JPWO2009154161A1 - オーステナイト系耐熱合金ならびにこの合金からなる耐熱耐圧部材とその製造方法 - Google Patents
オーステナイト系耐熱合金ならびにこの合金からなる耐熱耐圧部材とその製造方法 Download PDFInfo
- Publication number
- JPWO2009154161A1 JPWO2009154161A1 JP2009524838A JP2009524838A JPWO2009154161A1 JP WO2009154161 A1 JPWO2009154161 A1 JP WO2009154161A1 JP 2009524838 A JP2009524838 A JP 2009524838A JP 2009524838 A JP2009524838 A JP 2009524838A JP WO2009154161 A1 JPWO2009154161 A1 JP WO2009154161A1
- Authority
- JP
- Japan
- Prior art keywords
- less
- content
- heat
- resistant
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/02—Hardening by precipitation
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/053—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
- C22C38/105—Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/30—Ferrous alloys, e.g. steel alloys containing chromium with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
P≦3/{200(Ti+8.5×Zr)}・・・(1)
1.35×Cr≦Ni≦1.85×Cr・・・(2)
Al≧1.5×Zr・・・(3)
なお、各式中の元素記号は、その元素の質量%での含有量を表す。
P≦3/{200(Ti+8.5×Zr)}・・・(1)
1.35×Cr≦Ni+Co≦1.85×Cr・・・(4)
Al≧1.5×Zr・・・(3)
なお、各式中の元素記号は、その元素の質量%での含有量を表す。
〈1〉Nb:1.0%以下、V:1.5%以下、Hf:1%以下およびB:0.05%以下、
〈2〉Mg:0.05%以下、Ca:0.05%以下、Y:0.5%以下、La:0.5%以下、Ce:0.5%以下、Nd:0.5%以下およびSc:0.5%以下、
〈3〉Ta:8%以下、Re:8%以下、Ir:5%以下、Pd:5%以下、Pt:5%以下およびAg:5%以下。
工程(i):熱間または冷間による最終の加工前に、少なくとも1回、1050〜1250℃に加熱する。
工程(ii):熱間または冷間による断面減少率10%以上の最終の塑性加工を行う。
工程(iii):1100〜1250℃の範囲内の温度に加熱保持した後冷却する最終熱処理を行う。
C:0.02%を超えて0.15%以下
Cは、炭化物を形成して高温環境下で使用される際に必要となる引張強さおよびクリープ破断強度を確保する作用を有する。この効果を発揮させるためには、0.02%を超え量のCを含有させる必要がある。しかしながら、Cを0.15%を超えて含有させても固溶化熱処理後の未固溶炭化物の量が増加するだけで、高温強度の向上に寄与しなくなり、さらに、靱性など他の機械的性質および溶接性も劣化させる。したがって、C含有量は0.02%を超えて0.15%以下。C含有量の好ましい範囲は、0.03%を超えて0.13%以下であり、さらに好ましい範囲は、0.05%を超えて0.12%以下である。
Siは、脱酸元素として添加される。また、Siは、耐酸化性、耐水蒸気酸化性等を高めるためにも有効な元素である。しかしながら、Siの含有量が多くなって、特に、2%を超えると、σ相等の金属間化合物の生成を促進するので、高温における組織の安定性が劣化して靱性や延性の低下を生ずる。さらに、溶接性、熱間加工性も低下する。したがって、Siの含有量は2%以下とした。靱性と延性が重視される場合には、Siの含有量は1%以下にすることが好ましい。他の元素で脱酸作用が十分確保されている場合、特にSiの含有量について下限を設ける必要はない。
Mnは、Siと同様に脱酸作用を有するとともに、合金中に不可避的に含有されるSを硫化物として固定して熱間加工性を改善する作用を有する。しかしながら、Mnの含有量が3%を超えると、σ相等の金属間化合物の析出を助長するので、組織安定性および高温強度などの機械的性質が劣化する。したがって、Mnの含有量は3%以下とした。
Pは、不純物として合金中に不可避的に混入し、熱間加工性を低下させる。特に、Pの含有量が0.03%を超えると、熱間加工性の低下が著しくなる。したがって、Pの含有量を0.03%以下とした。
P≦3/{200(Ti+8.5×Zr)}・・・(1)
の式も満たす必要がある。
Sは、Pと同様に不純物として合金中に不可避的に混入し、熱間加工性を低下させる。特に、Sの含有量が0.01%を超えると、熱間加工性の低下が著しくなる。したがって、Sの含有量を0.01%以下とした。
Crは、耐酸化性、耐水蒸気酸化性、耐高温腐食性などの耐食性改善作用を有する。さらに、Crは、本発明において、α−Cr相として析出してクリープ破断強度を高めるのに必須の元素である。しかしながら、その含有量が28%未満では、これらの効果が得られない。一方、Crの含有量が多くなって、特に、38%を超えると、熱間加工性が劣化し、さらに、σ相の析出などによる組織の不安定化を招く。したがって、Crの含有量は28〜38%とした。なお、30%を超える量のCrを含有することが好ましい。
Niは、安定なオーステナイト組織を確保するために必須の元素である。28〜38%のCrを含有する本発明において、σ相の析出を抑制するとともにα−Cr相を安定に析出させるためには、40%を超えるNi含有量が必要である。しかしながら、Niの含有量が過剰になって、特に、60%を超えると、Crの含有量によってはα−Cr相が十分に析出せず、さらに、経済性も損なわれる。したがって、Niの含有量は40%を超えて60%以下とした。
1.35×Cr≦Ni≦1.85×Cr・・・(2)
の式も満たすか、後述する量のCoを複合して含む場合には、
1.35×Cr≦Ni+Co≦1.85×Cr・・・(4)
の式も満たすことが必要である。
