JPWO2009154161A1 - オーステナイト系耐熱合金ならびにこの合金からなる耐熱耐圧部材とその製造方法 - Google Patents

オーステナイト系耐熱合金ならびにこの合金からなる耐熱耐圧部材とその製造方法 Download PDF

Info

Publication number
JPWO2009154161A1
JPWO2009154161A1 JP2009524838A JP2009524838A JPWO2009154161A1 JP WO2009154161 A1 JPWO2009154161 A1 JP WO2009154161A1 JP 2009524838 A JP2009524838 A JP 2009524838A JP 2009524838 A JP2009524838 A JP 2009524838A JP WO2009154161 A1 JPWO2009154161 A1 JP WO2009154161A1
Authority
JP
Japan
Prior art keywords
less
content
heat
resistant
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009524838A
Other languages
English (en)
Other versions
JP4431905B2 (ja
Inventor
仙波 潤之
潤之 仙波
岡田 浩一
浩一 岡田
五十嵐 正晃
正晃 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Application granted granted Critical
Publication of JP4431905B2 publication Critical patent/JP4431905B2/ja
Publication of JPWO2009154161A1 publication Critical patent/JPWO2009154161A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

C:0.02超〜0.15%、Si≦2%、Mn≦3%、P≦0.03%、S≦0.01%、Cr:28〜38%、Ni:40超〜60%、Co≦20%(0%を含む)、W:3超〜15%、Ti:0.05〜1.0%、Zr:0.005〜0.2%、Al:0.01〜0.3%を含有し、かつ、N≦0.02%、Mo<0.5%であり、残部がFeと不純物からなり、さらに、下記の(1)〜(3)式を満足するオーステナイト系耐熱合金は、高いクリープ破断強度を有するとともに、高温で長時間使用しても靱性が良好で、熱間加工性にも優れている。このオーステナイト系耐熱合金は、特定量のNb、V、Hf、B、Mg、Ca、Y、La、Ce、Nd、Sc、Ta、Re、Ir、Pd、Pt、Agの中から選ばれた1種以上の元素を含有してもよい。P≦3/{200(Ti+8.5×Zr)}・・・(1)、1.35×Cr≦Ni+Co≦1.85×Cr・・・(2)、Al≧1.5×Zr・・・(3)。

