RU2623940C2 - Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии - Google Patents

Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии Download PDF

Info

Publication number
RU2623940C2
RU2623940C2 RU2015124670A RU2015124670A RU2623940C2 RU 2623940 C2 RU2623940 C2 RU 2623940C2 RU 2015124670 A RU2015124670 A RU 2015124670A RU 2015124670 A RU2015124670 A RU 2015124670A RU 2623940 C2 RU2623940 C2 RU 2623940C2
Authority
RU
Russia
Prior art keywords
alloy
resistance
nickel alloy
sulfide corrosion
tungsten
Prior art date
Application number
RU2015124670A
Other languages
English (en)
Other versions
RU2015124670A (ru
Inventor
Юрий Николаевич Шмотин
Михаил Рафаилович Гасуль
Сергей Александрович Заводов
Денис Викторович Данилов
Илья Игоревич Хрящев
Игорь Алексеевич Лещенко
Александр Вячеславович Логунов
Юрий Николаевич Захаров
Original Assignee
Открытое акционерное общество "Научно-производственное объединение "Сатурн"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-производственное объединение "Сатурн" filed Critical Открытое акционерное общество "Научно-производственное объединение "Сатурн"
Priority to RU2015124670A priority Critical patent/RU2623940C2/ru
Publication of RU2015124670A publication Critical patent/RU2015124670A/ru
Application granted granted Critical
Publication of RU2623940C2 publication Critical patent/RU2623940C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Continuous Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Изобретение относится к области металлургии и может быть использовано в газотурбинном двигателестроении при производстве рабочих и сопловых охлаждаемых лопаток с монокристаллической структурой. Литейный никелевый сплав содержит, мас. %: хром 9-18, кобальт 7-20, вольфрам 1-8, молибден 0,2-4,0, алюминий 1,5-5,0, титан 1,5-5,0, тантал 2,4-7,5, ниобий 0,05-2,0, бор 0,005-0,5, лантан 0,005-0,5, иттрий 0,01-0,5, церий 0,02-0,5, рений 0,5-6,0, гафний 0,05-1,5, марганец 0,05-1,0, кремний 0,05-1,0, магний 0,01-0,5, углерод 0,003-0,03, скандий 0,0002-0,01, празеодим 0,0002-0,01, гадолиний 0,0002-0,01, неодим 0,0002-0,01. Сплав характеризуется высокой стойкостью к морской солевой коррозии и высоким уровнем жаропрочности. 5 ил., 3 табл.

