JPWO2010095218A1 - ターボ分子ポンプ - Google Patents

ターボ分子ポンプ Download PDF

Info

Publication number
JPWO2010095218A1
JPWO2010095218A1 JP2011500384A JP2011500384A JPWO2010095218A1 JP WO2010095218 A1 JPWO2010095218 A1 JP WO2010095218A1 JP 2011500384 A JP2011500384 A JP 2011500384A JP 2011500384 A JP2011500384 A JP 2011500384A JP WO2010095218 A1 JPWO2010095218 A1 JP WO2010095218A1
Authority
JP
Japan
Prior art keywords
rotor disk
magnetic bearing
natural frequency
rotating body
molecular pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011500384A
Other languages
English (en)
Other versions
JP5541464B2 (ja
Inventor
健一 西山
健一 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of JPWO2010095218A1 publication Critical patent/JPWO2010095218A1/ja
Application granted granted Critical
Publication of JP5541464B2 publication Critical patent/JP5541464B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0468Details of the magnetic circuit of moving parts of the magnetic circuit, e.g. of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0476Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Abstract

【課題】回転体の固有振動数が変動すると、制御回路内部のフィルタの不安定領域に配置されることによって、軸振動が加振されて発振するおそれがある。したがって、軸振動の安定化を実現する上で、4Mのばらつきによる回転体の固有振動数の変動を小さくすることが大量生産する上での課題となっている。【解決手段】ロータディスクと回転軸の接触面のうちロータディスク側の接触面又は回転軸側の接触面に隙間を形成することで、締結面の状態を安定化して、固有振動数を安定化させることができる。回転体の固有振動数は、締結部の剛性に依存するが、ディスク締結面の状態が安定化し、締結部の剛性が安定すれば必然的に回転体の固有振動数が安定化する。

