JPWO2007040283A1 - 探針及びカンチレバー - Google Patents

探針及びカンチレバー Download PDF

Info

Publication number
JPWO2007040283A1
JPWO2007040283A1 JP2007538805A JP2007538805A JPWO2007040283A1 JP WO2007040283 A1 JPWO2007040283 A1 JP WO2007040283A1 JP 2007538805 A JP2007538805 A JP 2007538805A JP 2007538805 A JP2007538805 A JP 2007538805A JP WO2007040283 A1 JPWO2007040283 A1 JP WO2007040283A1
Authority
JP
Japan
Prior art keywords
probe
single crystal
cantilever
flat plate
crystal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007538805A
Other languages
English (en)
Other versions
JP4403585B2 (ja
Inventor
浩司 小山
浩司 小山
古滝 敏郎
敏郎 古滝
砂川 和彦
和彦 砂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd, Adamant Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Publication of JPWO2007040283A1 publication Critical patent/JPWO2007040283A1/ja
Application granted granted Critical
Publication of JP4403585B2 publication Critical patent/JP4403585B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/38Probes, their manufacture, or their related instrumentation, e.g. holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/10Shape or taper

Abstract

【課題】 製造工程が簡便であり、なおかつ単結晶材料の性質が最大限に引き出せるような状態で使用することの出来る、走査プローブ顕微鏡(SPM)のカンチレバー2に用いるための探針1と、カンチレバー2の製造方法を提供することである。【解決手段】 SPMに用いるカンチレバー2の梁部2aの先端に有する探針1であって、当該探針1が、10μm以上の長さを有する針状部1aと、カンチレバー2と接する面を有する平板部1bとからなり、当該針状部1aと平板部1bは単結晶材料で一体に形成され、当該平板部1bの少なくとも一つの側面に、上記単結晶材料の結晶方位を示すための平面1cを有していることを特徴とする探針1である。【選択図】 図1