Description

Изобретение относится к области металлургии и может быть использовано в газотурбинном двигателестроении при производстве рабочих и сопловых охлаждаемых лопаток с монокристаллической структурой.
Освоение газовых и нефтяных месторождений, расположенных на шельфе морского побережья, а также создание, строительство и эксплуатация перспективных тепловых электростанций, в которых реализуется одновременная совместная работа газовой и паровой турбин, при этом коэффициент использования энергии в таких установках достигает 0,55-0,58, требует создание нового поколения литейных никелевых жаропрочных сплавов с монокристальной структурой для охлаждаемых рабочих сопловых лопаток перспективных газотурбинных двигателей и установок.
Сложность решаемой задачи заключается в том, что необходимо найти оптимальное решение, одновременно удовлетворяющее двум главным, противоречащим друг другу требованиям, а именно литейные никелевые сплавы с монокристаллической структурой для охлаждаемых рабочих сопловых лопаток должны обладать повышенной стойкостью к сульфидной коррозии, при этом содержание хрома в нем должно быть достаточно велико (на уровне 12 мас. % и более), и высокой жаропрочностью, что связано с повышенным легированием его такими эффективными при высоких температурах элементами, как вольфрам, молибден, рений. Однако при высоком содержании в сплаве хрома он начинает образовывать с этими элементами охрупчивающие топологически плотноупакованные (ТПУ) фазы, имеющие пластинчатую форму.
Кроме того, жаропрочность и повышенная стойкость к сульфидной коррозии связаны с необходимостью увеличения в сплаве содержания тантала, в этом случае увеличение его концентрации сверх определенного предела приводит к тому, что из кубических выделений (являющихся главным упрочнителем никелевых сплавов при высоких температурах) γ'-фазы типа Ni3 (Al, Ti) начинают выделяться пластинчатые образования η-фазы типа Ni3Ti, которые также резко разупрочняют сплав.
Известен литейных жаропрочный никелевый сплав с повышенной стойкостью к сульфидной коррозии CMSX-11B (патент US 5489346, МПК С22С 19/05; дата публикации 06.02.1996) при следующем соотношении компонентов, мас. %:
хром Cr 12,5
кобальт Со 7
молибден Mo 0,5
вольфрам W 5
тантал Та 5
ниобий Nb 0,1
алюминий Al 3,6
титан Ti 4,2
гафний Hf 0,04
никель Ni остальное
Указанный состав имеет высокий уровень жаропрочности (
Figure 00000001
=183,0 МПа), однако он является недостаточным для перспективных ГТУ, у которых длительная прочность в этих условиях в соответствии с требованиями конструкторов должна быть выше 190,0 МПа. Кроме того, мисфит (относительная разность параметров кристаллических решеток γ- и γ'-фаз) у него отрицательный, что не обеспечивает оптимальный эффект упрочнения и способствует увеличению скорости снижения рабочих характеристик в условиях эксплуатации.
Наиболее близким к технической сущности и достигаемому результату к заявленным требованиям является жаропрочный сплав на основе никеля (Патент РФ 2520934 С1, МПК С22С 19/05, дата публикации 27.06.2014) при следующем соотношении компонентов, мас %:
хром Cr 9-16
кобальт Со 10-16
вольфрам W 4-9
молибден Mo 0,2-3,0
алюминий Al 1,8-4,5
титан Ti 2,0-4,5
тантал Та 2,5-7,0
ниобии Nb 0,01-1,5
бор В 0,01-0,5
лантан La 0,01-0,5
иттрий Y 0,01-0,2
церии Ce 0,01-0,2
рений Re 0,5-5,0
гафний Hf 0,1-1,0
марганец Mn 0,05-1,0
кремний Si 0,05-1,0
магний Mg 0,01-0,2
никель Ni остальное
Указанный сплав обладает высоким уровнем жаропрочности, в определенной степени удовлетворяющим требованиям, предъявляемым к материалам для перспективных ГТУ, работающих в условиях активного воздействия морской солевой коррозии.
Однако проведенные исследования и длительные испытания изделий из этого сплава показали, что для него характерны некоторые недостатки. Отсутствие в составе сплава углерода не обеспечивает необходимый уровень раскисления его при вакуумно-индукционной плавке. В результате в сплаве остается достаточное количество кислорода, что снижает его пластические характеристики и стойкость к сульфидной коррозии. Кроме того, в указанных сплавах использованы не все возможности, обеспечивающие дополнительное повышение их стойкости к морской солевой коррозии без снижения уровня жаропрочных характеристик.
Техническим результатом, на достижение которого направлено изобретение, является разработка нового сплава на никелевой основе, обладающего одновременно высокой стойкостью к морской солевой коррозии и высоким уровнем жаропрочности, что делает его перспективным для применения в проектируемых газотурбинных установках нового поколения, в том числе эксплуатируемых в условиях активного воздействия морской солевой среды, а также в конструкции авиационных ГТД, работающих в морских условиях, и двигателей экранопланов.
Указанный технический результат достигается тем, что литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии, содержащий хром, кобальт, вольфрам, молибден, алюминий, титан, тантал, ниобий, бор, лантан, иттрий, церий, рений, гафний, марганец, кремний и магний, в отличие от известного дополнительно содержит углерод, скандий, празеодим, гадолиний и неодим при следующем соотношении компонентов, мас. %:
хром Cr 9-18
кобальт Со 7-20
вольфрам W 1-8
молибден Mo 0,2-4,0
алюминий Al 1,5-5,0
титан Ti 1,5-5,0
тантал Та 2,4-7,5
ниобий Nb 0,05-2,0
бор В 0,005-0,5
лантан La 0,005-0,5
иттрий Y 0,01-0,5
церий Ce 0,02-0,5
рений Re 0,5-6,0
гафний Hf 0,05-1,5
марганец Mn 0,05-1,0
кремний Si 0,05-1,0
магний Mg 0,01-0,5
углерод С 0,003-0,03
скандий Se 0,0002-0,01
празеодим Pr 0,0002-0,01
гадолиний Gd 0,0002-0,01
неодим Nd 0,0002-0,01
никель Ni остальное
На чертежах показаны:
фиг. 1 - результаты кратковременных испытаний образцов под нагрузкой при температуре 20°С;
фиг. 2 - результаты испытаний образцов на длительную прочность;
фиг. 3 - изменение массы образцов в расплаве солей (10% NaCl+90% Na2SO4);
фиг. 4 - микроструктура сплава в ненагруженном состоянии;
фиг. 5 - микроструктура сплава в процессе испытаний образца.
Повышение жаропрочности никелевого сплава обеспечивается наибольшим и одновременно оптимальным с позиции обеспечения условий отсутствия в структуре охрупчивающих ТПУ-фаз содержанием таких тугоплавких элементов, как вольфрам, тантал, рений в сравнении с аналогами.
Во-первых, в состав сплава одновременно введен углерод. При этом необходимо учесть, что углерод оказывает двойное (положительное и отрицательное) действие на монокристальные сплавы. С одной стороны, легирование этим элементом резко снижает ликвидус (Тликвидус) и солидус (Tсолидус) сплава, температуру полного растворения γ'-фазы, а также величину ее объемной доли. Все это отрицательно сказывается на свойствах монокристальных сплавов, рабочая температура которых достаточно близка к значениям полного растворения (Тп.р.) γ'-фазы. Однако углерод является эффективным раскислителем сплава при его выплавке, существенно снижается концентрация содержащегося в нем кислорода. Поэтому в состав нового сплава предложено ввести углерод, но в ограниченном количестве (0,003-0,03) мас. %. В этом случает его отрицательное влияние невелико, положительное влияние на раскисление сплава остается значительным.
Во-вторых, указанный уровень легирования сплава вольфрамом (4,0-9,0) мас. % является достаточно высоким, что приводит в ряде случаев (вследствие появления при неблагоприятном сочетании высокого содержания других элементов (хром, молибден, рений), способных образовывать топологически плотноупакованные соединения) к появлению охрупчивающих σ- и μ-фаз, снижающих рабочие характеристики материала. Поэтому допустимый интервал легирования сплава вольфрамом снижен до уровня (1,0-8,0) мас. %.
Выполненное изучение влияния легирующих элементов на стойкость сплава к высокотемпературной сульфидной коррозии показало, что активное положительное воздействие на эту характеристику оказывает ниобий, роль которого до проведенных нами исследований была недостаточно изучена и поэтому не была реально оценена в разрабатываемых сплавах. На основании этих исследований с целью повышения стойкости сплава к морской солевой коррозии в его состав предложено ввести ниобий в количестве (0,05-2,0) мас. %.
В третьих, с целью обеспечения дополнительного эффекта раскисления, улучшения условий образования γ'-фазы при распаде γ-твердого раствора в состав нового сплава предлагается ввести: магний, скандий, празеодим, неодим и гадолиний. Каждый из указанных элементов вводится в сплав в количестве (0,0002-0,01) мас. %. При этом их суммарное содержание не должно превышать 0,1 мас. %.
Магний, являясь поверхностно-активным элементом:
- в жидком расплаве эффективно забирает кислород, образуя соединение MgO, который совместно с присутствующим в сплаве кремнием частично переходит в SiO, а получающаяся эвтектическая смесь (MgO+SiO2) является легкоплавкой и свободно оседает на тигле или футеровке;
- заметно снижает диффузионную подвижность атомов по границам зерен, малоугловым границам и в междендритных объемах, тем самым стабилизируя структуру и уменьшая вероятность образования в этих объемах пор, рыхлот и других дефектов.
Скандий, празеодим, гадолиний и неодим, имея в 1,5 раза и выше (так же как и лантан, иттрий, церий) больший атомный диаметр, вследствие крайне низкого коэффициента ликвации при кристаллизации (Ki лик.≈0,01-0,091) в основном скапливается в междендритных областях, в которых одновременно концентрируются примеси серы S, кислорода O2, фосфора Р, азота N2 и других. Соединяясь с ними, эти элементы образуют прочные оксиды, оксикарбонитридное и другие устойчивые при высокой температуре соединения, которые в этих условиях начинают выступать не как разупрочнители, а наоборот - как структурные элементы, эффективно повышающие высокотемпературные рабочие характеристики сплавов.
Существенное различие в атомных радиусах этих элементов (180-200) пм и основных металлов [никель Ni, кобальт Со, хром Cr (120-130) пм] приводит к тому, что в местах их присутствия требуемая энергия для образования новой фазы значительно ниже, что улучшает условия выделения из γ-твердого раствора упрочняющей γ'-фазы. Таким образом микролегирование указанными элементами обеспечивает процессы распада γ-твердого раствора, увеличивая равномерность и количество образующейся при этом γ'-фазы, что было установлено при исследовании методами радиоактивных изотопов.
Кроме того, вследствие большого атомного размера эти элементы располагаются на границах фаз и зерен, улучшая структурное состояние, одновременно значительно тормозя диффузионные процессы при работе сплава в области высоких температур.
В данном случае использование достаточно большого количества микролегирующих элементов объясняется необходимостью обеспечения синергетического эффекта, - когда сравнительно малое суммарное содержание достаточно большого количества различных по назначению элементов приводит к существенному повышению стойкости к окислению, как при высоких температурах, так и в условиях воздействия морской солевой коррозии, а также с точки зрения обеспечения высокой работоспособности в сложных условиях нагружения.
Оценку уровня жаропрочности и стойкости к сульфидной коррозии проводили на опытном сплаве, состав которого представлен в таблице 1.
Монокристаллические заготовки образцов получали в специализированной печи УВНК-8П. Испытания механических характеристик проводили в лаборатории физико-механических испытаний ОАО «НПО «Сатурн» на оборудовании Tinius Olsen (UK).
Figure 00000002
Результаты кратковременных испытаний при температуре 20°С трех образцов представлены на графике σ=f(δ) (фиг. 1) и в таблице 2, при этом на графике изображены кривые растяжения образцов под нагрузкой, а в таблице 2 приведены результаты испытаний механических свойств. Из анализа результатов следует, что образцы имеют высокие значения кратковременной прочности (σВ), предела текучести (σ0,2) и характеристик пластичности (δ20 - относительное удлинение, ψ20 - относительное сужение, Е - модуль Юнга), при этом испытания продемонстрировали высокий уровень сходимости результатов.
Figure 00000003
Также были проведены испытания образцов на длительную прочность, результаты которых представлены на графике σ=f(LMP) (фиг. 2). В таблице 3 приведены рассчитанные нами по параметру Ларсона-Миллера (LMP) стандартные значения длительной прочности (σT τ) опытного сплава (СЛЖС-5) при температурах 950-950-1000°С (основные рабочие температуры сплавов этого класса) при работе до разрушения 100-500-1000 часов.
Видно, что сплав обладает наиболее высоким среди всех известных аналогов уровнем жаропрочности. Наиболее важным является то, что новый сплав имеет высокие показатели стойкости к сульфидной коррозии.
Figure 00000004
Сравнительные результаты испытаний опытного сплава в наиболее жестких условиях - соляной среде (10% NaCl + 90% Na2SO4) при температуре 900°С представлены на графике изменения массы образцов в расплаве солей (фиг. 3). Испытывались одновременно в одинаковых условиях новый сплав (СЛЖС-5), а также широко известные и активно применяемые в настоящее время сплавы ЧС-70 и ЧС-88. Эти сплавы имеют очень высокие (не уступающие мировым аналогам) показатели сопротивления сульфидной коррозии, однако уровень их жаропрочных свойств является недостаточным для обеспечения успешной и эффективной работы ГТУ нового поколения. Видно, что изменение массы при испытаниях в указанной среде при температуре 900°С образцов нового сплава в течение до 260 час почти вдвое выше, чем у сплавов ЧС-70 и ЧС-88.
Разработанный сплав обладает совершенной структурой - мелкими выделениями кубической γ'-фазы и отсутствием охрупчивающих ТГГУ-соединений, которые не образуются не только при выплавке, но и под высокотемпературным воздействием разрушающих напряжений, что хорошо видно на чертежах, где показана микроструктура сплава в ненагруженном состоянии (резьбовая часть) (фиг. 4), а также в области воздействия разрушающих напряжений в процессе испытаний образца (фиг. 5) при температуре 1000°С (рабочая часть). Следы ТПУ-фаз в той и другой областях отсутствуют.
Предлагаемый сплав отличается от сплавов аналогичного назначения наиболее высоким уровнем жаропрочности при весьма высоких показателях стойкости к сульфидной коррозии. Его отличает высокое совершенство структуры, которое обеспечивает условия для отсутствия образования охрупчивающих ТПУ-фаз, как в ненагруженном, так и при работе в условиях сложного высокотемпературного нагружения.
Сплав может быть использован для литых охлаждаемых рабочих и сопловых лопаток не только в ГТУ, но и в двигателях самолетов и вертолетов морской авиации.