Description

本発明は、従来の耐熱合金よりも非常に高い高温強度を有し、さらに長時間使用後の靱性に優れるとともに熱間加工性にも優れたオーステナイト耐熱合金ならびにこの合金からなる耐熱耐圧部材とその製造方法に関する。詳しくは、発電用ボイラ、化学工業用プラント等において管材、耐熱耐圧部材の板材、棒材、鍛造品等として用いられる高温強度、とりわけクリープ破断強度に優れ、かつ高い組織安定性により長時間使用後の靱性に優れ、さらに熱間加工性、特に1150℃以上での高温延性が格段に改善されたCrを28〜38質量%含有するオーステナイト系耐熱合金ならびにこの合金からなる耐熱耐圧部材とその製造方法に関する。
従来、高温環境下で使用されるボイラ、化学プラント等においては、装置用材料としてSUS304H、SUS316H、SUS321H、SUS347H等のいわゆる「18−8系オーステナイトステンレス鋼」が使用されてきた。
しかしながら、近年、高温環境下における装置の使用条件が著しく過酷化し、それに伴って使用材料に対する要求性能が厳しくなり、従来用いられてきた上述の18−8系オーステナイトステンレス鋼では高温強度、なかでも、クリープ破断強度が著しく不足する状況となっている。そこで、適正量の各種元素を含有させることよって、クリープ破断強度を改善したオーステナイト系ステンレス鋼が開発されてきた。
一方、最近では、例えば火力発電用ボイラの分野で、従来は高々600℃程度であった蒸気温度を700℃以上に高める計画が推進されている。そして、この場合には、使用される部材の温度は700℃を遙かに超えてしまうため、上記の新たに開発されたオーステナイト系ステンレス鋼を用いても、クリープ破断強度と耐食性が不十分である。
一般に、耐食性を改善するためには、鋼中のCr含有量を高めることが有効である。しかしながら、Cr含有量を高めた場合には、例えば、25質量%程度のCrを含有するSUS310Sにみられるように、600〜800℃のクリープ破断強度は、18−8系ステンレス鋼よりもむしろ低くなってしまうし、σ相析出による靱性劣化も生じる。さらに、Cr含有量を高めても25質量%程度では、厳しい腐食環境下においては十分な耐食性を確保できない。
そこで、特許文献1〜7に、CrおよびNiの含有量を高め、しかも、MoおよびWの1種以上を含有させて、高温強度としてのクリープ破断強度の向上を図った耐熱合金が開示されている。
さらに、ますます厳しくなる高温強度特性への要求、特に、クリープ強破断度への要求に対して、特許文献8に、質量%で、Crを28〜38%、Niを30〜50%含有する耐熱合金が、また、特許文献9〜14に、質量%で、Crを28〜38%、Niを35〜60%含有する耐熱合金が開示されている。上記の特許文献8〜14で提案された耐熱合金はいずれも、Crを主体とした体心立方構造のα−Cr相の析出を活用して、一層のクリープ破断強度の改善を図ったものである。
特開昭60−100640号公報 特開昭61−174350号公報 特開昭61−276948号公報 特開昭62−63654号公報 特開昭64−55352号公報 特開平2−200756号公報 特開平3−264641号公報 特開平7−34166号公報 特開平7−70681号公報 特開平7−216511号公報 特開平7−331390号公報 特開平8−127848号公報 特開平8−218140号公報 特開平10−96038号公報
前述の特許文献1〜7で開示された耐熱合金は、蒸気温度が700℃以上にもなる過酷な環境の下では、必ずしも十分な高いクリープ破断強度を得ることができないものであった。
また、特許文献8〜14で開示された耐熱合金をもってしても、近年要求されている高いクリープ破断強度に対しては十分とはいえない状況になっている。さらに、特許文献8〜14で開示された耐熱合金は、その合金組成によっては、長時間使用した後の靱性が十分でないこともあった。しかも、これらの耐熱合金については、熱間加工性、特に、1150℃以上の高温側での熱間加工性を一層改善することも望まれている。これは、熱間加工性の悪い材料を用いて継目無鋼管を製造する場合には、熱間押出法で製管することが多いが、1150℃以上の高温側での熱間加工性が不十分であれば、加工発熱によって材料の内部温度が加熱温度より高くなるため、二枚割れ、カブレ疵といった欠陥が発生するからである。なお、1150℃以上の高温側での熱間加工性が不十分であれば、マンネスマン−マンドレルミル方式等のピアサーによる穿孔工程の場合においても同様に、上記した欠陥が発生する。
上記現状に鑑みて、本発明は、従来の耐熱合金、なかでも、前記特許文献8〜14で開示された耐熱合金に比べてより一層大きな高温強度、なかでも、クリープ破断強度を有するとともに、高温で長時間使用しても組織安定性に優れるため靱性も良好であり、さらに熱間加工性、特に、1150℃以上での高温延性が格段に改善されたCrを28〜38質量%含有するオーステナイト系耐熱合金を提供することを目的とする。
本発明者らは、ベース成分として、質量%で、Crを28〜38%、Niを40%を超えて60%以下で含有し、α−Cr相の析出強化が活用できる種々の耐熱合金を用いて、クリープ破断強度、長時間使用における組織安定性、熱間加工性等について調査した。その結果、下記(a)〜(g)の知見を得た。
(a)適正量のWを含有させれば、FeW型のLaves相やFe型のμ相が析出し、クリープ破断強度が大幅に向上する。
(b)28〜38%のCrを含有する場合、析出するα−Cr相中にWを固溶させることができれば、高温での長時間使用中のα−Cr相の成長粗大化が抑制されるため、長時間側でのクリープ破断強度の急激な低下が生じない。
(c)従来、一般的には、MoとWは同等の作用・効果を有すると考えられてきたが、Wと28〜38%のCrを含む合金に、Moが複合して含まれている場合には、長時間側でσ相が析出することがあり、このため、クリープ破断強度、延性および靱性の低下をきたすことがある。
(d)Cr含有量に対して、オーステナイト安定化元素であるNiの含有量を適切に制御することによって、安定かつ確実に高温で長時間使用中のσ相の析出を抑制することができ、しかも、最適量のα−Cr相を析出させることが可能である。なお、合金がCoを複合して含む場合には、Cr含有量に対して、NiとCoの含有量を両者の和(つまり、「Ni+Co」)で適切に制御することによって、安定かつ確実に高温で長時間使用中のσ相の析出を抑制することができ、しかも、最適量のα−Cr相を析出させることが可能である。
(e)Zrは、一般に「粒界強化元素」として知られているが、α−Cr相の析出強化が活用できる耐熱合金の場合には、クリープ破断強度を向上させる作用を有する。さらに、Zrの含有量に応じてAlの含有量を適切に制御することによって、クリープ破断強度が大幅に向上する。
(f)Tiもα−Cr相の析出強化が活用できる耐熱合金のクリープ破断強度を向上させる。このため、Tiを上記Zrと複合して含有することで、α−Cr相の析出を一層促進させてクリープ破断強度をより高めることができる。
(g)上記のTiおよびZrは、耐熱合金の融点を下げるので、熱間加工性、特に、1150℃以上の高温側での熱間加工性が低下し、さらに、溶接時の耐高温割れ性も低下することがある。しかしながら、TiとZrの含有量に応じて、Pの含有量を適切の制御することによって、高いクリープ破断強度を維持したうえで、安定かつ確実に1150℃以上の高温側での熱間加工性を改善することができ、さらに、溶接時の耐高温割れ性を高めることもできる。
本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記の(1)〜(3)に示すオーステナイト系耐熱合金、(4)に示す耐熱耐圧部材および(5)に示す耐熱耐圧部材の製造方法にある。
(1)質量%で、C:0.02%を超えて0.15%以下、Si:2%以下、Mn:3%以下、P:0.03%以下、S:0.01%以下、Cr:28〜38%、Ni:40%を超えて60%以下、W:3%を超えて15%以下、Ti:0.05〜1.0%、Zr:0.005〜0.2%、Al:0.01〜0.3%を含有し、かつ、N:0.02%以下、Mo:0.5%未満であり、残部がFeおよび不純物からなり、さらに、下記の(1)〜(3)式を満足することを特徴とするオーステナイト系耐熱合金。
P≦3/{200(Ti+8.5×Zr)}・・・(1)
1.35×Cr≦Ni≦1.85×Cr・・・(2)
Al≧1.5×Zr・・・(3)
なお、各式中の元素記号は、その元素の質量%での含有量を表す。
(2)質量%で、C:0.02%を超えて0.15%以下、Si:2%以下、Mn:3%以下、P:0.03%以下、S:0.01%以下、Cr:28〜38%、Ni:40%を超えて60%以下、Co:20%以下、W:3%を超えて15%以下、Ti:0.05〜1.0%、Zr:0.005〜0.2%、Al:0.01〜0.3%を含有し、かつ、N:0.02%以下、Mo:0.5%未満であり、残部がFeおよび不純物からなり、さらに、下記の(1)式、(3)式および(4)式を満足することを特徴とするオーステナイト系耐熱合金。
P≦3/{200(Ti+8.5×Zr)}・・・(1)
1.35×Cr≦Ni+Co≦1.85×Cr・・・(4)
Al≧1.5×Zr・・・(3)
なお、各式中の元素記号は、その元素の質量%での含有量を表す。
(3)質量%で、さらに、下記の〈1〉〜〈3〉のグループから選択される1以上のグループに属する1種以上の元素を含有することを特徴とする上記(1)または(2)に記載のオーステナイト系耐熱合金。
〈1〉Nb:1.0%以下、V:1.5%以下、Hf:1%以下およびB:0.05%以下、
〈2〉Mg:0.05%以下、Ca:0.05%以下、Y:0.5%以下、La:0.5%以下、Ce:0.5%以下、Nd:0.5%以下およびSc:0.5%以下、
〈3〉Ta:8%以下、Re:8%以下、Ir:5%以下、Pd:5%以下、Pt:5%以下およびAg:5%以下。
(4)上記(1)から(3)までのいずれかに記載のオーステナイト系耐熱合金からなることを特徴とする高温域での耐クリープ特性と組織安定性に優れた耐熱耐圧部材。
(5)上記(1)から(3)までのいずれかに記載のオーステナイト系耐熱合金を、下記の工程(i)、(ii)および(iii)で順次処理することを特徴とする上記(4)に記載の高温域での耐クリープ特性と組織安定性に優れた耐熱耐圧部材の製造方法。
工程(i):熱間または冷間による最終の加工前に、少なくとも1回、1050〜1250℃に加熱する。
工程(ii):熱間または冷間による断面減少率10%以上の最終の塑性加工を行う。
工程(iii):1100〜1250℃の範囲内の温度に加熱保持した後冷却する最終熱処理を行う。
残部としての「Feおよび不純物」における「不純物」とは、合金を工業的に製造する際に、原料としての鉱石やスクラップあるいは環境などから混入するものを指す。また、「高温域」とは、クリープ変形が生じる温度域であり、本発明合金においては600℃以上、強度の上限も考慮すると600〜900℃程度の温度範囲を指す。
本発明のオーステナイト系耐熱合金は、従来の耐熱合金に比べて優れた高温強度、なかでも、クリープ破断強度を有するとともに、高温で長時間使用しても組織安定性に優れるので靱性も良好であり、さらに熱間加工性、特に、1150℃以上での高温延性にも優れている。このため、発電用ボイラ、化学工業用プラント等において管材、耐熱耐圧部材の板材、棒材、鍛造品等として好適に用いることができる。
以下、本発明の各要件について詳しく説明する。なお。以下の説明における各元素の含有量の「%」表示は「質量%」を意味する。
(A)オーステナイト系耐熱合金
C:0.02%を超えて0.15%以下
Cは、炭化物を形成して高温環境下で使用される際に必要となる引張強さおよびクリープ破断強度を確保する作用を有する。この効果を発揮させるためには、0.02%を超え量のCを含有させる必要がある。しかしながら、Cを0.15%を超えて含有させても固溶化熱処理後の未固溶炭化物の量が増加するだけで、高温強度の向上に寄与しなくなり、さらに、靱性など他の機械的性質および溶接性も劣化させる。したがって、C含有量は0.02%を超えて0.15%以下。C含有量の好ましい範囲は、0.03%を超えて0.13%以下であり、さらに好ましい範囲は、0.05%を超えて0.12%以下である。
Si:2%以下
Siは、脱酸元素として添加される。また、Siは、耐酸化性、耐水蒸気酸化性等を高めるためにも有効な元素である。しかしながら、Siの含有量が多くなって、特に、2%を超えると、σ相等の金属間化合物の生成を促進するので、高温における組織の安定性が劣化して靱性や延性の低下を生ずる。さらに、溶接性、熱間加工性も低下する。したがって、Siの含有量は2%以下とした。靱性と延性が重視される場合には、Siの含有量は1%以下にすることが好ましい。他の元素で脱酸作用が十分確保されている場合、特にSiの含有量について下限を設ける必要はない。
なお、脱酸作用、耐酸化性、耐水蒸気酸化性等を重視する場合は、Siの含有量は0.05%以上とするのが好ましく、0.1%以上とすれば一層好ましい。
Mn:3%以下
Mnは、Siと同様に脱酸作用を有するとともに、合金中に不可避的に含有されるSを硫化物として固定して熱間加工性を改善する作用を有する。しかしながら、Mnの含有量が3%を超えると、σ相等の金属間化合物の析出を助長するので、組織安定性および高温強度などの機械的性質が劣化する。したがって、Mnの含有量は3%以下とした。
なお、Mnの含有量について下限を設ける必要はないが、熱間加工性改善作用を重視する場合のMn含有量は、0.1%以上とすることが好ましい。Mnの含有量は、0.2〜2%とすることがより好ましく、0.2〜1.5%とすればさらに好ましい。
P:0.03%以下
Pは、不純物として合金中に不可避的に混入し、熱間加工性を低下させる。特に、Pの含有量が0.03%を超えると、熱間加工性の低下が著しくなる。したがって、Pの含有量を0.03%以下とした。
なお、Pの含有量は上記0.03%以下に制限したうえで、
P≦3/{200(Ti+8.5×Zr)}・・・(1)
の式も満たす必要がある。
S:0.01%以下
Sは、Pと同様に不純物として合金中に不可避的に混入し、熱間加工性を低下させる。特に、Sの含有量が0.01%を超えると、熱間加工性の低下が著しくなる。したがって、Sの含有量を0.01%以下とした。
なお、良好な熱間加工性を確保したい場合には、Sの含有量は、0.005%以下とすることが好ましく、0.003%以下とすればさらに好ましい。
Cr:28〜38%
Crは、耐酸化性、耐水蒸気酸化性、耐高温腐食性などの耐食性改善作用を有する。さらに、Crは、本発明において、α−Cr相として析出してクリープ破断強度を高めるのに必須の元素である。しかしながら、その含有量が28%未満では、これらの効果が得られない。一方、Crの含有量が多くなって、特に、38%を超えると、熱間加工性が劣化し、さらに、σ相の析出などによる組織の不安定化を招く。したがって、Crの含有量は28〜38%とした。なお、30%を超える量のCrを含有することが好ましい。
Ni:40%を超えて60%以下
Niは、安定なオーステナイト組織を確保するために必須の元素である。28〜38%のCrを含有する本発明において、σ相の析出を抑制するとともにα−Cr相を安定に析出させるためには、40%を超えるNi含有量が必要である。しかしながら、Niの含有量が過剰になって、特に、60%を超えると、Crの含有量によってはα−Cr相が十分に析出せず、さらに、経済性も損なわれる。したがって、Niの含有量は40%を超えて60%以下とした。
なお、Niの含有量は、上記の40%を超えて60%以下に制限したうえで、
1.35×Cr≦Ni≦1.85×Cr・・・(2)
の式も満たすか、後述する量のCoを複合して含む場合には、
1.35×Cr≦Ni+Co≦1.85×Cr・・・(4)
の式も満たすことが必要である。
W:3%を超えて15%以下
Wは、マトリックスに固溶して固溶強化元素としてクリープ破断強度の向上に寄与するばかりでなく、FeW型のLaves相やFe型のμ相として析出し、クリープ破断強度を大幅に向上させる極めて重要な元素である。さらに、Wは、28〜38%のCrを含有する本発明において析出するα−Cr相中に固溶して、高温での長時間使用中のα−Cr相の成長粗大化を抑制し、長時間側でのクリープ破断強度の急激な低下を抑止する作用を有する。しかしながら、Wの含有量が3%以下では、前記した効果が得られない。一方、15%を超える量のWを含有させても、前記の効果が飽和してコストが嵩むだけであり、しかも、組織安定性および熱間加工性が劣化する。したがって、Wの含有量は3%を超えて15%以下とした。Wの含有量は、3%を超えて13%以下とすることが好ましい。なお、クリープ破断強度の向上効果をさらに重視する場合のW含有量は、6%を超えて13%以下とすることがより好ましい。
Ti:0.05〜1.0%
Tiは、α−Cr相の析出を促進させてクリープ破断強度を高める重要な元素である。特に、Tiを次に述べる量のZrと複合して含有することで、α−Cr相の析出が一層促進されて、クリープ破断強度をより高めることが可能になる。しかしながら、Tiの含有量が0.05%未満では十分な効果が得られず、一方、1.0%を超えると熱間加工性が低下する。したがって、Tiの含有量は0.05〜1.0%とした。Tiの含有量は、0.1〜0.9%とすることがより好ましく、0.2〜0.9%とすればさらに好ましい。Ti含有量の一層好ましい上限は0.5%である。
なお、Tiの含有量は、上記の0.05〜1.0%に制限したうえで、
P≦3/{200(Ti+8.5×Zr)}・・・(1)
の式も満たす必要がある。
Zr:0.005〜0.2%
Zrは、Tiと同様に、α−Cr相の析出を促進させてクリープ破断強度を高める重要な元素である。特に、Zrを上述した量のTiと複合して含有することで、α−Cr相の析出が一層促進されて、クリープ破断強度をより高めることが可能になる。しかしながら、Zrの含有量が0.005%未満では十分な効果が得られず、一方、0.2%を超えると熱間加工性が低下する。したがって、Zrの含有量は0.005〜0.2%とした。Zrの含有量は、0.01〜0.1%とすることがより好ましく、0.01〜0.05%とすればさらに好ましい。
なお、Zrの含有量は、上記の0.005〜0.2%に制限したうえで、
P≦3/{200(Ti+8.5×Zr)}・・・(1)
Al≧1.5×Zr・・・(3)
の2つの式も満たす必要がある。
Al:0.01〜0.3%
Alは、脱酸作用を有する元素であり、その効果を発揮するには0.01%以上の含有量が必要である。なお、Alを多く含む場合には、γ’相が析出してクリープ破断強度を高めることができるが、本発明においては、適正量のW、TiおよびZr含有させ、α−Cr相とLaves相等による複合析出強化でクリープ破断強度を飛躍的に高めることができるため、γ’相による強化は不要である。しかも、Alの含有量が0.3%を超える場合には、熱間加工性、延性および靱性が劣化することがある。したがって、熱間加工性、延性、靱性を重視して、Alの含有量を0.01〜0.3%とした。
なお、Alの含有量は、上記の0.01〜0.3%に制限したうえで、
Al≧1.5×Zr・・・(3)
の式も満たす必要がある。
N:0.02%以下
α−Cr相の析出促進のためにZrおよびTiを必須の元素として含有する本発明においては、通常の溶解法では不可避的に含まれる元素であるNは、ZrNおよびTiNの形成によるZrとTiの消費を避けるために、その含有量は極力低減する必要がある。しかしながら、N含有量の極端な低減は、特殊溶解法や高純度原料を必要とし経済性を損なう。したがって、Nの含有量は0.02%以下とした。なお、Nの好ましい含有量は0.015%以下である。
Mo:0.5%未満
従来、Moは、マトリックスに固溶して、固溶強化元素としてクリープ破断強度の向上に寄与する元素として、Wと同等の作用を有する元素と考えられてきた。しかしながら、本発明者らの検討によって、前述した量のWとCrを含む合金にMoが複合して含まれている場合には、長時間側でσ相が析出することがあり、このため、クリープ破断強度、延性および靱性の低下をきたすことがあることが判明した。このため、Mo含有量は極力低くすることが望ましく、0.5%未満とした。なお、Moの含有量は0.2%未満に制限することがさらに好ましい。
本発明のオーステナイト系耐熱合金の一つは、上記元素のほか、残部がFeと不純物からなるものである。本発明のオーステナイト系耐熱合金の別の一つは、上記元素に加えて、さらに、下記の量のCoを含有するものである。
Co:20%以下
Coは、Niと同様オーステナイト組織を安定にする作用を有するとともに、クリープ破断強度の向上にも寄与する元素であるので、前記の効果を得るためにCoを含有してもよい。しかしながら、20%を超えてCoを含有しても上記の効果が飽和してコストが嵩むばかりであり、しかも、熱間加工性も低下する。したがって、含有させる場合のCoの量を20%以下とした。なお、Co含有量の上限は15%とすることが望ましい。一方、前記したCoのオーステナイト組織を安定にする効果およびクリープ破断強度の向上効果を確実に得るためには、Co含有量の下限を0.05%とすることが好ましく、0.5%とすれば一層好ましい。
なお、Coを含む場合には、その含有量は、上記の20%以下に制限したうえで、
1.35×Cr≦Ni+Co≦1.85×Cr・・・(4)
の式も満たす必要がある。
本発明のオーステナイト系耐熱合金のさらに別の一つは、上記のCからMoまでの元素に加えて、あるいは、上記のCからCoまでの元素に加えて、さらに、下記の〈1〉〜〈3〉のグループから選択される1以上のグループに属する1種以上の元素を含有するオーステナイト系耐熱合金である。
〈1〉Nb:1.0%以下、V:1.5%以下、Hf:1%以下およびB:0.05%以下、
〈2〉Mg:0.05%以下、Ca:0.05%以下、Y:0.5%以下、La:0.5%以下、Ce:0.5%以下、Nd:0.5%以下およびSc:0.5%以下、
〈3〉Ta:8%以下、Re:8%以下、Ir:5%以下、Pd:5%以下、Pt:5%以下およびAg:5%以下。
以下、上記の元素について説明する。
〈1〉のグループの元素であるNb、V、HfおよびBは、いずれも高温強度およびクリープ破断強度を向上させる作用を有する。このため、より大きな高温強度およびクリープ破断強度を得たい場合には積極的に添加し、これらの元素の1種以上を以下の範囲で含有させてもよい。
Nb:1.0%以下
Nbは、炭窒化物を形成して高温強度およびクリープ破断強度を向上させるとともに結晶粒を微細化して延性を向上させる作用を有する。このため、これらの効果を得るためにNbを含有してもよい。しかしながら、Nbの含有量が1.0%を超えると、熱間加工性および靱性が低下する。したがって、含有させる場合のNbの量を1.0%以下とした。なお、Nb含有量の上限は0.9%とすることが望ましい。一方、前記したNbの高温強度、クリープ破断強度および延性の向上効果を確実に得るためには、Nb含有量の下限を0.05%とすることが好ましく、0.1%とすれば一層好ましい。
V:1.5%以下
Vは、炭窒化物を形成して高温強度およびクリープ破断強度を向上させる作用を有する。このため、これらの効果を得るためにVを含有してもよい。しかしながら、Vの含有量が1.5%を超えると、耐高温腐食性が低下し、さらに脆化相の析出に起因した延性および靱性の劣化をきたす。したがって、含有させる場合のVの量を1.5%以下とした。なお、V含有量の上限は1%とすることが望ましい。一方、前記したVの高温強度およびクリープ破断強度の向上効果を確実に得るためには、V含有量の下限を0.02%とすることが好ましく、0.04%とすれば一層好ましい。
Hf:1%以下
Hfは、炭窒化物として析出強化に寄与し高温強度およびクリープ破断強度を向上させる作用を有するので、これらの効果を得るためにHfを含有してもよい。しかしながら、Hfの含有量が1%を超えると、加工性および溶接性が損なわれる。したがって、含有させる場合のHfの量を1%以下とした。なお、Hf含有量の上限は0.8%とすることが望ましく、0.5%とすればさらに望ましい。一方、前記したHfの高温強度およびクリープ破断強度向上効果を確実に得るためには、Hf含有量の下限を0.01%とすることが好ましく、0.02%とすれば一層好ましい。
B:0.05%以下
Bは、B単体で粒界に、または炭窒化物中に存在し、高温での使用中における粒界強化による粒界すべり抑制および炭窒化物の微細分散析出促進によって、高温強度およびクリープ破断強度を向上させる作用を有する。しかしながら、Bの含有量が0.05%を超えると、溶接性が劣化する。したがって、含有させる場合のBの量を0.05%以下とした。なお、B含有量の上限は0.01%とすることが望ましく、0.005%とすればさらに望ましい。一方、前記したBの高温強度およびクリープ破断強度の向上効果を確実に得るためには、その含有量の下限を0.0005%とすることが好ましく、0.001%とすれば一層好ましい。
上記のNbからBまでの元素の合計含有量の上限は3.55%であってもよい。上記の合計含有量の上限は2.5%であることがより好ましい。
〈2〉のグループの元素であるMg、Ca、Y、La、Ce、NdおよびScは、いずれもSを硫化物として固定して熱間加工性を向上させる作用を有する。このため、より良好な熱間加工性を得たい場合には積極的に添加し、これらの元素の1種以上を以下の範囲で含有させてもよい。
Mg:0.05%以下
Mgは、合金中に不可避的に含有されるSを硫化物として固定して熱間加工性を改善する作用を有するので、この効果を得るためにMgを含有してもよい。しかしながら、Mgの含有量が0.05%を超えると、清浄性が低下し、かえって熱間加工性および延性が損なわれる。したがって、含有させる場合のMgの量を0.05%以下とした。なお、Mg含有量の上限は0.02%とすることが望ましく、0.01%とすればさらに望ましい。一方、前記したMgの熱間加工性向上効果を確実に得るためには、Mg含有量の下限を0.0005%とすることが好ましく、0.001%とすれば一層好ましい。
Ca:0.05%以下
Caは、熱間加工性を阻害するSを硫化物として固定して熱間加工性を改善する作用を有するので、この効果を得るためにCaを含有してもよい。しかしながら、Caの含有量が0.05%を超えると、清浄性が低下し、かえって熱間加工性および延性が損なわれる。したがって、含有させる場合のCaの量を0.05%以下とした。なお、Ca含有量の上限は0.02%とすることが望ましく、0.01%とすればさらに望ましい。一方、前記したCaの熱間加工性向上効果を確実に得るためには、Ca含有量の下限を0.0005%とすることが好ましく、0.001%とすれば一層好ましい。
Y:0.5%以下
Yは、Sを硫化物として固定して熱間加工性を改善する作用を有する。また、Yには、鋼表面のCr保護皮膜の密着性を改善し、特に、繰り返し酸化時の耐酸化性を改善する作用、さらには、粒界強化に寄与して、クリープ破断強度およびクリープ破断延性を向上させる作用もある。しかしながら、Yの含有量が0.5%を超えると、酸化物などの介在物が多くなり加工性や溶接性が損なわれる。したがって、含有させる場合のYの量を0.5%以下とした。なお、Y含有量の上限は0.3%とすることが望ましく、0.15%とすればさらに望ましい。一方、Yの前記した効果を確実に得るためには、その含有量の下限を0.0005%とすることが好ましい。Y含有量のより好ましい下限は0.001%で、一層好ましい下限は0.002%である。
La:0.5%以下
Laは、Sを硫化物として固定して熱間加工性を改善する作用を有する。また、Laには、鋼表面のCr保護皮膜の密着性を改善し、特に、繰り返し酸化時の耐酸化性を改善する作用、さらには、粒界強化に寄与して、クリープ破断強度およびクリープ破断延性を向上させる作用もある。しかしながら、Laの含有量が0.5%を超えると、酸化物などの介在物が多くなり加工性や溶接性が損なわれる。したがって、含有させる場合のLaの量を0.5%以下とした。なお、La含有量の上限は0.3%とすることが望ましく、0.15%とすればさらに望ましい。一方、Laの前記した効果を確実に得るためには、La含有量の下限を0.0005%とすることが好ましい。La含有量のより好ましい下限は0.001%で、一層好ましい下限は0.002%である。
Ce:0.5%以下
Ceも、Sを硫化物として固定して熱間加工性を改善する作用を有する。また、Ceには、鋼表面のCr保護皮膜の密着性を改善し、特に、繰り返し酸化時の耐酸化性を改善する作用、さらには、粒界強化に寄与して、クリープ破断強度およびクリープ破断延性を向上させる作用もある。しかしながら、Ceの含有量が0.5%を超えると、酸化物などの介在物が多くなり加工性や溶接性が損なわれる。したがって、含有させる場合のCeの量を0.5%以下とした。なお、Ce含有量の上限は0.3%とすることが望ましく、0.15%とすればさらに望ましい。一方、Ceの前記した効果を確実に得るためには、その含有量の下限を0.0005%とすることが好ましい。Ce含有量のより好ましい下限は0.001%で、一層好ましい下限は0.002%である。
Nd:0.5%以下
Ndは、Sを硫化物として固定して熱間加工性を改善する作用を有する。また、Ndには、鋼表面のCr保護皮膜の密着性を改善し、特に、繰り返し酸化時の耐酸化性を改善する作用、さらには、粒界強化に寄与して、クリープ破断強度およびクリープ破断延性を向上させる作用もある。しかしながら、Ndの含有量が0.5%を超えると、酸化物などの介在物が多くなり加工性や溶接性が損なわれる。したがって、含有させる場合のNdの量を0.5%以下とした。なお、Nd含有量の上限は0.3%とすることが望ましく、0.15%とすればさらに望ましい。一方、Ndの前記した効果を確実に得るためには、その含有量の下限を0.0005%とすることが好ましい。Nd含有量のより好ましい下限は0.001%で、一層好ましい下限は0.002%である。
Sc:0.5%以下
Scも、Sを硫化物として固定して熱間加工性を改善する作用を有する。また、Scには、鋼表面のCr保護皮膜の密着性を改善し、特に、繰り返し酸化時の耐酸化性を改善する作用、さらには、粒界強化に寄与して、クリープ破断強度およびクリープ破断延性を向上させる作用もある。しかしながら、Scの含有量が0.5%を超えると、酸化物などの介在物が多くなり加工性や溶接性が損なわれる。したがって、含有させる場合のScの量を0.5%以下とした。なお、Sc含有量の上限は0.3%とすることが望ましく、0.15%とすればさらに望ましい。一方、Scの前記した効果を確実に得るためには、Sc含有量の下限を0.0005%とすることが好ましい。Sc含有量のより好ましい下限は0.001%で、一層好ましい下限は0.002%である。
上記のMgからScまでの元素の合計含有量の上限は2.6%であってもよい。上記の合計含有量の上限は1.5%であることがより好ましい。
〈3〉のグループの元素であるTa、Re、Ir、Pr、PtおよびAgは、いずれもマトリックスであるオーステナイトに固溶して固溶強化作用を有する。このため、固溶強化作用よって、一層高い強度を得たい場合には積極的に添加し、これらの元素の1種以上を以下の範囲で含有させてもよい。
Ta:8%以下
Taは、マトリックスであるオーステナイトに固溶するとともに、炭窒化物を形成して、高温強度およびクリープ破断強度を向上させる作用を有する。このため、これらの効果を得るためにTaを含有してもよい。しかしながら、Taの含有量が8%を超えると、加工性や機械的性質が損なわれる。したがって、含有させる場合のTaの量を8%以下とした。なお、Ta含有量の上限は7%とすることが望ましく、6%とすればさらに望ましい。一方、Taの前記した効果を確実に得るためには、Ta含有量の下限を0.01%とすることが好ましい。Ta含有量のより好ましい下限は0.1%で、一層好ましい下限は0.5%である。
Re:8%以下
Reは、マトリックスであるオーステナイトに固溶して、高温強度およびクリープ破断強度を向上させる作用を有するので、これらの効果を得るためにReを含有してもよい。しかしながら、Reの含有量が8%を超えると、加工性や機械的性質が損なわれる。したがって、含有させる場合のReの量を8%以下とした。なお、Re含有量の上限は7%とすることが望ましく、6%とすればさらに望ましい。一方、Reの前記した効果を確実に得るためには、Re含有量の下限を0.01%とすることが好ましい。Re含有量のより好ましい下限は0.1%で、一層好ましい下限は0.5%である。
Ir:5%以下
Irは、マトリックスであるオーステナイトに固溶するとともに、含有量に応じて一部は微細な金属間化合物を形成して、高温強度およびクリープ破断強度を向上させる作用を有する。このため、これらの効果を得るためにIrを含有してもよい。しかしながら、Irの含有量が5%を超えると、加工性や機械的性質が損なわれる。したがって、含有させる場合のIrの量を5%以下とした。なお、Ir含有量の上限は4%とすることが望ましく、3%とすればさらに望ましい。一方、Irの前記した効果を確実に得るためには、Ir含有量の下限を0.01%とすることが好ましい。Ir含有量のより好ましい下限は0.05%で、一層好ましい下限は0.1%である。
Pd:5%以下
Pdは、マトリックスであるオーステナイトに固溶するとともに、含有量に応じて一部は微細な金属間化合物を形成して、高温強度およびクリープ破断強度を向上させる作用を有する。このため、これらの効果を得るためにPdを含有してもよい。しかしながら、Pdの含有量が5%を超えると、加工性や機械的性質が損なわれる。したがって、含有させる場合のPdの量を5%以下とした。なお、Pd含有量の上限は4%とすることが望ましく、3%とすればさらに望ましい。一方、Pdの前記した効果を確実に得るためには、Pd含有量の下限を0.01%とすることが好ましい。Pd含有量のより好ましい下限は0.05%で、一層好ましい下限は0.1%である。
Pt:5%以下
Ptも、マトリックスであるオーステナイトに固溶するとともに、含有量に応じて一部は微細な金属間化合物を形成して、高温強度およびクリープ破断強度を向上させる作用を有するので、これらの効果を得るためにPtを含有してもよい。しかしながら、Ptの含有量が5%を超えると、加工性や機械的性質が損なわれる。したがって、含有させる場合のPtの量を5%以下とした。なお、Pt含有量の上限は4%とすることが望ましく、3%とすればさらに望ましい。一方、Ptの前記した効果を確実に得るためには、その含有量の下限を0.01%とすることが好ましい。Pt含有量のより好ましい下限は0.05%で、一層好ましい下限は0.1%である。
Ag:5%以下
Agは、マトリックスであるオーステナイトに固溶するとともに、含有量に応じて一部は微細な金属間化合物を形成して、高温強度およびクリープ破断強度を向上させる作用を有する。このため、これらの効果を得るためにAgを含有してもよい。しかしながら、Agの含有量が5%を超えると、加工性や機械的性質が損なわれる。したがって、含有させる場合のAgの量を5%以下とした。なお、Ag含有量の上限は4%とすることが望ましく、3%とすればさらに望ましい。一方、Agの前記した効果を確実に得るためには、Ag含有量の下限を0.01%とすることが好ましい。Ag含有量のより好ましい下限は0.05%で、一層好ましい下限は0.1%である。
上記のTaからAgまでの元素の合計含有量は10%以下であることが好ましい。上記の元素の合計含有量の上限は8%であることがより好ましい。
P≦3/{200(Ti+8.5×Zr)}
本発明のオーステナイト系耐熱合金は、Ti、ZrおよびPの含有量がそれぞれ、既に述べた範囲にあって、かつ、
P≦3/{200(Ti+8.5×Zr)}・・・(1)
の式を満たす必要がある。これは、TiおよびZrが、耐熱合金の融点を下げ、また、Pが熱間加工性を低下させるので、Ti、ZrおよびPの含有量が既に述べた範囲にあっても、上記(1)式を満足しない場合には、熱間加工性、特に、1150℃以上の高温側での熱間加工性が低下し、さらに、溶接時の耐高温割れ性が低下することがあるからである。しかしながら、Ti、ZrおよびPの含有量が、上記の(1)の式を満たせば、高いクリープ破断強度を維持したうえで、安定かつ確実に1150℃以上の高温側での熱間加工性を改善することができ、さらに、溶接時の耐高温割れ性を高めることもできる。
1.35×Cr≦Ni≦1.85×Cr、または、
1.35×Cr≦Ni+Co≦1.85×Cr
Niの含有量が、既に述べた範囲にあって、かつ、Cr含有量との関係で、
1.35×Cr≦Ni≦1.85×Cr・・・(2)
の式を満たすか、Coを複合して含む場合には、NiとCoの含有量がそれぞれ、既に述べた範囲にあって、かつ、Cr含有量との関係で、
1.35×Cr≦Ni+Co≦1.85×Cr・・・(4)
の式を満たすことによって、安定かつ確実に高温で長時間使用中のσ相の析出を抑制することができ、しかも、最適量のα−Cr相を析出させることが可能になる。したがって、本発明のオーステナイト系耐熱合金は、上記の(2)式または(4)式を満たすこととした。
Al≧1.5×Zr
本発明のオーステナイト系耐熱合金は、AlおよびZrの含有量がそれぞれ、既に述べた範囲にあって、かつ、
Al≧1.5×Zr・・・(3)
の式を満たす必要がある。これは、AlおよびZrの含有量が既に述べた範囲にあっても、上記(3)式を満足しない場合には、Zrのα−Cr相の析出を促進させてクリープ破断強度を高める作用が十分確保できない場合があるからである。しかしながら、AlおよびZrの含有量が、上記の(3)の式を満足せば、安定かつ確実にZrのα−Cr相の析出を促進させてクリープ破断強度を高める作用を得ることができる。
上述したように本発明のオーステナイト系耐熱合金は、耐クリープ特性と組織安定性に優れるものである。したがって、このオーステナイト系耐熱合金を素材とすれば、本発明に係る高温域での耐クリープ特性と組織安定性に優れた耐熱耐圧部材を容易に得ることができる。なお、本発明の耐熱耐圧部材の素材となる本発明のオーステナイト系耐熱合金は、通常のオーステナイト系合金と同様の方法で溶製および鋳造すればよい。
(B)耐熱耐圧部材の製造方法
次に、本発明のオーステナイト系耐熱合金からなる耐熱耐圧部材を得るための好ましい製造方法について説明する。この製造方法は、先に述べた(i)、(ii)および(iii)の工程を順次経ることを特徴とする。
工程(i):熱間または冷間による最終の加工前に、少なくとも1回、1050〜1250℃に加熱する
本発明の方法においては、熱間または冷間による最終の加工前に、少なくとも1回の加熱を行って、加工中に析出した合金中の析出物を十分に固溶させる必要がある。しかし、その加熱温度が1050℃未満の場合には、加熱後の合金中に安定なTiやBを含む未固溶炭窒化物や酸化物が存在するようになる。その結果、これが次の工程(ii)において不均一な歪みを蓄積させる原因となり、工程(iii)の最終熱処理において再結晶を不均一にする。また、未固溶炭窒化物や酸化物それ自体が均一な再結晶を阻害してしまう。一方、1250℃を超える温度に加熱すると、高温粒界割れや延性低下を引き起こすことがある。このため、本発明の好ましい方法においては、熱間または冷間による最終の加工前に、少なくとも1回、1050〜1250℃に加熱する。好ましい下限は1150℃であり、好ましい上限は1230℃である。
工程(ii):熱間または冷間による断面減少率10%以上の最終の塑性加工を行う
工程(ii)の塑性加工は、次の最終熱処理において再結晶を促進させるために歪みを付与する目的で行う。この加工の断面減少率が10%未満の場合は、再結晶に必要な歪みを付与することができない。このため、塑性加工は断面減少率10%以上で行う。望ましい断面減少率の下限は20%である。なお、断面減少率は大きいほどよいので上限は規定しないが、通常の加工での最大値は90%程度である。また、この加工工程は製品の寸法を決定する工程でもある。
加熱後の最終加工が熱間加工の場合における熱間加工の終了温度は炭化物析出温度域での不均一な変形を避けるため、1000℃以上とするのが好ましい。また、加工後の冷却条件には特別な制約はないが、熱間加工終了後は、粗大な炭窒化物の析出を抑えるために、500℃までの温度域を0.25℃/秒以上の極力速い冷却速度で冷却することが望ましい。
加熱後の加工が冷間加工の場合、冷間加工は最終として一度でもよいが複数回行ってもよい。複数回行う場合は、途中熱処理後冷間加工を行うが、上記の工程(i)の熱処理温度および工程(ii)の冷間加工の断面減少率は少なくとも最終の冷間加工およびその前の途中熱処理で満足すればよい。
工程(iii):1100〜1250℃の範囲内の温度に加熱保持した後冷却する最終熱処理を行う
この熱処理の加熱温度が1100℃よりも低いと、十分な再結晶が起こらない。また、結晶粒が扁平な加工組織となり、クリープ強度が低くなる。一方、1250℃を超える温度に加熱すると、高温粒界割れや延性低下を引き起こすことがあるので、最終製品熱処理の温度は、1100〜1250℃とする。好ましい熱処理温度は、工程(i)における加熱温度よりも10℃以上高い温度である。
なお、本発明の耐熱耐圧部材は、耐食性の観点からはあえて細粒組織にする必要はないが、細粒組織にしたい場合は、熱間加工終了温度から10℃以上低い温度、または上述の途中熱処理温度から10℃以上低い温度で最終熱処理を行えばよい。この最終熱処理後は、粗大な炭窒化物の析出を抑制するために、1℃/秒以上の極力速い冷却速度で冷却することが好ましい。
以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
表1に示す化学組成を有するオーステナイト系の合金1〜17およびA〜Kを高周波真空溶解炉を用いて溶製し、外径100mmの17kgインゴットとした。
表1中の合金1〜17は、化学組成が本発明で規定する範囲内にある合金である。一方、合金A〜Kは、化学組成が本発明で規定する条件から外れた比較例の合金である。なお、合金Gと合金Hはいずれも、NiおよびCoの個々の含有量は本発明で規定する範囲内にあるものの、「Ni+Co」の値が前記(4)式を満たさない合金である。また、合金Iは、0.03%というAlの含有量が、本発明で規定する「0.01〜0.3%」の範囲内にあるものの、前記(3)式を満たさない合金である。さらに、合金Kは、0.009%というPの含有量が、本発明で規定する「0.03%以下」の範囲内にあるものの、前記(1)式を満たさない合金である。
Figure 2009154161
このようにして得たインゴットを、1180℃に加熱した後、仕上げ温度が1050℃となるように熱間鍛造して、厚さ15mmの板材とした。なお、熱間鍛造終了後は、空冷した。
上記の熱間鍛造して得た厚さ15mmの各板材の厚さ方向中心部から、長手方向に平行に、直径が10mmで長さが130mmの丸棒引張試験片を機械加工により作製し、高温延性を評価した。
すなわち、上記の丸棒引張試験片を1200℃に加熱して3分間保持し、10/秒の歪速度で高速引張試験を行い、試験後の破断面から絞りを求めた。60%以上の絞りを有しておれば、その温度で熱間押出し等の熱間加工を行っても特に大きな問題が生じないことが判明している。このため、60%以上の絞りを有していることを良好な熱間加工性の判断基準とした。
また、上記の熱間鍛造して得た厚さ15mmの板材を用いて、1100℃で軟化熱処理を施した後、10mmまで冷間圧延し、さらに、1200℃で30分保持してから水冷した。
上記の1200℃で30分保持してから水冷した厚さ10mmの各板材の一部を用いて、厚さ方向中心部から、長手方向に平行に、直径が6mmで標点距離が30mmの丸棒引張試験片を機械加工により作製し、クリープ破断試験を実施した。
すなわち、上記の試験片を用いて、700℃、750℃および800℃の大気中においてクリープ破断試験を実施し、得られた破断強度をLarson−Millerパラメータ法で回帰して、700℃、10000時間での破断強度を求めた。
さらに、前記1200℃で30分保持してから水冷した厚さ10mmの各板材の残りを用いて、750℃で5000時間保持する時効処理を施してから水冷した。
上記の時効処理後水冷した厚さ10mmの各板材の厚さ方向中心部から、長手方向に平行に、JIS Z 2242(2005)に記載の、幅が5mm、高さが10mmで長さが55mmのVノッチ試験片を作製し、0℃でシャルピー衝撃試験を行い、衝撃値を測定して靱性を評価した。
表2に、上記の試験結果を整理して示す。
Figure 2009154161
表2から、本発明例の合金1〜17を用いた試験番号1〜17の場合、クリープ破断強度、時効後の靱性および熱間加工性の全てにおいて良好であることが明らかである。
これに対して、本発明で規定する条件から外れた比較例の合金A〜Kを用いた試験番号18〜28の場合、上記の試験番号1〜17の本発明例の場合と比べて、クリープ破断強度、時効後の靱性および熱間加工性のうちで、少なくとも1つの特性が劣っている。
すなわち、試験番号18の場合、合金Aは、Zrを含まないこと以外は、試験番号2で用いた合金2とほぼ同等の化学組成を有しているが、クリープ破断強度が低い。
試験番号19の場合、合金Bは、Tiを含まないこと以外は、試験番号2で用いた合金2とほぼ同等の化学組成を有しているが、クリープ破断強度が低い。
試験番号20の場合、合金Cは、W含有量が2.7%で、本発明で規定する値より低いこと以外は、試験番号1で用いた合金1とほぼ同等の化学組成を有しているが、クリープ破断強度が低い。
試験番号21の場合、合金Dは、N含有量が0.024%で、本発明で規定する値より高いこと以外は、試験番号2で用いた合金2とほぼ同等の化学組成を有しているが、クリープ破断強度が低い。
試験番号22の場合、合金Eは、Wを含まず、さらに、Moの含有量が2.5%で、本発明で規定する値より高いこと以外は、試験番号2で用いた合金2とほぼ同等の化学組成を有しているが、クリープ破断強度が低く、しかも、時効後のシャルピー衝撃値が著しく低く靱性も劣っている。
試験番号23の場合、従来いわれているように、Wの作用効果がMoの約半分、つまり、W含有量が約1/2のMo含有量に相当するとすれば、合金Fは、試験番号2で用いた合金2と同等の合金である。しかしながら、この合金FのMoの含有量は2.2%で、本発明で規定する値を上回っている。このため、クリープ破断強度が低く、さらに、時効後のシャルピー衝撃値も著しく低く靱性に劣っている。
試験番号24の場合、合金Gは、NiとCoの含有量の和、つまり、「Ni+Co」の値が「1.35×Cr」より低く(4)式を満たさないこと以外は、試験番号5で用いた合金5とほぼ同等の化学組成を有しているが、クリープ破断強度が低く、しかも、時効後のシャルピー衝撃値が著しく低く靱性も劣っている。
試験番号25の場合、合金Hは、NiとCoの含有量の和、つまり、「Ni+Co」の値が「1.85×Cr」より高く(4)式を満たさないこと以外は、試験番号5で用いた合金5とほぼ同等の化学組成を有しているが、クリープ破断強度が低い。
試験番号26の場合、合金Iは、Alの含有量が「1.5×Zr」より低く(3)式を満たさないこと以外は、試験番号2で用いた合金2とほぼ同等の化学組成を有しているが、クリープ破断強度が低い。
試験番号27の場合、合金Jは、Alの含有量が0.64%で、本発明で規定する値より高いこと以外は、試験番号2で用いた合金2とほぼ同等の化学組成を有しているが、時効後のシャルピー衝撃値が低く靱性に劣っており、しかも、1200℃での絞りが60%に達しておらず熱間加工性も低い。
試験番号28の場合、合金Kは、Pの含有量が「3/{200(Ti+8.5Zr)}」を超えて(1)式を満たさないこと以外は、試験番号5で用いた合金5とほぼ同等の化学組成を有しているが、1200℃での絞りが50.2%で熱間加工性が著しく低い。
本発明のオーステナイト系耐熱合金は、従来の耐熱合金に比べて優れた高温強度、なかでも、クリープ破断強度を有するとともに、高温で長時間使用しても組織安定性に優れるので靱性も良好であり、さらに熱間加工性、特に、1150℃以上での高温延性にも優れている。このため、発電用ボイラ、化学工業用プラント等において管材、耐熱耐圧部材の板材、棒材、鍛造品等として好適に用いることができる。
(1)質量%で、C:0.02%を超えて0.15%以下、Si:2%以下、Mn:3%以下、Cr:28〜38%、Ni:40%を超えて60%以下、W:3%を超えて15%以下、Ti:0.05〜1.0%、Zr:0.005〜0.2%、Al:0.01〜0.3%を含有し、残部がFeおよび不純物からなり、不純物としてのP、S、NおよびMoがそれぞれ、P:0.03%以下、S:0.01%以下、N:0.02%以下およびMo:0.5%未満であり、さらに、下記の(1)〜(3)式を満足することを特徴とするオーステナイト系耐熱合金。
P≦3/{200(Ti+8.5×Zr)}・・・(1)
1.35×Cr≦Ni≦1.85×Cr・・・(2)
Al≧1.5×Zr・・・(3)
なお、各式中の元素記号は、その元素の質量%での含有量を表す。
(2)質量%で、C:0.02%を超えて0.15%以下、Si:2%以下、Mn:3%以下、Cr:28〜38%、Ni:40%を超えて60%以下、Co:20%以下、W:3%を超えて15%以下、Ti:0.05〜1.0%、Zr:0.005〜0.2%、Al:0.01〜0.3%を含有し、残部がFeおよび不純物からなり、不純物としてのP、S、NおよびMoがそれぞれ、P:0.03%以下、S:0.01%以下、N:0.02%以下およびMo:0.5%未満であり、さらに、下記の(1)式、(3)式および(4)式を満足することを特徴とするオーステナイト系耐熱合金。
P≦3/{200(Ti+8.5×Zr)}・・・(1)
1.35×Cr≦Ni+Co≦1.85×Cr・・・(4)
Al≧1.5×Zr・・・(3)
なお、各式中の元素記号は、その元素の質量%での含有量を表す。
P:0.03%以下
Pは、不純物として合金中に不可避的に混入し、熱間加工性を低下させる。特に、Pの含有量が0.03%を超えると、熱間加工性の低下が著しくなる。したがって、不純物としてのPの含有量を0.03%以下とした。
S:0.01%以下
Sは、Pと同様に不純物として合金中に不可避的に混入し、熱間加工性を低下させる。特に、Sの含有量が0.01%を超えると、熱間加工性の低下が著しくなる。したがって、不純物としてのSの含有量を0.01%以下とした。
N:0.02%以下
α−Cr相の析出促進のためにZrおよびTiを必須の元素として含有する本発明においては、通常の溶解法では不可避的に含まれる元素であるNは、ZrNおよびTiNの形成によるZrとTiの消費を避けるために、その含有量は極力低減する必要がある。しかしながら、N含有量の極端な低減は、特殊溶解法や高純度原料を必要とし経済性を損なう。したがって、不純物としてのNの含有量は0.02%以下とした。なお、不純物としてのNの好ましい含有量は0.015%以下である。
Mo:0.5%未満
従来、Moは、マトリックスに固溶して、固溶強化元素としてクリープ破断強度の向上に寄与する元素として、Wと同等の作用を有する元素と考えられてきた。しかしながら、本発明者らの検討によって、前述した量のWとCrを含む合金にMoが複合して含まれている場合には、長時間側でσ相が析出することがあり、このため、クリープ破断強度、延性および靱性の低下をきたすことがあることが判明した。このため、Mo含有量は極力低くすることが望ましく、不純物としてのMoの含有量を0.5%未満とした。なお、不純物としてのMoの含有量は0.2%未満に制限することがさらに好ましい。
本発明のオーステナイト系耐熱合金の一つは、上記範囲のC、Si、Mn、Cr、Ni、W、Ti、Zr、Alのほか、残部がFeと不純物からなり、不純物としてのP、S、NおよびMoがそれぞれ上記した範囲にあるものである。本発明のオーステナイト系耐熱合金の別の一つは、上記元素に加えて、さらに、下記の量のCoを含有するものである。

Claims (5)

  1. 質量%で、C:0.02%を超えて0.15%以下、Si:2%以下、Mn:3%以下、P:0.03%以下、S:0.01%以下、Cr:28〜38%、Ni:40%を超えて60%以下、W:3%を超えて15%以下、Ti:0.05〜1.0%、Zr:0.005〜0.2%、Al:0.01〜0.3%を含有し、かつ、N:0.02%以下、Mo:0.5%未満であり、残部がFeおよび不純物からなり、さらに、下記の(1)〜(3)式を満足することを特徴とするオーステナイト系耐熱合金。
    P≦3/{200(Ti+8.5×Zr)}・・・(1)
    1.35×Cr≦Ni≦1.85×Cr・・・(2)
    Al≧1.5×Zr・・・(3)
    なお、各式中の元素記号は、その元素の質量%での含有量を表す。
  2. 質量%で、C:0.02%を超えて0.15%以下、Si:2%以下、Mn:3%以下、P:0.03%以下、S:0.01%以下、Cr:28〜38%、Ni:40%を超えて60%以下、Co:20%以下、W:3%を超えて15%以下、Ti:0.05〜1.0%、Zr:0.005〜0.2%、Al:0.01〜0.3%を含有し、かつ、N:0.02%以下、Mo:0.5%未満であり、残部がFeおよび不純物からなり、さらに、下記の(1)式、(3)式および(4)式を満足することを特徴とするオーステナイト系耐熱合金。
    P≦3/{200(Ti+8.5×Zr)}・・・(1)
    1.35×Cr≦Ni+Co≦1.85×Cr・・・(4)
    Al≧1.5×Zr・・・(3)
    なお、各式中の元素記号は、その元素の質量%での含有量を表す。
  3. 質量%で、さらに、下記の〈1〉〜〈3〉のグループから選択される1以上のグループに属する1種以上の元素を含有することを特徴とする請求項1または2に記載のオーステナイト系耐熱合金。
    〈1〉Nb:1.0%以下、V:1.5%以下、Hf:1%以下およびB:0.05%以下
    〈2〉Mg:0.05%以下、Ca:0.05%以下、Y:0.5%以下、La:0.5%以下、Ce:0.5%以下、Nd:0.5%以下およびSc:0.5%以下
    〈3〉Ta:8%以下、Re:8%以下、Ir:5%以下、Pd:5%以下、Pt:5%以下およびAg:5%以下
  4. 請求項1から3までのいずれかに記載のオーステナイト系耐熱合金からなることを特徴とする高温域での耐クリープ特性と組織安定性に優れた耐熱耐圧部材。
  5. 請求項1から3までのいずれかに記載のオーステナイト系耐熱合金を、下記の工程(i)、(ii)および(iii)で順次処理することを特徴とする請求項4に記載の高温域での耐クリープ特性と組織安定性に優れた耐熱耐圧部材の製造方法。
    工程(i):熱間または冷間による最終の加工前に、少なくとも1回、1050〜1250℃に加熱する。
    工程(ii):熱間または冷間による断面減少率10%以上の最終の塑性加工を行う。
    工程(iii):1100〜1250℃の範囲内の温度に加熱保持した後冷却する最終熱処理を行う。

JP2009524838A 2008-06-16 2009-06-15 オーステナイト系耐熱合金ならびにこの合金からなる耐熱耐圧部材とその製造方法 Active JP4431905B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008156352 2008-06-16
JP2008156352 2008-06-16
PCT/JP2009/060837 WO2009154161A1 (ja) 2008-06-16 2009-06-15 オーステナイト系耐熱合金ならびにこの合金からなる耐熱耐圧部材とその製造方法

Publications (2)

Publication Number Publication Date
JP4431905B2 JP4431905B2 (ja) 2010-03-17
JPWO2009154161A1 true JPWO2009154161A1 (ja) 2011-12-01

Family

ID=41434076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009524838A Active JP4431905B2 (ja) 2008-06-16 2009-06-15 オーステナイト系耐熱合金ならびにこの合金からなる耐熱耐圧部材とその製造方法

Country Status (7)

Country Link
US (2) US20110088819A1 (ja)
EP (1) EP2287349B1 (ja)
JP (1) JP4431905B2 (ja)
KR (1) KR101280114B1 (ja)
CN (1) CN102066594B (ja)
ES (1) ES2728670T3 (ja)
WO (1) WO2009154161A1 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552284B2 (ja) * 2009-09-14 2014-07-16 信越化学工業株式会社 多結晶シリコン製造システム、多結晶シリコン製造装置および多結晶シリコンの製造方法
DK2511389T3 (en) * 2009-12-10 2015-02-23 Nippon Steel & Sumitomo Metal Corp Austenitic heat resistant alloy
JP5782753B2 (ja) * 2010-03-19 2015-09-24 新日鐵住金株式会社 高Cr高Ni合金管の製造方法および高Cr高Ni合金
CN102409258B (zh) * 2011-11-04 2013-07-10 中国科学院金属研究所 一种含硼的高强度、耐氢脆合金的组织均匀性控制方法
JP5212533B2 (ja) * 2011-11-15 2013-06-19 新日鐵住金株式会社 継目無オーステナイト系耐熱合金管
JP5857894B2 (ja) * 2012-07-05 2016-02-10 新日鐵住金株式会社 オーステナイト系耐熱合金
CN102758096B (zh) * 2012-08-08 2013-09-25 贵州航天新力铸锻有限责任公司 核电站流量限制器用镍基高温合金材料的制备方法
US9707530B2 (en) * 2012-08-21 2017-07-18 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US9656229B2 (en) * 2012-08-21 2017-05-23 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US20140058176A1 (en) * 2012-08-21 2014-02-27 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
JP6492747B2 (ja) * 2014-03-25 2019-04-03 新日鐵住金株式会社 オーステナイト系耐熱合金管の製造方法およびその製造方法によって製造されたオーステナイト系耐熱合金管
CN104946932B (zh) * 2014-03-25 2018-04-20 新日铁住金株式会社 奥氏体系耐热合金管的制造方法以及利用该制造方法制造的奥氏体系耐热合金管
CN104213013B (zh) * 2014-09-28 2016-09-21 哈尔滨工业大学 一种TiZrNbMoxHfy多主元高温合金及其制备方法
RU2571674C1 (ru) * 2014-10-07 2015-12-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный деформируемый сплав на основе никеля и изделие, выполненное из этого сплава
KR102031776B1 (ko) * 2015-02-12 2019-10-14 닛폰세이테츠 가부시키가이샤 오스테나이트계 내열합금 용접 조인트의 제조 방법 및 그것을 이용하여 얻어지는 용접 조인트
JP6519007B2 (ja) 2015-04-03 2019-05-29 日本製鉄株式会社 Ni基耐熱合金溶接継手の製造方法
RU2623940C2 (ru) * 2015-06-23 2017-06-29 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии
KR101982961B1 (ko) * 2015-06-26 2019-05-27 닛폰세이테츠 가부시키가이샤 원자력용 Ni기 합금관
JP6780233B2 (ja) * 2015-11-05 2020-11-04 日本製鉄株式会社 オーステナイト系耐熱合金およびその製造方法
CN108474053B (zh) * 2015-12-30 2020-03-10 山特维克知识产权股份有限公司 生产奥氏体不锈钢管的方法
JP6690359B2 (ja) * 2016-03-30 2020-04-28 日本製鉄株式会社 オーステナイト系耐熱合金部材およびその製造方法
KR102172891B1 (ko) * 2016-04-07 2020-11-02 닛폰세이테츠 가부시키가이샤 오스테나이트계 스테인리스 강재
US10934608B2 (en) * 2016-07-27 2021-03-02 Saint-Gobain Seva Nickel-chromium-iron-based casting alloy
JP2018127672A (ja) * 2017-02-08 2018-08-16 新日鐵住金株式会社 オーステナイト系耐熱合金部材
CA3052547C (en) * 2017-02-09 2020-06-02 Nippon Steel Corporation Austenitic heat resistant alloy and method for producing the same
US20200010930A1 (en) * 2017-02-21 2020-01-09 Hitachi Metals, Ltd. Ni-based super heat-resistant alloy and method for manufacturing same
CN111566257B (zh) * 2018-01-10 2023-05-30 日本制铁株式会社 奥氏体系耐热合金及其制造方法、以及奥氏体系耐热合金材料
JP6950752B2 (ja) * 2018-01-10 2021-10-13 日本製鉄株式会社 オーステナイト系耐熱合金及びその製造方法
EP3797180A1 (en) * 2018-05-23 2021-03-31 AB Sandvik Materials Technology New austenitic alloy
JP7131332B2 (ja) * 2018-11-26 2022-09-06 日本製鉄株式会社 オーステナイト系耐熱合金及びオーステナイト系耐熱合金部品
JP7421054B2 (ja) * 2019-05-14 2024-01-24 日本製鉄株式会社 オーステナイト系耐熱合金部材
CN110343932B (zh) * 2019-08-28 2021-06-08 合肥工业大学 一种具有高强度的WVTaZrSc难熔高熵合金及其制备方法
CN110578088B (zh) * 2019-09-02 2020-10-27 特冶(北京)科技发展有限公司 一种耐高温气门及其生产方法
CN111607720A (zh) * 2020-05-14 2020-09-01 中南大学 一种粉末镍基高温合金及其制备方法
CN115354195B (zh) * 2022-09-23 2023-12-12 北京北冶功能材料有限公司 一种抗裂纹镍基高温合金及其制备方法和应用
CN115522102B (zh) * 2022-10-12 2023-07-18 苏州大学 一种铝合金导电材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216511A (ja) * 1994-01-31 1995-08-15 Sumitomo Metal Ind Ltd 高温強度に優れた高クロムオーステナイト耐熱合金
JPH07331390A (ja) * 1994-06-08 1995-12-19 Sumitomo Metal Ind Ltd 高クロムオーステナイト耐熱合金
JPH08127848A (ja) * 1994-11-01 1996-05-21 Sumitomo Metal Ind Ltd 高温強度に優れた高クロムオーステナイト耐熱合金
JP2004003000A (ja) * 2002-04-17 2004-01-08 Sumitomo Metal Ind Ltd 高温強度と耐食性に優れたオーステナイト系ステンレス鋼ならびにこの鋼からなる耐熱耐圧部材とその製造方法
JP2005048284A (ja) * 2003-07-17 2005-02-24 Sumitomo Metal Ind Ltd 耐浸炭性と耐コーキング性を有するステンレス鋼およびステンレス鋼管

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100640A (ja) 1983-11-07 1985-06-04 Nippon Kokan Kk <Nkk> 耐熱耐食性の優れた高クロム合金
JPS61174350A (ja) 1985-01-28 1986-08-06 Nippon Kokan Kk <Nkk> 高クロム耐熱合金
JPH0639661B2 (ja) 1985-05-30 1994-05-25 日本鋼管株式会社 高温耐食性、高温強度に優れた熱間加工高クロム合金鋼
JPS61276948A (ja) 1985-05-30 1986-12-06 Nippon Kokan Kk <Nkk> 熱間加工性の優れた高クロム合金鋼
JPS6263654A (ja) 1985-09-13 1987-03-20 Nippon Kokan Kk <Nkk> 耐熱性の優れた合金
JPS6455352A (en) 1987-08-26 1989-03-02 Nippon Kokan Kk Heat-resisting alloy
JP2760004B2 (ja) 1989-01-30 1998-05-28 住友金属工業株式会社 加工性に優れた高強度耐熱鋼
JPH0734166A (ja) 1993-07-16 1995-02-03 Sumitomo Metal Ind Ltd 高クロムオーステナイト耐熱合金
JPH0770681A (ja) 1993-09-03 1995-03-14 Sumitomo Metal Ind Ltd 高クロムオーステナイト耐熱合金
JPH08218140A (ja) 1995-02-10 1996-08-27 Sumitomo Metal Ind Ltd 高温強度と耐高温腐食性に優れた高クロムオーステナイト耐熱合金
JPH101754A (ja) * 1996-06-12 1998-01-06 Sumitomo Metal Ind Ltd スキッドボタン用耐熱合金
JPH1096038A (ja) 1996-09-24 1998-04-14 Sumitomo Metal Ind Ltd 高Crオーステナイト系耐熱合金
KR100532877B1 (ko) 2002-04-17 2005-12-01 스미토모 긴조쿠 고교 가부시키가이샤 고온강도와 내식성이 우수한 오스테나이트계 스테인레스강및 상기 강으로부터 이루어지는 내열 내압부재와 그제조방법
CN1280445C (zh) 2003-07-17 2006-10-18 住友金属工业株式会社 具有耐渗碳性和耐焦化性的不锈钢和不锈钢管
CA2603681C (en) 2005-04-04 2011-07-05 Sumitomo Metal Industries, Ltd. Austenitic stainless steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216511A (ja) * 1994-01-31 1995-08-15 Sumitomo Metal Ind Ltd 高温強度に優れた高クロムオーステナイト耐熱合金
JPH07331390A (ja) * 1994-06-08 1995-12-19 Sumitomo Metal Ind Ltd 高クロムオーステナイト耐熱合金
JPH08127848A (ja) * 1994-11-01 1996-05-21 Sumitomo Metal Ind Ltd 高温強度に優れた高クロムオーステナイト耐熱合金
JP2004003000A (ja) * 2002-04-17 2004-01-08 Sumitomo Metal Ind Ltd 高温強度と耐食性に優れたオーステナイト系ステンレス鋼ならびにこの鋼からなる耐熱耐圧部材とその製造方法
JP2005048284A (ja) * 2003-07-17 2005-02-24 Sumitomo Metal Ind Ltd 耐浸炭性と耐コーキング性を有するステンレス鋼およびステンレス鋼管

Also Published As

Publication number Publication date
US8801877B2 (en) 2014-08-12
EP2287349B1 (en) 2019-03-27
JP4431905B2 (ja) 2010-03-17
ES2728670T3 (es) 2019-10-28
US20110088819A1 (en) 2011-04-21
CN102066594B (zh) 2013-03-27
WO2009154161A1 (ja) 2009-12-23
KR101280114B1 (ko) 2013-06-28
EP2287349A1 (en) 2011-02-23
KR20110016498A (ko) 2011-02-17
EP2287349A4 (en) 2017-07-26
US20130263974A1 (en) 2013-10-10
CN102066594A (zh) 2011-05-18

Similar Documents

Publication Publication Date Title
JP4431905B2 (ja) オーステナイト系耐熱合金ならびにこの合金からなる耐熱耐圧部材とその製造方法
JP3838216B2 (ja) オーステナイト系ステンレス鋼
JP6819700B2 (ja) Ni基耐熱合金部材およびその製造方法
JP4484093B2 (ja) Ni基耐熱合金
JP6477252B2 (ja) オーステナイト系耐熱合金および耐熱耐圧部材
KR20190065352A (ko) NiCrFe 합금
JP6816779B2 (ja) オーステナイト系耐熱合金部材およびその製造方法
JP5846076B2 (ja) オーステナイト系耐熱合金
JP2015193912A (ja) オーステナイト系耐熱合金管の製造方法およびその製造方法によって製造されたオーステナイト系耐熱合金管
JP6520546B2 (ja) オーステナイト系耐熱合金部材およびその製造方法
JP2020105572A (ja) オーステナイト系耐熱鋼
JP6547599B2 (ja) オーステナイト系耐熱鋼
JP6690359B2 (ja) オーステナイト系耐熱合金部材およびその製造方法
JP7372537B2 (ja) オーステナイト系耐熱鋼
JP2018059135A (ja) Ni基耐熱合金部材およびその製造方法
JP6736964B2 (ja) オーステナイト系耐熱合金部材
JP6747207B2 (ja) Ni基耐熱合金部材
JP6201731B2 (ja) オーステナイト系耐熱鋳造合金
JP6825514B2 (ja) オーステナイト系耐熱合金部材
JP5930635B2 (ja) 優れた高温強度を有するオーステナイト系耐熱鋼とその製造方法
JP7256374B2 (ja) オーステナイト系耐熱合金部材
JP2018127672A (ja) オーステナイト系耐熱合金部材
JP2018123359A (ja) Ni耐熱合金部材

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091208

R150 Certificate of patent or registration of utility model

Ref document number: 4431905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350