Wは、マトリックスに固溶して固溶強化元素としてクリープ破断強度の向上に寄与するばかりでなく、Fe2W型のLaves相やFe7W6型のμ相として析出し、クリープ破断強度を大幅に向上させる極めて重要な元素である。さらに、Wは、28〜38%のCrを含有する本発明において析出するα−Cr相中に固溶して、高温での長時間使用中のα−Cr相の成長粗大化を抑制し、長時間側でのクリープ破断強度の急激な低下を抑止する作用を有する。しかしながら、Wの含有量が3%以下では、前記した効果が得られない。一方、15%を超える量のWを含有させても、前記の効果が飽和してコストが嵩むだけであり、しかも、組織安定性および熱間加工性が劣化する。したがって、Wの含有量は3%を超えて15%以下とした。Wの含有量は、3%を超えて13%以下とすることが好ましい。なお、クリープ破断強度の向上効果をさらに重視する場合のW含有量は、6%を超えて13%以下とすることがより好ましい。
Tiは、α−Cr相の析出を促進させてクリープ破断強度を高める重要な元素である。特に、Tiを次に述べる量のZrと複合して含有することで、α−Cr相の析出が一層促進されて、クリープ破断強度をより高めることが可能になる。しかしながら、Tiの含有量が0.05%未満では十分な効果が得られず、一方、1.0%を超えると熱間加工性が低下する。したがって、Tiの含有量は0.05〜1.0%とした。Tiの含有量は、0.1〜0.9%とすることがより好ましく、0.2〜0.9%とすればさらに好ましい。Ti含有量の一層好ましい上限は0.5%である。
P≦3/{200(Ti+8.5×Zr)}・・・(1)
の式も満たす必要がある。
Zrは、Tiと同様に、α−Cr相の析出を促進させてクリープ破断強度を高める重要な元素である。特に、Zrを上述した量のTiと複合して含有することで、α−Cr相の析出が一層促進されて、クリープ破断強度をより高めることが可能になる。しかしながら、Zrの含有量が0.005%未満では十分な効果が得られず、一方、0.2%を超えると熱間加工性が低下する。したがって、Zrの含有量は0.005〜0.2%とした。Zrの含有量は、0.01〜0.1%とすることがより好ましく、0.01〜0.05%とすればさらに好ましい。
P≦3/{200(Ti+8.5×Zr)}・・・(1)
Al≧1.5×Zr・・・(3)
の2つの式も満たす必要がある。
Alは、脱酸作用を有する元素であり、その効果を発揮するには0.01%以上の含有量が必要である。なお、Alを多く含む場合には、γ’相が析出してクリープ破断強度を高めることができるが、本発明においては、適正量のW、TiおよびZr含有させ、α−Cr相とLaves相等による複合析出強化でクリープ破断強度を飛躍的に高めることができるため、γ’相による強化は不要である。しかも、Alの含有量が0.3%を超える場合には、熱間加工性、延性および靱性が劣化することがある。したがって、熱間加工性、延性、靱性を重視して、Alの含有量を0.01〜0.3%とした。
Al≧1.5×Zr・・・(3)
の式も満たす必要がある。
α−Cr相の析出促進のためにZrおよびTiを必須の元素として含有する本発明においては、通常の溶解法では不可避的に含まれる元素であるNは、ZrNおよびTiNの形成によるZrとTiの消費を避けるために、その含有量は極力低減する必要がある。しかしながら、N含有量の極端な低減は、特殊溶解法や高純度原料を必要とし経済性を損なう。したがって、Nの含有量は0.02%以下とした。なお、Nの好ましい含有量は0.015%以下である。
従来、Moは、マトリックスに固溶して、固溶強化元素としてクリープ破断強度の向上に寄与する元素として、Wと同等の作用を有する元素と考えられてきた。しかしながら、本発明者らの検討によって、前述した量のWとCrを含む合金にMoが複合して含まれている場合には、長時間側でσ相が析出することがあり、このため、クリープ破断強度、延性および靱性の低下をきたすことがあることが判明した。このため、Mo含有量は極力低くすることが望ましく、0.5%未満とした。なお、Moの含有量は0.2%未満に制限することがさらに好ましい。
Coは、Niと同様オーステナイト組織を安定にする作用を有するとともに、クリープ破断強度の向上にも寄与する元素であるので、前記の効果を得るためにCoを含有してもよい。しかしながら、20%を超えてCoを含有しても上記の効果が飽和してコストが嵩むばかりであり、しかも、熱間加工性も低下する。したがって、含有させる場合のCoの量を20%以下とした。なお、Co含有量の上限は15%とすることが望ましい。一方、前記したCoのオーステナイト組織を安定にする効果およびクリープ破断強度の向上効果を確実に得るためには、Co含有量の下限を0.05%とすることが好ましく、0.5%とすれば一層好ましい。
1.35×Cr≦Ni+Co≦1.85×Cr・・・(4)
の式も満たす必要がある。
〈1〉Nb:1.0%以下、V:1.5%以下、Hf:1%以下およびB:0.05%以下、
〈2〉Mg:0.05%以下、Ca:0.05%以下、Y:0.5%以下、La:0.5%以下、Ce:0.5%以下、Nd:0.5%以下およびSc:0.5%以下、
〈3〉Ta:8%以下、Re:8%以下、Ir:5%以下、Pd:5%以下、Pt:5%以下およびAg:5%以下。
Nbは、炭窒化物を形成して高温強度およびクリープ破断強度を向上させるとともに結晶粒を微細化して延性を向上させる作用を有する。このため、これらの効果を得るためにNbを含有してもよい。しかしながら、Nbの含有量が1.0%を超えると、熱間加工性および靱性が低下する。したがって、含有させる場合のNbの量を1.0%以下とした。なお、Nb含有量の上限は0.9%とすることが望ましい。一方、前記したNbの高温強度、クリープ破断強度および延性の向上効果を確実に得るためには、Nb含有量の下限を0.05%とすることが好ましく、0.1%とすれば一層好ましい。
Vは、炭窒化物を形成して高温強度およびクリープ破断強度を向上させる作用を有する。このため、これらの効果を得るためにVを含有してもよい。しかしながら、Vの含有量が1.5%を超えると、耐高温腐食性が低下し、さらに脆化相の析出に起因した延性および靱性の劣化をきたす。したがって、含有させる場合のVの量を1.5%以下とした。なお、V含有量の上限は1%とすることが望ましい。一方、前記したVの高温強度およびクリープ破断強度の向上効果を確実に得るためには、V含有量の下限を0.02%とすることが好ましく、0.04%とすれば一層好ましい。
Hfは、炭窒化物として析出強化に寄与し高温強度およびクリープ破断強度を向上させる作用を有するので、これらの効果を得るためにHfを含有してもよい。しかしながら、Hfの含有量が1%を超えると、加工性および溶接性が損なわれる。したがって、含有させる場合のHfの量を1%以下とした。なお、Hf含有量の上限は0.8%とすることが望ましく、0.5%とすればさらに望ましい。一方、前記したHfの高温強度およびクリープ破断強度向上効果を確実に得るためには、Hf含有量の下限を0.01%とすることが好ましく、0.02%とすれば一層好ましい。
Bは、B単体で粒界に、または炭窒化物中に存在し、高温での使用中における粒界強化による粒界すべり抑制および炭窒化物の微細分散析出促進によって、高温強度およびクリープ破断強度を向上させる作用を有する。しかしながら、Bの含有量が0.05%を超えると、溶接性が劣化する。したがって、含有させる場合のBの量を0.05%以下とした。なお、B含有量の上限は0.01%とすることが望ましく、0.005%とすればさらに望ましい。一方、前記したBの高温強度およびクリープ破断強度の向上効果を確実に得るためには、その含有量の下限を0.0005%とすることが好ましく、0.001%とすれば一層好ましい。
Mgは、合金中に不可避的に含有されるSを硫化物として固定して熱間加工性を改善する作用を有するので、この効果を得るためにMgを含有してもよい。しかしながら、Mgの含有量が0.05%を超えると、清浄性が低下し、かえって熱間加工性および延性が損なわれる。したがって、含有させる場合のMgの量を0.05%以下とした。なお、Mg含有量の上限は0.02%とすることが望ましく、0.01%とすればさらに望ましい。一方、前記したMgの熱間加工性向上効果を確実に得るためには、Mg含有量の下限を0.0005%とすることが好ましく、0.001%とすれば一層好ましい。
Caは、熱間加工性を阻害するSを硫化物として固定して熱間加工性を改善する作用を有するので、この効果を得るためにCaを含有してもよい。しかしながら、Caの含有量が0.05%を超えると、清浄性が低下し、かえって熱間加工性および延性が損なわれる。したがって、含有させる場合のCaの量を0.05%以下とした。なお、Ca含有量の上限は0.02%とすることが望ましく、0.01%とすればさらに望ましい。一方、前記したCaの熱間加工性向上効果を確実に得るためには、Ca含有量の下限を0.0005%とすることが好ましく、0.001%とすれば一層好ましい。
Yは、Sを硫化物として固定して熱間加工性を改善する作用を有する。また、Yには、鋼表面のCr2O3保護皮膜の密着性を改善し、特に、繰り返し酸化時の耐酸化性を改善する作用、さらには、粒界強化に寄与して、クリープ破断強度およびクリープ破断延性を向上させる作用もある。しかしながら、Yの含有量が0.5%を超えると、酸化物などの介在物が多くなり加工性や溶接性が損なわれる。したがって、含有させる場合のYの量を0.5%以下とした。なお、Y含有量の上限は0.3%とすることが望ましく、0.15%とすればさらに望ましい。一方、Yの前記した効果を確実に得るためには、その含有量の下限を0.0005%とすることが好ましい。Y含有量のより好ましい下限は0.001%で、一層好ましい下限は0.002%である。
Laは、Sを硫化物として固定して熱間加工性を改善する作用を有する。また、Laには、鋼表面のCr2O3保護皮膜の密着性を改善し、特に、繰り返し酸化時の耐酸化性を改善する作用、さらには、粒界強化に寄与して、クリープ破断強度およびクリープ破断延性を向上させる作用もある。しかしながら、Laの含有量が0.5%を超えると、酸化物などの介在物が多くなり加工性や溶接性が損なわれる。したがって、含有させる場合のLaの量を0.5%以下とした。なお、La含有量の上限は0.3%とすることが望ましく、0.15%とすればさらに望ましい。一方、Laの前記した効果を確実に得るためには、La含有量の下限を0.0005%とすることが好ましい。La含有量のより好ましい下限は0.001%で、一層好ましい下限は0.002%である。
Ceも、Sを硫化物として固定して熱間加工性を改善する作用を有する。また、Ceには、鋼表面のCr2O3保護皮膜の密着性を改善し、特に、繰り返し酸化時の耐酸化性を改善する作用、さらには、粒界強化に寄与して、クリープ破断強度およびクリープ破断延性を向上させる作用もある。しかしながら、Ceの含有量が0.5%を超えると、酸化物などの介在物が多くなり加工性や溶接性が損なわれる。したがって、含有させる場合のCeの量を0.5%以下とした。なお、Ce含有量の上限は0.3%とすることが望ましく、0.15%とすればさらに望ましい。一方、Ceの前記した効果を確実に得るためには、その含有量の下限を0.0005%とすることが好ましい。Ce含有量のより好ましい下限は0.001%で、一層好ましい下限は0.002%である。
Ndは、Sを硫化物として固定して熱間加工性を改善する作用を有する。また、Ndには、鋼表面のCr2O3保護皮膜の密着性を改善し、特に、繰り返し酸化時の耐酸化性を改善する作用、さらには、粒界強化に寄与して、クリープ破断強度およびクリープ破断延性を向上させる作用もある。しかしながら、Ndの含有量が0.5%を超えると、酸化物などの介在物が多くなり加工性や溶接性が損なわれる。したがって、含有させる場合のNdの量を0.5%以下とした。なお、Nd含有量の上限は0.3%とすることが望ましく、0.15%とすればさらに望ましい。一方、Ndの前記した効果を確実に得るためには、その含有量の下限を0.0005%とすることが好ましい。Nd含有量のより好ましい下限は0.001%で、一層好ましい下限は0.002%である。
Scも、Sを硫化物として固定して熱間加工性を改善する作用を有する。また、Scには、鋼表面のCr2O3保護皮膜の密着性を改善し、特に、繰り返し酸化時の耐酸化性を改善する作用、さらには、粒界強化に寄与して、クリープ破断強度およびクリープ破断延性を向上させる作用もある。しかしながら、Scの含有量が0.5%を超えると、酸化物などの介在物が多くなり加工性や溶接性が損なわれる。したがって、含有させる場合のScの量を0.5%以下とした。なお、Sc含有量の上限は0.3%とすることが望ましく、0.15%とすればさらに望ましい。一方、Scの前記した効果を確実に得るためには、Sc含有量の下限を0.0005%とすることが好ましい。Sc含有量のより好ましい下限は0.001%で、一層好ましい下限は0.002%である。
Taは、マトリックスであるオーステナイトに固溶するとともに、炭窒化物を形成して、高温強度およびクリープ破断強度を向上させる作用を有する。このため、これらの効果を得るためにTaを含有してもよい。しかしながら、Taの含有量が8%を超えると、加工性や機械的性質が損なわれる。したがって、含有させる場合のTaの量を8%以下とした。なお、Ta含有量の上限は7%とすることが望ましく、6%とすればさらに望ましい。一方、Taの前記した効果を確実に得るためには、Ta含有量の下限を0.01%とすることが好ましい。Ta含有量のより好ましい下限は0.1%で、一層好ましい下限は0.5%である。