Claims (2)

  1. Литейный никелевый сплав, содержащий хром, кобальт, вольфрам, молибден, алюминий, титан, тантал, ниобий, бор, лантан, иттрий, церий, рений, гафний, марганец, кремний и магний, отличающийся тем, что он дополнительно содержит углерод, скандий, празеодим, гадолиний и неодим при следующем соотношении компонентов, мас. %:
  2. хром Cr 9-18 кобальт Со 7-20 вольфрам W 1-8 молибден Mo 0,2-4,0 алюминий Al 1,5-5,0 титан Ti 1,5-5,0 тантал Та 2,4-7,5 ниобий Nb 0,05-2,0 бор В 0,005-0,5 лантан La 0,005-0,5 иттрий Y 0,01-0,5 церий Ce 0,02-0,5 рений Re 0,5-6,0 гафний Hf 0,05-1,5 марганец Μn 0,05-1,0 кремний Si 0,05-1,0 магний Mg 0,01-0,5 углерод С 0,003-0,03 скандий Sc 0,0002-0,01 празеодим Pr 0,0002-0,01 гадолиний Gd 0,0002-0,01 неодим Nd 0,0002-0,01 никель Ni остальное
RU2015124670A 2015-06-23 2015-06-23 Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии RU2623940C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015124670A RU2623940C2 (ru) 2015-06-23 2015-06-23 Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015124670A RU2623940C2 (ru) 2015-06-23 2015-06-23 Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии

Publications (2)

Publication Number Publication Date
RU2015124670A RU2015124670A (ru) 2017-01-10
RU2623940C2 true RU2623940C2 (ru) 2017-06-29

Family

ID=57955503

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015124670A RU2623940C2 (ru) 2015-06-23 2015-06-23 Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии

Country Status (1)

Country Link
RU (1) RU2623940C2 (ru)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2656908C1 (ru) * 2017-10-05 2018-06-07 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
RU2672463C1 (ru) * 2018-03-16 2018-11-14 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
RU2674274C1 (ru) * 2018-03-22 2018-12-06 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
RU2678352C1 (ru) * 2018-05-15 2019-01-28 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения", АО "НПО "ЦНИИТМАШ" Жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок
RU2684000C1 (ru) * 2018-05-16 2019-04-03 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
RU2690623C1 (ru) * 2018-05-30 2019-06-04 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
RU2691790C1 (ru) * 2019-02-20 2019-06-18 Общество с ограниченной ответственностью "НТЦ "Современные технологии металлургии" (ООО "НТЦ "СТМ") Литейный никелевый сплав
RU2695097C1 (ru) * 2019-01-10 2019-07-19 Публичное Акционерное Общество "Одк-Сатурн" Деформируемый жаропрочный сплав на основе никеля
RU2697674C1 (ru) * 2019-05-24 2019-08-16 Общество с ограниченной ответственностью "НТЦ "Современные технологии металлургии" (ООО "НТЦ"СТМ") Жаропрочный никелевый сплав
RU2766197C1 (ru) * 2021-07-19 2022-02-09 Акционерное общество "Металлургический завод "Электросталь" Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него
RU2794497C1 (ru) * 2022-07-15 2023-04-19 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ВИАМ) Жаропрочный сплав на основе никеля и изделие, выполненное из него

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383312B1 (en) * 1997-10-30 2002-05-07 Alstom Ltd Nickel base alloy
US6458318B1 (en) * 1999-06-30 2002-10-01 Sumitomo Metal Industries, Ltd. Heat resistant nickel base alloy
RU2215804C2 (ru) * 2001-10-08 2003-11-10 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Жаропрочный сплав на основе никеля и изделие, выполненное из него
CN102066594A (zh) * 2008-06-16 2011-05-18 住友金属工业株式会社 奥氏体系耐热合金以及由该合金构成的耐热耐压构件及其制造方法
RU2520934C1 (ru) * 2013-03-15 2014-06-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью
RU2524515C1 (ru) * 2013-09-05 2014-07-27 Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" Жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383312B1 (en) * 1997-10-30 2002-05-07 Alstom Ltd Nickel base alloy
US6458318B1 (en) * 1999-06-30 2002-10-01 Sumitomo Metal Industries, Ltd. Heat resistant nickel base alloy
RU2215804C2 (ru) * 2001-10-08 2003-11-10 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Жаропрочный сплав на основе никеля и изделие, выполненное из него
CN102066594A (zh) * 2008-06-16 2011-05-18 住友金属工业株式会社 奥氏体系耐热合金以及由该合金构成的耐热耐压构件及其制造方法
RU2520934C1 (ru) * 2013-03-15 2014-06-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью
RU2524515C1 (ru) * 2013-09-05 2014-07-27 Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" Жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2656908C1 (ru) * 2017-10-05 2018-06-07 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
RU2672463C1 (ru) * 2018-03-16 2018-11-14 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
RU2674274C1 (ru) * 2018-03-22 2018-12-06 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
RU2678352C1 (ru) * 2018-05-15 2019-01-28 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения", АО "НПО "ЦНИИТМАШ" Жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок
RU2684000C1 (ru) * 2018-05-16 2019-04-03 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
RU2690623C1 (ru) * 2018-05-30 2019-06-04 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
RU2695097C1 (ru) * 2019-01-10 2019-07-19 Публичное Акционерное Общество "Одк-Сатурн" Деформируемый жаропрочный сплав на основе никеля
RU2691790C1 (ru) * 2019-02-20 2019-06-18 Общество с ограниченной ответственностью "НТЦ "Современные технологии металлургии" (ООО "НТЦ "СТМ") Литейный никелевый сплав
RU2697674C1 (ru) * 2019-05-24 2019-08-16 Общество с ограниченной ответственностью "НТЦ "Современные технологии металлургии" (ООО "НТЦ"СТМ") Жаропрочный никелевый сплав
RU2766197C1 (ru) * 2021-07-19 2022-02-09 Акционерное общество "Металлургический завод "Электросталь" Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него
RU2803159C1 (ru) * 2022-05-25 2023-09-07 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" (АО "НПО "ЦНИИТМАШ") НЕЙТРОННО-ПОГЛОЩАЮЩИЙ СПЛАВ НА ОСНОВЕ Ni
RU2794497C1 (ru) * 2022-07-15 2023-04-19 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ВИАМ) Жаропрочный сплав на основе никеля и изделие, выполненное из него
RU2803779C1 (ru) * 2022-10-28 2023-09-19 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Литейный коррозионно-стойкий поликристаллический жаропрочный сплав на основе никеля
RU2824504C1 (ru) * 2023-11-01 2024-08-08 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ВИАМ) Гранулируемый свариваемый жаропрочный никелевый сплав и изделие, выполненное из него

Also Published As

Publication number Publication date
RU2015124670A (ru) 2017-01-10

Similar Documents

Publication Publication Date Title
RU2623940C2 (ru) Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии
US11001913B2 (en) Cast nickel-base superalloy including iron
CN110317990B (zh) 一种Ni-Co-Al-Cr-Fe系单晶高熵高温合金及其制备方法
JP4557079B2 (ja) Ni基単結晶超合金及びこれを用いたタービン翼
CA2586974C (en) Nickel-base superalloy
US8877122B2 (en) Ni-based single crystal superalloy and turbine blade incorporating the same
CN107034387A (zh) 一种高强抗热腐蚀低偏析镍基单晶高温合金
JPH07138683A (ja) ニッケルを基本とする単結晶超合金
JP2007162041A (ja) 高強度高延性Ni基超合金と、それを用いた部材及び製造方法
CA2774730C (en) Low rhenium single crystal superalloy for turbine blades and vane applications
RU2520934C1 (ru) Жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью
ES2250826T3 (es) Superaleaciones base niquel.
JP2003231933A (ja) 方向性凝固部品およびニッケル基超合金
KR20190080903A (ko) 티타늄이 없는 초합금, 분말, 방법 및 구성요소
US20170058383A1 (en) Rhenium-free nickel base superalloy of low density
JP2002235135A (ja) 産業用タービンの単結晶ブレードのための非常に高い耐高温腐食性をもつニッケル系超合金
RU2439185C1 (ru) Жаропрочный литейный сплав на основе никеля
US9580774B2 (en) Creep-resistant, rhenium-free nickel base superalloy
KR20120105693A (ko) 크리프 특성이 향상된 단결정 니켈기 초내열합금
Shi et al. Effect of Hf on stress rupture properties of DD6 single crystal superalloy after long term aging
CA2727105C (en) Improved low sulfur nickel-base single crystal superalloy with ppm additions of lanthanum and yttrium
Kawagishi et al. Development of low or zero‐rhenium high‐performance Ni‐base single crystal superalloys for jet engine and power generation applications
KR20110114928A (ko) 크리프 특성이 우수한 단결정 니켈기 초내열합금
RU2610577C1 (ru) ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА Ni3Al И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО
RU2803779C1 (ru) Литейный коррозионно-стойкий поликристаллический жаропрочный сплав на основе никеля