Description

本発明は、真空排気に用いられるターボ分子ポンプのロータディスクの構造並びにその周辺構造に関する。
真空装置では、ターボ分子ポンプ等の吸引機構で真空容器内等を吸引することによって真空状態を形成している。一般に、ターボ分子ポンプはステータとロータとを有するポンプユニットを備え、モータの電源駆動によってロータを回転させ、真空容器内を吸引・排気している。多くのターボ分子ポンプでは、ロータの回転軸は磁気浮上によってステータに対して非接触で支持されている。この磁気浮上による支持では、回転軸は磁気軸受によって非接触で支持され、ケーシングと回転軸との間には、磁気軸受のための位置センサ及び電磁石が設置される。回転軸のラジアル方向には、回転軸を挟んで位置センサが対向して配置される。ラジアル軸受電磁石は位置センサで検出した位置情報に基づいて制御され、ロータをラジアル方向で非接触により回転支持している。
また、回転軸のスラスト方向には、回転軸の下端にスラストターゲットが設置され、このスラストターゲットと対向して位置センサが配置される。また、スラストターゲットにはロータディスクが固定され、このロータディスクをスラスト方向に挟んでスラスト軸受電磁石が設置される。ラジアル軸受電磁石は位置センサで検出したスラスト方向の位置情報に基づいて制御され、ロータをスラスト方向に非接触で回転支持している。
磁気軸受を安定して制御するために、フィードバックループが構成されているフィードバックループの制御回路では、PID回路及び位相補償回路並びに安定のためのフィルタを設けることで、所望の周波数応答を得ることができる( 例えば、特許文献1参照)。
特開2007−270829
上述した周波数応答は、回転体(「回転体」はロータ、回転軸、ロータディスクを結合させたものと定義する。以下、同じ。)の固有振動数を元に、応答を安定化できるよう設計されている。しかし、この固有振動数は、機体の大量生産時における4M(Machine、Man、Method、Material)のばらつきによって機体毎に変動する。また、機体の固有振動数が変動し、固有振動数が制御回路内部のフィルタの不安定領域に存在してしまうと、軸振動が加振されて発振するおそれがある。したがって、軸振動の安定化を実現する上で、4Mのばらつきによる回転体の固有振動数の変動を小さくすることが大量生産する上での課題となっている。
上記課題を解決するためになされた第1の発明は、フィードバックループにより制御される磁気軸受と、回転体に固定され前記磁気軸受を介して保持される回転軸と、回転軸に固定されたロータディスクとを備えるターボ分子ポンプにおいて、前記回転軸と前記ロータディスクの接触面の中心部に隙間を形成させたことを特徴とするターボ分子ポンプである。従来は、ロータディスクと回転軸の間のボルト締結面は、フラットな構造であったが、この場合、締結面の加工精度の影響を受けて、締結面の状態が不安定化になる。そこで、回転軸とロータディスクの接触面の中心部に隙間を形成することで、締結面の状態を安定化して、固有振動数を安定させることができる。回転体の固有振動数は、締結部の剛性に依存するが、ディスク締結面の状態が安定し締結部の剛性が安定すれば、必然的に回転体の固有振動数は安定する。
上記課題を解決するためになされた第2の発明は、前記第1の発明において、前記回転軸と前記ロータディスクの接触面に形成された前記隙間の外周が、前記回転軸と前記ロータディスクを締結するための締結部材の通し穴と重なることを特徴とするターボ分子ポンプである。回転軸9とロータディスクの締結部材が、回転軸とロータディスクの間の隙間が形成された部分及び前記隙間が形成されていない部分の両方を貫通するようにして締結すると、隙間部分の面積を可能な限り大きくしつつ、前記隙間が形成されていない部分で回転軸とロータディスクを締結部材により締結することができるため、締結面の状態をより安定化することができる。
上記課題を解決するためになされた第3の発明は、回転体の質量を変化させて回転体の固有振動数を調整する固有振動数調整工程を含むターボ分子ポンプの製造方法において、前記固有振動数調整工程は、前記回転体を保持するための磁気軸受に用いられるロータディスクをスラスト方向又はラジアル方向に切削することにより行うことを特徴とするターボ分子ポンプの製造方法である。ロータディスクは円筒形状であるため、ロータディスクのスラスト方向又はラジアル方向を旋盤等で切削することができ、ロータディスクの微妙な質量の調整を容易にすることが可能になり、回転体の固有振動数の効率的な安定化が可能になる。