Description

本発明は、各種性質を有する単結晶材料を用いた走査プローブ顕微鏡に用いるための探針と、当該探針の取付けられたカンチレバーに関する。
物質表面をナノオーダーの分解能で観察する装置として、走査プローブ顕微鏡(Scanning Probe Microscopy; 以下SPMとする)が産業上広く用いられている。SPMは、プローブ先端の探針と試料との間に生じる、原子間力等の相互作用を利用して像を得るものである。
このSPMのキーパーツともいえる探針は、先端が原子レベルで尖るように形成される必要があるが、単結晶材料を用いて探針を製造する場合には、一般に先端を容易に尖らせることが出来るという特徴がある。特に近年、アスペクト比の大きな試料に対しての測定及び計測についてのニーズが高まっており、針の部分が長い探針が強く求められており、単結晶材料の果たす役割は益々高まっている。
ここで、単結晶材料,例えばダイヤモンド単結晶からなる探針を、カンチレバーの梁部に固定する方法としては、
(1)シリコンウエハの前面にフォトレジストを形成する工程と、該フォトレジストをパターニングする工程と、該パターニングしたフォトレジストをマスクとして前記シリコンウエハをエッチングする工程と、エッチング終了後に前記フォトレジストを剥離する工程と、前記シリコンウエハのエッチング対向面に傷入れを行う工程と、該傷入れ部に探針となるダイヤモンドを成長させる工程と、該ダイヤモンド成長後前記シリコンウエハ表面に酸化膜を形成する工程と、該酸化膜表面に窒化膜を形成する工程と、前記ダイヤモンド探針部及びシリコンウエハ裏面の窒化膜を取り除くエッチングのためのフォトレジストパターニングマスクを形成する工程と、該フォトレジストパターニングマスクを除去する工程と、前記シリコンウエハのダイヤモンド探針形成側の酸化膜が露出するまで前記シリコンウエハのエッチング部をさらにエッチングする工程とエッチング終了後に、前記シリコンウエハのエッチング部に金属薄膜を形成する工程とからなる原子間力顕微鏡用カンチレバーの製造方法(特許文献1)
(2)磁性物質から形成された円形のスタイラス保持部にダイヤモンド原石を固定し、前記ダイヤモンド原石を研削してスタイラスを形成し、前記スタイラス保持部の磁性物質を磁化させ、カンチレバーの梁部に接着剤を塗布し、前記スタイラス保持部を梁部の接着剤塗布面上に固定し、前記接着剤が硬化した後に前記磁石を前記梁部から離すと共に、前記スタイラス保持部の磁性物質を消磁させる方法(特許文献2)
が、従来知られている。
特開平05−203444号公報
特開平04−106852号公報
しかしながら、特許文献1の方法でダイヤモンドからなる探針をカンチレバーの梁部に形成させる方法では、レジスト膜や窒化膜等の成膜や除去を必要とする等、数多くの手順を踏まなければならず、簡便さに欠けるという問題点があった。
また、特許文献1の方法でダイヤモンドからなる探針をカンチレバーの梁部に形成させる方法では、シリコンからなる穴の内側でダイヤモンドを成長させる必要がある。ここで、成長するダイヤモンドと梁部のシリコンとの間では、結晶の格子定数が大きく異なる。そのため、成長した探針の結晶には欠陥が多く発生し、当該探針の機械的強度が低下するという問題点があった。
さらに、特許文献2の方法では、カンチレバーの上にスタイラス保持部が接着され、当該スタイラス保持部のさらに上にダイヤモンドからなるスタイラス(探針)が固定される。この場合には、スタイラスとカンチレバーとの間に接合部が2箇所存在するため、その各々でダイヤモンドの結晶方位がずれる可能性が大きく、当該探針の材料が有する性質を完全に生かせるような探針を作ることが出来ないという問題点があった。
本発明は上記問題点に鑑みてなされたものであって、その目的とするところは、製造工程が簡便であり、なおかつ単結晶材料の性質が最大限に引き出せるような状態で使用することの出来る、SPMのカンチレバーに用いるための探針と、それを用いたカンチレバーを提供することである。
本発明者は、探針の性質を最大限に引き出すには、最適に選択された結晶方位を有する探針をカンチレバーの梁部とは別に形成した上で、当該探針の基部に形成された平板部を活用して当該梁部に搭載させることが有効であることを見出し、本発明を完成させた。
すなわち、請求項1記載の発明は、SPMに用いるカンチレバーの先端に有する探針であって、当該探針が、10μm以上の長さを有する針状部と、カンチレバーの梁部と接する面を有する平板部とからなり、当該針状部と平板部は単結晶材料で一体に形成され、当該平板部の少なくとも一つの側面に、上記単結晶材料の結晶方位を示すための平面を有することを特徴とする探針である。
また、請求項2記載の発明は、請求項1に記載の構成に加えて、上記平面が、当該平板部の両側面を互いに平行にして形成されたものであることを特徴とする探針である。
ここで、互いに平行な2つの平面を探針に形成させると、探針をカンチレバーの梁部に搭載する際に、当該探針を容易に保持することも可能である。