Reは、マトリックスであるオーステナイトに固溶して、高温強度およびクリープ破断強度を向上させる作用を有するので、これらの効果を得るためにReを含有してもよい。しかしながら、Reの含有量が8%を超えると、加工性や機械的性質が損なわれる。したがって、含有させる場合のReの量を8%以下とした。なお、Re含有量の上限は7%とすることが望ましく、6%とすればさらに望ましい。一方、Reの前記した効果を確実に得るためには、Re含有量の下限を0.01%とすることが好ましい。Re含有量のより好ましい下限は0.1%で、一層好ましい下限は0.5%である。
Irは、マトリックスであるオーステナイトに固溶するとともに、含有量に応じて一部は微細な金属間化合物を形成して、高温強度およびクリープ破断強度を向上させる作用を有する。このため、これらの効果を得るためにIrを含有してもよい。しかしながら、Irの含有量が5%を超えると、加工性や機械的性質が損なわれる。したがって、含有させる場合のIrの量を5%以下とした。なお、Ir含有量の上限は4%とすることが望ましく、3%とすればさらに望ましい。一方、Irの前記した効果を確実に得るためには、Ir含有量の下限を0.01%とすることが好ましい。Ir含有量のより好ましい下限は0.05%で、一層好ましい下限は0.1%である。
Pdは、マトリックスであるオーステナイトに固溶するとともに、含有量に応じて一部は微細な金属間化合物を形成して、高温強度およびクリープ破断強度を向上させる作用を有する。このため、これらの効果を得るためにPdを含有してもよい。しかしながら、Pdの含有量が5%を超えると、加工性や機械的性質が損なわれる。したがって、含有させる場合のPdの量を5%以下とした。なお、Pd含有量の上限は4%とすることが望ましく、3%とすればさらに望ましい。一方、Pdの前記した効果を確実に得るためには、Pd含有量の下限を0.01%とすることが好ましい。Pd含有量のより好ましい下限は0.05%で、一層好ましい下限は0.1%である。
Ptも、マトリックスであるオーステナイトに固溶するとともに、含有量に応じて一部は微細な金属間化合物を形成して、高温強度およびクリープ破断強度を向上させる作用を有するので、これらの効果を得るためにPtを含有してもよい。しかしながら、Ptの含有量が5%を超えると、加工性や機械的性質が損なわれる。したがって、含有させる場合のPtの量を5%以下とした。なお、Pt含有量の上限は4%とすることが望ましく、3%とすればさらに望ましい。一方、Ptの前記した効果を確実に得るためには、その含有量の下限を0.01%とすることが好ましい。Pt含有量のより好ましい下限は0.05%で、一層好ましい下限は0.1%である。
Agは、マトリックスであるオーステナイトに固溶するとともに、含有量に応じて一部は微細な金属間化合物を形成して、高温強度およびクリープ破断強度を向上させる作用を有する。このため、これらの効果を得るためにAgを含有してもよい。しかしながら、Agの含有量が5%を超えると、加工性や機械的性質が損なわれる。したがって、含有させる場合のAgの量を5%以下とした。なお、Ag含有量の上限は4%とすることが望ましく、3%とすればさらに望ましい。一方、Agの前記した効果を確実に得るためには、Ag含有量の下限を0.01%とすることが好ましい。Ag含有量のより好ましい下限は0.05%で、一層好ましい下限は0.1%である。
本発明のオーステナイト系耐熱合金は、Ti、ZrおよびPの含有量がそれぞれ、既に述べた範囲にあって、かつ、
P≦3/{200(Ti+8.5×Zr)}・・・(1)
の式を満たす必要がある。これは、TiおよびZrが、耐熱合金の融点を下げ、また、Pが熱間加工性を低下させるので、Ti、ZrおよびPの含有量が既に述べた範囲にあっても、上記(1)式を満足しない場合には、熱間加工性、特に、1150℃以上の高温側での熱間加工性が低下し、さらに、溶接時の耐高温割れ性が低下することがあるからである。しかしながら、Ti、ZrおよびPの含有量が、上記の(1)の式を満たせば、高いクリープ破断強度を維持したうえで、安定かつ確実に1150℃以上の高温側での熱間加工性を改善することができ、さらに、溶接時の耐高温割れ性を高めることもできる。
1.35×Cr≦Ni+Co≦1.85×Cr
Niの含有量が、既に述べた範囲にあって、かつ、Cr含有量との関係で、
1.35×Cr≦Ni≦1.85×Cr・・・(2)
の式を満たすか、Coを複合して含む場合には、NiとCoの含有量がそれぞれ、既に述べた範囲にあって、かつ、Cr含有量との関係で、
1.35×Cr≦Ni+Co≦1.85×Cr・・・(4)
の式を満たすことによって、安定かつ確実に高温で長時間使用中のσ相の析出を抑制することができ、しかも、最適量のα−Cr相を析出させることが可能になる。したがって、本発明のオーステナイト系耐熱合金は、上記の(2)式または(4)式を満たすこととした。
本発明のオーステナイト系耐熱合金は、AlおよびZrの含有量がそれぞれ、既に述べた範囲にあって、かつ、
Al≧1.5×Zr・・・(3)
の式を満たす必要がある。これは、AlおよびZrの含有量が既に述べた範囲にあっても、上記(3)式を満足しない場合には、Zrのα−Cr相の析出を促進させてクリープ破断強度を高める作用が十分確保できない場合があるからである。しかしながら、AlおよびZrの含有量が、上記の(3)の式を満足せば、安定かつ確実にZrのα−Cr相の析出を促進させてクリープ破断強度を高める作用を得ることができる。
次に、本発明のオーステナイト系耐熱合金からなる耐熱耐圧部材を得るための好ましい製造方法について説明する。この製造方法は、先に述べた(i)、(ii)および(iii)の工程を順次経ることを特徴とする。
本発明の方法においては、熱間または冷間による最終の加工前に、少なくとも1回の加熱を行って、加工中に析出した合金中の析出物を十分に固溶させる必要がある。しかし、その加熱温度が1050℃未満の場合には、加熱後の合金中に安定なTiやBを含む未固溶炭窒化物や酸化物が存在するようになる。その結果、これが次の工程(ii)において不均一な歪みを蓄積させる原因となり、工程(iii)の最終熱処理において再結晶を不均一にする。また、未固溶炭窒化物や酸化物それ自体が均一な再結晶を阻害してしまう。一方、1250℃を超える温度に加熱すると、高温粒界割れや延性低下を引き起こすことがある。このため、本発明の好ましい方法においては、熱間または冷間による最終の加工前に、少なくとも1回、1050〜1250℃に加熱する。好ましい下限は1150℃であり、好ましい上限は1230℃である。
工程(ii)の塑性加工は、次の最終熱処理において再結晶を促進させるために歪みを付与する目的で行う。この加工の断面減少率が10%未満の場合は、再結晶に必要な歪みを付与することができない。このため、塑性加工は断面減少率10%以上で行う。望ましい断面減少率の下限は20%である。なお、断面減少率は大きいほどよいので上限は規定しないが、通常の加工での最大値は90%程度である。また、この加工工程は製品の寸法を決定する工程でもある。
この熱処理の加熱温度が1100℃よりも低いと、十分な再結晶が起こらない。また、結晶粒が扁平な加工組織となり、クリープ強度が低くなる。一方、1250℃を超える温度に加熱すると、高温粒界割れや延性低下を引き起こすことがあるので、最終製品熱処理の温度は、1100〜1250℃とする。好ましい熱処理温度は、工程(i)における加熱温度よりも10℃以上高い温度である。
P≦3/{200(Ti+8.5×Zr)}・・・(1)
1.35×Cr≦Ni≦1.85×Cr・・・(2)
Al≧1.5×Zr・・・(3)
なお、各式中の元素記号は、その元素の質量%での含有量を表す。
P≦3/{200(Ti+8.5×Zr)}・・・(1)
1.35×Cr≦Ni+Co≦1.85×Cr・・・(4)
Al≧1.5×Zr・・・(3)
なお、各式中の元素記号は、その元素の質量%での含有量を表す。
Pは、不純物として合金中に不可避的に混入し、熱間加工性を低下させる。特に、Pの含有量が0.03%を超えると、熱間加工性の低下が著しくなる。したがって、不純物としてのPの含有量を0.03%以下とした。
Sは、Pと同様に不純物として合金中に不可避的に混入し、熱間加工性を低下させる。特に、Sの含有量が0.01%を超えると、熱間加工性の低下が著しくなる。したがって、不純物としてのSの含有量を0.01%以下とした。
α−Cr相の析出促進のためにZrおよびTiを必須の元素として含有する本発明においては、通常の溶解法では不可避的に含まれる元素であるNは、ZrNおよびTiNの形成によるZrとTiの消費を避けるために、その含有量は極力低減する必要がある。しかしながら、N含有量の極端な低減は、特殊溶解法や高純度原料を必要とし経済性を損なう。したがって、不純物としてのNの含有量は0.02%以下とした。なお、不純物としてのNの好ましい含有量は0.015%以下である。
従来、Moは、マトリックスに固溶して、固溶強化元素としてクリープ破断強度の向上に寄与する元素として、Wと同等の作用を有する元素と考えられてきた。しかしながら、本発明者らの検討によって、前述した量のWとCrを含む合金にMoが複合して含まれている場合には、長時間側でσ相が析出することがあり、このため、クリープ破断強度、延性および靱性の低下をきたすことがあることが判明した。このため、Mo含有量は極力低くすることが望ましく、不純物としてのMoの含有量を0.5%未満とした。なお、不純物としてのMoの含有量は0.2%未満に制限することがさらに好ましい。
Claims (5)
- 質量%で、C:0.02%を超えて0.15%以下、Si:2%以下、Mn:3%以下、P:0.03%以下、S:0.01%以下、Cr:28〜38%、Ni:40%を超えて60%以下、W:3%を超えて15%以下、Ti:0.05〜1.0%、Zr:0.005〜0.2%、Al:0.01〜0.3%を含有し、かつ、N:0.02%以下、Mo:0.5%未満であり、残部がFeおよび不純物からなり、さらに、下記の(1)〜(3)式を満足することを特徴とするオーステナイト系耐熱合金。
P≦3/{200(Ti+8.5×Zr)}・・・(1)
1.35×Cr≦Ni≦1.85×Cr・・・(2)
Al≧1.5×Zr・・・(3)
なお、各式中の元素記号は、その元素の質量%での含有量を表す。 - 質量%で、C:0.02%を超えて0.15%以下、Si:2%以下、Mn:3%以下、P:0.03%以下、S:0.01%以下、Cr:28〜38%、Ni:40%を超えて60%以下、Co:20%以下、W:3%を超えて15%以下、Ti:0.05〜1.0%、Zr:0.005〜0.2%、Al:0.01〜0.3%を含有し、かつ、N:0.02%以下、Mo:0.5%未満であり、残部がFeおよび不純物からなり、さらに、下記の(1)式、(3)式および(4)式を満足することを特徴とするオーステナイト系耐熱合金。
P≦3/{200(Ti+8.5×Zr)}・・・(1)
1.35×Cr≦Ni+Co≦1.85×Cr・・・(4)
Al≧1.5×Zr・・・(3)
なお、各式中の元素記号は、その元素の質量%での含有量を表す。 - 質量%で、さらに、下記の〈1〉〜〈3〉のグループから選択される1以上のグループに属する1種以上の元素を含有することを特徴とする請求項1または2に記載のオーステナイト系耐熱合金。
〈1〉Nb:1.0%以下、V:1.5%以下、Hf:1%以下およびB:0.05%以下
〈2〉Mg:0.05%以下、Ca:0.05%以下、Y:0.5%以下、La:0.5%以下、Ce:0.5%以下、Nd:0.5%以下およびSc:0.5%以下
〈3〉Ta:8%以下、Re:8%以下、Ir:5%以下、Pd:5%以下、Pt:5%以下およびAg:5%以下 - 請求項1から3までのいずれかに記載のオーステナイト系耐熱合金からなることを特徴とする高温域での耐クリープ特性と組織安定性に優れた耐熱耐圧部材。
- 請求項1から3までのいずれかに記載のオーステナイト系耐熱合金を、下記の工程(i)、(ii)および(iii)で順次処理することを特徴とする請求項4に記載の高温域での耐クリープ特性と組織安定性に優れた耐熱耐圧部材の製造方法。
工程(i):熱間または冷間による最終の加工前に、少なくとも1回、1050〜1250℃に加熱する。
工程(ii):熱間または冷間による断面減少率10%以上の最終の塑性加工を行う。
工程(iii):1100〜1250℃の範囲内の温度に加熱保持した後冷却する最終熱処理を行う。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008156352 | 2008-06-16 | ||
JP2008156352 | 2008-06-16 | ||
PCT/JP2009/060837 WO2009154161A1 (ja) | 2008-06-16 | 2009-06-15 | オーステナイト系耐熱合金ならびにこの合金からなる耐熱耐圧部材とその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4431905B2 JP4431905B2 (ja) | 2010-03-17 |
JPWO2009154161A1 true JPWO2009154161A1 (ja) | 2011-12-01 |
Family
ID=41434076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009524838A Active JP4431905B2 (ja) | 2008-06-16 | 2009-06-15 | オーステナイト系耐熱合金ならびにこの合金からなる耐熱耐圧部材とその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (2) | US20110088819A1 (ja) |