上記課題を解決するためになされた第4の発明は、前記第3の発明において、前記固有振動数調整工程と同一の工程で回転体の質量を変化させて回転体のバランスを調整するバランス調整工程を行うことを特徴とするターボ分子ポンプの製造方法である。ターボ分子ポンプの製造工程においては、回転体に生じるアンバランスを修正するために、バランス調整工程を実施している。そこで、バランス調整工程と共に、回転体の固有振動数調整工程を実施すれば、効率的にターボ分子ポンプを製造することができる。
上記課題を解決するためになされた第5の発明は、前記第3又は第4の発明において、前記ロータディスクをスラスト方向に切削した場合に、前記ロータディスクを挟み込むように設置した前記磁気軸受用の電磁石と前記ロータディスクとの間に生じたギャップを、前記磁気軸受の上部側と下部側の間に厚み調整部材を挿入することで前記ギャップを調整するギャップ調整工程を有することを特徴としたターボ分子ポンプの製造方法である。回転体のバランス調整工程と固有振動数調整工程を、ロータディスクをスラスト方向に切削することで行った場合、ロータディスクを挟み込むように設置した磁気軸受用の電磁石とロータディスクの間のギャップが広がり、磁気軸受の吸引力が低下するため、磁気軸受の上部側と下部側の間に厚み調整部材を挿入することでギャップを調整するとよい。そうすれば、回転体の固有振動数を安定させると共に、時期軸受の吸引力も簡易に安定させることができる。
上記課題を解決するためになされた第6の発明は、フィードバックループにより制御される磁気軸受を備えたターボ分子ポンプにおいて、前記磁気軸受に用いられるロータディスクの中心部の厚みが外周部の厚みに比べて肉厚である肉厚部を前記ロータディスクに設けたことを特徴とするターボ分子ポンプである。回転体振動モードは1次、2次・・・とあるが、制御回路パラメータを設計する上で、各モードにおける固有振動数の間隔はできるだけ離れていることが望ましい。それを可能とするために、ロータディスクの中心部の厚みを外周部の厚みに比べて肉厚にすることで、回転軸及びロータディスクとの締結部の剛性を維持しつつ、ディスクを軽量化できる。これにより各回転体振動モードの固有振動数の間隔を離すことが可能になり、広い周波数域に渡って安定した回転体の回転を得ることができる。
上記課題を解決するためになされた第7の発明は、前記第6の発明おいて、前記肉厚部の外形及び高さは、前記ロータディスクを前記磁気軸受に設置した場合に前記磁気軸受の内部に形成された空間内に収まる大きさ又は高さであることを特徴とするターボ分子ポンプである。ロータディスクに肉厚部を設けた場合に、その厚みの分、磁気軸受用の電磁石とロータディスクの間のギャップが広がってしまう可能性があるが、本発明によれば、ギャップが広がることを防ぎ、磁気軸受の吸引力が低下することを防止することができる。
第1の発明によれば、回転体の固有振動数が安定するため、安定した領域でフィードバック制御することができ、軸振動の発振を防止することができる。また、第2の発明によれば、回転体の固有振動数がより安定するため、より安定したフィードバック制御が可能となる。
第3の発明によれば、ロータディスクを切削することによって、効率的に固有振動数の調整ができるため、調整時間の短縮やコストダウンを図ることができると共に、精密に固有振動数を調整することができるため、安定したフィードバック制御が可能となる。また、第4の発明によれば、回転体の固有振動数を調整したターボ分子ポンプを効率的に製造することができるため、調整時間の短縮やコストダウンを図ることができる。そして、第5の発明によれば、第3又は第4の発明においてロータディスクをスラスト方向に切削することによって広がった磁気軸受用の電磁石とロータディスクの間のギャップを簡易に調整することができるため、固有振動数の安定化を図るためにロータディスクを切削しても、磁気軸受の吸引力を低下させない。
第6の発明によれば、広い周波数域に渡って安定した領域でフィードバック制御をすることができるため、軸振動の発振を防止することができる。また、第7の発明によれば、軸振動の発振を防止すると共に、磁気軸受の吸引力の低下を防止することができる。
以上のようにして、本発明によれば、生産過程における4Mのばらつきにより発生する回転体の不安定振動の発生を低減することができる。そのことにより、生産現場での歩留まり改善に貢献することができる。
ターボ分子ポンプの概略構成を示すブロック図である。 ターボ分子ポンプのポンプユニットの概要図である。 磁気軸受の制御に用いるフィードバックループの概略図である。 本発明のロータディスク及び回転体の締結部構造を示す図である。 本発明のロータディスク及び回転体の締結部構造の変形例を示す図である。 本発明のラジアル方向に切削したロータディスクの構造図である。 本発明のスラスト方向に切削したロータディスクの構造図である。 本発明のスラスト方向磁気軸受部の構造図である。 本発明の肉厚構造を設けたロータディスクの構造図である。 本発明の肉厚構造を設けたロータディスクの変形例の構造図である。 本発明の肉厚構造を設けたロータディスクを備えた磁気軸受の構造図である。 本発明のロータディスク及び回転体の締結部構造の拡大図である。
符号の説明
1 ポンプ本体
2 電源装置
3 ロータ
4 磁気軸受
5 モータ
6 モータ制御部
7 軸受制御部
8 ステータ
9 回転軸
10 ラジアル軸受電磁石
11 スラスト軸受電磁石
12 ラジアル位置センサ
13 スラスト位置センサ
14 ロータディスク
15 隙間
16 ボルト
17 ロータディスクの外周部
18 ロータディスクの厚み
19A、19B スラスト磁気軸受
20 厚み調整部材
21 肉厚部
22 突起
23 スラスト磁気軸受の内部空間
発明を実施するための形態
以下、本発明の実施の形態について、図を参照しながら詳細に説明する。図1は、本発明による回転ターボ分子ポンプの一実施の形態を示す図であり、DCブラシレスモータ装置が組み込まれた磁気軸受式ターボ分子ポンプの概略構成を示すブロック図である。ターボ分子ポンプは、ポンプ本体1と電源装置2とから構成されている。図1に示す例では、ポンプ本体1と電源装置2とをケーブルで接続するような構成としているが、ポンプ本体1と電源装置2とを一体で構成する場合もある。ポンプ本体1には、回転翼が形成されたロータ3が設けられている。ロータ3は磁気軸受4により非接触支持されると共にモータ5により回転駆動される。モータ5にはDCブラシレスモータが用いられる。一方、電源装置2には、モータ3を駆動するモータ制御部6と、磁気軸受4に供給される励磁電流を制御する軸受制御部7とを備えている。
図2は、本発明のターボ分子ポンプのポンプユニットの概要を説明するための図である。ポンプユニット1は、ケーシング内にモータ駆動されるロータ3を備える。ロータ3は、回転翼を備え、ケーシング側に設けたステータ8に対して高速回転させることによって、吸気口から吸引すると共に排気口から排気し、吸気口に接続される装置(図示していない)内の気体分子の排気を行う。
ロータ3は、ロータ3と同軸に固定された回転軸9を介して、モータ5によって回転駆動される。モータ5は、回転軸9に設けられた磁極とケーシング側に設けたコイル(図示しない)によって構成される。また、回転軸9は、ラジアル軸受電磁石10及びスラスト軸受電磁石11、並びにラジアル位置センサ12及びスラスト位置センサ13による磁気浮上によって非接触支持される。
ラジアル磁気軸受(XY軸方向軸受)は、回転軸9を挟んで対向して配置されたラジアル軸受電磁石10と、回転軸9のラジアル方向に変位を検出するラジアル位置センサ12を有し、ラジアル位置センサ12で検出した位置変位に基づいてラジアル軸受電磁石10に供給する電流を制御することによって、回転軸9がラジアル方向で所定位置となるように位置制御する。なお、図2では、ラジアル軸受はモータ5を挟んで上下に2組備えている。
また、スラスト軸受(Z軸方向軸受)は、回転軸9と同軸に設けたロータディスク14と、このロータディスク14を挟んで上下に設けたスラスト軸受電磁石11と、回転軸9のスラスト方向の変位を検出するスラスト位置センサ13を有し、スラスト位置センサ13で検出した位置変位に基づいてスラスト軸受電磁石12に供給する電流を制御することによって、回転軸9がスラスト方向で所定位置となるように位置制御する。
図3は、磁気軸受の制御に用いるフィードバックループの概略図である。本制御回路では、PID回路及び位相補償回路並びに安定のためのフィルタを設けることで、所望の周波数応答を得ることができる。軸受制御部7で制御された電磁電流は、励磁アンプ15に入力され、電磁石10、11へ出力される。これをセンサ12、13が検知し、フィードバック制御を行う。
ラジアル位置センサ12が検出した変位信号は、軸受制御部7を通じて所望の信号に変換され、その信号は励磁アンプ15に入力される。その信号により、励磁アンプ15はラジアル軸受電磁石10に流れる電流を決定し、磁束を発生させて、ロータ3に力を発生させる。その力によって、ラジアル方向の位置を制御する仕組みとなっている。スラスト軸方向でも同様の制御を実施しており、スラスト位置センサ13が検出した変位信号を、軸受制御部7を通じて所望の信号に変換して、その信号を励磁15アンプに入力する。励磁アンプ15によりスラスト軸受を制御し、ロータディスク14をスラスト軸方向に位置制御する。なお、スラスト軸磁気軸受19にはスラスト軸受電磁石11が埋め込まれており、スラスト軸受電磁石11がロータディスク14を挟み込むように、ロータディスク14の上下に構成する。スラスト軸受電磁石11とロータディスク14との間に適切な隙間を設けるために、スペーサリング(図示しない)を上部側と下部側のスラスト磁気軸受の間に挟んで調整する。