また、請求項3記載の発明は、請求項1〜2に記載の構成に加えて、当該単結晶材料がダイヤモンド単結晶からなることを特徴とする探針である。
ダイヤモンド単結晶は最も硬い物質として知られており、当該単結晶の性質として極めて大きな耐摩耗性を有している。ここで、比較的整形しやすい{100}面の中でも、<110>方向が走査方向と平行となるように探針の走査方向を設定できれば、当該探針の磨耗を好ましく防ぐことが出来る。
また、請求項4記載の発明は、当該カンチレバーの梁部の両側面が互いに平行な平面を有するとともに、当該探針が、当該梁部の主面上に、当該平板部の両側面と当該梁部の両側面とが互いに平行になるように配され、当該平板部の両側面間の距離が、当該梁部の両側面間の距離に対して0.9〜1.1倍の距離を有し、当該探針を当該梁部の主面上に配する際に、液状の接着剤を用いて互いに接着されていることを特徴とする、請求項2〜3記載の探針を有するカンチレバーである。
ここで、上記のように探針と梁部との位置関係を構成することで、当該探針の平板部の両側面及び当該梁部の両側面を、ほぼ同一の平面上に合わせることが出来る。
本発明に係るSPMに用いるための探針によれば、特徴的な性質を有した単結晶材料をSPMの探針に用いた場合であっても、カンチレバーの梁部に搭載する際に結晶方位を高精度に合わせることが可能である。従って、当該単結晶材料の性質を最大限に引き出したカンチレバーの提供をすることが出来るという効果を奏する。
また、本発明の請求項4に係るカンチレバーの製造方法によれば、探針の平板部の両側面とカンチレバーの梁部の両側面とが略同一の平面になるようにした上で、液体の接着剤を用いてこれらを接着することで、液体の接着剤の表面には表面張力が働くため、当該表面張力が梁部及び平板部の両側面を押すことが出来る。それにより、自働的に探針の結晶方位を最適な方向に合わせることが出来るという効果を奏する。
以下、本発明を実施するための最良の形態について説明する。
本実施形態の探針1は、図1に示すように、針状部1aと平板部1bとが一体に形成され、SPMのカンチレバー2の先端に用いるためのものである。
<探針の形態について>
本実施形態における探針1の材料としては、特徴的な性質を有した単結晶材料4を用いることが出来る。具体的には、高い耐磨耗性を有する材料であるためダイヤモンド単結晶を用いることが好ましいが、サファイヤ単結晶や窒化珪素単結晶等を用いてもよい。
SPMによって測定又は観察を行う際、探針1と測定・観察の対象物とは、原子間力等の相互作用が働きうるような極めて近接した状態になるか、完全に接触した状態になる。ここで、単結晶材料4として耐磨耗性を有する材料を用いれば、当該探針1を有するカンチレバー2を走査させて測定又は観察を行う際にも、当該探針1の磨耗を防ぐことが出来、SPMの測定分解能を長く維持することが出来るため好ましい。
当該探針1の針状部1aの長さは10μm以上になるようにして、当該針状部1aの先端部の直径は数nm〜数十nmとなるようにする。当該針状部1aはより長くすることで、アスペクト比の高い試料の凹凸にも容易に対応することが可能である。ここで、針状部1aは1000μmの長さを有するものとしてもよい。半導体のディープエッチングに用いることができるからである。その一方で、針状部1aの長さを500μm以下としてもよい。当該探針1が試料に接触しても折れにくくなるからである。
一方で、当該探針1の平板部1bは、底面の幅が20〜500μmであり、奥行きが20〜500μmの大きさであり、厚さは5〜500μm、好ましくは5〜20μmであるようにする。ここで、当該平板部1bの底面の厚さが20μm以下であってもよい。探針1の重量が軽くなることから、カンチレバー2の共振周波数の低下を防いでSPMの分解能を高められるからである。また、当該平板部1bの厚さが20μm以上であってもよい。当該平板部1bが割れにくくなるからである。その一方で、当該探針1の底面積が400μmよりも大きいことが好ましい。当該底面とカンチレバー2の梁部2aとの接触面積を確保することで、当該探針1のカンチレバー2からの脱落を防ぐためである。
ここで、当該探針1の平板部1bの側面には、当該単結晶材料4の結晶方位を示すために少なくとも一つの平面1cを有するようにする。この平面1cの結晶方位は、カンチレバー2の走査方向と最も耐摩耗性のある単結晶材料4の結晶方位とを重ね合わせた際に、カンチレバー2の側面と平行になるような結晶方位を選択することが好ましい。このように平面1cの結晶方位を選択すると、カンチレバー2の梁部2aに当該探針1を搭載する際に、当該結晶方位を容易に高精度に合わせることが可能になるからである。
また、当該平板部1bの側面に有する平面1cは、両側面に互いに平行に形成されていることが好ましい。特に当該探針1が点対称な形状を有する場合には、カンチレバー2の梁部2aに当該探針1を搭載する際に、いずれの平面1cを用いても結晶方位を合わせることが出来る。また、当該探針1をカンチレバー2の梁部2aに載置する際に、当該探針1の保持を容易に行うことが出来るため好ましい。
そして、これら針状部1aと平板部1bとは、同一の単結晶材料4により一体に形成されるようにする。以下において、具体的な探針1の形成方法について述べる。
<探針の形成方法について>
上述するような、探針1の材料である単結晶材料4は、探針1の平板部1bの底面と同じような形状の底面を有するとともに、探針1の針状部1aの長さと平板部1bの厚さとを足した厚さを有するように切り出される。そして、当該単結晶材料4の全体を、例えば固定砥粒や流動砥粒、特にダイヤモンド単結晶においてはスカイフ研磨といった、公知の研磨手段によって研磨される。
このとき、切り出された単結晶材料4の側面には、当該単結晶材料4の結晶方位を示すために少なくとも一つの平面1cを有するようにする。この平面1cの結晶方位は、カンチレバー2を走査方向と最も耐摩耗性のある結晶方位とを重ね合わせた際に、カンチレバー2の梁部2aの側面と平行になるような面を選択することが好ましい。このようにして平面1cを選択すると、カンチレバー2の梁部2aに当該探針1を搭載する際に、結晶方位を容易に高精度に合わせることが可能になるからである。
そして、研磨された単結晶材料4のうち針状部1aを設ける側の面において、針状部1aにあたる部分を除いて除去することで針状部1aを形成する。除去の方法としては、レーザ加工やプラズマエッチング,FIB(収束イオンビーム)加工,熱化学加工等を用いることが出来る。または、研磨された単結晶材料4からなる平板部1bにCVD法等の手段を用い、針状部1aを成長させることで形成してもよい。
例えば、レーザ加工により針状部1aを形成する場合には、例えば以下に示す第1〜第3の方法で、当該針状部1aを形成させる部分以外の単結晶材料4の表面に改質領域5を形成させ、当該改質領域5をエッチング等により除去することで、単結晶材料4に針状部1aを形成させることが出来る。
第1の方法は、単結晶材料4に対して固有吸収の生じるようなレーザ3を用い、その集光した焦点3cを、単結晶材料4に対して相対的に移動させる方法である。
この方法では、レーザ3として例えばYAGレーザ及びその高調波,COレーザ,エキシマレーザ等を用いる。そして単結晶材料4を、例えば図2(a)に示すように、XYZステージの付いた載置台10の上に設置する。ここで、レーザ発光源3aから出射されるレーザ3をレンズ3bで集光して単結晶材料4の表面に焦点3cを形成し、XYZステージ(図示せず)を操作して当該単結晶材料4を当該焦点3cに対して相対的に移動させて、当該焦点3cの近傍に改質領域5を形成させることが出来る。
第2の方法は、予めマスキング11を形成した単結晶材料4に対して固有吸収の生じるようなレーザ3を用い、一定の照射面積に対して当該レーザ3を照射し、改質領域5を形成する方法である。
この方法では、レーザ3として例えばYAGレーザ及びその高調波,COレーザ,エキシマレーザ等を用いる。予め単結晶材料4の表面のうち探針1を形成させる部分には、予めマスキング11のパターンを形成しておき、当該単結晶材料4を、例えば図2(b)に示すように載置台10の上に設置する。ここで、当該レーザ3のビームを必要に応じてレンズ3bにより絞り込み、当該単結晶材料4の所定の面積に照射させることで、当該マスキング11の無い領域に改質領域5を形成させることが出来る。
第3の方法は、単結晶材料4に対して多光子吸収を生じるようなレーザ3を用い、その集光した焦点3cを、単結晶材料4に対して相対的に移動させる方法である。
この方法では、レーザ3として例えばTi−サファイヤレーザを用いる。そして、例えば図2(c)に示すように、XYZステージの付いた載置台10の上に、少なくとも片面を鏡面に研磨した状態で、当該鏡面がレーザ発光源3aを向くように当該単結晶材料4を設置する。続いて、レーザ発光源3aから出射するレーザ3をレンズ3bで集光して焦点3cを形成し、XYZステージ(図示せず)を操作して当該単結晶材料4を当該焦点3cに対して相対的に移動させて改質領域5を形成させる。ここで、当該レーザ3が多光子吸収を起こし、相変化に必要な活性化エネルギーを与えることで、単結晶材料4の内部に改質領域5を形成することが出来る。当該改質領域5の形成は、レーザ発光源3aから遠い側の面から順次行っていき、最終的には単結晶材料4の表面に達するように行うことが好ましい。
一方で、熱化学加工により針状部1aを形成する場合には、単結晶材料4としてダイヤモンド単結晶を用いる(図3(a))。ダイヤモンド単結晶は、処理面を鏡面研磨加工等の手段によってRa=1nm以下に平坦化した後、ダイヤモンド単結晶の処理面上に、炭素を溶解しうる金属、例えばニッケル,ロジウム,パラジウム,白金,イリジウム,タングステン,モリブデン,マンガン,鉄,チタン,クロム,またはそれらの合金を用いた金属薄膜6を、0.1μm以上の厚さで均一に成膜する(図3(b))。当該金属薄膜6の成膜方法としては、スパッタリング法,分子線ビームエピタキシー(MBE)法,真空蒸着法,イオンプレーティング法などを用いることが出来る。ここで、当該金属薄膜6の厚さを0.1μm以上としてもよい。以下に述べる熱処理の工程において、金属薄膜6の凝集が起こりにくくなるからである。
当該金属薄膜6に対しては、機械加工,レーザ加工,フォトリソグラフィ,収束イオンビーム(FIB)等の手段により、針状部1aの形状に合わせて当該金属薄膜6の一部を除去して、ダイヤモンド単結晶露出部7を形成させる(図3(c))。そして、一部除去された金属薄膜6を有するダイヤモンド単結晶に対して熱処理を行い、当該金属薄膜6の内部にダイヤモンド単結晶の炭素原子を取り込ませる。それにより、当該金属薄膜6が当該ダイヤモンド単結晶露出部7を残してダイヤモンド単結晶の中に埋没していき(図3(d))、その結果、当該ダイヤモンド単結晶露出部7の直下が処理されずに残る。ダイヤモンド単結晶の表面に残った金属薄膜6は、必要に応じて酸処理等の手段により除去することが出来る(図3(e))。以上の工程により、ダイヤモンド単結晶に針状部1aを高精度に形成させることが出来る。
<探針のカンチレバー梁部への取り付けについて>
このようにして形成された探針1は、カンチレバー2の梁部2aの先端に取付けられる。ここで用いられる梁部2aは、探針1が搭載される側の面を頂面としたときに、側面のうちの少なくとも1つが平坦な平面2cを有しているものである。
ここで、特に図4に示すように、カンチレバー2の梁部2aのうち少なくとも探針1の搭載される位置の近辺において、両側面が互いに平行な平面2cとして形成されていることが好ましい。さらに、探針1についても、両側面が互いに平行な平面1cとして形成されていることが好ましい。
当該探針1は、当該カンチレバー2の梁部2aの頂面上に搭載する。その際に、当該探針1に形成された平面1cが、当該梁部2aに形成された平面2cと、互いに平行に(好ましくは同一平面上に)なるようにする。これらを平行に合わせることで、カンチレバー2における探針1の結晶方位を、探針1の性質を最も発揮出来る状態にすることが出来る。
ここで、当該平板部1bと当該カンチレバー2の両側面間における距離の比率が0.9〜1.1倍となるように構成し、さらに、液体となりうる接着剤8を用いて当該探針1と当該梁部2aとを接着することが好ましい。係る場合には、当該液体の表面張力によって角度合せの工程が自働的になされるからである。液体となりうる接着剤8としては、例えば常温で液体であるエポキシ系接着剤や、加熱時に液体となる鑞材等を、好ましく用いることが出来る。
{100}面を頂面に有し、底面が50μm四方であり、厚さが100μmである直方体形状のダイヤモンド単結晶を用意した。当該ダイヤモンド単結晶の結晶方位は、頂面が{100}面であり、両側面が{110}面である。当該ダイヤモンド単結晶の各面を研磨した後、その頂面に厚さ1μmのニッケル薄膜を形成した。そして、当該ニッケル薄膜に電子ビームリソグラフィにより直径約10nmの開口部を形成した。これらに対して熱化学加工を行い、ダイヤモンド単結晶の厚さのうち50μmについて、当該開口部を除いた部分をニッケル薄膜に溶解させ、当該開口部に針状部を形成させた。その結果、針状部の長さは50μm、針状部の先端の直径は10nm、平板部との境界部分の直径は約10μmのダイヤモンド単結晶からなる探針が形成された。
次に、当該探針を、両側面が平行であり、両側面間の距離が50μmのカンチレバーの梁部を用意し、当該梁部における当該探針との接着面に、エポキシ系の接着剤を少量塗布し、その上に上記探針を載置して、これらを接着した。すると、当該カンチレバーの走査方向として予定される当該梁部の側面と垂直な方向に対する、当該ダイヤモンド探針の最も耐摩耗性の高い結晶方位である<110>方向のなす角度を、角度合せの作業を特に行っていないにも拘らず、約5°に抑えることが出来た。
本実施形態に係る、探針とカンチレバーを説明する断面図である。 本実施形態に係る、レーザ加工法を用いた探針の針状部を形成する工程の断面を用いて説明する図である。 本実施形態に係る、熱化学加工法を用いた探針の針状部を形成する工程の断面を用いて説明する図である。 本実施形態に係る、好ましい形態のカンチレバー梁部についての平面図である。 本実施形態に係る、探針とカンチレバー梁部との好ましい接着工程について断面を用いて説明する図である。
符号の説明
1 探針
1a 針状部
1b 平板部
2 カンチレバー
2a 梁部
1c,2c 平面
3 レーザ
3a レーザ発光源
3b レンズ
3c 焦点
4 単結晶材料
5 改質領域
6 金属薄膜
7 ダイヤモンド単結晶露出部
8 接着剤
9 カンチレバー支持部
10 載置台
11 マスキング

Claims (4)

  1. 走査プローブ顕微鏡に用いるカンチレバーの先端に有する探針であって、
    当該探針が、10μm以上の長さを有する針状部と、カンチレバーの梁部と接する面を有する平板部とからなり、
    当該針状部と平板部は単結晶材料で一体に形成され、
    当該平板部の少なくとも一つの側面に、上記単結晶材料の結晶方位を示すための平面を有することを特徴とする探針。
  2. 上記平面が、当該平板部の両側面を互いに平行にして形成されたものであることを特徴とする、請求項1に記載の探針。
  3. 当該単結晶材料がダイヤモンド単結晶からなることを特徴とする請求項1〜2に記載の探針。
  4. 当該カンチレバーの梁部の両側面が互いに平行な平面を有するとともに、
    当該探針が、当該梁部の主面上に、当該平板部の両側面と当該梁部の両側面とが互いに平行になるように配され、
    当該平板部の両側面間の距離が、当該梁部の両側面間の距離に対して0.9〜1.1倍の距離を有し、
    当該探針を当該梁部の主面上に配する際に、液状の接着剤を用いて互いに接着されていることを特徴とする、
    請求項2〜3記載の探針を有するカンチレバー。
JP2007538805A 2005-10-06 2006-10-06 探針及びカンチレバー Expired - Fee Related JP4403585B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005294183 2005-10-06
JP2005294183 2005-10-06
PCT/JP2006/320135 WO2007040283A1 (ja) 2005-10-06 2006-10-06 探針及びカンチレバー

Publications (2)

Publication Number Publication Date
JPWO2007040283A1 true JPWO2007040283A1 (ja) 2009-04-16
JP4403585B2 JP4403585B2 (ja) 2010-01-27

Family

ID=37906324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007538805A Expired - Fee Related JP4403585B2 (ja) 2005-10-06 2006-10-06 探針及びカンチレバー

Country Status (4)

Country Link
US (2) US20090038382A1 (ja)
EP (1) EP1950551A4 (ja)
JP (1) JP4403585B2 (ja)
WO (1) WO2007040283A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292375A (ja) * 2007-05-25 2008-12-04 Namiki Precision Jewel Co Ltd 走査プローブ顕微鏡に用いる探針及びカンチレバー
WO2009060973A1 (ja) * 2007-11-10 2009-05-14 Namiki Seimitsu Houseki Kabushikikaisha 針状ダイヤモンド、それを用いたカンチレバー、フォトマスク修正用または細胞操作用探針
WO2009086534A1 (en) 2007-12-28 2009-07-09 Veeco Instruments Inc. Method of fabricating a probe device for a metrology instrument and probe device produced thereby
JP5552654B2 (ja) * 2008-08-06 2014-07-16 並木精密宝石株式会社 先鋭化針状ダイヤモンド、およびそれを用いた走査プローブ顕微鏡用カンチレバー、フォトマスク修正用プローブ、電子線源
WO2010123120A1 (ja) * 2009-04-24 2010-10-28 並木精密宝石株式会社 液中測定用プローブ及びカンチレバー及び液中測定方法
JP2011158283A (ja) * 2010-01-29 2011-08-18 Tdk Corp カンチレバー製造方法
JP2018030750A (ja) * 2016-08-23 2018-03-01 並木精密宝石株式会社 Ni薄膜付結晶基板

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066358A (en) * 1988-10-27 1991-11-19 Board Of Trustees Of The Leland Stanford Juninor University Nitride cantilevers with single crystal silicon tips
US4943719A (en) * 1989-01-17 1990-07-24 The Board Of Trustees Of The Leland Stanford University Microminiature cantilever stylus
JPH02239192A (ja) * 1989-03-10 1990-09-21 Idemitsu Petrochem Co Ltd ダイヤモンドの合成方法
EP0468071B1 (en) * 1990-07-25 1994-09-14 International Business Machines Corporation Method of producing micromechanical sensors for the AFM/STM/MFM profilometry and micromechanical AFM/STM/MFM sensor head
JP2501945B2 (ja) * 1990-08-28 1996-05-29 三菱電機株式会社 原子間力顕微鏡のカンチレバ―及びその製造方法
JP3079320B2 (ja) 1992-01-29 2000-08-21 セイコーインスツルメンツ株式会社 原子間力顕微鏡用カンチレバーの製造方法
JP2821061B2 (ja) * 1992-05-22 1998-11-05 電気化学工業株式会社 単結晶の製造方法
US6000280A (en) * 1995-07-20 1999-12-14 Cornell Research Foundation, Inc. Drive electrodes for microfabricated torsional cantilevers
US5831181A (en) * 1995-09-29 1998-11-03 The Regents Of The University Of California Automated tool for precision machining and imaging
JPH09229945A (ja) * 1996-02-23 1997-09-05 Canon Inc マイクロ構造体を支持するエアブリッジ型構造体の製造方法とその雌型基板、並びに、エアブリッジ型構造体とそれを用いたマイクロ構造体およびトンネル電流または微小力検出用のプローブ
US5856672A (en) * 1996-08-29 1999-01-05 International Business Machines Corporation Single-crystal silicon cantilever with integral in-plane tip for use in atomic force microscope system
JP3639684B2 (ja) * 1997-01-13 2005-04-20 キヤノン株式会社 エバネッセント波検出用の微小探針とその製造方法、及び該微小探針を備えたプローブとその製造方法、並びに該微小探針を備えたエバネッセント波検出装置、近視野走査光学顕微鏡、情報再生装置
EP0899538B1 (en) * 1997-08-27 2003-05-14 IMEC vzw A probe tip configuration, a method of fabricating probe tips and use thereof
JP2000155084A (ja) * 1998-11-20 2000-06-06 Hitachi Ltd 原子間力顕微鏡、それを用いた表面形状の測定方法及び磁気記録媒体の製造方法
JP2001116678A (ja) * 1999-10-14 2001-04-27 Canon Inc 光照射用または光検出用プローブの製造方法、および光照射用または光検出用プローブ
US6635870B1 (en) * 1999-10-22 2003-10-21 3M Innovative Properties Company Method and apparatus for molecular analysis of buried layers
JP4106852B2 (ja) 2000-04-14 2008-06-25 株式会社デンソー 車両用交流発電機
US6902716B2 (en) * 2002-10-29 2005-06-07 City University Of Hong Kong Fabrication of single crystal diamond tips and their arrays
JP4245951B2 (ja) * 2003-03-28 2009-04-02 エスアイアイ・ナノテクノロジー株式会社 電気特性評価装置
JP4466019B2 (ja) * 2003-08-29 2010-05-26 住友電気工業株式会社 ダイヤモンド素子及びダイヤモンド素子製造方法
JP5082186B2 (ja) 2004-03-29 2012-11-28 住友電気工業株式会社 炭素系材料突起の形成方法及び炭素系材料突起

Also Published As

Publication number Publication date
US20100293675A1 (en) 2010-11-18
EP1950551A1 (en) 2008-07-30
US8104332B2 (en) 2012-01-31
EP1950551A4 (en) 2009-12-30
US20090038382A1 (en) 2009-02-12
JP4403585B2 (ja) 2010-01-27
WO2007040283A1 (ja) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4403585B2 (ja) 探針及びカンチレバー
EP1742034B1 (en) Method of fabrication of a SPM thin line probe
US7107826B2 (en) Scanning probe device and processing method by scanning probe
CN109444476B (zh) 一种原子力显微镜用亚微米探针的制备方法
JPH0762258B2 (ja) Afm/stmプロフィロメトリ用マイクロメカニカルセンサの製造方法
JP5552654B2 (ja) 先鋭化針状ダイヤモンド、およびそれを用いた走査プローブ顕微鏡用カンチレバー、フォトマスク修正用プローブ、電子線源
JP2000146781A (ja) 試料解析方法、試料作成方法およびそのための装置
EP2133883B1 (en) Method for cost-efficient manufacturing diamond tips for ultra-high resolution electrical measurements
JP2501945B2 (ja) 原子間力顕微鏡のカンチレバ―及びその製造方法
KR102423321B1 (ko) 펠리클의 제조 방법
WO2018169997A1 (en) Diamond probe hosting an atomic sized defect
JP2008292375A (ja) 走査プローブ顕微鏡に用いる探針及びカンチレバー
JP4357347B2 (ja) 試料加工方法及び試料観察方法
JP2006221981A (ja) 加工用プローブ及び加工装置並びに加工用プローブの製造方法
JPH03251705A (ja) アトミックプローブ顕微鏡及びこれに用いられるカンチレバーユニット
WO2010123120A1 (ja) 液中測定用プローブ及びカンチレバー及び液中測定方法
JP2001021478A (ja) 走査プローブ顕微鏡用探針、その製造法および描画装置
JP2007111805A (ja) 多機能プローブ及び微細加工装置並びに微細加工方法
US9423693B1 (en) In-plane scanning probe microscopy tips and tools for wafers and substrates with diverse designs on one wafer or substrate
JP3563271B2 (ja) 走査プローブ顕微鏡用探針の作製方法及びそのための装置
JP2007107969A (ja) 顕微鏡用サンプル板及びその製造方法
Wutscher et al. Note: In situ cleavage of crystallographic oriented tips for scanning probe microscopy
JPH11271015A (ja) 走査型プローブ顕微鏡用カンチレバーチップ及びその製造方法
TWI407107B (zh) 探針
JP2011022010A (ja) 傾斜補正プローブを有するカンチレバー及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090812

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090817

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees