RU2215804C2 - Жаропрочный сплав на основе никеля и изделие, выполненное из него - Google Patents

Жаропрочный сплав на основе никеля и изделие, выполненное из него Download PDF

Info

Publication number
RU2215804C2
RU2215804C2 RU2001127144A RU2001127144A RU2215804C2 RU 2215804 C2 RU2215804 C2 RU 2215804C2 RU 2001127144 A RU2001127144 A RU 2001127144A RU 2001127144 A RU2001127144 A RU 2001127144A RU 2215804 C2 RU2215804 C2 RU 2215804C2
Authority
RU
Russia
Prior art keywords
nickel
alloy
heat
rhenium
tantalum
Prior art date
Application number
RU2001127144A
Other languages
English (en)
Other versions
RU2001127144A (ru
Inventor
В.Н. Толораия
Н.Г. Орехов
Е.Н. Каблов
Б.С. Ломберг
Е.Н. Чубарова
Г.А. Остроухова
Original Assignee
Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" filed Critical Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов"
Priority to RU2001127144A priority Critical patent/RU2215804C2/ru
Publication of RU2001127144A publication Critical patent/RU2001127144A/ru
Application granted granted Critical
Publication of RU2215804C2 publication Critical patent/RU2215804C2/ru

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Изобретение относится к металлургии и может быть использовано для получения методом направленной кристаллизации деталей высокотемпературных узлов, преимущественно турбинных лопаток с монокристальной структурой в газотурбинных двигателях и установках. Предложен жаропрочный литейный сплав и изделие, выполненное из него, содержащие следующие компоненты, мас.%: углерод 0,005-0,07, хром 12,5-14,5, кобальт 8,0-10,0, вольфрам 3,5-5,5, молибден 0,8-2,2, титан 3,4-4,3, алюминий 3,5-4,8, тантал 0,5-2,5, рений 0,8-2,0, бор 0,001-0,02, иттрий 0,005-0,05, никель - остальное. Техническим результатом изобретения является разработка жаропрочного литейного никелевого сплава, обладающего высоким сопротивлением горячей коррозии и технологичностью при монокристаллическом литье в сочетании с высоким уровнем жаропрочности. 2 с. п.ф-лы, 2 табл.

Description

Изобретение относится к области металлургии и может быть использовано для получения методом направленной кристаллизации деталей высокотемпературных узлов, преимущественно турбинных лопаток с монокристальной структурой в газотурбинных двигателях и установках.
В металлургии широко известны литейные жаропрочные сплавы на основе никеля, содержащие рений и тантал, обладающие высоким уровнем длительной прочности, например сплавы CMSX-4, ЖС36, применяемые в газотурбинных двигателях авиационного назначения [патент США 4643782, патент РФ 1513934]. Известны также сплавы на той же основе, отличающиеся высоким сопротивлением коррозии в продуктах сгорания природного топлива, применяемые для деталей энергетических и газоперекачивающих стационарных газотурбинных установок, например отечественный сплав ЖСКС-1 [патент РФ 2131944].
Сплавы CMSX-4 и ЖС36 используется для получения отливок, преимущественно турбинных лопаток, с монокристаллической структурой заданной кристаллографической ориентации, обычно [001]. Эти сплавы имеют высокие показатели длительной прочности, однако из-за малого сопротивления горячей коррозии не могут быть применены в качестве материала для лопаток стационарных газотурбинных установок. В этих установках в отличие от авиационных ГТД используется обычное, неочищенное топливо и поэтому требования по сопротивлению горячей коррозии приобретают решающее значение.
Наиболее близким по химическому составу и назначению к предлагаемому изобретению является жаропрочный литейный сплав, имеющий химический состав при следующем соотношении компонентов, мас.%:
Углерод - 0,05
Хром - 14,0
Кобальт - 9,5
Вольфрам - 3,8
Молибден - 1,5
Титан - 3,0-4,8
Алюминий - 3,0-4,8
Тантал - 2,0
Рений - 1,0-3,0
Бор - 0,004
Никель - Остальное
(заявка ЕР 0490527).
Сплав-прототип применяется для получения отливок лопаток с монокристаллической структурой.
К недостаткам сплава-прототипа следует отнести его недостаточную технологичность при монокристаллическом литье, в частности он склонен к образованию посторонних зерен в процессе роста, что приводит к достаточно низкому выходу годного лопаток ГТД и ГТУ.
Технической задачей предлагаемого изобретения является разработка жаропрочного литейного никелевого сплава, обладающего высоким сопротивлением горячей коррозии и технологичностью при монокристаллическом литье в сочетании с высоким уровнем жаропрочности для производства методом направленной кристаллизации деталей высокотемпературных узлов, преимущественно турбинных лопаток с монокристаллической структурой для газотурбинных двигателей и установок.
Для достижения поставленной цели предлагается жаропрочный сплав на основе никеля, содержащий углерод, хром, кобальт, вольфрам, молибден, титан, алюминий, тантал, рений, бор, отличающийся тем, что он дополнительно содержит иттрий, при следующем соотношении элементов, мас.%:
Углерод - 0,005-0,07
Хром - 12,5-14,5
Кобальт - 8,0-10,0
Вольфрам - 3,5-5,5
Молибден - 0,8-2,2
Титан - 3,4-4,3
Алюминий - 3,5-4,8
Тантал - 0,5-2,5
Рений - 0,8-2,0
Бор - 0,001-0,02
Иттрий - 0,005-0,05
Никель - Остальное
и изделие, выполненное из него.
Введение иттрия обеспечивает снижение вероятности образования зародышей посторонних кристаллов при аксиальном росте, например, в пере турбинной лопатки или при прорастании монокристальной структуры в радиальном направлении, например в полку замка лопаток. Это связано с тем, что введение в состав иттрия приводит к снижению в сплаве содержания азота, кислорода и серы, переводя нитриды сульфиды и оксиды в шлаки, а значит в расплаве резко уменьшается количество центров зарождения посторонних кристаллов, представляющих собой мелкие частицы вышеуказанных соединений.
Суммарное содержание γ′-образующих элементов и элементов, упрочняющих γ-твердый раствор в сплаве, обеспечивает получение высоких характеристик жаропрочности. Так, сплав с монокристальной структурой [001] имеет жаропрочность
Figure 00000001
кгс/мм2, соответствующую уровню прототипа.
Предлагаемый состав сплава при указанном соотношении легирующих элементов обеспечивает получение характеристик коррозионной стойкости на уровне прототипа без снижения уровня жаропрочности, при существенном повышении выхода годных монокристальных отливок за счет резкого снижения числа зародышей посторонних зерен или субзерен.
Пример осуществления.
В условиях опытного производства на установке высокоградиентной направленной кристаллизации УВНК-8П были выплавлены заготовки образцов и турбинные лопатки из сплавов, химический состав которых приведен в табл.1. В колонках 1-3 представлены сплавы предлагаемого изобретения, а в колонке 4 - сплава прототипа. В табл.2 представлены коррозионная стойкость, жаропрочность и технологические характеристики (величина прорастания монокристалла в поперечном по отношению к оси роста отливки направлении, выход годных по монокристальной структуре лопаток в %) предлагаемого сплава и сплава-прототипа.
Оценка величины прорастания монокристалла в поперечном направлении проводилась по специально разработанной методике. Изготавливались модельные блоки цилиндрических образцов диаметром 15 и длиной 180 мм. В модели образцов на различной высоте от основания: 40, 80 и 120 мм крепились поперечные пластинки шириной 15 мм, длиной 20 мм и толщиной 2 мм, имитирующие полки замка лопаток. На полученной отливке проводился замер расстояния, на котором в поперечной пластине возникали посторонние кристаллы. В табл.2 приведены средние значения величины прорастания, полученные в результате анализа двенадцати экспериментальных образцов для каждого приведенного состава.
Кристаллизация образцов и лопаток опытных композиций проводилась со скоростью протяжки 5 мм/мин, а сплава-прототипа со скоростью 3 мм/мин. Анализ выхода годных отливок проводился на партии отлитых лопаток в количестве 12 шт. для каждого состава.
Из совокупности полученных результатов следует, что предлагаемый сплав обеспечивает уровень коррозионной стойкости прототипа при примененном тигельном методе оценки скорости коррозии в расплаве солей, увеличение выхода годных монокристальных отливок по сравнению с прототипом не менее чем в 2 раза. Длительная прочность сплава соответствует уровню жаропрочности сплава-прототипа при 800-1000oС. Детали из сплава могут изготавливаться на установках направленной кристаллизации различного типа, как с низким, так и с высоким градиентом температуры на фронте кристаллизации. Предлагаемый сплав прошел технологическое опробование при литье лопаток на промышленном оборудовании и показал хорошие литейные и механические характеристики, отвечающие заявляемым свойствам.
Таким образом, предлагаемый жаропрочный никелевый сплав позволяет получать качественные монокристаллические отливки для деталей авиационных, энергетических и газоперекачивающих стационарных газотурбинных установок нового поколения.

Claims (1)

1. Жаропрочный литейный сплав на основе никеля, содержащий углерод, хром, кобальт, вольфрам, молибден, алюминий, тантал, рений, бор, титан, отличающийся тем, что он дополнительно содержит иттрий при следующем соотношении компонентов, мас. %:
Углерод - 0,005-0,07
Хром - 12,5-14,5
Кобальт - 8,0-10,0
Вольфрам - 3,5-5,5
Молибден - 0,8-2,2
Титан - 3,4-4,3
Алюминий - 3,5-4,8
Тантал - 0,5-2,5
Рений - 0,8-2,0
Бор - 0,001-0,02
Иттрий - 0,005-0,05
Никель - Остальное
2. Изделие из жаропрочного литейного сплава на основе никеля, отличающееся тем, что оно выполнено из сплава следующего химического состава, мас. %:
Углерод - 0,005-0,07
Хром - 12,5-14,5
Кобальт - 8,0-10,0
Вольфрам - 3,5-5,5
Молибден - 0,8-2,2
Титан - 3,4-4,3
Алюминий - 3,5-4,8
Тантал - 0,5-2,5
Рений - 0,8-2,0
Бор - 0,001-0,02
Иттрий - 0,005-0,05
Никель - Остальное
RU2001127144A 2001-10-08 2001-10-08 Жаропрочный сплав на основе никеля и изделие, выполненное из него RU2215804C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001127144A RU2215804C2 (ru) 2001-10-08 2001-10-08 Жаропрочный сплав на основе никеля и изделие, выполненное из него

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001127144A RU2215804C2 (ru) 2001-10-08 2001-10-08 Жаропрочный сплав на основе никеля и изделие, выполненное из него

Publications (2)

Publication Number Publication Date
RU2001127144A RU2001127144A (ru) 2003-06-20
RU2215804C2 true RU2215804C2 (ru) 2003-11-10

Family

ID=32026920

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001127144A RU2215804C2 (ru) 2001-10-08 2001-10-08 Жаропрочный сплав на основе никеля и изделие, выполненное из него

Country Status (1)

Country Link
RU (1) RU2215804C2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1715068A1 (en) * 2003-12-26 2006-10-25 Kawasaki Jukogyo Kabushiki Kaisha Nickel-based super-heat-resistant alloy and gas turbine component using same
WO2009023090A2 (en) * 2007-08-10 2009-02-19 Siemens Energy, Inc. Corrosion resistant nickel alloy compositions with enhanced castability and mechanical properties
RU2520934C1 (ru) * 2013-03-15 2014-06-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью
RU2623940C2 (ru) * 2015-06-23 2017-06-29 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии
CN107760930A (zh) * 2017-12-07 2018-03-06 山西鑫盛激光技术发展有限公司 一种用于修复离心球磨管模内壁的半导体激光熔覆镍基合金粉末

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1715068A1 (en) * 2003-12-26 2006-10-25 Kawasaki Jukogyo Kabushiki Kaisha Nickel-based super-heat-resistant alloy and gas turbine component using same
EP1715068A4 (en) * 2003-12-26 2009-11-11 Kawasaki Heavy Ind Ltd NICKEL-BASED SUPER HEAT-RESISTANT ALLOY AND GAS TURBINE COMPONENT THEREWITH
WO2009023090A2 (en) * 2007-08-10 2009-02-19 Siemens Energy, Inc. Corrosion resistant nickel alloy compositions with enhanced castability and mechanical properties
WO2009023090A3 (en) * 2007-08-10 2009-07-16 Siemens Energy Inc Corrosion resistant nickel alloy compositions with enhanced castability and mechanical properties
RU2520934C1 (ru) * 2013-03-15 2014-06-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью
RU2623940C2 (ru) * 2015-06-23 2017-06-29 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии
CN107760930A (zh) * 2017-12-07 2018-03-06 山西鑫盛激光技术发展有限公司 一种用于修复离心球磨管模内壁的半导体激光熔覆镍基合金粉末

Similar Documents

Publication Publication Date Title
US5100484A (en) Heat treatment for nickel-base superalloys
EP0789087B1 (en) High strength Ni-base superalloy for directionally solidified castings
US20160201167A1 (en) Nickel-Based Superalloys and Articles
US6074602A (en) Property-balanced nickel-base superalloys for producing single crystal articles
US20110076181A1 (en) Nickel-Based Superalloys and Articles
US6755921B2 (en) Nickel-based single crystal alloy and a method of manufacturing the same
GB2056488A (en) Ni-based superalloy
JP2011052323A (ja) ニッケル基超合金及び物品
EP1997923B1 (en) Method for producing an ni-base superalloy
GB2235697A (en) Nickel-base superalloys
US20110076182A1 (en) Nickel-Based Superalloys and Articles
US6740292B2 (en) Nickel-base superalloy
US5925198A (en) Nickel-based superalloy
Hashizume et al. Development of novel Ni-based single crystal superalloys for power-generation gas turbines
CA2749755C (en) Ni-based single crystal superalloy
RU2215804C2 (ru) Жаропрочный сплав на основе никеля и изделие, выполненное из него
JP2990041B2 (ja) 高温腐食抵抗性の単結晶ニッケル系スーパーアロイ
RU2131944C1 (ru) Жаропрочный сплав на основе никеля
RU2186144C1 (ru) Никелевый жаропрочный сплав для монокристального литья и изделие, выполненное из этого сплава
KR100224950B1 (ko) 공업용 가스터어빈 고온단부품
GB2401113A (en) Nickel-based superalloy
JP3209902B2 (ja) 高温腐食抵抗性の単結晶ニッケル系スーパーアロイ
KR100391184B1 (ko) 고온내식성단결정니켈계초내열합금
RU2256715C1 (ru) Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
AU2003255216B8 (en) Nickel-base superalloy