図4は、本発明の回転軸9とロータディスク14の接触面の拡大図である。ロータディスク14の接触面は、シビアな加工精度で加工した場合にも、加工による切りくずなどの影響により、接触面の粗さが均一とならない。回転軸9とロータディスク14を締結する際に、接触面の中心付近で点接触した場合、面全体で接触した場合と比較し、締結部の剛性は大きく低下する。しかし、ロータディスク接触面に隙間15を設けることで、回転軸9とロータディスク14は、必ず外側付近にて点接触又は面接触することとなる。この場合、面全体で接触する場合と比較すれば、剛性は落ちてしまうが、中心付近で点接触した場合に比べ、剛性が大きくなる。回転軸9とロータディスク14は、締結部材16により締結する。締結部材16にはボルト等を用いる。また、締結部材16は、2本以上であれば、何本でもよいが、締結部材16の本数が多い方が、回転軸9とロータディスク14の締結が安定する。なお、回転軸9とロータディスク14を締結の位置合わせを用意にするために、突起22をロータディスクの上面に設け等してもよい。
図5は、図4に示す発明の変形例である。図4に示す発明において、隙間15は、ロータディスク14に設けられていたが、回転軸9とロータディスク14を外側付近にて点接触又は面接触させるためには、図5のように回転軸9の接触面に隙間15を設けてもよい。
図4及び図5に示すように、回転軸9とロータディスク14は、締結部材16で締結されている。この締結をする場合に、回転軸9とロータディスク14の接触面の面積は大きい方が望ましいが、かかる面積を大きくした場合、隙間部分の面積が小さくなり、中心に近い部分で点接触が生じ易くなり好ましくない。よって、中心に近い部分で点接触することを防止するためには、隙間15の外周を可能な限り大きくすると望ましい。しかし、隙間15の外周を大きくし過ぎると、締結部材16は、隙間15を介して回転軸9とロータディスク14を締結することになり、回転軸9とロータディスク14の締結が安定しない。回転軸9とロータディスク14の締結を安定させるためには、締結部材16は回転軸9とロータディスク14において隙間15が形成されていない部分を貫通していることが望ましい。そこで、隙間15の外周の大きさは、図12に示すように、隙間15の外周が締結部材16の通し穴と重なる大きさにするとよい。なお、ここでいう隙間15の外周が締結部材16の通し穴と重なる場合には、隙間15の外周が、締結部材16の通し穴の外周に接する状態も含むものとする。このようにすれば、隙間15の大きさを可能な限り大きくすると共に、締結部材16が回転軸9とロータディスク14において隙間15が形成されていない部分を貫通して回転軸9とロータディスク14を締結することができる。
図6は、固有振動数を調整するために、外周部17を切削したロータディスク14の拡大図である。回転体の固有振動数は、回転体の質量に依存するため(f=√(K/M)、f:固有振動数、K:剛性、M:質量)、回転体の質量を調整することで回転体の固有振動数が変動し、固有振動数が調整できる。よって、ロータディスク14を切削等し、その質量を減少させることにより、回転体の固有振動数をすることができる。また、図7に示すように、ロータディスク14の厚み18を切削することで質量を変化させても同様の効果を得ることができる。
また、ターボ分子の製造工程においては、回転体のバランスを調整するためのバランス調整工程が行われている。バランス調整工程の方法としては、例えば、ロータディスクの特定部位に、バランス調整用のビスを装着することや、重りとして接着剤を部分的に塗布すること等が考えられる。このバランス調整工程と前記の固有振動数調整工程を同一工程で行えば、両工程を別々に行うのと比べて、作業の手間や作業時間を省くことができるため、効率よく作業を進めることができる。
図8はロータディスク14及びスラスト磁気軸受19の拡大図である。回転体の固有振動数を調整するために、ロータディスク14の厚み18を切削した場合、スラスト方向のギャップが拡大する。そのため、そのギャップ量を調整するために上部側スラスト磁気軸受19Aと下部側スラスト磁気軸受19Bの間に挟む厚み調整部材20を何枚も積み上げる積層構造とすることにより、ギャップ量の調整を可能とする構造とする。なお、厚み調整部材は積層構造にすることが容易になるような形状、即ち磁気軸受の外周部の大きさに合わせたリング形状や、前記リングを複数に分割した円弧形状等にするとよい。回転体の固有振動数を調整するためにロータディスク14を切削することにより、回転体の固有振動数が発振することにより生じる軸振動を減衰するためのダンピングを増加することが可能になる。ダンピングは、磁気軸受の応答性により決まるが、ダンピングの指標となる磁気軸受の応答性T(sec)は、以下の式で表される。

Figure 2010095218
ここで、Lはインダクタンス、Rは抵抗、Nはコイルの巻数、Sは鉄心断面積、μ0は真空の透磁率、zはギャップである。磁気軸受の時定数T(sec)が短くなり、外部の振動に対する外部減衰を大きくする効果も同時に得ることが可能となる。ただし、それを実施した場合、スラスト方向のギャップが変化することで磁気軸受の吸引力が低下し、回転体質量を浮上させるだけの十分な力を得られなくなるリスクも存在する。磁気軸受の吸引力を導出する基礎式は以下の式で表される。

Figure 2010095218
ここで、Fは吸引力、μ0は真空の透磁率、Nはコイルの巻数、iは電流、zはギャップである。以上の2式から、磁気軸受ステータのパラメータの中で、ギャップの影響は非常に大きいため、かかるギャップの大きさを調整することが重要なことがわかる。
図9は、本発明の肉厚部を設けたロータディスクの構造図である。ロータディスク14の外周部分の厚みと比べて中心部分の厚みを厚肉にした肉厚部21を設けたロータディスク14である。肉厚部21を設けるためには、予め肉厚に削りだしたロータディスクの外周部分を更に切削し、内周部の厚みを残す方法等が考えられるが、肉厚部を設けることにより回転軸とロータディスクの締結部の剛性を大きくできるような方法であればどのような方法であってもよい。回転体の固有振動数は、回転軸とロータディスクの締結部の剛性に依存するが、回転体の振動モードにより、締結部剛性の影響の大きさが異なる。したがって、ロータディスクに肉厚部21を設けた場合、肉厚部の箇所の締結部剛性が大きくなり、ロータディスク部の振れが大きい曲げ2次振動モードの固有振動数を高めに設定することが可能となる。こうのようにして、ロータディスク14に肉厚部21を設けることで、締結部の剛性が大きく上昇するため、ロータディスク14の振れが大きい曲げ固有振動数に対して、固有振動数を大きく上昇させることができ、各回転体振動モードの固有振動の間隔を離すことが可能になる。また、回転軸9及びロータディスク14との締結部の剛性を維持しつつ、ロータディスク14の軽量化を図ることができる。なお、肉厚部を設けていない通常のロータディスクと肉厚部を設けた本発明に係るロータディスクのそれぞれにおける1次の固有振動数と2次の固有振動数の比較を表1に示す。表の通り、肉厚部を設けたロータディスクを使用すると、一次固有振動数をあまり変化させることなく、二次固有振動数だけを上昇させることができる。
表1 ロータディスク形状による固有振動数比較
Figure 2010095218
なお、図9に示すように、肉厚部21をロータディスクの下面に設けた場合、回転軸9とロータディスク14を締結する際の位置合わせ用の突起22はロータディスクの上面に設けられているため、肉厚部21と突起22は別で設ける必要があるが、図10に示すように肉厚部21をロータディスクの上面に設けるのであれば、肉厚部と突起を一体として設けることができる。
ロータディスク14に肉厚部を設けた場合、上部側と下部側のスラスト軸受電磁石11の距離が大きくなってしまい、肉厚部が設けられていないロータディスク面とスラスト軸受電磁石11の間のギャップが大きくなってしまい、磁気軸受の吸引力が低下してしまうおそれがある。したがって、ロータディスクの肉厚部は、図11に示すように、スラスト磁気軸受19の内部であって、ロータディスク14の上面又は下面に形成された空間23に存在するようにロータディスクに肉厚部を設け、さらにロータディスクを前記磁気軸受内に設置すると望ましい。こうのようにすると、肉厚部を設けたことによって前記ギャップが大きくならないため、磁気軸受の吸引力の低下を防止することができる
なお、これまでに説明した発明は、いずれも同時に実施することができる。即ち、回転軸とロータディスクの接触面の中心部に隙間を形成させつつ、ロータディスクの中心部の厚みが外周部の厚みに比べて肉厚である肉厚部をロータディスクに設けてもよいし、かかるロータディスクの固有振動数を調整するために、ロータディスクを切削する等してもよい。

Claims (7)

  1. フィードバックループにより制御される磁気軸受と、回転体に固定され前記磁気軸受を介して保持される回転軸と、前記回転軸に固定されたロータディスクとを備えるターボ分子ポンプにおいて、
    前記回転軸と前記ロータディスクの接触面の中心部に隙間を形成したことを特徴とするターボ分子ポンプ。
  2. 前記回転軸と前記ロータディスクの接触面に形成された前記隙間の外周が、前記回転軸と前記ロータディスクを締結するための締結部材の通し穴と重なることを特徴とする請求項1に記載のターボ分子ポンプ。
  3. 回転体の質量を変化させて回転体の固有振動数を調整する固有振動数調整工程を含むフィードバックループにより制御される磁気軸受を設けたターボ分子ポンプの製造方法において、
    前記固有振動数調整工程は、前記回転体を保持するための磁気軸受に用いられるロータディスクをスラスト方向又はラジアル方向に切削することにより行うことを特徴とするターボ分子ポンプの製造方法。
  4. 前記固有振動数調整工程と同一の工程で回転体の質量を変化させて回転体のバランスを調整するバランス調整工程を行うことを特徴とする請求項3に記載のターボ分子ポンプの製造方法。
  5. 前記ロータディスクをスラスト方向に切削した場合に、前記ロータディスクを挟み込むように設置した前記磁気軸受用の電磁石と前記ロータディスクとの間に生じたギャップを、前記磁気軸受の上部側と下部側の間に厚み調整部材を挿入することで前記ギャップを調整するギャップ調整工程を有することを特徴とする請求項3又は請求項4に記載のターボ分子ポンプの製造方法。
  6. フィードバックループにより制御される磁気軸受を備えたターボ分子ポンプにおいて、
    前記磁気軸受に用いられるロータディスクの中心部の厚みが外周部の厚みに比べて肉厚である肉厚部を前記ロータディスクに設けたことを特徴とするターボ分子ポンプ。
  7. 前記肉厚部の外形及び高さは、前記ロータディスクを前記磁気軸受に設置した場合に前記磁気軸受の内部に形成された空間内に収まる大きさ又は高さであることを特徴とする請求項6に記載のターボ分子ポンプ。
JP2011500384A 2009-02-18 2009-02-18 ターボ分子ポンプ Active JP5541464B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/052754 WO2010095218A1 (ja) 2009-02-18 2009-02-18 ターボ分子ポンプ

Publications (2)

Publication Number Publication Date
JPWO2010095218A1 true JPWO2010095218A1 (ja) 2012-08-16
JP5541464B2 JP5541464B2 (ja) 2014-07-09

Family

ID=42633520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011500384A Active JP5541464B2 (ja) 2009-02-18 2009-02-18 ターボ分子ポンプ

Country Status (2)

Country Link
JP (1) JP5541464B2 (ja)
WO (1) WO2010095218A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113432816A (zh) * 2021-06-11 2021-09-24 中北大学 一种航空发动机转子联接刚度不均匀度测试与控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021014834A (ja) 2019-07-12 2021-02-12 エドワーズ株式会社 真空ポンプ、ロータ及び座金

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184190U (ja) * 1986-05-16 1987-11-21
JPH02107816A (ja) * 1989-09-04 1990-04-19 Hitachi Ltd 磁気軸受を備えた回転機械
JP2921487B2 (ja) * 1996-06-05 1999-07-19 ダイキン工業株式会社 真空ポンプ
JP3842848B2 (ja) * 1996-07-22 2006-11-08 三菱重工業株式会社 ターボ分子ポンプ
JPH1162878A (ja) * 1997-08-27 1999-03-05 Ebara Corp ターボ分子ポンプ
JP2000065062A (ja) * 1998-08-12 2000-03-03 Seiko Seiki Co Ltd 磁気軸受装置の回転体共振抑制装置
JP3777500B2 (ja) * 2001-03-27 2006-05-24 株式会社荏原製作所 磁気軸受装置
JP2002310153A (ja) * 2001-04-18 2002-10-23 Meidensha Corp 磁気軸受を有する回転機
JP2003148376A (ja) * 2001-11-07 2003-05-21 Mitsubishi Heavy Ind Ltd ターボ分子ポンプ及びその軸ずれ量測定方法
JP2006194083A (ja) * 2003-09-16 2006-07-27 Boc Edwards Kk ロータ軸と回転体との固定構造及び該固定構造を有するターボ分子ポンプ
JP5255752B2 (ja) * 2006-03-03 2013-08-07 エドワーズ株式会社 ターボ分子ポンプ
JP5211408B2 (ja) * 2008-10-14 2013-06-12 株式会社大阪真空機器製作所 分子ポンプのロータ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113432816A (zh) * 2021-06-11 2021-09-24 中北大学 一种航空发动机转子联接刚度不均匀度测试与控制方法
CN113432816B (zh) * 2021-06-11 2022-10-25 中北大学 一种航空发动机转子联接刚度不均匀度测试与控制方法

Also Published As

Publication number Publication date
WO2010095218A1 (ja) 2010-08-26
JP5541464B2 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
Cole et al. An active magnetic bearing for thin-walled rotors: vibrational dynamics and stabilizing control
CN103827526B (zh) 磁性轴承及使用该磁性轴承的压缩机
US20080074010A1 (en) Fan with active magnetic bearing
JPS6014209B2 (ja) 磁気支承装置
Zad et al. Design and analysis of a novel bearingless motor for a miniature axial flow blood pump
WO2012070278A1 (ja) 磁気軸受の制御装置と該装置を備えた排気ポンプ
JP2012251486A (ja) 磁気浮上式真空ポンプ、振れまわり推定方法、ロータバランス検査方法および磁気軸受制御ゲイン調整方法
JP5541464B2 (ja) ターボ分子ポンプ
JP2018132166A (ja) 磁気軸受装置および真空ポンプ
JP7119312B2 (ja) 磁気軸受制御装置および真空ポンプ
JP2002242876A (ja) 磁気軸受式ポンプ
EP3613987B1 (en) Vacuum pump, magnetic bearing device, and rotor
JP6801481B2 (ja) 磁気軸受装置および真空ポンプ
JP5864111B2 (ja) 回転体及び該回転体を搭載した真空ポンプ
JPH11218130A (ja) ディスク型無軸受回転機械
JP2004286175A (ja) 磁気軸受装置
Ueno et al. Development of an axial-flux self-bearing motor using two permanent magnet attractive type passive magnetic bearings
JP7214805B1 (ja) 磁気軸受装置及び真空ポンプ
WO2022264924A1 (ja) 真空ポンプ
JP2001295842A (ja) 磁気軸受装置
JPH1113762A (ja) 静圧磁気複合軸受およびスピンドル装置
JP2002174198A (ja) レーザ発振器ブロワ用軸受装置
JP2002310153A (ja) 磁気軸受を有する回転機
JPH1019042A (ja) 磁気軸受装置
KR20220032527A (ko) 진공 펌프, 로터 및 와셔

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140422

R151 Written notification of patent or utility model registration

Ref document number: 5541464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151