RU2690623C1 - Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него - Google Patents

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него Download PDF

Info

Publication number
RU2690623C1
RU2690623C1 RU2018119974A RU2018119974A RU2690623C1 RU 2690623 C1 RU2690623 C1 RU 2690623C1 RU 2018119974 A RU2018119974 A RU 2018119974A RU 2018119974 A RU2018119974 A RU 2018119974A RU 2690623 C1 RU2690623 C1 RU 2690623C1
Authority
RU
Russia
Prior art keywords
nickel
alloy
resistant
heat
corrosion
Prior art date
Application number
RU2018119974A
Other languages
English (en)
Inventor
Евгений Николаевич Каблов
Виктор Васильевич Сидоров
Павел Георгиевич Мин
Елена Михайловна Висик
Вадим Владимирович Крамер
Original Assignee
Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") filed Critical Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ")
Priority to RU2018119974A priority Critical patent/RU2690623C1/ru
Application granted granted Critical
Publication of RU2690623C1 publication Critical patent/RU2690623C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Изобретение относится к металлургии, в частности к коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для деталей горячего тракта газотурбинных двигателей и установок. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод 0,005-0,18, хром 13-15, кобальт 7-10, титан 4-6, алюминий 2-4, вольфрам 2-5, молибден 0,5-2,5, бор до 0,03, цирконий до 0,20, тантал от 1,5 до менее 3,5, ниобий до 0,5, гафний до 0,5, барий до 0,10, лантан до 0,20, иттрий до 0,20, церий до 0,20, никель - остальное. Сплав характеризуется высокими значениями предела прочности, предела текучести, длительной прочности, относительного удлинения, относительного сужения при рабочих температурах, а также стойкости к высокотемпературной сульфидно-оксидной и хлоридной коррозии. 2 н.п. ф-лы, 2 табл., 5 пр.