EP (1) | EP2287349B1 (ja) |
JP (1) | JP4431905B2 (ja) |
KR (1) | KR101280114B1 (ja) |
CN (1) | CN102066594B (ja) |
ES (1) | ES2728670T3 (ja) |
WO (1) | WO2009154161A1 (ja) |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5552284B2 (ja) * | 2009-09-14 | 2014-07-16 | 信越化学工業株式会社 | 多結晶シリコン製造システム、多結晶シリコン製造装置および多結晶シリコンの製造方法 |
DK2511389T3 (en) * | 2009-12-10 | 2015-02-23 | Nippon Steel & Sumitomo Metal Corp | Austenitic heat resistant alloy |
JP5782753B2 (ja) * | 2010-03-19 | 2015-09-24 | 新日鐵住金株式会社 | 高Cr高Ni合金管の製造方法および高Cr高Ni合金 |
CN102409258B (zh) * | 2011-11-04 | 2013-07-10 | 中国科学院金属研究所 | 一种含硼的高强度、耐氢脆合金的组织均匀性控制方法 |
JP5212533B2 (ja) * | 2011-11-15 | 2013-06-19 | 新日鐵住金株式会社 | 継目無オーステナイト系耐熱合金管 |
JP5857894B2 (ja) * | 2012-07-05 | 2016-02-10 | 新日鐵住金株式会社 | オーステナイト系耐熱合金 |
CN102758096B (zh) * | 2012-08-08 | 2013-09-25 | 贵州航天新力铸锻有限责任公司 | 核电站流量限制器用镍基高温合金材料的制备方法 |
US9707530B2 (en) * | 2012-08-21 | 2017-07-18 | Uop Llc | Methane conversion apparatus and process using a supersonic flow reactor |
US9656229B2 (en) * | 2012-08-21 | 2017-05-23 | Uop Llc | Methane conversion apparatus and process using a supersonic flow reactor |
US20140058176A1 (en) * | 2012-08-21 | 2014-02-27 | Uop Llc | Methane conversion apparatus and process using a supersonic flow reactor |
JP6492747B2 (ja) * | 2014-03-25 | 2019-04-03 | 新日鐵住金株式会社 | オーステナイト系耐熱合金管の製造方法およびその製造方法によって製造されたオーステナイト系耐熱合金管 |
CN104946932B (zh) * | 2014-03-25 | 2018-04-20 | 新日铁住金株式会社 | 奥氏体系耐热合金管的制造方法以及利用该制造方法制造的奥氏体系耐热合金管 |
CN104213013B (zh) * | 2014-09-28 | 2016-09-21 | 哈尔滨工业大学 | 一种TiZrNbMoxHfy多主元高温合金及其制备方法 |
RU2571674C1 (ru) * | 2014-10-07 | 2015-12-20 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Жаропрочный деформируемый сплав на основе никеля и изделие, выполненное из этого сплава |
KR102031776B1 (ko) * | 2015-02-12 | 2019-10-14 | 닛폰세이테츠 가부시키가이샤 | 오스테나이트계 내열합금 용접 조인트의 제조 방법 및 그것을 이용하여 얻어지는 용접 조인트 |
JP6519007B2 (ja) | 2015-04-03 | 2019-05-29 | 日本製鉄株式会社 | Ni基耐熱合金溶接継手の製造方法 |
RU2623940C2 (ru) * | 2015-06-23 | 2017-06-29 | Открытое акционерное общество "Научно-производственное объединение "Сатурн" | Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии |
KR101982961B1 (ko) * | 2015-06-26 | 2019-05-27 | 닛폰세이테츠 가부시키가이샤 | 원자력용 Ni기 합금관 |
JP6780233B2 (ja) * | 2015-11-05 | 2020-11-04 | 日本製鉄株式会社 | オーステナイト系耐熱合金およびその製造方法 |
CN108474053B (zh) * | 2015-12-30 | 2020-03-10 | 山特维克知识产权股份有限公司 | 生产奥氏体不锈钢管的方法 |
JP6690359B2 (ja) * | 2016-03-30 | 2020-04-28 | 日本製鉄株式会社 | オーステナイト系耐熱合金部材およびその製造方法 |
KR102172891B1 (ko) * | 2016-04-07 | 2020-11-02 | 닛폰세이테츠 가부시키가이샤 | 오스테나이트계 스테인리스 강재 |
US10934608B2 (en) * | 2016-07-27 | 2021-03-02 | Saint-Gobain Seva | Nickel-chromium-iron-based casting alloy |
JP2018127672A (ja) * | 2017-02-08 | 2018-08-16 | 新日鐵住金株式会社 | オーステナイト系耐熱合金部材 |
CA3052547C (en) * | 2017-02-09 | 2020-06-02 | Nippon Steel Corporation | Austenitic heat resistant alloy and method for producing the same |
US20200010930A1 (en) * | 2017-02-21 | 2020-01-09 | Hitachi Metals, Ltd. | Ni-based super heat-resistant alloy and method for manufacturing same |
CN111566257B (zh) * | 2018-01-10 | 2023-05-30 | 日本制铁株式会社 | 奥氏体系耐热合金及其制造方法、以及奥氏体系耐热合金材料 |
JP6950752B2 (ja) * | 2018-01-10 | 2021-10-13 | 日本製鉄株式会社 | オーステナイト系耐熱合金及びその製造方法 |
EP3797180A1 (en) * | 2018-05-23 | 2021-03-31 | AB Sandvik Materials Technology | New austenitic alloy |
JP7131332B2 (ja) * | 2018-11-26 | 2022-09-06 | 日本製鉄株式会社 | オーステナイト系耐熱合金及びオーステナイト系耐熱合金部品 |
JP7421054B2 (ja) * | 2019-05-14 | 2024-01-24 | 日本製鉄株式会社 | オーステナイト系耐熱合金部材 |
CN110343932B (zh) * | 2019-08-28 | 2021-06-08 | 合肥工业大学 | 一种具有高强度的WVTaZrSc难熔高熵合金及其制备方法 |
CN110578088B (zh) * | 2019-09-02 | 2020-10-27 | 特冶(北京)科技发展有限公司 | 一种耐高温气门及其生产方法 |
CN111607720A (zh) * | 2020-05-14 | 2020-09-01 | 中南大学 | 一种粉末镍基高温合金及其制备方法 |
CN115354195B (zh) * | 2022-09-23 | 2023-12-12 | 北京北冶功能材料有限公司 | 一种抗裂纹镍基高温合金及其制备方法和应用 |
CN115522102B (zh) * | 2022-10-12 | 2023-07-18 | 苏州大学 | 一种铝合金导电材料及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07216511A (ja) * | 1994-01-31 | 1995-08-15 | Sumitomo Metal Ind Ltd | 高温強度に優れた高クロムオーステナイト耐熱合金 |
JPH07331390A (ja) * | 1994-06-08 | 1995-12-19 | Sumitomo Metal Ind Ltd | 高クロムオーステナイト耐熱合金 |
JPH08127848A (ja) * | 1994-11-01 | 1996-05-21 | Sumitomo Metal Ind Ltd | 高温強度に優れた高クロムオーステナイト耐熱合金 |
JP2004003000A (ja) * | 2002-04-17 | 2004-01-08 | Sumitomo Metal Ind Ltd | 高温強度と耐食性に優れたオーステナイト系ステンレス鋼ならびにこの鋼からなる耐熱耐圧部材とその製造方法 |
JP2005048284A (ja) * | 2003-07-17 | 2005-02-24 | Sumitomo Metal Ind Ltd | 耐浸炭性と耐コーキング性を有するステンレス鋼およびステンレス鋼管 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60100640A (ja) | 1983-11-07 | 1985-06-04 | Nippon Kokan Kk <Nkk> | 耐熱耐食性の優れた高クロム合金 |
JPS61174350A (ja) | 1985-01-28 | 1986-08-06 | Nippon Kokan Kk <Nkk> | 高クロム耐熱合金 |
JPH0639661B2 (ja) | 1985-05-30 | 1994-05-25 | 日本鋼管株式会社 | 高温耐食性、高温強度に優れた熱間加工高クロム合金鋼 |
JPS61276948A (ja) | 1985-05-30 | 1986-12-06 | Nippon Kokan Kk <Nkk> | 熱間加工性の優れた高クロム合金鋼 |
JPS6263654A (ja) | 1985-09-13 | 1987-03-20 | Nippon Kokan Kk <Nkk> | 耐熱性の優れた合金 |
JPS6455352A (en) | 1987-08-26 | 1989-03-02 | Nippon Kokan Kk | Heat-resisting alloy |
JP2760004B2 (ja) | 1989-01-30 | 1998-05-28 | 住友金属工業株式会社 | 加工性に優れた高強度耐熱鋼 |
JPH0734166A (ja) | 1993-07-16 | 1995-02-03 | Sumitomo Metal Ind Ltd | 高クロムオーステナイト耐熱合金 |
JPH0770681A (ja) | 1993-09-03 | 1995-03-14 | Sumitomo Metal Ind Ltd | 高クロムオーステナイト耐熱合金 |
JPH08218140A (ja) | 1995-02-10 | 1996-08-27 | Sumitomo Metal Ind Ltd | 高温強度と耐高温腐食性に優れた高クロムオーステナイト耐熱合金 |
JPH101754A (ja) * | 1996-06-12 | 1998-01-06 | Sumitomo Metal Ind Ltd | スキッドボタン用耐熱合金 |
JPH1096038A (ja) | 1996-09-24 | 1998-04-14 | Sumitomo Metal Ind Ltd | 高Crオーステナイト系耐熱合金 |
KR100532877B1 (ko) | 2002-04-17 | 2005-12-01 | 스미토모 긴조쿠 고교 가부시키가이샤 | 고온강도와 내식성이 우수한 오스테나이트계 스테인레스강및 상기 강으로부터 이루어지는 내열 내압부재와 그제조방법 |
CN1280445C (zh) | 2003-07-17 | 2006-10-18 | 住友金属工业株式会社 | 具有耐渗碳性和耐焦化性的不锈钢和不锈钢管 |
CA2603681C (en) | 2005-04-04 | 2011-07-05 | Sumitomo Metal Industries, Ltd. | Austenitic stainless steel |
-
2009
