RU2695097C1 - Деформируемый жаропрочный сплав на основе никеля - Google Patents

Деформируемый жаропрочный сплав на основе никеля Download PDF

Info

Publication number
RU2695097C1
RU2695097C1 RU2019100783A RU2019100783A RU2695097C1 RU 2695097 C1 RU2695097 C1 RU 2695097C1 RU 2019100783 A RU2019100783 A RU 2019100783A RU 2019100783 A RU2019100783 A RU 2019100783A RU 2695097 C1 RU2695097 C1 RU 2695097C1
Authority
RU
Russia
Prior art keywords
nickel
alloy
tungsten
cobalt
molybdenum
Prior art date
Application number
RU2019100783A
Other languages
English (en)
Inventor
Роман Владимирович Храмин
Максим Николаевич Буров
Александр Вячеславович Логунов
Денис Викторович Данилов
Игорь Алексеевич Лещенко
Сергей Александрович Заводов
Александр Михайлович Михайлов
Михаил Александрович Михайлов
Шамиль Хамзаевич Мухтаров
Радик Рафикович МУЛЮКОВ
Original Assignee
Публичное Акционерное Общество "Одк-Сатурн"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное Акционерное Общество "Одк-Сатурн" filed Critical Публичное Акционерное Общество "Одк-Сатурн"
Priority to RU2019100783A priority Critical patent/RU2695097C1/ru
Application granted granted Critical
Publication of RU2695097C1 publication Critical patent/RU2695097C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Изобретение относится к области металлургии, в частности к жаропрочным сплавам на никелевой основе, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и установок, предназначенных для работы в условиях активного воздействия высоких термических напряжений, температур, статических и переменных нагрузок. Деформируемый жаропрочный сплав на основе никеля содержит, мас. %: углерод 0,03-0,12, хром 7,0-10,0, кобальт 16,0-28,0, вольфрам 2,5-6,0, молибден 2,8-4,8, титан 2,5-5,4, алюминий 3,2-4,6, ниобий 0,5-3,0, тантал 2,6-4,6, гафний 0,05-0,2, рений 1,0-3,0, бор 0,005-0,015, цирконий 0,005-0,03, церий 0,01-0,05, лантан 0,01-0,05, иттрий 0,01-0,05, магний 0,01-0,06, никель - остальное. Сплав характеризуется высокими значениями длительной, кратковременной прочности и пластичности в температурном интервале от 20 до 850°С. 1 ил., 3 табл., 3 пр.

Description

Предполагаемое изобретение относится к области металлургии, в частности, к жаропрочным сплавам на никелевой основе, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и установок, предназначенных для работы в условиях активного воздействия высоких термических напряжений, температур, статических и переменных нагрузок.
Известен жаропрочный никелевый сплав, предназначенный для работы при высоких нагрузках и температурах, в частности, в газотурбинных двигателях, содержащий углерод, хром, кобальт, вольфрам, молибден, титан, алюминий, ниобий, гафний, бор, цирконий, магний, церий, при следующем соотношении компонентов, мас. %:
углерод 0,03-0,08
хром 9,0-11,0
кобальт 14,0-16,0
вольфрам 5,5-6,5
молибден 3,2-3,8
титан 3,8-4,2
алюминий 3,4-4,2
ниобий 1,5-2,2
гафний 0,2-0,4
бор 0,005-0,055
цирконий 0,001-0,055
магний 0,01-0,06
церий 0,001-0,55
никель остальное
(описание изобретения к патенту РФ №2590792, С22С 19/05, опубл. 10.07.2016).
Сплав характеризуется высокими показателями длительной и кратковременной прочности во всем диапазоне рабочих температур, пластичности при горячей и холодной обработке. Его предел текучести при 20°С, равный (1185-1228) МПа и длительной прочности при 650°С (1108-1120) МПа стали соответствовать лучшему мировому аналогу - сплаву LSHR. Однако предел кратковременной прочности при 20°С (он уступает этому материалу). Кроме того в литературе указывается, что новое поколение никелевых жаропрочных сплавов для дисков газовых турбин должно обеспечивать более высокую работоспособность причем до температур (830-850)°С.
За рубежом наиболее высокую активность в деле создания нового поколения никелевых жаропрочных сплавов для дисков газовых турбин демонстрирует фирмы, Simens и др. В частности, известен созданный General Electric дисковый сплав, содержащий углерод, хром, кобальт, вольфрам, молибден, титан, алюминий, ниобий, тантал, гафний, бор, цирконий при следующем соотношении компонентов, мас. %:
углерод 0,02-0,1
хром 11,5-14,3
кобальт 17,1-20,9
вольфрам 1,0-5,0
молибден 1,3-4,9
титан 1,7-5,0
алюминий 2,1-3,7
ниобий 0,9-2,5
тантал 4,4-5,6
гафний 0,0-0,6
бор 0,01-0,05
цирконий 0,02-0,08
никель остальное
(патент USA №210/033665 А1, опубликован 02.12.2010).
При этом 0.55≤Al/Ti≤l,85 (для более узкого и более эффективного сплава 0.85≤Al/Ti≤l,02) Имеется также еще одно условие: l,31≤Mo/(Mo+W)≤4,2 (для более узкого и более эффективного сплава 0,51≤Mo/(Mo+W)≤0,76).
Известен жаропрочный никелевый сплав фирмы General Electric для изготовления дисков газовых турбин, содержащий углерод, хром, кобальт, вольфрам, молибден, титан, алюминий, ниобий, гафний, бор, цирконий при следующем соотношении компонентов, мас. %:
углерод 0,04-0,2
хром 11,4-16,0
кобальт 18,0-30,0
вольфрам 0,0-0,0
молибден 5,5-7,5
титан 2,5-4,0
алюминий 2,5-3,5
ниобий 0,0-2,0
гафний 0,0-2,0
бор 0,01-0,05
цирконий 0,03-0,09
никель остальное
(патент US 2010/033666 А1).
Сплав характеризуется следующими показателями:
Figure 00000001
Figure 00000002
Figure 00000003
Его особенность заключается в том, что, поскольку состав легирующих элементов всех последних сплавов примерно один и тот же, то обеспечение наиболее высоких показателей достигается оптимальным соотношением между отдельными элементами или группами элементов. В частности, в данном патенте указаны следующие условия легирования:
1) Ti/Al=0.71-1.6 (мас%/мас%) или Al/Ti=l,4-0,625 (мас%/мас%)
2) Mo(Mo+W)=0,51-l,0 (мас%)
В составе известных сплавов отсутствует рений Re (обеспечивающий высокотемпературную прочность сплавов), поэтому их эффективность при температурах более 750°С резко снижается.
Известен жаропрочный сплав на основе никеля для производства ответственных деталей ГТД и ГТУ - дисков газовых турбин, имеющий следующий химический состав (мас. %):
углерод 0,6-0,13
хром 8,0-12,0
кобальт 14,0-16,0
вольфрам 5,4-7,0
молибден 2,0-3,5
титан 3,0-4,5
алюминий 3,0-4,5
ниобий 1,5-2,5
тантал 0,5-4,5
гафний 0,05-0,5
рений 0,2-0,7
бор 0,005-0,05
цирконий 0,001-0,05
магний 0,001-0,05
железо 0,01-1,0
марганец 0,001-0,5
кремний 0,001-0,5
никель остальное
(описание изобретения к патенту РФ №2410457, С22С 19/05, опубл. 27.01.2011).
Сплав характеризуется высокими показателями прочности, низкими ползучестью и скоростью распространения усталостных трещин при высоких температурах.
Однако уровень его кратковременной прочности σb и предела текучести σ0.2 при комнатной температуре (1600 МПа и 1150 МПа соответственно) уступает показателям сплавов МЕ3 (Rene104) и LSHR (равны 1650 и 1160, 1700 и 1210 МПа, соответственно), что снижает возможность удовлетворения требований конструкторов применительно к созданию перспективных объектов новой техники.
Наиболее близким к предлагаемому является жаропрочный никелевый сплав для дисков газотурбинных двигателей, содержащий кобальт, хром, вольфрам, молибден, рений, ванадий, алюминий, титан, ниобий, углерод, бор, лантан, церий, магний и скандий при следующем соотношении компонентов, мас. %:
кобальт 14,0-15,9
хром 9,7-12,0
вольфрам 1,5-3,5
молибден 3,5-4,5
рений 0,5-2,5
ванадий 0,4-0,7
алюминий 3,5-4,2
титан 2,5-3,5
ниобий 2,5-4,0
углерод 0,04-0,10
бор 0,007-0,014
лантан 0,005-0,015
церий 0,003-0,010
магний 0,004-0,015
скандий 0,003-0,015
никель остальное
(описание изобретения к патенту РФ №2280091, МПК С22С 19/05, опубл. 20.07.2006, Бюл. №20.).
Известный сплав характеризуется высокими показателями прочности, низкими ползучести и скоростью распространения усталостных трещин при высоких температурах до 850°С.
Однако уровень его кратковременной прочности σв и предела текучести σ0.2 при комнатной температуре составляет 1535 МПа и 1177 МПа, соответственно, что снижает эффективность данного сплава в реальной конструкции, так как при высоких температурах эксплуатируется только венец диска, а ступица, воспринимающая всю нагрузку, формируемую центробежной силой, работает при значительно меньших температурах. По этой причине недостаток прочности при малых температурах приводит к значительному увеличению размеров и веса диска, что отрицательным образом сказывается на удельной тяге газотурбинного двигателя.
Задачей изобретения является увеличение надежности и ресурса дисков из жаропрочного никелевого сплава при более высоких термодинамических параметрах процессов.
Техническим результатом, на который направлено изобретение, является повышение длительной и кратковременной прочности жаропрочного сплава на основе никеля при хорошей пластичности во всем температурном интервале (от 20 до 850°С), который планируется к реализации в новых поколениях газотурбинных двигателей.
Технический результат достигается тем, что деформируемый жаропрочный сплав на основе никеля, содержащий углерод, хром, кобальт, вольфрам, молибден, титан, алюминий, ниобий, рений, бор, церий, лантан, магний, в отличие от известного, дополнительно содержит тантал, гафний, цирконий, иттрий при следующем соотношении компонентов, мас. %:
углерод 0,03-0,12
хром 7,0-10,0
кобальт 16,0-28,0
вольфрам 2,5-6,0
молибден 2,8-4,8
титан 2,5-5,4
алюминий 3,2-4,6
ниобий 0,5-3,0
тантал 2,6-4,6
гафний 0,05-0,2
рений 1,0-3,0
бор 0,005-0,015
цирконий 0,005-0,03
церий 0,01-0,05
лантан 0,01-0,05
иттрий 0,01-0,05
магний 0,01-0,06
никель остальное.
Изобретение поясняется фиг., на которой изображена зависимость напряжение-деформация при растяжении образца предлагаемого сплава, выплавка (ВИ+ВДП)+ТО+деформация 1180°С + двухступенчатое старение.
Химический состав заявляемого сплава отличается от прототипа наличием тантала, содержанием титана, кобальта, хрома и рения, а также концентрацией вольфрама.
Увеличение содержания титана в сочетании с танталом обеспечивает повышение количества упрочняющей γ'-фазы, а также способствует росту температур ее растворения и замедлению ее коагуляции в процессе эксплуатации, за счет подавления диффузионных процессов, что положительным образом сказывается на фазовой стабильности и росте рабочих температур.
Содержание хрома, являющегося основным элементом, повышающим жаростойкость никелевых сплавов, в предлагаемом сплаве несколько ниже, чем в прототипе, что обеспечивает возможность введения большего количества тугоплавких элементов, таких как рений, вольфрам и молибден, без риска образования охрупчивающих ТПУ-соединений на их основе. При этом жаростойкость предлагаемого сплава сохраняется на достаточном уровне.
Увеличение содержания кобальта положительным образом сказывается на технологичности сплава за счет расширения интервала между температурами полного растворения упрочняющей γ'-фазой (Tпрγ') и температурой солидус (TS). Также кобальт положительным образом сказывается на пластичности сплава.
Кроме того, поскольку состав легирующих элементов известных сплавов примерно один и тот же, то обеспечение наиболее высоких показателей достигается оптимальным соотношением между отдельными элементами или группами элементов. Исследования прочностных характеристик более 100 известных сплавов показали, что:
1) на уровень прочностных характеристик при 20°С (σв и σ0,2) наибольшее влияние оказывают Ti, Nb, Та, Аl и W;
2) Ti, Та и Nb оказывают положительное влияние на длительную прочность при температурах до 650°С;
3) При температурах выше 650°С наиболее эффективно влияют Аl, Та, Nb и Re;
Следовательно, для достижения высоких прочностных свойств во всем температурном диапазоне эксплуатации перспективных сплавов необходимо в максимально возможной степени использовать сплав Ti, Nb, Та и Re.
Однако увеличение легирования фазы на основе Ni3Al такими γ'-образующими элементами, как Ti, Nb, Та, Hf и др. может привести к распаду γ'-частиц и образованию охрупчивающих электронных соединений типа η (на базе Ni3Ti), δ (на базе Ni3Nb, Та) и т.д.
Известна нижняя граница соотношения в γ'-фазе Аl и других γ'-образующих элементов, т.е. если:
Figure 00000004
то охрупчивающие соединения не будут образовываться.
Выполненные авторами исследования показали, что для получения высокопрочных и жаропрочных дисковых никелевых сплавов оптимальным является соотношение:
Figure 00000005
При этом должно быть обеспечено соотношение:
Figure 00000006
Кроме того, никелевая γ-матрица должна быть упрочнена Cr и Со на уровне
19≤(СCrCo)≤39 мас%
Увеличение в составе сплава рения позволяет для снижения удельного веса и при этом увеличения высокотемпературной прочности частично использовать вместо тяжелого вольфрама более легкий молибден при следующем соотношении:
Figure 00000007
Гафний в составе сплава является сильным карбидообразователем. Это один из редких элементов, который позволяет одновременно повысить и прочность, и пластичность сплава.
Лантан, иттрий и церий заметно повышают жаростойкость сплава, также они значительно тормозят диффузионные процессы по границам зерен. Кроме того введение иттрия обеспечивает выпадение карбидов МС в процессе их кристаллизации при более высоких температурах (близких к ликвидус), чем в сплавах без иттрия, в которых «пик» выпадения карбидов находится вблизи солидуса.
Дополнительное введение в состав циркония повышает пластичность сплава и снижает скорость развития трещин.
Кроме того, из сплава исключен ванадий и скандий. Несмотря на положительное влияние ванадия на жаропрочность никелевых сплавов его эффективность относительно невелика, при этом он оказывает заметное отрицательное влияние на жаростойкость. Скандий вводится в сплавы для раскисления и рафинирования металла. В предложенном сплаве с этой ролью эффективно справляется комплекс легирования состоящий из La, Се и Y.
Пример осуществления.
С целью экспериментальной проверки методом (ВИ+ВДП) были отлиты заготовки и разработан режим их деформации. Из деформированных заготовок были изготовлены плоские образцы на растяжение с размерами рабочей части 8×3,5×1,5 мм, которые перед испытанием шлифовались для снятия напряженного слоя. Кратковременные испытания проводились при температуре 20°С.
Для апробации сплава были выплавлены три опытных состава предлагаемого сплава, содержание компонентов в которых приведено в таблице 1.
Figure 00000008
Figure 00000009
В таблице 2 представлены механические свойства образцов предлагаемого сплава в деформированном состоянии, полученного из металла ВИ и металла (ВИ+ВДП, многократный переплав) - сравнительные механические свойства при растяжении предлагаемого сплава после горячей деформации и упрочняющей термической обработки.
Figure 00000010
На фиг. приведена диаграмма растяжения образца из металла (ВИ+ВДП) при 20°С. Видно, что предел прочности материала σB превышает 1700 МПа при высоком уровне пластичности.
Сравнительные прочностные характеристики предлагаемого сплава и прототипа приведены в таблице 3.
Figure 00000011
* - где в числителе минимальные, а в знаменателе максимальные значения.
Предлагаемый дисковый сплав имеет наиболее высокие показатели прочности (при удовлетворительной пластичности) как при комнатных, так и высоких (750°С и выше) температурах. Предлагаемый сплав, полученный двойным вакуумным переплавом (ВИ+ВДП), имеет после деформации и двухступенчатого старения пределы прочности и текучести при 20°С, равные (1708 и 1205) МПа соответственно, а пластичность около 11%. Такие показатели не имеет ни один отечественный сплав, а среди зарубежных он соответствует самым высоким параметрам.
Предлагаемое техническое решение направлено на повышение длительной и кратковременной прочности при хорошей пластичности во всем температурном интервале, который планируется к реализации в новых поколениях газотурбинных двигателей. Это в свою очередь обеспечивает существенное увеличение надежности и ресурса дисков турбин при более высоких термодинамических параметрах процессов.

Claims (2)

  1. Деформируемый жаропрочный сплав на основе никеля, содержащий углерод, хром, кобальт, вольфрам, молибден, титан, алюминий, ниобий, рений, бор, церий, лантан и магний, отличающийся тем, что он дополнительно содержит тантал, гафний, цирконий, иттрий при следующем соотношении компонентов, мас. %:
  2. углерод 0,03-0,12 хром 7,0-10,0 кобальт 16,0-28,0 вольфрам 2,5-6,0 молибден 2,8-4,8 титан 2,5-5,4 алюминий 3,2-4,6 ниобий 0,5-3,0 тантал 2,6-4,6 гафний 0,05-0,2 рений 1,0-3,0 бор 0,005-0,015 цирконий 0,005-0,03 церий 0,01-0,05 лантан 0,01-0,05 иттрий 0,01-0,05 магний 0,01-0,06 никель остальное
RU2019100783A 2019-01-10 2019-01-10 Деформируемый жаропрочный сплав на основе никеля RU2695097C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019100783A RU2695097C1 (ru) 2019-01-10 2019-01-10 Деформируемый жаропрочный сплав на основе никеля

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019100783A RU2695097C1 (ru) 2019-01-10 2019-01-10 Деформируемый жаропрочный сплав на основе никеля

Publications (1)

Publication Number Publication Date
RU2695097C1 true RU2695097C1 (ru) 2019-07-19

Family

ID=67309523

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019100783A RU2695097C1 (ru) 2019-01-10 2019-01-10 Деформируемый жаропрочный сплав на основе никеля

Country Status (1)

Country Link
RU (1) RU2695097C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721261C1 (ru) * 2019-12-11 2020-05-18 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный деформируемый сплав на основе никеля с низким температурным коэффициентом линейного расширения и изделие, выполненное из него

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2088684C1 (ru) * 1990-11-19 1997-08-27 Инко Эллойз Интернэшнл Инк. Сплав, стойкий к окислению (варианты)
US6383312B1 (en) * 1997-10-30 2002-05-07 Alstom Ltd Nickel base alloy
RU2280091C1 (ru) * 2004-12-21 2006-07-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный деформируемый сплав на основе никеля и изделие, выполненное из этого сплава
JP5413543B1 (ja) * 2012-06-07 2014-02-12 新日鐵住金株式会社 Ni基合金
WO2017077137A2 (en) * 2015-11-06 2017-05-11 Innomaq 21, S.L. Method for the economic manufacturing of metallic parts
RU2623940C2 (ru) * 2015-06-23 2017-06-29 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2088684C1 (ru) * 1990-11-19 1997-08-27 Инко Эллойз Интернэшнл Инк. Сплав, стойкий к окислению (варианты)
US6383312B1 (en) * 1997-10-30 2002-05-07 Alstom Ltd Nickel base alloy
RU2280091C1 (ru) * 2004-12-21 2006-07-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный деформируемый сплав на основе никеля и изделие, выполненное из этого сплава
JP5413543B1 (ja) * 2012-06-07 2014-02-12 新日鐵住金株式会社 Ni基合金
RU2623940C2 (ru) * 2015-06-23 2017-06-29 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии
WO2017077137A2 (en) * 2015-11-06 2017-05-11 Innomaq 21, S.L. Method for the economic manufacturing of metallic parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721261C1 (ru) * 2019-12-11 2020-05-18 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный деформируемый сплав на основе никеля с низким температурным коэффициентом линейного расширения и изделие, выполненное из него

Similar Documents

Publication Publication Date Title
JP5278936B2 (ja) 耐熱超合金
RU2289637C2 (ru) Сплав на основе никеля
CN110317990B (zh) 一种Ni-Co-Al-Cr-Fe系单晶高熵高温合金及其制备方法
JP5696995B2 (ja) 耐熱超合金
JP2017075403A (ja) ニッケル基耐熱超合金
JP5995158B2 (ja) Ni基超耐熱合金
CN110205523A (zh) 一种具有高拉伸强度的镍基粉末高温合金及其制备方法
JP4409409B2 (ja) Ni−Fe基超合金とその製造法及びガスタービン
CN115747577B (zh) 涡轮盘用变形高温合金及其制备方法
JP2014070230A (ja) Ni基超耐熱合金の製造方法
JP2022501495A (ja) 耐クリープ性チタン合金
RU2697674C1 (ru) Жаропрочный никелевый сплав
RU2695097C1 (ru) Деформируемый жаропрочный сплав на основе никеля
RU2365657C1 (ru) Жаропрочный деформируемый сплав на основе никеля и изделие, выполненное из этого сплава
Logunov et al. The challenges in development of nickel-based heat-resistant superalloys for gas turbine disks and creation of a new superalloy with increased operational characteristics
JP5932622B2 (ja) オーステナイト系耐熱鋼およびタービン部品
CN116065109B (zh) 一种难变形镍基高温合金的热处理工艺及锻件
CN108866387A (zh) 一种燃气轮机用高强抗热腐蚀镍基高温合金及其制备工艺和应用
JP2004256840A (ja) 複合強化型Ni基超合金とその製造方法
JP6095237B2 (ja) 高温クリープ特性に優れたNi基合金およびこのNi基合金を用いたガスタービン用部材
JP2004107777A (ja) オーステナイト系耐熱合金とその製造方法および蒸気タービン部品
JPH06287667A (ja) 耐熱鋳造Co基合金
CN106636755A (zh) 一种镍基高温合金和燃气涡轮发动机部件
RU2765297C1 (ru) Никелевый гранульный жаропрочный сплав для дисков газовых турбин
JPH07238349A (ja) 耐熱鋼