Description

Изобретение относится к металлургии, в частности к коррозионностойким жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 600-1000°С.
Известен жаропрочный сплав на основе никеля следующего химического состава, масс. %:
углерод 0,05-0,09
хром 15,4-15,8
кобальт 10,0-10,4
вольфрам 5,0-5,3
молибден 1,6-1,8
титан 4,3-4,5
алюминий 3,0-3,2
бор 0,06-0,09
цирконий <0,015
гафний 0,2-0,3
кремний <0,10
железо <0,10
медь <0,05
сера <0,005
азот <20 ppm
кислород <15 ppm
церий <0,015
ниобий 0,1-0,2
иттрий <0,30
марганец <0,10
фосфор <0,005
никель остальное (RU 2539643 С1, 20.01.2015).
Сплав имеет достаточно высокие прочностные и пластические характеристики, но отличается пониженной структурной стабильностью при длительной работе свыше 500 часов, связанной с выпадением в условиях высокотемпературного воздействия охрупчивающих топологически плотноупакованных (ТПУ) фаз (σ, μ и другие), которые существенно понижают жаропрочные свойства и ограничивают ресурс работы двигателя.
Отрицательное влияние ТПУ фаз на долговременные высокотемпературные свойства жаропрочного сплава проявляется в том, что эти хрупкие фазы игольчатой морфологии являются концентраторами напряжений, на которых зарождаются микротрещины, ведущие к преждевременному разрушению деталей из данного сплава.
Известен жаропрочный сплав на основе никеля следующего химического состава, масс. %:
хром 15-18
кобальт 8-11
молибден 0,75-2,2
вольфрам 1,8-3,0
ниобий 0,5-2,0
тантал 1-3
алюминий 3-4
углерод 0,1-0,2
титан 3-4
бор 0,01-0,05
цирконий 0,01-0,20
никель остальное (US 3459545 А, 05.08.1969).
Сплав имеет недостаточно высокие характеристики кратковременной и длительной прочности при рабочих температурах, а также низкую коррозионную стойкость при эксплуатации в агрессивных средах, содержащих примеси серы и хлора.
Наиболее близким аналогом является литейный жаропрочный сплав на основе никеля, содержащий, масс. %:
хром 13,7-14,3
кобальт 9,0-10,0
титан 4,8-5,2
алюминий 2,8-3,2
вольфрам 2,8-4,3
молибден 1,0-1,5
бор 0,005-0,02
цирконий 0-0,03
углерод 0,08-0,13
тантал 2,0-3,0
или
ниобий 1,0-1,5
или
гафний 2,0-2,5
или
по крайне мере два
элемента из группы
тантал, ниобий и гафний 1,5-3,5
никель остальное (US 6416596 В1, 09.07.2002).
Сплав, взятый за прототип, имеет невысокие значения длительной прочности при температурах 900-1000°С и механических свойств (предел прочности σB, предел текучести σ0,2, относительное удлинение δ, относительное сужение ψ) при температурах 600-700°С, а также пониженную стойкость к сульфидно-оксидной и хлоридной коррозии при температурах 750-1000°С.
Таким образом, известные сплавы при рабочих температурах 600-1000°С не обладают оптимальным сочетанием служебных свойств (длительная прочность, механические свойства (предел прочности σB, предел текучести σ0,2, относительное удлинение δ, относительное сужение ψ), сопротивление высокотемпературной коррозии, структурная стабильность в процессе эксплуатации).
Задачей предложенного изобретения является разработка структурно-стабильного литейного жаропрочного сплава на основе никеля с более высокими механическими свойствами и повышенным сопротивлением высокотемпературной коррозии.
Техническим результатом предложенного изобретения является повышение механических свойств при температуре 650°С (предел прочности σB, предел текучести σ0,2, относительное удлинение δ, относительное сужение ψ) и длительной прочности при температуре 980°С, а также повышение коррозионной стойкости и фазово-структурной стабильности сплава на ресурс.
Для достижения технического результата предложен литейный жаропрочный сплав на основе никеля, содержащий углерод, хром, кобальт, титан, алюминий, вольфрам, молибден, бор, цирконий, тантал, ниобий, гафний, при этом он дополнительно содержит барий, лантан, иттрий и церий, при следующем соотношении компонентов, масс. %:
углерод 0,005-0,18
хром 13-15
кобальт 7-10
титан 4-6
алюминий 2-4
вольфрам 2-5
молибден 0,5-2,5
бор до 0,03
цирконий до 0,20
тантал от 1,5 до менее 3,5
ниобий до 0,5
гафний до 0,5
барий до 0,10
лантан до 0,20
иттрий до 0,20
церий до 0,20
никель остальное.
Также предложено изделие, выполненное из данного сплава.
Было установлено, что комплексное введение в сплав лантана, иттрия и церия в заданном количестве позволило снизить скорость высокотемпературной сульфидно-оксидной и хлоридной коррозии стойкость за счет создания защитного барьерного слоя на поверхности металла и ослабления диффузионных потоков ионов серы и кислорода, а также уменьшения микропористости оксидной пленки.
Помимо положительного влияния редкоземельных металлов лантана, иттрия и церия на коррозионные свойства сплава, установлено также, что при их комплексном введении в структуре образуются ультра мелкодисперсные наноразмерные частицы γʹ-фазы, которые выделяются в γ-твердом растворе между более крупными частицами γʹ-фазы, блокируют и задерживают перемещение дислокаций в процессе ползучести металла при повышенной температуре и напряжении, тем самым обеспечивают повышение длительной прочности при повышенных температурах (~980°С).
Дополнительными исследованиями радиоизотопными методами было установлено, что атомы редкоземельных металлов лантана, иттрия и церия адсорбируются на межфазных поверхностях раздела между частицами γʹ-фазы и γ-твердого раствора и упрочняют межфазные границы. Влияние на упрочнение поверхности раздела указанных элементов в заявляемых пределах в совокупности намного превосходит вклад каждого элемента по отдельности, и, как следствие, наблюдается значительное повышение характеристики длительной прочности и механических свойств (предел прочности σB, предел текучести σ0,2, относительное удлинение δ, относительное сужение ψ).
Было установлено, что барий является эффективным десульфуратором никелевого расплава: после введения бария в расплав содержание одной из наиболее вредных примеси серы понизилось в сплаве в 2-3 раза. Особенно эффективно введение бария совместно с редкоземельными металлами. Барий, в отличие от других щелочноземельных металлов - магния и кальция, имеет более низкую упругость пара при температурах плавки, что позволяет его использовать для раскисления расплава перед присадкой редкоземельных металлов, и тем самым стабилизировать их усвоение.
Пример осуществления.
В вакуумной индукционной печи ВИАМ2002 было выплавлено пять плавок предлагаемого сплава и одна плавка сплава, взятого за прототип. Масса каждой плавки составляла 10 кг. Все плавки были переплавлены в установке направленной кристаллизации УВНК-9А и отлиты керамические блоки с заготовками под образцы с направленной структурой.
После проведения термической обработки из заготовок были изготовлены образцы для испытаний на длительную и кратковременную прочность при повышенных температурах, а также образцы для испытаний на сульфидно-оксидную и хлоридную коррозию.
Химические составы образцов сплавов приведены в таблице 1.
Испытания на длительную прочность проводили при температуре 980°С и напряжениях 120 и 185 МПа, а на кратковременный разрыв - при температуре 650°С. От каждой плавки было испытано по два образца. Результаты испытаний приведены в таблице 2.
Испытания коррозионной стойкости сплава проводили по циклическому режиму. Один цикл испытаний включал:
- нанесение на горячую поверхность образцов солевой корки водного раствора смеси солей 75% Na2SO4 + 25% NaCl (для сульфидно-оксидной коррозии) или 3,5% водного раствора NaCl (для хлоридной коррозии);
- выдержку образцов при Т=850°С в течение 1 часа в нагревательной печи;
- охлаждение на воздухе.
Общая продолжительность испытаний составляла 30 циклов.
Оценку стойкости образцов к коррозии проводили по удельному изменению (убыли) массы путем взвешивания образцов через каждые 5 циклов.
На каждый вид испытаний на коррозию было изготовлено по 6 образцов. Усредненные результаты испытаний по 6-и образцам приведены в таблице 2.
Полученные результаты показывают, что долговечность предлагаемого сплава при испытаниях на длительную прочность при температуре 980°С и механические свойства (предел прочности σB, предел текучести σ0,2, относительное удлинение δ, относительное сужение ψ) при испытаниях на кратковременную прочность при температуре 650°С заметно превосходят сплава - прототипа.
Предлагаемый сплав обладает высокой коррозионной стойкостью при температуре испытаний 850°С. Как видно из таблицы 2, удельное изменение (убыль) массы образцов как при сульфидно-оксидной, так и при хлоридной коррозии в 1,5-2 раза меньше, чем у сплава-прототипа.
После проведения испытаний на длительную прочность при температуре 980°С и напряжении 120 МПа на базе 800-1000 часов была исследована микроструктура разрушенных образцов. Металлографический анализ подтвердил отсутствие охрупчивающих ТПУ-фаз (σ, μ и др), что свидетельствует о высокой фазовой и структурной стабильности предлагаемого сплава.
Таким образом, предлагаемый сплав существенно превосходит известный по длительной прочности и механическим свойствам (предел прочности σB, предел текучести σ0,2, относительное удлинение δ, относительное сужение ψ), а также высокотемпературной коррозионной стойкости. Сплав обладает структурно-фазовой стабильностью при эксплуатации, что позволяет повысить ресурс работы и надежность изделий газотурбинных двигателей и установок, длительно работающих в агрессивных средах при повышенных температурах и напряжениях.
Figure 00000001
* элементы в сплаве присутствуют, но в меньшем количестве, нежели предел чувствительности метода определения концентрации компонентов (менее 0,00005 масс. %)
Figure 00000002

Claims (3)

1. Жаропрочный литейный сплав на основе никеля, содержащий углерод, хром, кобальт, титан, алюминий, вольфрам, молибден, бор, цирконий, тантал, ниобий и гафний, отличающийся тем, что он дополнительно содержит барий, лантан, иттрий и церий при следующем соотношении компонентов, мас. %:
углерод 0,005-0,18 хром 13-15 кобальт 7-10 титан 4-6 алюминий 2-4 вольфрам 2-5 молибден 0,5-2,5 бор до 0,03 цирконий до 0,20 тантал от 1,5 до менее 3,5 ниобий до 0,5 гафний до 0,5 барий до 0,10 лантан до 0,20 иттрий до 0,20 церий до 0,20 никель остальное.
2. Изделие из жаропрочного литейного сплава на основе никеля, отличающееся тем, что оно выполнено из сплава по п. 1.
RU2018119974A 2018-05-30 2018-05-30 Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него RU2690623C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018119974A RU2690623C1 (ru) 2018-05-30 2018-05-30 Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018119974A RU2690623C1 (ru) 2018-05-30 2018-05-30 Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Publications (1)

Publication Number Publication Date
RU2690623C1 true RU2690623C1 (ru) 2019-06-04

Family

ID=67037822

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018119974A RU2690623C1 (ru) 2018-05-30 2018-05-30 Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Country Status (1)

Country Link
RU (1) RU2690623C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416596B1 (en) * 1974-07-17 2002-07-09 The General Electric Company Cast nickel-base alloy
US6702906B2 (en) * 2000-11-16 2004-03-09 Sumitomo Metal Industries, Ltd. Ni-base heat resistant alloy and welded joint thereof
EP1433865B1 (en) * 2002-12-17 2006-03-15 Hitachi, Ltd. High-strength Ni-base superalloy and gas turbine blades
US20070163682A1 (en) * 2003-05-09 2007-07-19 Hitachi, Ltd. Ni-based superalloy having high oxidation resistance and gas turbine part
RU2567140C2 (ru) * 2011-07-12 2015-11-10 Сименс Акциенгезелльшафт Сплав на основе никеля, применение и способ
RU2623940C2 (ru) * 2015-06-23 2017-06-29 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416596B1 (en) * 1974-07-17 2002-07-09 The General Electric Company Cast nickel-base alloy
US6702906B2 (en) * 2000-11-16 2004-03-09 Sumitomo Metal Industries, Ltd. Ni-base heat resistant alloy and welded joint thereof
EP1433865B1 (en) * 2002-12-17 2006-03-15 Hitachi, Ltd. High-strength Ni-base superalloy and gas turbine blades
US20070163682A1 (en) * 2003-05-09 2007-07-19 Hitachi, Ltd. Ni-based superalloy having high oxidation resistance and gas turbine part
RU2567140C2 (ru) * 2011-07-12 2015-11-10 Сименс Акциенгезелльшафт Сплав на основе никеля, применение и способ
RU2623940C2 (ru) * 2015-06-23 2017-06-29 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии

Similar Documents

Publication Publication Date Title
JP6370391B2 (ja) 耐摩耗性、耐クリープ性、耐腐食性、及び加工性が良好な、硬化性ニッケル・クロム・鉄・チタン・アルミニウム合金
CA2901259C (en) Nickel-cobalt alloy
BR112016011895B1 (pt) Liga forjável de níquel-cromo-cobalto-titânio-alumínio endurecedora, eseus usos
Wahl et al. New single crystal superalloys, CMSX®-8 and CMSX®-7
JP5394715B2 (ja) 耐酸化性を有する溶接可能なニッケル−鉄−クロム−アルミニウム合金
JP6370392B2 (ja) 耐摩耗性、耐クリープ性、耐腐食性、及び加工性が良好な、硬化性ニッケル・クロム・チタン・アルミニウム合金
JP2013108166A (ja) タービンブレード及びベーン用途向けのレニウムを含まない単結晶超合金
KR20040095712A (ko) 니켈계 합금
RU2690623C1 (ru) Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
US5997809A (en) Alloys for high temperature service in aggressive environments
RU2672463C1 (ru) Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
JP4635065B2 (ja) 蒸気タービンのタービンロータ用のNi基合金および蒸気タービンのタービンロータ
RU2674274C1 (ru) Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
RU2685908C1 (ru) Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
Shi et al. Effect of Hf on stress rupture properties of DD6 single crystal superalloy after long term aging
US9150944B2 (en) Low sulfur nickel-base single crystal superalloy with PPM additions of lanthanum and yttrium
RU2684000C1 (ru) Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
Cao Thermal stability characterization of Ni-base ATI 718Plus® superalloy
RU2655483C1 (ru) Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
Gilakjani et al. The Effect of Niobium Addition on the Microstructure and Tensile Properties of Iron-Nickel Base A286 Superalloy.
RU2685895C1 (ru) Жаропрочный литейный сплав на основе кобальта и изделие, выполненное из него
RU2656908C1 (ru) Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
RU2402624C1 (ru) Жаропрочный сплав на основе никеля
RU2610577C1 (ru) ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА Ni3Al И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО
RU2790495C1 (ru) Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него