- 2009-06-15 CN CN2009801226233A patent/CN102066594B/zh not_active Expired - Fee Related
- 2009-06-15 JP JP2009524838A patent/JP4431905B2/ja active Active
- 2009-06-15 ES ES09766609T patent/ES2728670T3/es active Active
- 2009-06-15 KR KR1020117000584A patent/KR101280114B1/ko active IP Right Grant
- 2009-06-15 WO PCT/JP2009/060837 patent/WO2009154161A1/ja active Application Filing
- 2009-06-15 EP EP09766609.3A patent/EP2287349B1/en not_active Not-in-force
-
2010
- 2010-12-13 US US12/965,954 patent/US20110088819A1/en not_active Abandoned
-
2013
- 2013-06-03 US US13/908,027 patent/US8801877B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07216511A (ja) * | 1994-01-31 | 1995-08-15 | Sumitomo Metal Ind Ltd | 高温強度に優れた高クロムオーステナイト耐熱合金 |
JPH07331390A (ja) * | 1994-06-08 | 1995-12-19 | Sumitomo Metal Ind Ltd | 高クロムオーステナイト耐熱合金 |
JPH08127848A (ja) * | 1994-11-01 | 1996-05-21 | Sumitomo Metal Ind Ltd | 高温強度に優れた高クロムオーステナイト耐熱合金 |
JP2004003000A (ja) * | 2002-04-17 | 2004-01-08 | Sumitomo Metal Ind Ltd | 高温強度と耐食性に優れたオーステナイト系ステンレス鋼ならびにこの鋼からなる耐熱耐圧部材とその製造方法 |
JP2005048284A (ja) * | 2003-07-17 | 2005-02-24 | Sumitomo Metal Ind Ltd | 耐浸炭性と耐コーキング性を有するステンレス鋼およびステンレス鋼管 |
Also Published As
Publication number | Publication date |
---|---|
US8801877B2 (en) | 2014-08-12 |
EP2287349B1 (en) | 2019-03-27 |
JP4431905B2 (ja) | 2010-03-17 |
ES2728670T3 (es) | 2019-10-28 |
US20110088819A1 (en) | 2011-04-21 |
CN102066594B (zh) | 2013-03-27 |
WO2009154161A1 (ja) | 2009-12-23 |
KR101280114B1 (ko) | 2013-06-28 |
EP2287349A1 (en) | 2011-02-23 |
KR20110016498A (ko) | 2011-02-17 |
EP2287349A4 (en) | 2017-07-26 |
US20130263974A1 (en) | 2013-10-10 |
CN102066594A (zh) | 2011-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4431905B2 (ja) | オーステナイト系耐熱合金ならびにこの合金からなる耐熱耐圧部材とその製造方法 | |
JP3838216B2 (ja) | オーステナイト系ステンレス鋼 | |
JP6819700B2 (ja) | Ni基耐熱合金部材およびその製造方法 | |
JP4484093B2 (ja) | Ni基耐熱合金 | |
JP6477252B2 (ja) | オーステナイト系耐熱合金および耐熱耐圧部材 | |
KR20190065352A (ko) | NiCrFe 합금 | |
JP6816779B2 (ja) | オーステナイト系耐熱合金部材およびその製造方法 | |
JP5846076B2 (ja) | オーステナイト系耐熱合金 | |
JP2015193912A (ja) | オーステナイト系耐熱合金管の製造方法およびその製造方法によって製造されたオーステナイト系耐熱合金管 | |
JP6520546B2 (ja) | オーステナイト系耐熱合金部材およびその製造方法 | |
JP2020105572A (ja) | オーステナイト系耐熱鋼 | |
JP6547599B2 (ja) | オーステナイト系耐熱鋼 | |
JP6690359B2 (ja) | オーステナイト系耐熱合金部材およびその製造方法 | |
JP7372537B2 (ja) | オーステナイト系耐熱鋼 | |
JP2018059135A (ja) | Ni基耐熱合金部材およびその製造方法 | |
JP6736964B2 (ja) | オーステナイト系耐熱合金部材 | |
JP6747207B2 (ja) | Ni基耐熱合金部材 | |
JP6201731B2 (ja) | オーステナイト系耐熱鋳造合金 | |
JP6825514B2 (ja) | オーステナイト系耐熱合金部材 | |
JP5930635B2 (ja) | 優れた高温強度を有するオーステナイト系耐熱鋼とその製造方法 | |
JP7256374B2 (ja) | オーステナイト系耐熱合金部材 | |
JP2018127672A (ja) | オーステナイト系耐熱合金部材 | |
JP2018123359A (ja) | Ni耐熱合金部材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091125 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091208 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4431905 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140108 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |