JPWO2011065469A1 - L−システイン生産菌及びl−システインの製造法 - Google Patents

L−システイン生産菌及びl−システインの製造法 Download PDF

Info

Publication number
JPWO2011065469A1
JPWO2011065469A1 JP2011543314A JP2011543314A JPWO2011065469A1 JP WO2011065469 A1 JPWO2011065469 A1 JP WO2011065469A1 JP 2011543314 A JP2011543314 A JP 2011543314A JP 2011543314 A JP2011543314 A JP 2011543314A JP WO2011065469 A1 JPWO2011065469 A1 JP WO2011065469A1
Authority
JP
Japan
Prior art keywords
cysteine
gene
protein
bacterium
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011543314A
Other languages
English (en)
Other versions
JP5817529B2 (ja
Inventor
源 野中
源 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2011543314A priority Critical patent/JP5817529B2/ja
Publication of JPWO2011065469A1 publication Critical patent/JPWO2011065469A1/ja
Application granted granted Critical
Publication of JP5817529B2 publication Critical patent/JP5817529B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

細菌のL−システイン生産能を向上させる新規な技術を開発し、L−システイン生産菌、及び同細菌を用いたL−システイン等の化合物の製造法を提供する。L−システイン生産能を有し、かつ、yciW遺伝子によりコードされるタンパク質、例えば下記の(A)または(B)に記載のタンパク質の活性が低下するように改変された腸内細菌科に属する細菌を培地中で培養し、該培地からL−システイン、L−シスチン、もしくはそれらの誘導体、又はこれらの混合物を採取することによって、これらの化合物を製造する。(A)配列番号2に示すアミノ酸配列を有するタンパク質。(B)配列番号2に示すアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、または付加を含むアミノ酸配列を有し、かつ、細菌内の活性を低下させたときにL−システイン生産能が向上するタンパク質。

Description

本発明は、L−システイン又はその関連物質の製造法に関し、詳しくはL−システイン又はその関連物質の製造に好適な細菌、及びそれを用いたL−システイン又はその関連物質の製造法に関する。L−システイン及びその関連物質は、医薬品、化粧品及び食品分野で利用されている。
従来、L−システインは、毛髪、角、羽毛等のケラチン含有物質から抽出することにより、あるいはDL−2−アミノチアゾリン−4−カルボン酸を前駆体とする微生物酵素変換により得られている。また、新規な酵素を用いた固定化酵素法によるL−システインの大量生産も計画されている。さらに、微生物を用いた発酵法によるL−システインの生産も試みられている。
L−システイン生産能を有する微生物としては、例えば、細胞内のセリンアセチルトランスフェラーゼ活性が上昇したコリネ型細菌(特許文献1)が知られている。また、L−システインによるフィードバック阻害が低減された変異型セリンアセチルトランスフェラーゼを保持させることにより、L−システイン生産能を高める技術が知られている(特許文献2〜4)。
また、L−システイン分解系を抑制することによってL−システイン生産能が高められた微生物としては、シスタチオニン−β−リアーゼ(特許文献2)、トリプトファナーゼ(特許文献5)、O−アセチルセリン スルフヒドリラーゼB(特許文献6)の活性を低下又は欠失させたコリネ型細菌又はエシェリヒア属細菌が知られている。
さらに、YdeDタンパク質をコードするydeD遺伝子は、システイン経路の代謝産物の排出に関与していることが知られている(非特許文献1)。また、細胞に毒性の物質を排出するのに適したタンパク質をコードする遺伝子であるmar−座、emr−座、acr−座、cmr−座、mex−遺伝子、bmr−遺伝子、qacA−遺伝子(特許文献7)、又はemrAB、emrKY、yojIH、acrEF、bcrもしくはcusA遺伝子(特許文献8)の発現を上昇させることによりL−システイン生産能を高める技術が知られている。
また、L−システイン生産菌として、cysB遺伝子によりコードされるシステインレギュロンの正の転写制御因子の活性が上昇したエシェリヒア・コリ (特許文献9)が知られている。
さらに、セリンによるフィードバック阻害が低減された3−ホスホグリセレートデヒドロゲナーゼをコードする変異型serAが知られており、エシェリヒア・コリのL−システイン生産に利用することが示唆されている(特許文献10、11)。
yciWは、予測上のオキシドレダクターゼ(predicted oxidoreductase)をコードする遺伝子としてデータベースEcoCyc(非特許文献2)に登録されているが、実際の機能は不明であり、L−システイン生産との関連は知られていない。
また、yciW遺伝子は、硫黄源枯渇(非特許文献3)、フルフラール(非特許文献4)、及び、酸化ストレス(非特許文献5)によりアップレギュレートされることが報告されているが、いずれもマイクロアレイ実験において発現変動のあった多くの遺伝子の一つとして挙げられているのみであり、L−システイン生産との関連は示唆されていない。
特開2002−233384号公報 特開平11−155571号公報 米国特許出願公開第20050112731号 米国特許第6218168号 特開2003−169668号公報 特開2005−245311号公報 米国特許第5972663号 特開2005−287333号公報 国際公開パンフレット第01/27307号 米国特許第5856148号 米国特許出願公開第20050009162号
Dabler et al., Mol. Microbiol. 36, 1101-1112 (2000) BioCyc Home Page, Escherichia coli K-12 substr. MG1655 Gene: yciW [平成21年10月14日検索]、インターネット<http://biocyc.org/ECOLI/NEW-IMAGE?type=GENE&object=G6640> Gyaneshwar, P. et al., J. Bacteriol., 2005; 187:1074-1090 Elliot N. Miller, E.N., et al., Appl. Envir. Microbiol., 2009; 10.1128/AEM.01187-09 Wang, S., et al., Appl. Envir. Microbiol., 2009; 10.1128/AEM.00914-09
本発明は、細菌のL−システイン生産能を向上させる新規な技術を開発し、L−システイン生産菌、及び同細菌を用いたL−システイン、L−シスチン、もしくはそれらの誘導体、又はこれらの混合物の製造法を提供することを課題とする。
本発明者は、上記課題を解決するために鋭意研究を行った結果、yciW遺伝子によりコードされるタンパク質の活性が低下するように細菌を改変することによってL−システイン生産能を向上させることができることを見出し、本発明を完成するに至った。
すなわち本発明は以下のとおりである。
(1)L−システイン生産能を有し、かつ、yciW遺伝子によりコードされるタンパク質の活性が低下するように改変された腸内細菌科に属する細菌。
(2)前記yciW遺伝子の発現量を低下させること、又は同遺伝子を破壊することにより、前記タンパク質の活性が低下した、前記細菌。
(3)前記タンパク質が、下記(A)または(B)に記載のタンパク質である前記細菌。
(A)配列番号2に示すアミノ酸配列を有するタンパク質。
(B)配列番号2に示すアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、または付加を含むアミノ酸配列を有し、かつ、細菌内の活性を低下させたときにL−システイン生産能が向上するタンパク質。
(4)前記yciW遺伝子質が、下記(a)または(b)に記載のDNAである、前記細菌。
(a)配列番号1の301〜1428位の塩基配列を含むDNA、または
(b)配列番号1の301〜1428位の塩基配列の相補配列または同塩基配列から調製され得るプローブとストリンジェントな条件下でハイブリダイズし、かつ、細菌内の活性を低下させたときにL−システイン生産能が向上するタンパク質をコードするDNA。
(5)さらに、下記の性質の少なくともいずれかを有する前記細菌。
i)セリンアセチルトランスフェラーゼ活性が上昇するように改変されている。
ii)ydeD遺伝子の発現が上昇するように改変されている。
iii)3−ホスホグリセレートデヒドロゲナーゼ活性が上昇するように改変されている。
(6)前記細菌がエシェリヒア属細菌である、前記細菌。
(7)前記細菌がエシェリヒア・コリである、前記細菌。
(8)前記細菌を培地中で培養し、該培地からL−システイン、L−シスチン、もしくはそれらの誘導体、又はこれらの混合物を採取することを特徴とする、L−システイン、L−シスチン、もしくはそれらの誘導体、又はこれらの混合物の製造法。
(9)前記L−システインの誘導体がチアゾリジン誘導体である、前記方法。
本発明により、細菌のL−システイン生産能を向上させることができる。また、本発明によれば、L−システイン、L−シスチン、もしくはそれらの誘導体、又はこれらの混合物を効率よく製造することができる。
<1>本発明の細菌
本発明の細菌は、L−システイン生産能を有し、かつ、yciW遺伝子によりコードされるタンパク質の活性が低下するように改変された腸内細菌科に属する細菌である。ここで、L−システイン生産能とは、本発明の細菌を培地中で培養したときに、培地中または菌体内にL−システインを生成し、培地中または菌体から回収できる程度に蓄積する能力をいう。また、L−システイン生産能を有する細菌とは、野生株または親株よりも多い量のL−システインを生産し培地に蓄積することができる細菌を意味し、好ましくは、0.05g/L以上、より好ましくは0.1g/L以上、特に好ましくは0.2g/L以上の量のL−システインを生産し培地に蓄積することができる細菌を意味する。
細菌が産生したL−システインは、培地中で、ジスルフィド結合によって一部がL−シスチンに変換されることがある。また、後述するように、L−システインと培地に含まれるチオ硫酸との反応によってS−スルホシステインが生成することがある(Szczepkowski T.W., Nature, vol.182 (1958))。さらに、細菌の細胞内で生成したL−システインは、細胞中に存在するケトン又はアルデヒド、例えばピルビン酸と縮合し、ヘミチオケタールを中間体としてチアゾリジン誘導体が生成することがある(特許第2992010号参照)。これらのチアゾリジン誘導体及びヘミチオケタールは、平衡混合物として存在することがある。したがって、L−システイン生産能とは、L−システインのみを培地中又は菌体内に蓄積する能力に限られず、L−システインに加えて、L−シスチン、もしくはそれらの誘導体、例えばS−スルホシステイン、チアゾリジン誘導体、もしくはヘミチオケタール、又はこれらの混合物を培地中に蓄積する能力も含まれる。また、L−システインは、γ−グルタミルシステイン、グルタチオン、シスタチオニン、ホモシステイン、メチオニン、S−アデノシルメチオニン等の生合成の出発物質として用いられる。したがって、L−システイン生産能に加えて、これらの化合物を産生する能力を有する細菌を用いることによって、これらの化合物を製造することができる。このように、L−システインを経由して生産される他の化合物を生産する能力も、L−システイン生産能に含まれる。
L−システイン生産能を有する細菌としては、本来的にL−システイン生産能を有するものであってもよいが、下記のような細菌を、変異法や組換えDNA技術を利用して、L−システイン生産能を有するように改変したものであってもよい。尚、本発明においてL−システインとは、特記しない限り、還元型L−システイン、L−シスチン、もしくは前記のような誘導体、またはこれらの混合物を指すことがある。
本発明に用いる細菌としては、エシェリヒア(Escherichia)属、エンテロバクター(Enterobacter)属、パントエア(Pantoea)属、クレブシエラ(Klebsiella)属、セラチア(Serratia)属、エルビニア(Erwinia)属、サルモネラ(Salmonella)属、モルガネラ(Morganella)属など、腸内細菌科に属する細菌であって、L−アミノ酸を生産する能力を有するものであれば、特に限定されない。具体的にはNCBI(National Center for Biotechnology Information)データベースに記載されている分類により腸内細菌科に属するものが利用できる(http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=91347)。改変に用いる腸内細菌科の親株としては、中でもエシェリヒア属細菌、エンテロバクター属細菌、パントエア属細菌、エルビニア属細菌、エンテロバクター属細菌、又はクレブシエラ属細菌を用いることが望ましい。
エシェリヒア属細菌としては、特に限定されないが、具体的にはNeidhardtらの著書(Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1. In F. D. Neidhardt (ed.), Escherichia coli and Salmonella Cellular and Molecular Biology/Second Edition, American Society for Microbiology Press, Washington, D.C.)に挙げられるものが利用できる。その中では、例えばエシェリヒア・コリが挙げられる。エシェリヒア・コリとしては具体的には、プロトタイプの野生株K12株由来のエシェリヒア・コリ W3110 (ATCC 27325)、エシェリヒア・コリ MG1655 (ATCC 47076)等が挙げられる。
これらを入手するには、例えばアメリカン・タイプ・カルチャー・コレクション(住所 12301 Parklawn Drive, Rockville, Maryland 20852 P.O. Box 1549, Manassas, VA 20108, United States of America)より分譲を受けることが出来る。すなわち各菌株に対応する登録番号が付与されており、この登録番号を利用して分譲を受けることが出来る(http://www.atcc.org/参照)。各菌株に対応する登録番号は、アメリカン・タイプ・カルチャー・コレクションのカタログに記載されている。
エンテロバクター属細菌としては、エンテロバクター・アグロメランス(Enterobacter agglomerans)、エンテロバクター・アエロゲネス(Enterobacter aerogenes)等、パントエア属細菌としてはパントエア・アナナティス(Pantoea ananatis)が挙げられる。尚、近年、エンテロバクター・アグロメランスは、16S rRNAの塩基配列解析などにより、パントエア・アグロメランス(Pantoea agglomerans)、パントエア・アナナティス(Pantoea ananatis)、又はパントエア・スチューアルティ(Pantoea stewartii)に再分類されているものがある。本発明においては、腸内細菌科に分類されるものであれば、エンテロバクター属又はパントエア属のいずれに属するものであってもよい。
特に、パントエア属細菌、エルビニア属細菌、エンテロバクター属細菌は、γ−プロテオバクテリアに分類される細菌であり、分類学的に非常に近縁である(J Gen Appl Microbiol 1997 Dec;43(6) 355-361, International Journal of Systematic Bacteriology, Oct. 1997,p1061-1067)。近年、DNA-DNAハイブリダイゼーション実験等により、エンテロバクター属に属する細菌には、パントエア・アグロメランス(Pantoea agglomerans)又はパントエア・ディスパーサ(Pantoea dispersa)等に再分類されているものがある(International Journal of Systematic Bacteriology, July 1989;39(3).p.337-345)。また、エルビニア属に属する細菌にはパントエア・アナナス(Pantoea ananas)、パントエア・スチューアルティに再分類されているものがある(International Journal of Systematic Bacteriology, Jan 1993;43(1), p.162-173 参照)。
エンテロバクター属細菌としては、エンテロバクター・アグロメランス(Enterobacter agglomerans)、エンテロバクター・アエロゲネス(Enterobacter aerogenes)等が挙げられる。具体的には、欧州特許出願公開952221号明細書に例示された菌株を使用することが出来る。
エンテロバクター属の代表的な株として、エンテロバクター・アグロメランスATCC12287株が挙げられる。
パントエア属細菌の代表的な菌株として、パントエア・アナナティス、パントエア・スチューアルティ(Pantoea stewartii)パントエア・アグロメランス、パントエア・シトレア(Pantoea citrea)が挙げられる。
パントエア・アナナティスとして具体的には、パントエア・アナナティスAJ13355株、SC17株が挙げられる。SC17株は、静岡県磐田市の土壌から、低pHでL−グルタミン酸及び炭素源を含む培地で増殖できる株として分離された株AJ13355(FERM BP-6614)から、粘液質低生産変異株として選択された株である(米国特許第6,596,517号)。
パントエア・アナナティスAJ13355株は、平成10年2月19日に、通産省工業技術院生命工学工業技術研究所(現名称、産業技術総合研究所特許生物寄託センター、住所 郵便番号305-8566 茨城県つくば市東1丁目1番地1中央第6)に、受託番号FERM P-16644として寄託され、平成11年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6614が付与されている。尚、同株は、分離された当時はエンテロバクター・アグロメランス(Enterobacter agglomerans)と同定され、エンテロバクター・アグロメランスAJ13355として寄託されたが、近年16S rRNAの塩基配列解析などにより、パントエア・アナナティス(Pantoea ananatis)に再分類されている。
パントエア・アナナティスSC17株は、平成21年2月4日に、産業技術総合研究所特許生物寄託センター(住所 郵便番号305-8566 茨城県つくば市東1丁目1番地1中央第6)に国際寄託され、受託番号FERM BP-11091が付与されている。
エルビニア属細菌としては、エルビニア・アミロボーラ(Erwinia amylovora)、エルビニア・カロトボーラ(Erwinia carotovora)が挙げられ、クレブシエラ属細菌としては、クレブシエラ・プランティコーラ(Klebsiella planticola)が挙げられる。
以下、腸内細菌科に属する細菌にL−システイン生産能を付与する方法、又はこれらの細菌のL−システイン生産能を増強する方法について述べる。
細菌にL−システイン生産能を付与するには、栄養要求性変異株、アナログ耐性株又は代謝制御変異株の取得や、L−システインの生合成系酵素の発現が増強された組換え株の創製等、従来、コリネ型細菌又はエシェリヒア属細菌等の育種に採用されてきた方法を適用することができる(アミノ酸発酵、(株)学会出版センター、1986年5月30日初版発行、第77-100頁参照)。ここで、L−システイン生産菌の育種において、付与される栄養要求性、アナログ耐性、代謝制御変異等の性質は、単独でもよく、2種又は3種以上であってもよい。また、発現が増強されるL−システイン生合成系酵素も、単独であっても、2種又は3種以上であってもよい。さらに、栄養要求性、アナログ耐性、代謝制御変異等の性質の付与と、生合成系酵素の増強が組み合わされてもよい。
L−システイン生産能を有する栄養要求性変異株、L−システインのアナログ耐性株、又は代謝制御変異株は、親株又は野生株を通常の変異処理、すなわちX線や紫外線の照射、またはN-メチル-N'-ニトロ-N-ニトロソグアニジン(NTG)もしくはエチルメタンスルフォネート(EMS)等の変異剤処理などによって処理し、得られた変異株の中から、栄養要求性、アナログ耐性、又は代謝制御変異を示し、かつL−アミノ酸生産能を有するものを選択することによって得ることができる。
細菌のL−システイン生産能は、L−システイン生合成経路の酵素、又はL−セリン等、同経路の基質となる化合物の生成に関与する酵素、例えば、3−ホスホグリセレートデヒドロゲナーゼ、又はセリンアセチルトランスフェラーゼ等の活性を増強することにより、向上させることができる。3−ホスホグリセレートデヒドロゲナーゼは、セリンによるフィードバック阻害を受けるが、このフィードバック阻害が低減又は解除された変異型3−ホスホグリセレートデヒドロゲナーゼをコードする変異型serA遺伝子を細菌に保持させることによって、同酵素活性を増強することができる。
また、セリンアセチルトランスフェラーゼは、L−システインによるフィードバック阻害を受ける。したがって、このフィードバック阻害が低減又は解除されたセリンアセチルトランスフェラーゼをコードする変異型cysE遺伝子を細菌に保持させることによって、同酵素活性を増強することができる。
また、YdeDタンパク質をコードするydeD遺伝子(Dabler et al., Mol. Microbiol.36. 1101-1112 (2000))、又はYfiKタンパク質をコードするyfiK遺伝子(特開2004-49237)の発現を強化することによっても、L−システイン生産能を高めることができる。
本発明の細菌の一形態は、下記の性質の少なくともいずれかを有する細菌である。
i)セリンアセチルトランスフェラーゼ活性が上昇するように改変されている。
ii)ydeD遺伝子の発現が上昇するように改変されている。
iii)3−ホスホグリセレートデヒドロゲナーゼ活性が上昇するように改変されている。
また、硫酸塩/チオ硫酸塩輸送系の活性を増強することによっても、L−システイン生産能を向上させることができる。硫酸塩/チオ硫酸塩輸送系タンパク質群は、cysPTWAM遺伝子クラスターによってコードされている(特開2005-137369号公報、EP1528108号明細書)。
また、細菌のL−システイン生産能は、yeaS遺伝子(欧州特許出願公開第1016710号明細書)の発現を上昇させることによっても、向上させることができる。
具体的には、L−システイン生産菌としては、フィードバック阻害耐性のセリンアセチルトランスフェラーゼ(SAT)をコードする複数種のcysEアレルで形質転換されたE. coli JM15(米国特許第6,218,168号)、細胞に毒性の物質を排出するのに適したタンパク質をコードする過剰発現遺伝子を有するE. coli W3110 (米国特許第5,972,663号)、システインデスルフヒドラーゼ活性が低下したE. coli株 (特開平11-155571号公報)、cysB遺伝子によりコードされるシステインレギュロンの正の転写制御因子の活性が上昇したE. coli W3110 (WO01/27307)などのエシェリヒア属に属する株、ydeD遺伝子、変異型cysE遺伝子および変異型serA5遺伝子を保持するプラスミド)pACYC-DES(特開2005-137369(US20050124049(A1)、EP1528108(A1)))を持つE. coli等が挙げられるが、これらに限定されない。pACYC-DESは、前記3遺伝子をpACYC184に挿入することによって得られたプラスミドであり、各遺伝子はPompAプロモーターにより制御される。
E. coliでは、システインデスルフヒドラーゼ活性を有するタンパク質として、シスタチオニン−β−リアーゼ(metC産物、特開平11-155571号、Chandra et. al., Biochemistry, 21 (1982) 3064-3069))、トリプトファナーゼ(tnaA産物、特開2003-169668、(Austin Newton et. al., J. Biol. Chem. 240 (1965) 1211-1218))、O−アセチルセリン スルフヒドリラーゼB(cysM遺伝子産物、特開2005-245311)、及び、malY遺伝子産物(特開2005-245311)が知られている。これらのタンパク質の活性を低下させることにより、L−システイン生産能が向上する。
本発明においては、L−システイン生産菌は、フィードバック阻害耐性の変異型SATを保持していることが好ましい。エシェリヒア・コリに由来する、フィードバック阻害耐性の変異型SATとして具体的には、256位のメチオニン残基がグルタミン酸残基に置換された変異型SAT(特開平11-155571)、256位のメチオニン残基がイソロイシン残基に置換された変異型SAT(Denk, D. and Boeck, A., J. General Microbiol., 133, 515-525 (1987))、97位のアミノ酸残基から273位のアミノ酸残基までの領域における変異、又は227位のアミノ酸残基からC末端領域の欠失を有する変異型SAT(WO97/15673号国際公開パンフレット、米国特許第6218168号)、野生型SATの89〜96位に相当するアミノ酸配列が1又は複数の変異を含み、かつ、L−システインによるフィードバック阻害が脱感作されている、変異型SAT(米国特許公開第20050112731(A1))、95位及び96位のVal残基及びAsp残基が、各々Arg残基及びPro残基に置換された変異型SAT(変異型遺伝子名cysE5、WO2005007841)、及び、167位のスレオニン残基がアラニン残基に置換される変異(米国特許第6218168号、米国特許公開第20050112731(A1))等が知られている。
SAT遺伝子は、エシェリヒア・コリの遺伝子に限られず、SAT活性を有するタンパク質をコードするものであれば、使用することができる。また、L−システインによるフィードバック阻害を受けないシロイヌナズナ由来のSATアイソザイムが知られており、これをコードする遺伝子を用いることもできる(FEMS Microbiol. Lett., 179 (1999) 453-459)。
細菌に変異型SATをコードする遺伝子を導入すれば、L−システイン生産能が付与される。
細菌への遺伝子の導入は、通常のタンパク質発現に用いられる種々のベクターを用いることができる。このようなベクターとしては、pUC19、pUC18、pHSG299, pHSG399, pHSG398, RSF1010, pBR322, pACYC184, pMW219等が挙げられる。
組換えベクターを細菌に導入するには、D.A.Morrisonの方法(Methods in Enzymology 68, 326 (1979))あるいは受容菌細胞を塩化カルシウムで処理してDNAの透過性を増す方法(Mandel,M. and Higa,A.,J.Mol.Biol.,53,159(1970))、エレクトロポーレーションによる方法等、細菌の形質転換に通常用いられている方法を用いることができる。
また、SAT等のタンパク質をコードする遺伝子のコピー数を高めることによっても、それらのタンパク質の活性を上昇させることができる。遺伝子のコピー数を高めることは、上記のようなベクターを用いて遺伝子を細菌に導入することによって、又は、遺伝子を細菌の染色体DNA上に多コピー存在させることによって達成できる。細菌の染色体DNA上に遺伝子を多コピーで導入するには、染色体DNA上に多コピー存在する配列を標的に利用して相同組換えにより行う。染色体DNA上に多コピー存在する配列としては、反復(repetitive)DNA、転移因子の端部に存在するインバーテッド・リピートが利用できる。あるいは、特開平2-109985号公報に開示されているように、遺伝子をトランスポゾンに搭載してこれを転移させて染色体DNA上に多コピー導入することも可能である。
L−システインを出発物質として生合成されるγ−グルタミルシステイン、グルタチオン、シスタチオニン、ホモシステイン、メチオニン、及びS−アデノシルメチオニン等の化合物の産生能も、目的の化合物の生合成系路の酵素活性を増強するか、その生合成系路から分岐する経路の酵素又は目的化合物を分解する酵素の活性を低下させることによって、付与又は増強することができる。
例えば、γ−グルタミルシステイン生産能は、γ−グルタミルシステイン合成酵素活性の増強及び/又はグルタチオン合成酵素活性の低下によって、増強することができる。また、グルタチオン生産能はγ−グルタミルシステイン合成酵素活性及び/又はグルタチオン合成酵素活性の増強によって、付与又は増強することができる。また、グルタチオンによるフィードバック阻害に対して耐性をもつ変異型γ−グルタミルシステイン合成酵素を用いることでもγ−グルタミルシステインやグルタチオンの生産能を増強させることができる。グルタチオンの生産についてはLiらの総説(Yin Li, Gongyuan Wei, Jian Chen. Appl Microbiol Biotechnol (2004) 66: 233-242)に詳しく記載されている。
L−メチオニン生産能は、L−スレオニン要求性、ノルロイシン耐性を付与することによって、付与又は増強することができる(特開2000-139471号)。E. coliにおいては、L−スレオニンの生合成に関与する酵素の遺伝子は、スレオニンオペロン(thrABC)として存在し、例えば、thrBC部分を欠失させることによってL−ホモセリン以降の生合成能を失ったL−スレオニン要求株を取得することができる。ノルロイシン耐性株では、S−アデノシルメチオニンシンセターゼ活性が弱化され、L−メチオニン生産能が付与又は増強される。E. coliにおいては、S−アデノシルメチオニンシンセターゼはmetK遺伝子にコードされている。また、L−メチオニン生産能は、メチオニンリプレッサーの欠損、ホモセリントランスサクシニラーゼ、シスタチオニンγ−シンテース、及びアスパルトキナーゼ−ホモセリンデヒドロゲナーゼIIなどのL−メチオニン生合成に関与する酵素の活性の増強によっても、付与又は増強することができる(特開2000-139471号)。E. coliにおいては、メチオニンリプレッサーはmetJ遺伝子に、ホモセリントランスサクシニラーゼはmetA遺伝子に、シスタチオニンγ−シンテースはmetB遺伝子に、アスパルトキナーゼ−ホモセリンデヒドロゲナーゼIIはmetL遺伝子にそれぞれコードされている。また、メチオニンによるフィードバック阻害に対して耐性をもつ変異型ホモセリントランスサクシニラーゼを用いることでもL−メチオニンの生産能を付与又は増強することができる(特開2000-139471号、US20090029424)。なお、L−メチオニンはL−システインを中間体として生合成されるため、L−システインの生産能の向上によりL−メチオニンの生産能も向上させることができる(特開2000-139471号、US20080311632)。よって、L−メチオニン生産能を付与又は増強するためには、L−システイン生産能を付与又は増強させることも有効である。
L−メチオニン生産菌やそれを構築するために用いられる親株としては、具体的には、AJ11539 (NRRL B-12399)、AJ11540 (NRRL B-12400)、AJ11541 (NRRL B-12401)、AJ11542 (NRRL B-12402) (英国特許第2075055号)、L−メチオニンのアナログであるノルロイシン耐性を有する218株 (VKPM B-8125)(ロシア特許第2209248号)や73株 (VKPM B-8126) ((ロシア特許第2215782号)等のE. coli株が挙げられる。
また、L−メチオニン生産菌やそれを構築するために用いられる親株としては、E. coli W3110由来のAJ13425 (FERM P-16808)(特開2000-139471号)を用いることができる。AJ13425は、メチオニンリプレッサーを欠損し、細胞内のS−アデノシルメチオニンシンセターゼ活性が弱化し、細胞内のホモセリントランスサクシニラーゼ活性、シスタチオニンγ−シンターゼ活性、及びアスパルトキナーゼ−ホモセリンデヒドロゲナーゼII活性が増強されたL−スレオニン要求株である。AJ13425は、平成10年5月14日より、通商産業省工業技術院生命工学工業技術研究所(現名称、産業技術総合研究所特許生物寄託センター、住所 郵便番号305-8566 茨城県つくば市東1丁目1番地1中央第6)に寄託され、受託番号FERM P-16808が付与されている。
シスタチオニン、ホモシステインはL−メチオニン生合成経路の中間体であるため、これら物質の生産能を増強するためには、上記のL−メチオニンの生産能を増強させる方法を一部利用することが有効である。シスタチオニン生産能を増強させる具体的方法として、メチオニン要求性変異株を用いる方法(特願2003-010654)や、発酵培地にシステイン(またはその生合成原料)及び又はホモセリン(またはその生合成原料)を添加する方法(特開2005-168422)が知られている。ホモシステインはシスタチオニンを前駆体とするため、ホモシステイン生産能を増強するためには、シスタチオニン生産能を増強させる上記方法も有効である。
S−アデノシルメチオニンはL−メチオニンを前駆体とするため、S−アデノシルメチオニンの生産能を増強するためには、上記のL−メチオニンの生産能を増強させる方法を一部利用することが有効である。S−アデノシルメチオニン生産能は、メチオニンアデノシルトランスフェラーゼを強化することや(EP0647712、EP1457569)、排出因子MdfAを強化すること(US7410789)で付与又は増強することができる。
本発明の細菌は、上述したようなL−システイン生産能を有する腸内細菌科に属する細菌を、yciW遺伝子によりコードされるタンパク質(以下、「YciW」と記載することがある)の活性が低下するように改変することによって得ることができる。ただし、YciWタンパク質の活性が低下するように改変を行った後に、L−システイン生産能を付与してもよい。
yciW遺伝子は、ECK1282、JW5200と同義である。
「yciW遺伝子によりコードされるタンパク質の活性が低下する」とは、yciW遺伝子によりコードされるYciWタンパク質の活性が野生株又は親株等の非改変株に対して低下していることを意味し、活性が完全に消失していることを含む。
YciWタンパク質の活性を低下させるような改変は、例えば、yciW遺伝子の発現を低下させることによって達成される。具体的には例えば、染色体上のyciW遺伝子のコード領域の一部又は全部を欠損させることによって、前記タンパク質の細胞内の活性を低下させることができる。YciWタンパク質の活性は、yciW遺伝子のプロモーターやシャインダルガルノ(SD)配列等の発現調節配列を改変したりすることなどによって、同遺伝子の発現を低下させることによっても低下させることができる。また、発現調節配列以外の非翻訳領域の改変によっても、遺伝子の発現量を低下させることができる。さらには、染色体上の遺伝子の前後の配列を含めて、遺伝子全体を欠失させてもよい。また、染色体上yciW遺伝子のコード領域にアミノ酸置換(ミスセンス変異)を導入すること、また終始コドンを導入すること(ナンセンス変異)、あるいは1〜2塩基を付加または欠失するフレームシフト変異を導入することによっても達成出来る(Journal of Biological Chemistry 272:8611-8617(1997) Proceedings of the National Academy of Sciences,USA 95 5511-5515(1998), Journal of Biological Chemistry 266, 20833-20839(1991))。発現制御に関わる因子(転写や翻訳制御に関わる低分子(誘導物質、阻害物質など)、タンパク質(転写因子など)、核酸(sRNAなど)等)を操作することでも発現を低下させることが可能である。
また、YciWタンパク質の活性が低下するような改変であれば、X線もしくは紫外線を照射、またはN−メチル−N'−ニトロ−N−ニトロソグアニジン等の変異剤による通常の変異処理による改変であってもよい。
発現調節配列の改変は、好ましくは1塩基以上、より好ましくは2塩基以上、特に好ましくは3塩基以上である。また、コード領域を欠失させる場合は、YciWタンパク質の機能が低下又は欠失するのであれば、欠失させる領域は、N末端領域、内部領域、C末端領域のいずれの領域であってもよく、コード領域全体であってよい。通常、欠失させる領域は長い方が確実に遺伝子を不活化することができる。また、欠失させる領域の上流と下流のリーディングフレームは一致しないことが好ましい。
YciWタンパク質の活性を低下させるような改変は、yciW遺伝子のコード領域に他の配列を挿入することによっても達成できる。yciW遺伝子のコード領域に他の配列を挿入する場合も、挿入部位は遺伝子のいずれの領域であってもよいが、挿入する配列は長い方が確実に遺伝子を不活化することができる。挿入部位の前後の配列は、リーディングフレームが一致しないことが好ましい。他の配列としては、コードされるYciWタンパク質の機能を低下又は欠損させるものであれば特に制限されないが、例えば、抗生物質耐性遺伝子やL−システイン生産に有用な遺伝子を搭載したトランスポゾン等が挙げられる。
染色体上のyciW遺伝子を上記のように改変することは、例えば、遺伝子の部分配列を欠失し、正常に機能するYciWタンパク質を産生しないように改変した欠失型遺伝子を作製し、該遺伝子を含むDNAで細菌を形質転換して、欠失型遺伝子と染色体上の遺伝子とで相同組換えを起こさせることにより、染色体上の遺伝子を欠失型遺伝子に置換することによって達成できる。欠失型遺伝子によってコードされるYciWタンパク質は、生成したとしても、野生型タンパク質とは異なる立体構造を有し、機能が低下又は消失する。このような相同組換えを利用した遺伝子置換による遺伝子破壊は既に確立しており、「Redドリブンインテグレーション(Red-driven integration)」と呼ばれる方法(Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))、Redドリブンインテグレーション法とλファージ由来の切り出しシステム(Cho, E. H., Gumport, R. I., Gardner, J. F. J. Bacteriol. 184: 5200-5203 (2002))とを組み合わせた方法(WO2005/010175号参照)等の直鎖状DNAを用いる方法や、温度感受性複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で複製起点を持たないスイサイドベクターを利用する方法などがある(米国特許第6303383号、または特開平05-007491号)。
yciW遺伝子の転写量が低下したことの確認は、同遺伝子から転写されるmRNAの量を野生株、あるいは非改変株と比較することによって行うことが出来る。mRNAの量を評価する方法としては、ノーザンハイブリダイゼーション、RT-PCR等が挙げられる(Molecular cloning(Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001))。
YciWタンパク質の量が低下したことの確認は、抗体を用いてウェスタンブロットによって行うことが出来る(Molecular cloning(Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001))。
エシェリヒア・コリK12株のyciW遺伝子は、NCBIデータベースに、GenBank accession NC_000913(VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、1347004〜1348131位の配列の相補配列に相当する。また、YciWタンパク質は、GenBank accession NP_415803(version NP_415803.2 GI:90111242、locus_tag="b1287")として登録されている。yciW遺伝子及びその上流、下流各300bpを含む塩基配列、及び同遺伝子がコードするアミノ酸配列を、それぞれ配列番号1及び2に示す。
細菌が属する種又は菌株によって、yciW遺伝子の塩基配列に差異が存在することがあるため、改変するyciW遺伝子は、配列番号1の301〜1428位の塩基配列のバリアントであってもよい。yciW遺伝子のバリアントは、配列番号1の塩基配列を参考にして、BLAST等によって検索出来る(http://blast.genome.jp/)。また、yciW遺伝子のバリアントは、同遺伝子のホモログ、例えば腸内細菌科やコリネ型細菌等の微生物の染色体を鋳型にして、例えば配列番号1の塩基配列に基づいて調製される合成オリゴヌクレオチドを用いてPCRで増幅可能な遺伝子を含む。
エシェリヒア・コリ以外の細菌のyciW遺伝子ホモログの例として、以下の細菌のyciW遺伝子が挙げられる。表1中、同一性(%)は、エシェリヒア・コリK12株のYciWタンパク質と、各細菌のホモログとの、BLASTによる同一性を示す。アクセション番号は、NCBIデータベースのアクセション番号を示す。
Figure 2011065469
また、yciW遺伝子は、細菌内の活性を低下させたときにL−システイン生産能が向上するタンパク質をコードする限り、上記のようなYciWタンパク質のアミノ酸配列において、1若しくは数個の位置での1若しくは数個のアミノ酸の置換、欠失、挿入又は付加等を含む配列を有するタンパク質をコードする遺伝子であってもよい。前記「1若しくは数個」とは、アミノ酸残基のタンパク質の立体構造における位置やアミノ酸残基の種類によっても異なるが、具体的には好ましくは1〜20個、より好ましくは1〜10個、さらに好ましくは1〜5個を意味する。上記の1若しくは数個のアミノ酸の置換、欠失、挿入、または付加は、タンパク質の機能が正常に維持される保存的変異である。保存的変異の代表的なものは、保存的置換である。保存的置換とは、置換部位が芳香族アミノ酸である場合には、Phe、Trp、Tyr間で、置換部位が疎水性アミノ酸である場合には、Leu、Ile、Val間で、極性アミノ酸である場合には、Gln、Asn間で、塩基性アミノ酸である場合には、Lys、Arg、His間で、酸性アミノ酸である場合には、Asp、Glu間で、ヒドロキシル基を持つアミノ酸である場合には、Ser、Thr間でお互いに置換する変異である。保存的置換とみなされる置換としては、具体的には、AlaからSer又はThrへの置換、ArgからGln、His又はLysへの置換、AsnからGlu、Gln、Lys、His又はAspへの置換、AspからAsn、Glu又はGlnへの置換、CysからSer又はAlaへの置換、GlnからAsn、Glu、Lys、His、Asp又はArgへの置換、GluからGly、Asn、Gln、Lys又はAspへの置換、GlyからProへの置換、HisからAsn、Lys、Gln、Arg又はTyrへの置換、IleからLeu、Met、Val又はPheへの置換、LeuからIle、Met、Val又はPheへの置換、LysからAsn、Glu、Gln、His又はArgへの置換、MetからIle、Leu、Val又はPheへの置換、PheからTrp、Tyr、Met、Ile又はLeuへの置換、SerからThr又はAlaへの置換、ThrからSer又はAlaへの置換、TrpからPhe又はTyrへの置換、TyrからHis、Phe又はTrpへの置換、及び、ValからMet、Ile又はLeuへの置換が挙げられる。また、上記のようなアミノ酸の置換、欠失、挿入、付加、または逆位等には、遺伝子が由来する微生物の個体差、種の違いに基づく場合などの天然に生じる変異(mutant又はvariant)によって生じるものも含まれる。
さらに、上記のような保存的変異を有する遺伝子は、コードされるアミノ酸配列全体に対して、80%以上、好ましくは90%以上、より好ましくは95%以上、より好ましくは97%以上、特に好ましくは99%以上の相同性を有し、かつ、野生型YciWタンパク質と同等の機能を有するタンパク質をコードする遺伝子であってもよい。尚、本明細書において、「相同性」(homology)」は、「同一性」(identity)を指すことがある。
また、yciW遺伝子は、公知の遺伝子配列から調製され得るプローブ、例えば前記遺伝子配列又はその相補配列とストリンジェントな条件下でハイブリダイズし、YciWタンパク質と同等の機能を有するタンパク質をコードするDNAであってもよい。ここで、「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。一例を示せば、相同性が高いDNA同士、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、より好ましくは97%以上、特に好ましくは99%以上の相同性を有するDNA同士がハイブリダイズし、それより相同性が低いDNA同士がハイブリダイズしない条件、あるいは通常のサザンハイブリダイゼーションの洗いの条件である60℃、1×SSC、0.1% SDS、好ましくは、60℃、0.1×SSC、0.1% SDS、さらに好ましくは、68℃、0.1×SSC、0.1% SDSに相当する塩濃度、温度で、1回、より好ましくは2〜3回洗浄する条件が挙げられる。
プローブは、遺伝子の相補配列の一部であってもよい。そのようなプローブは、公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとし、これらの塩基配列を含むDNA断片を鋳型とするPCRによって作製することができる。例えば、プローブとして、300 bp程度の長さのDNA断片を用いる場合には、ハイブリダイゼーションの洗いの条件は、50℃、2×SSC、0.1% SDSが挙げられる。
上記の遺伝子やタンパク質のバリアントに関する記載は、セリンアセチルトランスフェラーゼ、3−ホスホグリセレートデヒドロゲナーゼ等の酵素、又はYdeDタンパク質や、それらをコードする遺伝子にも同様に適用される。
<2>本発明のL−システイン、L−シスチン、もしくはそれらの誘導体、又はこれらの混合物の製造法
上記のようにして得られる本発明の細菌を培地中で培養し、該培地からL−システイン、L−シスチン、もしくはそれらの誘導体、又はこれらの混合物を採取することにより、これらの化合物を製造することができる。L−システインの誘導体としては、前記したようなS−スルホシステイン、チアゾリジン誘導体、同チアゾリジン誘導体に相当するヘミチオケタール等が挙げられる。また、L−システインを出発物質として生合成されるγ−グルタミルシステイン、グルタチオン、シスタチオニン、ホモシステイン、メチオニン、S−アデノシルメチオニン等も同様に製造することができる。
使用する培地としては、炭素源、窒素源、イオウ源、無機イオン及び必要に応じその他の有機成分を含有する通常の培地が挙げられる。
炭素源としては、グルコース、フラクトース、シュクロース、糖蜜やでんぷんの加水分解物などの糖類、フマル酸、クエン酸、コハク酸等の有機酸類を用いることができる。
窒素源としては、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム等の無機アンモニウム塩、大豆加水分解物などの有機窒素、アンモニアガス、アンモニア水等を用いることができる。
イオウ源としては、硫酸塩、亜硫酸塩、硫化物、次亜硫酸塩、チオ硫酸塩等の無機硫黄化合物が挙げられる。
有機微量栄養源としては、ビタミンB1などの要求物質または酵母エキス等を適量含有させることが望ましい。これらの他に、必要に応じてリン酸カリウム、硫酸マグネシウム、鉄イオン、マンガンイオン等が少量添加される。
培養は好気的条件下で30〜90時間実施するのがよく、培養温度は25℃〜37℃に、培養中pHは5〜8に制御することが好ましい。尚、pH調整には無機あるいは有機の酸性あるいはアルカリ性物質、更にアンモニアガス等を使用することができる。培養物からのL−システインの採取は通常のイオン交換樹脂法、沈澱法その他の公知の方法を組み合わせることにより実施できる。
上記のようにして得られるL−システインは、L−システイン誘導体の製造に用いることができる。システイン誘導体としては、メチルシステイン、エチルシステイン、カルボシステイン、スルホシステイン、アセチルシステイン等が含まれる。
また、L−システインのチアゾリジン誘導体が培地に蓄積した場合は、培地からチアゾリジン誘導体を採取し、チアゾリジン誘導体とL−システインとの間の反応平衡をL−システイン側に移動させることによって、L−システインを製造することができる。
また、培地にS−スルホシステインが蓄積した場合、例えばジチオスライトール等の還元剤を用いて還元することによってL−システインに変換することができる。
以下、本発明を実施例によりさらに具体的に説明する。
(1)yciW遺伝子欠損株の構築
yciW遺伝子の欠失は、DatsenkoとWannerによって最初に開発された「Red-driven integration」と呼ばれる方法(Proc. Natl. Acad. Sci. USA, 2000, vol. 97, No. 12, p6640-6645)によって行った。「Red-driven integration」方法によれば、目的とする遺伝子の一部を合成オリゴヌクレオチドの5'側に、抗生物質耐性遺伝子の一部を3'側に、それぞれデザインした合成オリゴヌクレオチドをプライマーとして用いて得られたPCR産物を用いて、一段階で遺伝子破壊株を構築することができる。この「Red-driven integration」とラムダファージ由来の切り出しシステムによってE. coliの遺伝子を欠損させる方法が特開2005-058227A(US2006154344)やWO2007/119880A1等に詳細に記述されている。yciW遺伝子の欠損株の取得も、これらの方法と同じ方法で行った。
yciW遺伝子の両端の相同配列に抗生物質耐性遺伝子(カナマイシン耐性遺伝子(Kmr))が挟まったDNA断片をPCRによって取得した。プライマーとしてDyciWec-FW(配列番号3:ATGGAACAACGCCACATCACCGGCAAAAGCCACTGGTATCATGAAACGCATGAAGCCTGCTTTTTTATACTAAGTTGGCA)、DyciWec-RV(配列番号4:CCCATTGGTTAATTTCATTTTCGCCCTTGCGCATAAGGGTGCTGATTTTTCGCTCAAGTTAGTATAAAAAAGCTGAACGA)を使用し、鋳型としてpMW118-(λattL-Kmr-λattR)(WO2006/093322A2)由来のλattL-Kmr-λattR配列を含むDNA断片を使用した以外、具体的な実験方法と実験材料については、全て特開2005-058227A1(US2006154344)の記載どおりに行った。
この手法により、E. coli MG1655株 (ATCC 47076)からyciW遺伝子欠損株であるMG1655ΔyciW::Kmrを取得した。
尚、ラムダファージ由来の切り出しシステムを用いることにより、yciW遺伝子破壊株に組み込んだKmr遺伝子を除去することができる。
(2)L−システイン生産菌の構築
L−システインによるフィードバック阻害が低減された変異型セリンアセチルトランスフェラーゼをコードする変異型cysE(US20050112731(A1))、L−システイン排出因子をコードするydeD遺伝子(US5972663A)、及びL−セリンによるフィードバック阻害が低減された3−ホスホグリセレートデヒドロゲナーゼをコードする変異型serA遺伝子(US6180373)が1つのプラスミドに載ったpACYC-DESを、E. coli MG1655及びMG1655DyciW::Kmrに導入した。前記変異型セリンアセチルトランスフェラーゼは、167位のスレオニン残基がアラニン残基に置換されている。また、前記3−ホスホグリセレートデヒドロゲナーゼは、410位のチロシン残基が欠失されている。pACYC-DESの構築は、特開2005-137369(US20050124049(A1)、EP1528108(A1))に記載されている。
(3)L−システイン生産培養
yciW遺伝子の欠損がL−システイン及びL−システイン関連化合物の発酵生産に及ぼす効果を調べるため、先述のE. coliL−システイン生産菌MG1655/pACYC-DES及びMG1655DyciW::Kmr/pACYC-DES(yciW欠損)の発酵生産培養を行い、L−システイン及びL−システイン関連化合物の生産量を比較した。培養には下記組成のL−システイン生産培地を使用した。なお、L−システイン生産のための硫黄源として硫酸塩(硫酸アンモニウム)及びチオ硫酸塩(チオ硫酸ナトリウム)を用いた。硫酸塩のみを使用した培養では下記培地組成の中の成分6(チオ硫酸ナトリウム)を添加せず行った。また、チオ硫酸塩を使用した培養では下記培地成分の通りに行った。
〔L−システイン生産培地〕(各成分の濃度は最終濃度)
成分1:
(NH4)2SO4 15g/L
KH2PO4 1.5g/L
MgSO4・7H2O 1g/L
チアミン塩酸塩 0.1mg/L
成分2:
FeSO4・7H2O 1.7mg/L
Na2MoO4・2H2O 0.15mg/L
CoCl2・6H2O 0.7mg/L
MnCl・4H2O 1.6mg/L
ZnSO4・7H2O 0.3mg/L
CuSO4・5H2O 0.25mg/L
成分3:
トリプトン 0.6g/L
イーストエクストラクト 0.3g/L
NaCl 0.6g/L
成分4:
炭酸カルシウム 20g/L
成分5:
L−ヒスチジン塩酸塩一水和物 135mg/L
成分6:
チオ硫酸ナトリウム 4g/L
成分7:
ピリドキシン塩酸塩 2mg/L
成分8:
グルコース 40g/L
各成分について、各々10倍(成分1)、1000倍(成分2)、100/6倍(成分3)、100倍(成分5)、350/4倍(成分6)、1000倍(成分7)、10倍(成分8)のストック溶液を作製しておき、使用時に混合し滅菌水で規定の量までメスアップして最終濃度となるように調製した。殺菌は、110℃、30分のオートクレーブ(成分1、2、3、5、8)、180℃、5時間以上の乾熱滅菌(成分4)、及びフィルター滅菌(成分6、7)により行った。
L−システイン生産培養は以下の手順で行った。各生産菌をLB寒天培地に塗り広げ、37℃で一晩前培養を行った後、10マイクロリッターサイズの植菌用ループ(NUNC社ブルーループ)でプレート上約7cm分の菌体を3回掻き取り(3ループ)、大試験管(内径23mm、長さ20cm)に2ml張りこんだ上記L−システイン生産培地中に植菌し、培養開始時点での菌体量が両菌株でほぼ同じになるよう調製した。32℃にて振盪培養を行い、25時間後に培養を終了した。培地中に生産されたL−システイン(L−システイン関連物質を含む)の定量は、Gaitonde, M.K.(Biochem J. 1967 Aug;104(2):627-33)に記載の方法で行った。各株とも4連で実験を行い、そのときのL−システイン生産量(平均値)と標準偏差、消費グルコースに対するL−システイン収率を表2に示した。表2中、野生株とはMG1655/pACYC-DESを、yciW欠損株とはMG1655DyciW::Kmr/pACYC-DESを示す。yciW遺伝子欠損によりいずれの硫黄源においてもL−システインの蓄積を増加させる効果があることがわかった。
Figure 2011065469

Claims (9)

  1. L−システイン生産能を有し、かつ、yciW遺伝子によりコードされるタンパク質の活性が低下するように改変された腸内細菌科に属する細菌。
  2. 前記yciW遺伝子の発現量を低下させること、又は同遺伝子を破壊することにより、前記タンパク質の活性が低下した、請求項1に記載の細菌。
  3. 前記タンパク質が、下記(A)または(B)に記載のタンパク質である請求項1又は2に記載の細菌。
    (A)配列番号2に示すアミノ酸配列を有するタンパク質。
    (B)配列番号2に示すアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、または付加を含むアミノ酸配列を有し、かつ、細菌内の活性を低下させたときにL−システイン生産能が向上するタンパク質。
  4. 前記yciW遺伝子が、下記(a)または(b)に記載のDNAである、請求項1〜3のいずれか一項に記載の細菌。
    (a)配列番号1の301〜1428位の塩基配列を含むDNA、または
    (b)配列番号1の301〜1428位の塩基配列の相補配列または同塩基配列から調製され得るプローブとストリンジェントな条件下でハイブリダイズし、かつ、細菌内の活性を低下させたときにL−システイン生産能が向上するタンパク質をコードするDNA。
  5. さらに、下記の性質の少なくともいずれかを有する請求項1〜4のいずれか一項に記載の細菌。
    i)セリンアセチルトランスフェラーゼ活性が上昇するように改変されている。
    ii)ydeD遺伝子の発現が上昇するように改変されている。
    iii)3−ホスホグリセレートデヒドロゲナーゼ活性が上昇するように改変されている。
  6. 前記細菌がエシェリヒア属細菌である、請求項1〜5のいずれか一項に記載の細菌。
  7. 前記細菌がエシェリヒア・コリである、請求項6に記載の細菌。
  8. 請求項1〜7のいずれか一項に記載の細菌を培地中で培養し、該培地からL−システイン、L−シスチン、もしくはそれらの誘導体、又はこれらの混合物を採取することを特徴とする、L−システイン、L−シスチン、もしくはそれらの誘導体、又はこれらの混合物の製造法。
  9. 前記L−システインの誘導体がチアゾリジン誘導体である、請求項8に記載の方法。
JP2011543314A 2009-11-30 2010-11-26 L−システイン生産菌及びl−システインの製造法 Active JP5817529B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011543314A JP5817529B2 (ja) 2009-11-30 2010-11-26 L−システイン生産菌及びl−システインの製造法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009272358 2009-11-30
JP2009272358 2009-11-30
JP2011543314A JP5817529B2 (ja) 2009-11-30 2010-11-26 L−システイン生産菌及びl−システインの製造法
PCT/JP2010/071102 WO2011065469A1 (ja) 2009-11-30 2010-11-26 L-システイン生産菌及びl-システインの製造法

Publications (2)

Publication Number Publication Date
JPWO2011065469A1 true JPWO2011065469A1 (ja) 2013-04-18
JP5817529B2 JP5817529B2 (ja) 2015-11-18

Family

ID=44066573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011543314A Active JP5817529B2 (ja) 2009-11-30 2010-11-26 L−システイン生産菌及びl−システインの製造法

Country Status (7)

Country Link
US (1) US8647847B2 (ja)
EP (1) EP2508594B1 (ja)
JP (1) JP5817529B2 (ja)
CN (1) CN102639691B (ja)
BR (1) BR112012012915B1 (ja)
ES (1) ES2646165T3 (ja)
WO (1) WO2011065469A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065469A1 (ja) 2009-11-30 2011-06-03 味の素株式会社 L-システイン生産菌及びl-システインの製造法
CN103119154B (zh) 2010-09-14 2015-11-25 味之素株式会社 含硫氨基酸生产菌以及含硫氨基酸的制造方法
DE102011078481A1 (de) 2011-06-30 2013-01-03 Wacker Chemie Ag Verfahren zur fermentativen Produktion von natürlichem L-Cystein
AR092630A1 (es) * 2012-09-19 2015-04-29 Genentech Inc Metodos y composiciones para prevenir la incorporacion erronea de norleucina en proteinas
CN106029870A (zh) * 2014-01-16 2016-10-12 凯利斯塔公司 用于增强的氨基酸产生的微生物及相关方法
CN111386345B (zh) 2018-10-30 2023-05-16 绿色地球研究所株式会社 1,3-丙二醇的制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077183A2 (en) * 2001-03-21 2002-10-03 Elitra Pharmaceuticals, Inc. Identification of essential genes in microorganisms
WO2009104731A1 (ja) * 2008-02-21 2009-08-27 味の素株式会社 L-システイン生産菌及びl-システインの製造法

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144092A (en) 1980-04-14 1981-11-10 Ajinomoto Co Inc Preparation of l-methionine by fermentation
FR2627508B1 (fr) 1988-02-22 1990-10-05 Eurolysine Procede pour l'integration d'un gene choisi sur le chromosome d'une bacterie et bacterie obtenue par ledit procede
JPH07108228B2 (ja) 1990-10-15 1995-11-22 味の素株式会社 温度感受性プラスミド
US5856148A (en) 1991-12-12 1999-01-05 Wacker Chemie Gmbh Materials and methods for biosynthesis of serine and serine-related products
TW313589B (ja) * 1991-12-12 1997-08-21 Wacker Chemie Gmbh
DE4232468A1 (de) 1992-09-28 1994-03-31 Consortium Elektrochem Ind Mikroorganismen für die Produktion von Tryptophan und Verfahren zu ihrer Herstellung
EP0647712A1 (en) 1993-10-07 1995-04-12 Boehringer Ingelheim Espana S.A. Production of S-adenosyl-methionine (SAM) by fermentation of transformed bacteria
DE19539952A1 (de) 1995-10-26 1997-04-30 Consortium Elektrochem Ind Verfahren zur Herstellung von O-Acetylserin, L-Cystein und L-Cystein-verwandten Produkten
DE19726083A1 (de) 1997-06-19 1998-12-24 Consortium Elektrochem Ind Mikroorganismen und Verfahren zur fermentativen Herstellung von L-Cystein, L-Cystin, N-Acetyl-Serin oder Thiazolidinderivaten
JP4151094B2 (ja) 1997-11-25 2008-09-17 味の素株式会社 L−システインの製造法
AU756507B2 (en) 1998-03-18 2003-01-16 Ajinomoto Co., Inc. L-glutamic acid-producing bacterium and method for producing L-glutamic acid
JP4110641B2 (ja) 1998-11-17 2008-07-02 味の素株式会社 発酵法によるl−メチオニンの製造法
RU2175351C2 (ru) 1998-12-30 2001-10-27 Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ") Фрагмент днк из escherichia coli, определяющий повышенную продукцию l-аминокислот (варианты), и способ получения l-аминокислот
JP2000262288A (ja) 1999-03-16 2000-09-26 Ajinomoto Co Inc コリネ型細菌の温度感受性プラスミド
DE19949579C1 (de) 1999-10-14 2000-11-16 Consortium Elektrochem Ind Verfahren zur fermentativen Herstellung von L-Cystein oder L-Cystein-Derivaten
JP4622111B2 (ja) 2001-02-09 2011-02-02 味の素株式会社 L−システイン生産菌及びl−システインの製造法
RU2215782C2 (ru) 2001-02-26 2003-11-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ, ШТАММ Escherichia coli - ПРОДУЦЕНТ L-АМИНОКИСЛОТЫ (ВАРИАНТЫ)
JP2002238592A (ja) 2001-02-20 2002-08-27 Ajinomoto Co Inc L−グルタミン酸の製造法
JP2003010654A (ja) 2001-04-24 2003-01-14 Kuraray Co Ltd 中空糸膜の製造方法
RU2209248C2 (ru) 2001-06-26 2003-07-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Способ получения l-метионина, штамм бактерии escherichia coli вкпм в-8125 - продуцент l-метионина
EP1298200B1 (en) 2001-09-28 2006-03-29 Ajinomoto Co., Inc. L-Cysteine producing bacterium and method for producing l-cysteine
JP4186564B2 (ja) 2001-09-28 2008-11-26 味の素株式会社 L−システイン生産菌及びl−システインの製造法
US20040029129A1 (en) 2001-10-25 2004-02-12 Liangsu Wang Identification of essential genes in microorganisms
DE10232930A1 (de) 2002-07-19 2004-02-05 Consortium für elektrochemische Industrie GmbH Verfahren zur fermentativen Herstellung von Aminosäuren und Aminosäure-Derivaten der Phosphoglycerat-Familie
DE10309856A1 (de) 2003-03-06 2004-09-23 Consortium für elektrochemische Industrie GmbH Verfahren zur fermentativen Herstellung von S-Adenosylmethionin
DE10331291A1 (de) 2003-07-10 2005-02-17 Consortium für elektrochemische Industrie GmbH Varianten der 3-Phosphoglyceratdehydrogenase mit reduzierter Hemmung durch L-Serin und dafür codierende Gene
BRPI0412535A (pt) 2003-07-16 2006-09-19 Ajinomoto Kk serina acetiltransferase mutante, dna, bactéria, e, método para produzir l-cisteìna
WO2005010175A1 (en) 2003-07-29 2005-02-03 Ajinomoto Co., Inc. Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity
RU2275425C2 (ru) 2003-11-03 2006-04-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) Бактерия, принадлежащая к роду escherichia, - продуцент l-цистеина и способ получения l-цистеина
JP2005168422A (ja) 2003-12-12 2005-06-30 Kazumi Araki 発酵法によるl−シスタチオニンの製造法
JP4479283B2 (ja) 2004-03-04 2010-06-09 味の素株式会社 L−システイン生産菌及びl−システインの製造法
JP4604537B2 (ja) 2004-03-31 2011-01-05 味の素株式会社 L−システイン生産菌及びl−システインの製造法
WO2005111202A1 (en) 2004-05-12 2005-11-24 Metabolic Explorer Recombinant enzyme with altered feedback sensitivity
JP2008530978A (ja) 2005-03-03 2008-08-14 味の素株式会社 4−ハイドロキシ−l−イソロイシン又はその塩の製造法
DE102005009751A1 (de) 2005-03-03 2006-09-07 Consortium für elektrochemische Industrie GmbH Verfahren zur fermentativen Herstellung von S-Adenosyl-Methionin
US8389250B2 (en) 2006-01-04 2013-03-05 Metabolic Explorer Methods for producing methionine by culturing a microorganism modified to enhance production of cysteine
WO2007119880A1 (en) 2006-04-13 2007-10-25 Ajinomoto Co., Inc. A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family which has been modified to abolish curli formation
JP5332237B2 (ja) * 2008-03-06 2013-11-06 味の素株式会社 L−システイン生産菌及びl−システインの製造法
DE602009000714D1 (de) 2008-03-06 2011-03-24 Ajinomoto Kk L-Zystein-produzierendes Bakterium und Verfahren zur Herstellung von L-Zystein
WO2010027045A1 (ja) 2008-09-08 2010-03-11 味の素株式会社 L-アミノ酸を生産する微生物及びl-アミノ酸の製造法
JP5521347B2 (ja) 2009-02-16 2014-06-11 味の素株式会社 L−アミノ酸生産菌及びl−アミノ酸の製造法
JP5463528B2 (ja) 2009-02-25 2014-04-09 味の素株式会社 L−システイン生産菌及びl−システインの製造法
JP5359409B2 (ja) 2009-03-12 2013-12-04 味の素株式会社 L−システイン生産菌及びl−システインの製造法
WO2011065469A1 (ja) 2009-11-30 2011-06-03 味の素株式会社 L-システイン生産菌及びl-システインの製造法
RU2460793C2 (ru) 2010-01-15 2012-09-10 Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО АГРИ) Способ получения l-аминокислот с использованием бактерий семейства enterobacteriaceae

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077183A2 (en) * 2001-03-21 2002-10-03 Elitra Pharmaceuticals, Inc. Identification of essential genes in microorganisms
WO2009104731A1 (ja) * 2008-02-21 2009-08-27 味の素株式会社 L-システイン生産菌及びl-システインの製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BABA, T. ET AL.: ""Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collectio", MOLECULAR SYSTEMS BIOLOGY, vol. 2, JPN6015004132, 2006, pages 1 - 11, XP002628975, ISSN: 0002998230, DOI: 10.1038/MSB4100050 *

Also Published As

Publication number Publication date
WO2011065469A1 (ja) 2011-06-03
US20120288902A1 (en) 2012-11-15
EP2508594A1 (en) 2012-10-10
EP2508594B1 (en) 2017-08-16
CN102639691A (zh) 2012-08-15
BR112012012915B1 (pt) 2020-12-01
CN102639691B (zh) 2014-04-16
BR112012012915A2 (pt) 2015-09-29
EP2508594A4 (en) 2013-10-30
JP5817529B2 (ja) 2015-11-18
ES2646165T3 (es) 2017-12-12
US8647847B2 (en) 2014-02-11

Similar Documents

Publication Publication Date Title
JP6020443B2 (ja) L−システインの製造法
JP5332237B2 (ja) L−システイン生産菌及びl−システインの製造法
JP5476545B2 (ja) L−システイン生産菌及びl−システインの製造法
JP5463528B2 (ja) L−システイン生産菌及びl−システインの製造法
JP5359409B2 (ja) L−システイン生産菌及びl−システインの製造法
JP5817529B2 (ja) L−システイン生産菌及びl−システインの製造法
US9234223B2 (en) Method for producing L-cysteine
US8962284B2 (en) Sulfur-containing amino acid-producing bacterium and method for producing sulfur-containing amino acid
WO2012114802A1 (ja) L-システイン生産菌及びl-システインの製造法
WO2012144472A1 (ja) L-システインの製造法
JP7444164B2 (ja) 細菌を用いたl-メチオニンの製造方法
JP2017143756A (ja) L−システインの製造法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R150 Certificate of patent or registration of utility model

Ref document number: 5817529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250