく。
以上の構成により、機械式アクチュエータ21を用いた第2の実施形態においても安定したリフト速度を得ることができる。
次に、図14は、第3の実施形態にかかるアクチュエータの制御装置を説明する図である。第3の実施形態は、油圧アクチュエータを備えた作業機械に対し、従来の油圧回路の変更を少なくして本発明を適用した一例である。なお、以下の説明において、第1の実施形態と同一の箇所には同一の符号を付けて、その詳細は省略する。
レバー1がリフト上昇側(図の右側)へ操作されると、レバー1に機械的に連結された制御弁31を介して油圧ポンプ32と油圧シリンダ3が連通される。油圧ポンプ32は電動機33に連結されおり、正転することでオイルタンク9のオイルを吸い上げ、油圧シリンダ3側へ吐出する。油圧シリンダ3へ供給されるオイルの流量は制御弁31の開度、すなわちレバー1の操作量によって調節できる。
レバー1には図示しないチョッパスイッチが取り付けられており、レバー1がリフト上昇側へ操作されるとチョッパスイッチがONになって、チョッパ34が蓄電装置8の電力を消費して電動機33を正転力行させる。ここではチョッパスイッチをON/OFF式としたが、レバー1の操作量に応じてチョッパ34が電動機33に印加する電圧が増加するように、リニア式のチョッパスイッチにしてもよい。なお、制御弁31と油圧ポンプ32の間にオイルの逆流を防止する逆止弁35を備えている。
一方、レバー1がリフト下降側(図の左側)へ操作されると、レバー1に機械的に連結された制御弁31を介して油圧シリンダ3とオイルタンク9が連通され、油圧シリンダ3が吐出したオイルは制御弁3を介してオイルタンク9へ還流する。油圧シリンダ3からオイルタンク9へ還流するオイルの流量は制御弁31の開度、すなわちレバー1の操作量によって調節できる。なお、制御弁31とオイルタンク9の間にオイルの逆流を防止する逆止弁36を備えている。以上が従来の油圧回路構成の一例である。
第3の実施形態では、油圧シリンダ3と制御弁31の間に電磁式切換弁37を備える。電磁式切換弁37は、通常は油圧シリンダ3と制御弁31を連通しているが、レバー1がリフト下降側へ操作されると、コントローラ(アクチュエータの制御装置)300が出力する回生信号に応じて、回生信号がONの場合は油圧シリンダ3と油圧モータ38を連通する。油圧モータ38は電動機4と連結されており、油圧シリンダ3から供給されるオイルによりモータ動作を行って電動機4を回転させる。
このとき、コントローラ300は、レバー1に取り付けられた図示しないポテンショメータからレバー1の操作量に応じたレバー信号を受信し、圧力センサ2から油圧シリンダ3の圧力に応じた圧力信号を受信し、インバータ5が有する電流センサ5aから3相電流を受信し、図示しない回生許可スイッチから回生許可信号を受信する。コントローラ300は、受信したレバー信号、圧力信号、3相電流、回生許可信号を基に3相電圧指令と回生信号を演算して、3相電圧指令をインバータ5へ送信し、回生信号を電磁式切換弁37へ送信する。コントローラ300で行う演算の詳細は後述する。インバータ5は、3相電圧指令に応じて電動機4を発電制御し、発電した電力を蓄電装置8へ供給する。
コントローラ300の構成を図15に示す。コントローラ300は、回生判定器310、速度制御器320、モータ制御器330から構成される。回生判定器310は、回生許可信号がONかつレバー信号の絶対値が予め設定された閾値以上であれば回生判定信号をONとし、回生許可信号がOFFまたはレバー信号の絶対値が予め設定された閾値よりも小さければ回生判定信号をOFFにする。
速度制御器320は、回生判定信号、レバー信号、圧力信号を基にトルク指令と目標回転数を演算し、出力する。速度制御器320で行う演算の詳細は後述する。また、モータ制御器330は、トルク指令、目標回転数および3相電流を基に3相電圧指令を演算し、出力する。モータ制御器330で行う演算は、変換用回転数が目標回転数に変わったこと以外は、第1の実施形態に記述したモータ制御器130と同一であるため、その詳細説明を省略する。
速度制御器320の構成を図16に示す。速度制御器320は、目標速度演算器(目標速度演算手段)321、トルク指令演算器(トルク指令演算手段)323で構成される。目標速度演算器321は回生判定信号vvとレバー信号vlを基に(12)式から目標回転数ntを演算する。
Figure 2011114765
ただし、 K1はレバー操作量に対して適度なリフト下降速度が得られるように予め設定する比例定数である。
トルク指令演算器323は、圧力信号pc、目標回転数ntを基に第1の実施形態に記述した(4)式からトルク指令Ttを演算する。
以上の構成により、油圧アクチュエータを備えた作業機械に対し、従来の油圧回路の変更を少なくして本発明を適用した第3の実施形態において、回生時に安定したアクチュエータ速度を得ることができる。
図17は、第4の実施形態にかかるアクチュエータの制御装置を説明する図である。第4の実施形態は、本発明をバッテリショベル(作業機械)に適用した場合の一例である。なお、適用先がバッテリショベルであること以外は第3の実施形態と同様であるため、第3の実施形態と同一の箇所には同一の符号を付けて、その説明は省略する。
メインコントローラ500は図示しないレバーや図示しないペダルなどからオペレータの操作信号を受信し、蓄電装置8が有する図示しない電圧センサから電圧信号を受信し、これらを基にポンプ回転数指令、旋回速度指令を演算し、ポンプ回転数指令をポンプ用インバータ41へ、旋回速度指令を旋回用インバータ42へ送信する。メインコントローラ500で行う演算は本発明に直接関係しないため、その詳細説明を省略する。
ポンプ用インバータ41はポンプ回転数指令に応じてポンプ用電動機43を駆動する。ポンプ用電動機43には油圧ポンプ44が直結されており、油圧ポンプ44は正転することでオイルタンク9のオイルを吸い上げ、制御弁45を介して走行用左油圧モータ46a、走行用右油圧モータ46b、バケットシリンダ47a、アームシリンダ47b、ブームシリンダ47cへオイルを供給する。
制御弁45は図示しないレバーや図示しないペダルなどと図示しない油圧回路を介して接続されており、オペレータの操作に応じて走行用左油圧モータ46a、走行用右油圧モータ46b、バケットシリンダ47a、アームシリンダ47b、ブームシリンダ47cへオイルを配分する。制御弁45の動作は本発明と直接関係しないため、その詳細説明を省略する。旋回用インバータ42は旋回速度指令に応じて旋回用電動機48を駆動する。旋回用電動機48は図示しない減速機を介して図示しない上部旋回体と機械的に接続されており、図示しない上部旋回体を回転させる。
第4の実施形態では、ブームシリンダ47cと制御弁45の間に電磁式切換弁37を備える。電磁式切換弁37は通常はブームシリンダ47cと制御弁45を連通しているが、図示しないレバーがブーム下降側へ操作されると、コントローラ300が出力する回生信号に応じて、回生信号がONの場合はブームシリンダ47cと油圧モータ38を連通する。油圧モータ38は電動機4と連結されており、ブームシリンダ47cから供給されるオイルによりモータ動作を行って電動機4を回転させる。
このとき、コントローラ300は、図示しないレバーに取り付けられた図示しないポテンショメータから図示しないレバーの操作量に応じたレバー信号を受信し、圧力センサ2からブームシリンダ47cの圧力に応じた圧力信号を受信し、インバータ5が有する電流センサ5aから3相電流を受信し、図示しない回生許可スイッチから回生許可信号を受信する。コントローラ300の演算、および動作は第3の実施形態と同様のため、その説明を省略する。インバータ5はコントローラ300から送信される3相電圧指令に応じて電動機4を発電制御し、発電した電力を蓄電装置8へ供給する。
図17を用いて説明した第4の実施形態にかかるアクチュエータの制御装置を備えたバッテリショベルの外観図を図18に示す。オペレータはキャブ49内の図示しないレバーを操作することでバケットシリンダ47a、アームシリンダ47b、ブームシリンダ47cを伸縮させ、掘削作業を行うことができる。
以上の構成により、バッテリショベルに対して本発明を適用した第4の実施形態において、回生時に安定したブーム下降速度を得ることができる。
以上の第1〜3の実施形態では、フォークリフトに対して本発明を適用した例を示し、第4の実施形態ではバッテリショベルへ本発明を適用した例を示したが、本発明はこれに限定するものではなく、他の電動機でアクチュエータを駆動する制御装置、例えばエンジンと蓄電装置を有するハイブリッド建設機械にも適用可能である。
2…圧力センサ(負荷検出手段)、3…油圧シリンダ(アクチュエータ)、4…電動機、5a…電流センサ(電流検出手段)、22…ロードセル(負荷検出手段)、100,200,300…コントローラ(アクチュエータの制御装置)、121,321…目標速度演算器(目標速度演算手段)、122,222…力行回生判定器(力行回生判定手段)、123,223,323…トルク指令演算器(トルク指令演算手段)、124…回転数切換器、131…電流指令演算器(電流指令演算手段)、132…電流変換器(電流変換手段)、133…電流制御器(電圧指令演算手段)、134…電圧変換器(電圧変換手段)、135…積分器(積分手段)

Claims (7)

  1. 電動機で駆動するアクチュエータを制御するためのアクチュエータの制御装置であって、
    前記アクチュエータの操作信号に基づいて前記電動機の目標回転数を演算する目標速度演算手段と、
    前記アクチュエータにかかる負荷を検出する負荷検出手段と、
    前記負荷検出手段により検出された負荷に基づいて、前記電動機のトルク指令を演算するトルク指令演算手段と、
    前記トルク指令から前記電動機に流す電流ベクトル指令を演算する電流指令演算手段と、
    前記電動機に流れている三相電流を検出する電流検出手段と、
    前記電流検出手段が検出した三相電流をd軸電流およびq軸電流(以下、d軸電流およびq軸電流を「電流ベクトル」と言う)に変換する電流変換手段と、
    前記電流ベクトル指令と前記電流ベクトルとの偏差に応じて電圧ベクトル指令を演算する電圧指令演算手段と、
    前記電圧ベクトル指令を電圧指令に変換すると共に当該電圧指令を前記電動機の制御部に出力する電圧変換手段と
    を備え、
    前記電流変換手段および前記電圧変換手段は、前記目標速度演算手段が演算した目標回転数に基づいて、それぞれの変換を行うことを特徴とするアクチュエータの制御装置。
  2. 請求項1の記載において、
    前記トルク指令演算手段は、前記アクチュエータにかかる負荷の定常的な変化に対する電流の変化量よりも、前記アクチュエータにかかる負荷の瞬間的な変化に対する電流の変化量の方が小さくなるように、前記負荷検出手段が検出した負荷を平滑化した値を用いて前記電動機のトルク指令を演算する
    ことを特徴とするアクチュエータの制御装置。
  3. 請求項1または2の記載において、
    前記負荷検出手段が検出した負荷と前記目標速度演算手段が演算した目標回転数とに基づいて前記電動機の動作が力行または回生の何れであるかを判定する力行回生判定手段をさらに備え、
    前記力行回生判定手段による判定が回生の場合には、前記電流変換手段および前記電圧変換手段は、それぞれの変換を前記目標速度演算手段が演算した目標回転数に基づいて行う一方、前記力行回生判定手段による判定が力行の場合には、前記電流変換手段および前記電圧変換手段は、それぞれの変換を前記電動機の実回転数に基づいて行い、
    さらに、前記目標速度演算手段が演算した目標回転数および前記電動機の実回転数を積分する積分手段を備え、
    前記電流変換手段および前記電圧変換手段は、前記積分手段が積分した値に基づいてそれぞれの変換を行うことを特徴とするアクチュエータの制御装置。
  4. 請求項3の記載において、
    前記電動機として誘導機が用いられることを特徴とするアクチュエータの制御装置。
  5. 請求項3の記載において、
    前記トルク指令演算手段は、前記目標速度演算手段が演算した目標回転数をさらに参照してトルク指令を演算することを特徴とするアクチュエータの制御装置。
  6. 請求項3の記載において、
    前記トルク指令演算手段は、前記アクチュエータにかかる負荷に応じたトルクの時間平均値に、前記アクチュエータにかかる負荷の変動分に応じたトルクを予め足し合わせてトルク指令を演算することを特徴とするアクチュエータの制御装置。
  7. 請求項1〜6のいずれか1項に記載のアクチュエータの制御装置を備えた作業機械。
JP2012505542A 2010-03-17 2011-01-18 アクチュエータの制御装置およびこれを備えた作業機械 Expired - Fee Related JP5453522B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012505542A JP5453522B2 (ja) 2010-03-17 2011-01-18 アクチュエータの制御装置およびこれを備えた作業機械

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010060944 2010-03-17
JP2010060944 2010-03-17
JP2012505542A JP5453522B2 (ja) 2010-03-17 2011-01-18 アクチュエータの制御装置およびこれを備えた作業機械
PCT/JP2011/050758 WO2011114765A1 (ja) 2010-03-17 2011-01-18 アクチュエータの制御装置およびこれを備えた作業機械

Publications (2)

Publication Number Publication Date
JPWO2011114765A1 true JPWO2011114765A1 (ja) 2013-06-27
JP5453522B2 JP5453522B2 (ja) 2014-03-26

Family

ID=44648874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012505542A Expired - Fee Related JP5453522B2 (ja) 2010-03-17 2011-01-18 アクチュエータの制御装置およびこれを備えた作業機械

Country Status (6)

Country Link
US (1) US20130013159A1 (ja)
EP (1) EP2549642A1 (ja)
JP (1) JP5453522B2 (ja)
KR (1) KR20130016196A (ja)
CN (1) CN102763323A (ja)
WO (1) WO2011114765A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013020758A2 (pt) * 2011-02-16 2016-10-18 Crown Equip Corp veículo de manipulação de materiais
WO2013038811A1 (ja) * 2011-09-13 2013-03-21 本田技研工業株式会社 電動車両のモータ制御装置
WO2014172704A1 (en) * 2013-04-19 2014-10-23 Parker-Hannifin Corporation Method to detect hydraulic valve failure in hydraulic system
JP5838996B2 (ja) * 2013-05-13 2016-01-06 株式会社豊田自動織機 産業車両
EP3128187B1 (en) * 2014-04-03 2019-01-30 Hitachi Construction Machinery Co., Ltd. Construction machine
DK2974997T3 (da) * 2014-07-17 2019-08-12 Pierangelo Ballestrero Elektrohydraulisk effektforsyningssystem til en mobil arbejdsmaskine, især til et løftearbejdssystem med en arbejdsplatform
DE102014119469A1 (de) * 2014-12-22 2016-06-23 Still Gesellschaft Mit Beschränkter Haftung Verfahren zur Hydraulikdruckmessung bei einem Flurförderzeug
JP6516506B2 (ja) * 2015-02-23 2019-05-22 株式会社オーディオテクニカ 食品成形装置
US10183852B2 (en) * 2015-07-30 2019-01-22 Danfoss Power Solutions Gmbh & Co Ohg Load dependent electronic valve actuator regulation and pressure compensation
JP6644502B2 (ja) * 2015-09-10 2020-02-12 Ntn株式会社 電動ブレーキ装置
DE102015115817A1 (de) * 2015-09-18 2017-03-23 Jungheinrich Aktiengesellschaft Verfahren zur Ansteuerung einer Hub-Hydraulik an einem Flurförderzeug
DE202015105177U1 (de) * 2015-09-30 2017-01-02 Ebm-Papst St. Georgen Gmbh & Co. Kg Anordnung zum Bestimmen eines Drucks
CN110632686B (zh) 2016-07-14 2021-10-29 株式会社Lg化学 防反射膜
KR102180583B1 (ko) * 2016-12-19 2020-11-18 미츠비시 로지스넥스트 가부시키가이샤 포크 리프트 및 포크 제어방법
DE102018104586A1 (de) * 2018-02-28 2019-08-29 Jungheinrich Aktiengesellschaft Flurförderzeug mit mindestens einem hydraulischen Masthubzylinder
US20200385255A1 (en) * 2019-06-07 2020-12-10 Warner Electric Technology Llc Control System for a Mobile Lift Device
EP3839269A1 (en) * 2019-12-20 2021-06-23 Dana Motion Systems Italia S.R.L. Hydraulic system with energy recovery
KR20230009429A (ko) * 2020-06-16 2023-01-17 현대두산인프라코어(주) 건설기계용 하이브리드 발전전력 측정시스템
JP7472761B2 (ja) 2020-11-18 2024-04-23 コベルコ建機株式会社 旋回制御装置及び作業機械
CN112555236A (zh) * 2020-11-30 2021-03-26 三一海洋重工有限公司 势能回收系统及其控制方法、工程设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2708408B2 (ja) * 1986-05-09 1998-02-04 株式会社日立製作所 電圧制御形ベクトル制御インバータの制御装置
JP3236983B2 (ja) * 1995-04-17 2001-12-10 株式会社日立製作所 電力変換装置
JP2002095299A (ja) * 2000-09-08 2002-03-29 Toshiba Corp 電車の駆動制御装置
JP2003230204A (ja) * 2002-01-31 2003-08-15 Komatsu Ltd ハイブリッド電源システムの制御装置及び制御方法
DE112004002024T5 (de) * 2003-10-24 2006-08-31 Komatsu Ltd. Verfahren und Vorrichtung zum Übertragen von Motorkraft
JP2006238631A (ja) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd Id/Iqテーブルを使用したモータの制御方法
JP4288245B2 (ja) * 2005-02-25 2009-07-01 三菱重工業株式会社 フォークリフト及び、それに適用される誘導モータ制御方法
JP4648054B2 (ja) * 2005-03-31 2011-03-09 日立オートモティブシステムズ株式会社 ハイブリッド車両,電動駆動装置用制御装置及び電動駆動装置
JP2006336843A (ja) 2005-06-06 2006-12-14 Shin Caterpillar Mitsubishi Ltd 作業機械の制御装置
JP2006336846A (ja) 2005-06-06 2006-12-14 Shin Caterpillar Mitsubishi Ltd 流体圧回路
JP4287425B2 (ja) * 2005-11-25 2009-07-01 日立建機株式会社 油圧作業機械のポンプトルク制御装置
US8169170B2 (en) * 2007-06-14 2012-05-01 Panasonic Corporation Motor driving device, motor device, and integrated circuit device
CN102209655B (zh) * 2008-11-10 2015-05-06 住友重机械工业株式会社 混合式施工机械
EP2383862A4 (en) * 2009-01-28 2017-11-22 Sumitomo Heavy Industries, LTD. Hybrid working machine and electricity storage control apparatus
JP5149826B2 (ja) * 2009-01-29 2013-02-20 住友重機械工業株式会社 ハイブリッド式作業機械及びサーボ制御システム
JP2012057766A (ja) * 2010-09-10 2012-03-22 Hitachi Constr Mach Co Ltd 建設機械のハイブリッドシステム

Also Published As

Publication number Publication date
WO2011114765A1 (ja) 2011-09-22
EP2549642A1 (en) 2013-01-23
JP5453522B2 (ja) 2014-03-26
KR20130016196A (ko) 2013-02-14
US20130013159A1 (en) 2013-01-10
CN102763323A (zh) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5453522B2 (ja) アクチュエータの制御装置およびこれを備えた作業機械
US8000862B2 (en) Swing control device and construction machinery
KR101229330B1 (ko) 선회구동제어장치 및 이를 포함하는 건설기계
JPWO2009051247A1 (ja) 旋回駆動制御装置及びこれを含む建設機械
JP5873456B2 (ja) 作業機械の駆動制御システム、それを備える作業機械、及びその駆動制御方法
JP2011211787A (ja) 建設機械
JPWO2013058325A1 (ja) ハイブリッド駆動式の油圧作業機械
JP5074432B2 (ja) ハイブリッド型建設機械
KR101634259B1 (ko) 전동선회제어장치 및 선회용전동기의 제어방법
JP5917304B2 (ja) ショベルの制御方法
JP2009127296A (ja) 旋回駆動制御装置及びこれを含む建設機械
JP2010150898A (ja) 旋回駆動制御装置及びこれを含む建設機械
JP6557472B2 (ja) 作業機械の駆動制御システム、それを備える作業機械、及びその駆動制御方法
JP4704725B2 (ja) 建設機械の旋回制御装置
JP5968819B2 (ja) 電動旋回制御装置
JP2010185257A (ja) ハイブリッド型作業機械
JP6095028B2 (ja) 作業機械
JP2010150896A (ja) 旋回駆動制御装置及びこれを含む建設機械
JP6514895B2 (ja) 作業機械の駆動制御システム、それを備える作業機械、及びその駆動制御方法
JP4840263B2 (ja) 発電システム
JP2010150897A (ja) 旋回駆動制御装置及びこれを含む建設機械
JP2016125243A (ja) ショベル
JP6486664B2 (ja) ショベル

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees