JPWO2004077424A1 - 光情報記録担体 - Google Patents

光情報記録担体 Download PDF

Info

Publication number
JPWO2004077424A1
JPWO2004077424A1 JP2005502892A JP2005502892A JPWO2004077424A1 JP WO2004077424 A1 JPWO2004077424 A1 JP WO2004077424A1 JP 2005502892 A JP2005502892 A JP 2005502892A JP 2005502892 A JP2005502892 A JP 2005502892A JP WO2004077424 A1 JPWO2004077424 A1 JP WO2004077424A1
Authority
JP
Japan
Prior art keywords
recording
light
layer
heat generating
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005502892A
Other languages
English (en)
Inventor
西野 清治
清治 西野
照弘 塩野
照弘 塩野
山本 博昭
博昭 山本
達男 伊藤
達男 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2004077424A1 publication Critical patent/JPWO2004077424A1/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24067Combinations of two or more layers with specific interrelation

Abstract

本発明の光情報記録担体は、基板と、この基板上に設けられた少なくとも一つの記録膜とを含み、所定の波長λを有する記録光の照射により前記記録膜に情報が記録される。記録膜は、発熱層と、この発熱層に接して設けられた少なくとも一つの誘電体層とを含む。発熱層及び誘電体層は、波長λの記録光に対して実質的に透明であり、かつ、発熱層と誘電体層との界面で記録光の電界強度が最大となる所定の厚み及び所定の屈折率を有するように形成されている。

Description

本発明は、情報が光学的に記録・再生される光情報記録担体に関するものである。
近年、情報量の増加に伴って大容量の光情報記録担体(ディスク担体)が求められており、高密度記録化が強く進められている。
光情報記録担体の記録密度は、(NA/λ)(但し、λ:記録光源波長、NA:対物レンズの開口数)に比例する。そこで、近年、波長405nmのGaNレーザ、開口数0.85の対物レンズを用いて、5インチ直径の光ディスクで、DVDディスクの約6倍程度の記録密度(25GByte)を達成する技術が提案されている。
しかし、このように対物レンズの開口数を可能な限り上げる方法、または記録光源波長を可能な限り短くして記録密度を上昇させる方法は、限界に達してきた。
光源の波長が405nmより短い場合、光情報記録担体の樹脂基板として一般的に用いられるポリカーボネート基板の光透過率が急速に低下する。さらに、光源の波長が400nmより短くなると、光情報記録担体の樹脂基板の光透過率が低下すると共に、長時間の照射に対して樹脂の組成分解が起こり、更に樹脂基板の光透過率が低下する。
一方、対物レンズの開口数をこれ以上大きくすると、対物レンズと光情報記録担体との間の距離(WD)を小さくする必要が生じる。このため、WDの制限や光情報記録担体のチルトマージンの観点から、記録膜上に形成される保護層の厚みが100μm以下になってしまう。このように、対物レンズの開口数をこれ以上大きくするとWDが小さくなるため、対物レンズが光情報記録担体と衝突しやすくなる。さらに、保護層が薄いと、光情報記録担体に設けられた保護層面上の汚れが記録膜の信号面からごく近くなるため、光情報記録担体の保護層面上の少しの汚れが、情報の再生信号の劣化に繋がってしまう。
以上のように、単純に記録光の波長を更に短くし、対物レンズの開口数を大きくして高密度化を進めていくと、他の基本的な問題(光透過率低下による光量不足や、再生信号劣化等の問題)が発生する。
そこで、今後における光情報記録担体の更なる高密度化には、記録膜の多層化が重要な手段となる。図5には、複数の記録膜が設けられた従来の光情報記録担体(以下、多層情報記録担体ということがある。)の断面図が示されている。この多層情報記録担体には、基板104上に3層の半透明記録膜101が形成され、さらに最上層には保護層102が設けられている。互いに隣接する半透明記録膜101間には、記録膜分離層103が設けられている。ここでは、この多層情報記録担体に対して保護層102側から光が照射される例が示されている。従って、対物レンズ105は、この多層情報記録担体に対し、保護層102が設けられている面側に配置される。この対物レンズ105にて集光された集光束106の集光部107が目的とする記録膜101上に形成され、この目的とする記録膜101に情報が記録される。
以上のような従来の多層情報記録担体に用いられる半透明記録膜は、記録光を吸収して発熱し、その熱による記録材料の相転移や変形を利用して記録膜に信号を記録する。従って、記録膜は、記録光に対して半透明で、記録光を吸収するように形成される。このように、上記従来の構造では、記録光は直接記録膜に吸収されるため、積層される記録膜の総数が4〜5層以上になると光の減衰が大きくなり、対物レンズ側の多層情報記録担体表面から遠くに配置される記録膜に対しては情報の記録が困難となり、記録容量が制限されていた。
この問題を克服するため、近年、多光子吸収現象を利用した情報の記録(以下、多光子吸収記録という。)が注目を浴びている(例えば、特開平8−220688号公報)。なお、本明細書においては、以下の原理に基づく記録を多光子吸収記録とする。
多光子吸収記録では、記録光の波長に対して透明である記録材料を用いて記録膜を形成することが特徴である。従来の光吸収を利用した記録では、半透明記録膜で光が吸収され発熱するが、多光子吸収記録の場合は、光の電界強度が極めて高い部分である記録光の集光部(記録光の焦点及びその近傍)において、複数の光子により記録材料の電子が励起されて光吸収反応が起こる。なお、多光子吸収記録においては、集光部以外で記録材料の光吸収は起こらない。このように、多光子吸収記録の場合、その記録膜は記録光に対して透明であるため、半透明記録膜を有する多層情報記録担体のように単に記録膜を通過するだけで光が減衰するという問題は生じない。従って、より多くの記録膜を積層させることができる。
図6には、多光子吸収記録が可能な光情報記録担体に対して情報を記録する様子が示されている。この例では、基板113と保護層112との間に、記録光に対して透明な記録材料からなる記録層111が配置されている。記録層111のほぼ同一平面上に信号部114の列を記録し、このような記録面を記録層111内に複数設けることで、3次元的な情報の記録を実現している。すなわち、多層の記録面を設けることができる。対物レンズ115は、この光情報記録担体の保護層112が設けられている面側に配置されており、記録光が保護層112側から光情報記録担体に入射する。対物レンズ115にて集光された集光束116は記録層111の目的とする位置で集光部117を形成する。この集光部117において記録層111が光を吸収し、信号部114が形成される。
また、多光子吸収記録に必要な記録光の光量は、例えば、記録材料に石英ガラスが用いられている場合120フェムト秒で尖頭レーザ出力1.33MWが必要である(例えば、「“Three−Dimensional Optical Data Storage in Vitreous Silica”Watanabe,Misawa,et al.JJAP Vol.37(1998)PP.L1527−L1530」参照。)。従って、この場合、チタンサファイアレーザでのみ記録可能である。
従来、多光子吸収記録における記録材料として、無機材料が多く用いられてきた。これは、無機材料の中には多光子吸収記録に対し比較的高感度である材料が多いことと、金属の酸化膜、窒化膜、硫化膜等は透明膜化が容易であること、等の理由からである。
しかし、無機材料は熱伝導率が高いため、無機材料にて形成された記録膜の場合、集光部の光吸収により発熱された熱が拡散して集光部での温度上昇が抑えられ、記録感度が上がりにくいという問題点がある。
また、無機材料は、図4に示したような光吸収記録に用いる金属化合物と比較して融点が高い、変形硬度が高い等の問題があり、多光子吸収によって記録膜が発熱しても記録膜での変化が起こりにくく、これも無機材料からなる記録膜の記録感度が上がりにくいことの理由となっていた。
このことは、次の比較で良く理解される。現在、半透明記録膜の記録材料としてよく用いられているTe金属化合物(例えば、Te60Ge Sb10)の溶融温度は約230℃程度である。一方、多光子吸収記録材料として比較的高感度である無機質ガラスのTe酸化化合物において、例えば、20モル%のNaCOが含まれた酸化テルル(20molNaCO−80molTeO)の溶融温度は500℃程度であり、Te金属化合物よりも融点が高い。この点から、無機材料を記録材料として用いた多光子吸収記録は、従来の半透明記録膜の光吸収による記録方式よりも感度が低くなる。
また、多光子吸収記録は、半透明記録膜の光吸収による記録のように、単純に光を吸収させて発熱し、その熱にて記録するのではないから、感度が悪いという問題もあった。一般に、光ディスク記録光源として用いられている半導体レーザでは出力光量不足であり、半導体レーザを用いて多光子記録をすることは不可能であった。従って、多光子吸収記録を行う場合、記録光源には、例えばYAGレーザ等の高出力レーザが必要であった。
前述のとおり、例えば記録材料に石英ガラスが用いられている場合、120フェムト秒で尖頭レーザ出力が1.33MWも必要とされ、チタンサファイアレーザでのみ記録可能であって、民生用途としてはほとんど不可能な記録方式であった。
以上をまとめると、多光子吸収記録の感度の悪さは、次の2つの問題点から発生していると考えられる。
第1の問題点は、多光子吸収の発熱効率が、従来の光吸収による発熱効率よりも悪いということである。
第2の問題点は、記録膜として透明性(例えば、フレネル反射を除いて85%程度以上)を必要とするから、金属酸化物や金属硫化物等を使用することになり、金属膜等の半透明記録膜に比べ熱変形温度が高い、記録膜の硬度が高く変形しにくい、記録膜の熱伝導率が高く温度上昇率が悪いということである。この問題点を解決するため、記録膜として融点が低く、変形しやすい有機樹脂材料について色々実験を行ったが、樹脂基板材料として広く用いられているポリカーボネートを記録膜に適用した場合でも、必要な尖頭レーザ出力は0.2MWであり、半導体レーザ適用可能な範囲まで記録感度を上げることはできなかった。
本発明の光情報記録担体は、基板と、前記基板上に設けられた少なくとも一つの記録膜とを含み、所定の波長λを有する記録光の照射により前記記録膜に情報が記録される光情報記録担体であって、前記記録膜は、発熱層と、前記発熱層に接して設けられた少なくとも一つの誘電体層とを含み、前記発熱層及び前記誘電体層は、前記波長λの光に対して実質的に透明であり、かつ、前記発熱層と前記誘電体層との界面で前記記録光の電界強度が最大となる所定の厚み及び所定の屈折率を有することを特徴している。なお、本明細書において実質的に透明とは、光透過率が90%以上、好ましくは95%以上のことである。
本発明の光情報記録担体においては、前記誘電体層が、前記発熱層の両面に、前記発熱層に接して設けられていてもよい。
本発明の光情報記録担体においては、前記記録光の前記発熱層内における波長をλ1とした場合、前記発熱層の厚みが(n1×λ1)/2であることが好ましい。ただし、n1は1以上の整数である。
本発明の光情報記録担体においては、前記記録光の前記誘電体層内における波長をλ2とした場合、前記誘電体層の厚みが(n2×λ2)/2であることが好ましい。ただし、n2は1以上の整数である。
本発明の光情報記録担体においては、前記記録膜が複数設けられており、互いに隣接する記録膜の間には、前記波長λの光に対して実質的に透明な記録膜分離層が配置されていてもよい。
本発明の光情報記録担体においては、前記発熱層が、酸化テルル、ニオブ酸リチウム、酸化亜鉛、酸化チタン及び酸化ビスマスから選ばれる少なくとも一つを含んでいてもよい。
本発明の光情報記録担体においては、前記誘電体層は樹脂にて形成されていてもよく、二酸化ケイ素、フッ化マグネシウム、フッ化カルシウム、酸化インジウム及び酸化スズから選択される少なくとも一つを含んでいてもよく、熱可塑性材料にて形成されていてもよい。
本発明の光情報記録担体においては、前記発熱層は、前記誘電体層との界面近傍において多光子吸収し、発熱することが好ましい。
本発明の光情報記録担体においては、前記発熱層と前記誘電体層とは、熱膨張係数が互いに異なる材料にて形成されていてもよい。こうすれば、発熱層と誘電体層との熱膨張係数の差に起因して生じる歪を記録信号形成に利用できる。
図1は、本発明の光情報記録担体の一実施形態を示す断面図である。
図2は、図1に示す光情報記録担体の記録膜の一例を拡大した断面図とその膜構成における光の電界強度分布図である。
図3は、図1に示す光情報記録担体の記録膜の他の例を拡大した断面図とその膜構成における光の電界強度分布図である。
図4は、図1に示す光情報記録担体の記録膜のさらに他の例を拡大した断面図とその膜構成における光の電界強度分布図である。
図5は、半透明記録膜が複数積層された従来の光情報記録担体を示す断面図である。
図6は、多光子吸収記録が可能な従来の光情報記録担体を示す断面図である。
以下、本発明の実施の形態について、図面を参照しながら説明する。
図1は、本発明の光情報記録担体の一実施形態を示す断面図である。本実施の形態の光情報記録担体は、基板4上に3つの記録膜1が設けられており、さらに最上層に保護層2が設けられている。互いに隣接する記録膜1間には、記録膜分離層3が設けられている。この光情報記録担体には保護層2が設けられている面側から光が照射されるため、光情報記録担体に光を集光するための対物レンズ5は、光情報記録担体に対して保護層2側に配置されている。本実施の形態における記録膜1は、発熱層1aと、発熱層1aに対して対物レンズ側に配置された第1の誘電体層1bと、発熱層1aに対して対物レンズと反対側に配置された第2の誘電体層1cとを含んでいる。第1の誘電体層1b及び第2の誘電体層1cは、それぞれ発熱層1aに接して設けられる。なお、図中、6は平行光を示し、7は対物レンズ5にて集光された集束光を示し、8は集束光7の集光部を示している。
発熱層1aは、記録光に用いる波長λの光に対して実質的に透明であり、かつ、所定の電界強度で記録光が照射されると多光子吸収によってその記録光を吸収し発熱する。すなわち、発熱層1aは、多光子吸収材料として感度の高い材料にて形成されており、できるだけ屈折率の3次非線形定数が大きい材料が好ましく、例えば、酸化テルル、ニオブ酸リチウム、酸化亜鉛、酸化チタン、酸化ビスマス等を含む材料にて形成されている。
第1の誘電体層1b及び第2の誘電体層1cは、記録光に用いる波長λの光に対して実質的に透明であり、発熱層1aから伝わる熱により信号部が形成される。例えば熱変形により信号部を形成する場合、第1の誘電体層1b及び第2の誘電体層1cに熱可塑性材料を用いることができ、この場合はスチレン等が好適に用いられる。また、発熱層1aとの熱膨張係数の差に起因して生じる歪を利用して信号部を形成する場合は、例えば、二酸化ケイ素、フッ化マグネシウム、フッ化カルシウム、酸化インジウム、酸化スズ等を用いて、第1の誘電体層1b及び第2の誘電体層1cを形成してもよい。なお、歪を利用した信号部とは、例えば、発熱層1aとの界面においてずれにより生じる部分的な剥離、ひび割れ等である。
基板4は、例えばポリカーボネート等にて形成できる。保護層2及び記録膜分離層3は、記録光に対して実質的に透明である樹脂材料等により形成可能であり、例えば、紫外線硬化型樹脂を用いて形成してもよく、また、PMMA(ポリメチルメタクリレート)薄板を紫外線硬化型樹脂で接着して形成してもよい。
次に、図2を用いて、このような光情報記録担体の記録膜1に集束光7が照射された場合について具体的に説明する。なお、説明の容易さから、ここでは、第1の誘電体層1b及び第2の誘電体層1cの屈折率が記録膜分離層3の屈折率とほぼ等しい場合を例に説明する。記録膜分離層3に紫外線硬化型樹脂を用い、第1及び第2の誘電体層1b,1cとして蒸着にて形成された二酸化ケイ素膜を用いる場合、両者の屈折率は共に1.5を中心として調整可能であるため、このような構成は容易に実現できる。また、発熱層1aを構成する材料として酸化テルルを用いた場合、その屈折率は約2.2となる。そこで、ここでは、第1の誘電体層1b及び第2の誘電体層1cの屈折率が記録膜分離層3の屈折率とが約1.5であって、発熱層1aの屈折率が約2.2の場合を考える。
図2には、図1に示す光情報記録担体に設けられた3つの記録膜1のうち、真中に位置する記録膜1が拡大された断面図が示されている。さらに、図2には、この記録膜1に対物レンズ5で集光された集光束7が照射された場合の、光の電界強度分布も示されている。実際の光の電界強度は、このような膜構成で集束光7が照射される場合の照射光と、各界面で反射された反射光との合成を考えることで得ることができる。なお、図中、11は記録膜分離層3と第1の誘電体層1bとの界面、12は第1の誘電体層1bと発熱層1aとの界面、13は発熱層1aと第2の誘電体層1cと界面、14は第2の誘電体層1cと記録膜分離層3との界面を示している。この例では、記録膜分離層3と第1及び第2の誘電体層1b,1cの屈折率がほぼ同じであるため、界面11,14での光反射を考慮する必要はなく、界面12,13での光反射のみを考慮すればよい。
まず、界面13について考える。発熱層1aの屈折率は2.2であり、第2の誘電体層1cの屈折率は1.5であるから、この界面13で発生する反射光は入射光波面を界面13で折り返した形となる。
次に、界面12について考える。第1の誘電体層1b(屈折率1.5)から発熱層1a(屈折率2.2)へ記録光が入射するとき、界面12で発生する反射光の位相は、入射光に対し180度遅れた(もしくは進んだ)位相(逆位相)となる。発熱層1a内における記録光の波長がλ1である場合、発熱層1aの膜厚がλ1/2であれば、記録膜分離層3内では界面12からの反射光と界面13からの反射光とは完全に互いに打ち消し合う。
より詳しく説明すると、界面12から界面13での反射光を見た光の位相関係では、単純にλ1/2の一往復分、すなわち一波長だけずれて光源方向に戻る反射光が存在する。これとは別に、先ほど述べたように界面12では逆位相の反射が起こるから反射光は逆位相となり、記録膜分離層3内ではこれら二つの反射光が互いに打ち消し合う関係となる。
また、この時の二つの反射光の振幅は、第1及び第2の誘電体層1b,1cを構成する二酸化ケイ素の屈折率と、発熱層1aを構成する酸化テルルの屈折率との差に比例するから、互いに等振幅となる。従って、記録膜分離層3内では、これら二つの反射光は互いに打ち消し合う。一方、発熱層1a内では、入射光の波面と界面13での反射光の波面は、界面12からλ1/4だけ離れた位置で打ち消し合い位相となる。
以上の理由から、発熱層1aの厚みをλ1/2の整数(n1)倍とすることで、発熱層1aと第1及び第2の誘電体層1b,1cとの界面12,13で光の電界強度を最大とすることができる。また、記録光を照射した際、界面12の反射光と界面13の反射光が打ち消し合うため、この記録膜1からの反射光は存在しないことになる。このことから、記録光のパワーはすべて記録膜1で消費されることになるので、光の電界強度が最大となる界面12,13付近において発熱層1aが効率よく発熱する。この発熱した熱が接している第1及び第2の誘電体層1b,1cに伝わり、発熱層1aと第1及び第2の誘電体層1b,1cとの熱膨張係数の差に起因して起こる歪により部分的な剥離やひび割れ等を利用した信号部が形成される。
図2に示す構成では、発熱層1aの両面に互いに同じ厚みの誘電体層が配置されている例について説明したが、図3に示すように、第1の誘電体層1bが薄く、第2の誘電体層1cが厚い構成であってもよい。
図3に示す例では、界面12,13での発熱量は同じであるが、第2の誘電体層1cの厚さは第1の誘電体層1bよりも厚いので、第2の誘電体層1cは熱が加えられても感度が悪く、ほとんど情報が記録されない(信号部が形成されない。)。
従って、図3に示すように、第2の誘電体層1cの厚さを第1の誘電体層1bよりも厚くすると、信号部が形成される部分として機能するのは第1の誘電体層1bのみである。このため、信号記録品質は、図2に示す膜構成の場合よりも良好となる。
次に、記録膜分離層3と第1及び第2の誘電体層1b,1cとの間に屈折率差がある場合について説明する。
図4には、この場合の膜構成との光の電界強度分布とが示されている。この場合、記録膜分離層3と第1の誘電体層1bとの界面11、第2の誘電体層1cと記録膜分離層3との界面14とで、屈折率差による反射光が発生する。
第1及び第2の誘電体層1b,1c内での記録光の波長をλ2とすると、界面14で発生した反射光は、第2の誘電体層1cの厚さがλ2/2であり、第1の誘電体層1bの厚さがλ2/2である場合、界面12,13でたし合わされるから、界面12,13で光の電界強度が最大となる。また、界面11で発生した反射光は界面14で発生した反射光と打ち消し合うことになるから、この場合も記録膜分離層3内で記録光の反射光は存在しない。従って、第1及び第2の誘電体層1b,1cの厚みをλ2/2の整数(n2)倍とすることで、発熱層1aと第1及び第2の誘電体層1b,1cとの界面12,13で光の電界強度を最大とすることができる。
従って、記録光のパワーは無駄なく記録膜1で消費されることとなり、発熱層1aと第1及び第2の誘電体層1b,1cとの界面12,13で、効率よく発熱が行われる。
なお、この場合も第1の誘電体層1bと第2の誘電体層1cは厚みが同じである必要はなく、λ2/2の整数倍であれば同様の効果が得られる。
以上に説明したように、記録膜1が、多光子吸収として感度の高い材料にて形成される発熱層1aと、この発熱層1aに接して設けられる誘電体層1b,1cとで構成されることにより、発熱層1aと誘電体層1b,1cとの界面で効率良く発熱させ、この熱を利用して誘電体層1b,1cを変形させて信号部を形成できるので、記録感度を向上させることができる。
実施例を用いて、本発明をさらに具体的に説明する。
信号記録用光源としては、YAGレーザ1065nmの2倍高調波波長532nmを用いた。光源からの光を光情報記録担体の記録膜上に絞り込むための対物レンズ5の開口数は0.8とした。発熱層1aは、記録光の波長(532nm)に対して実質的に透明で、かつ2光子吸収係数の大きい(多光子吸収材料として高感度の)二酸化テルルを用い、蒸着にて形成した。発熱層1aの膜厚は、この膜内において記録光の一波長相当になるように、0.24μmとした。第1の誘電体層1bは、同じく蒸着により、二酸化ケイ素にて形成した。第1の誘電体層1bの膜厚は、この膜内において記録光の1/2波長相当となる0.177μmとした。第2の誘電体層1cには、1mm厚のスライドガラスを用いた。記録膜分離層3は、紫外線硬化型樹脂(例えば、「ダイキュアクリア(商品名)」(大日本インキ化学工業(株)製))を用い、スピンコートにより作製した。記録膜分離層3の膜厚が10μmとなるように、樹脂粘性・スピンコート装置の回転数を調整した。
このように作製したサンプルに、上記光学条件で信号記録を行った。この結果、このサンプルの第1の誘電体層1bの界面12近傍に、良好な信号ピットを書き込むことができた。
信号ピットの大きさは約1μm程度であり、記録に必要なパワー(記録パワー)は、照射時間6nsecの場合でピークパワー約1Wであった。このように、従来よりも低い記録パワーで、2光子吸収を利用した記録が実現できた。この結果から、記録膜1を構成する発熱層1a及び誘電体層1b,1cの厚み、屈折率、材料等を最適化することにより、信号書き込みパワーを低減できる見通しも得られた。
また、比較のため、記録膜1が発熱層1aのみからなる(誘電体層が設けられていない)比較サンプルを用意した。記録膜を兼ねる発熱層1aが、二酸化テルルにて形成された比較サンプルと、二酸化ケイ素にて形成された比較サンプルとの二種類を作製し、それぞれの比較サンプルに対して、実施例サンプルの場合と同様の光学条件で書き込み感度を測定した。
発熱層1aを二酸化テルルにて形成した比較サンプルの場合は、発熱層1aの膜厚を0.24μmとした。記録膜分離層3は、実施例1と同様の方法及び同様の材料にて形成し、膜厚10μmとした。この比較サンプルに対し信号記録を行ったところ、信号ピットの大きさは約1μmであり、記録パワーは、照射時間6nsecの場合でピークパワー約250Wであった。
一方、発熱層1aを二酸化ケイ素にて形成した比較サンプルの場合は、発熱層1aの膜厚を0.177μmとした。記録膜分離層3は、実施例1と同様の方法及び同様の材料にて形成し、膜厚10μmとした。この比較サンプルに対し信号記録を行ったところ、信号ピットの大きさは約1μmであり、記録パワーは、照射時間6nsecの場合でピークパワー約37.5kWであった。
以上の結果から、本発明のように発熱層及び誘電体層にて記録膜を形成することにより、多光子吸収記録感度が向上することが確認できた。
実施例2では、二酸化テルルに酸化タングステンを添加して、2元蒸着で発熱層1aを作製した(二酸化テルル:80重量%、酸化タングステン:20重量%)。信号記録用光源としては、GaNの半導体レーザ(発振波長405nm)を用いた。発熱層1aの膜厚は、この膜内において入射光の一波長相当になるように、0.2μmとした。第1の誘電体層1b及び第2の誘電体層1cは、二酸化ケイ素を用いてスパッタ装置により作製した。第1の誘電体層1b及び第2の誘電体層1cの膜厚は、これらの膜内において入射光の1/2波長相当となるように、0.16μmとした。記録膜分離層3は、実施例1と同様の方法及び同様の材料にて形成し、膜厚10μmとした。
以上のような記録膜1を、記録膜分離層3を介して20層積層させ、サンプルを作製した。このサンプルに対し、光源であるGaNの半導体レーザ(発振波長405nm)を用い、開口数0.85の対物レンズ5を用いて、信号記録を行った。
このサンプルの記録膜への信号の記録に必要なパワーを調べたところ、照射時間6nsecで100mWであることが判明した。また、このサンプルに含まれるどの記録膜(20層のうちどの記録膜)に対しても、この記録パワーで良好な書き込みができることが確認できた。
次に、光パワーを50mWまで低減し、記録された信号が読み取り可能かどうか調べた。この結果、C/N比約50dBと良好な再生信号が得られた。
以上のように、本発明の光情報記録担体によれば、多光子吸収記録の感度を従来よりも高めることができ、多光子吸収記録に用いる光源を大型のハイパワーレーザから小型の半導体レーザに置きかえることが可能となる。
産業上の利用の可能性
本発明の光情報記録担体は、多光子吸収記録において従来の記録担体より感度を高めることができるので、例えば大型でハイパワーの光源を用いることができないときの多光子吸収記録用の記録担体としても適用可能である
本発明は、情報が光学的に記録・再生される光情報記録担体に関するものである。
近年、情報量の増加に伴って大容量の光情報記録担体(ディスク担体)が求められており、高密度記録化が強く進められている。
光情報記録担体の記録密度は、(NA/λ)2(但し、λ:記録光源波長、NA:対物レンズの開口数)に比例する。そこで、近年、波長405nmのGaNレーザ、開口数0.85の対物レンズを用いて、5インチ直径の光ディスクで、DVDディスクの約6倍程度の記録密度(25GByte)を達成する技術が提案されている。
しかし、このように対物レンズの開口数を可能な限り上げる方法、または記録光源波長を可能な限り短くして記録密度を上昇させる方法は、限界に達してきた。
光源の波長が405nmより短い場合、光情報記録担体の樹脂基板として一般的に用いられるポリカーボネート基板の光透過率が急速に低下する。さらに、光源の波長が400nmより短くなると、光情報記録担体の樹脂基板の光透過率が低下すると共に、長時間の照射に対して樹脂の組成分解が起こり、更に樹脂基板の光透過率が低下する。
一方、対物レンズの開口数をこれ以上大きくすると、対物レンズと光情報記録担体との間の距離(WD)を小さくする必要が生じる。このため、WDの制限や光情報記録担体のチルトマージンの観点から、記録膜上に形成される保護層の厚みが100μm以下になってしまう。このように、対物レンズの開口数をこれ以上大きくするとWDが小さくなるため、対物レンズが光情報記録担体と衝突しやすくなる。さらに、保護層が薄いと、光情報記録担体に設けられた保護層面上の汚れが記録膜の信号面からごく近くなるため、光情報記録担体の保護層面上の少しの汚れが、情報の再生信号の劣化に繋がってしまう。
以上のように、単純に記録光の波長を更に短くし、対物レンズの開口数を大きくして高密度化を進めていくと、他の基本的な問題(光透過率低下による光量不足や、再生信号劣化等の問題)が発生する。
そこで、今後における光情報記録担体の更なる高密度化には、記録膜の多層化が重要な手段となる。図5には、複数の記録膜が設けられた従来の光情報記録担体(以下、多層情報記録担体ということがある。)の断面図が示されている。この多層情報記録担体には、基板104上に3層の半透明記録膜101が形成され、さらに最上層には保護層102が設けられている。互いに隣接する半透明記録膜101間には、記録膜分離層103が設けられている。ここでは、この多層情報記録担体に対して保護層102側から光が照射される例が示されている。従って、対物レンズ105は、この多層情報記録担体に対し、保護層102が設けられている面側に配置される。この対物レンズ105にて集光された集光束106の集光部107が目的とする記録膜101上に形成され、この目的とする記録膜101に情報が記録される。
以上のような従来の多層情報記録担体に用いられる半透明記録膜は、記録光を吸収して発熱し、その熱による記録材料の相転移や変形を利用して記録膜に信号を記録する。従って、記録膜は、記録光に対して半透明で、記録光を吸収するように形成される。このように、上記従来の構造では、記録光は直接記録膜に吸収されるため、積層される記録膜の総数が4〜5層以上になると光の減衰が大きくなり、対物レンズ側の多層情報記録担体表面から遠くに配置される記録膜に対しては情報の記録が困難となり、記録容量が制限されていた。
この問題を克服するため、近年、多光子吸収現象を利用した情報の記録(以下、多光子吸収記録という。)が注目を浴びている(例えば、特開平8−220688号公報)。なお、本明細書においては、以下の原理に基づく記録を多光子吸収記録とする。
多光子吸収記録では、記録光の波長に対して透明である記録材料を用いて記録膜を形成することが特徴である。従来の光吸収を利用した記録では、半透明記録膜で光が吸収され発熱するが、多光子吸収記録の場合は、光の電界強度が極めて高い部分である記録光の集光部(記録光の焦点及びその近傍)において、複数の光子により記録材料の電子が励起されて光吸収反応が起こる。なお、多光子吸収記録においては、集光部以外で記録材料の光吸収は起こらない。このように、多光子吸収記録の場合、その記録膜は記録光に対して透明であるため、半透明記録膜を有する多層情報記録担体のように単に記録膜を通過するだけで光が減衰するという問題は生じない。従って、より多くの記録膜を積層させることができる。
図6には、多光子吸収記録が可能な光情報記録担体に対して情報を記録する様子が示されている。この例では、基板113と保護層112との間に、記録光に対して透明な記録材料からなる記録層111が配置されている。記録層111のほぼ同一平面上に信号部114の列を記録し、このような記録面を記録層111内に複数設けることで、3次元的な情報の記録を実現している。すなわち、多層の記録面を設けることができる。対物レンズ115は、この光情報記録担体の保護層112が設けられている面側に配置されており、記録光が保護層112側から光情報記録担体に入射する。対物レンズ115にて集光された集光束116は記録層111の目的とする位置で集光部117を形成する。この集光部117において記録層111が光を吸収し、信号部114が形成される。
また、多光子吸収記録に必要な記録光の光量は、例えば、記録材料に石英ガラスが用いられている場合120フェムト秒で尖頭レーザ出力1.33MWが必要である(例えば、「“Three−Dimensional Optical Data Storage in Vitreous Silica" Watanabe, Misawa, et al. JJAP Vol.37(1998) PP.L 1527−L1530」参照。)。従って、この場合、チタンサファイアレーザでのみ記録可能である。
従来、多光子吸収記録における記録材料として、無機材料が多く用いられてきた。これは、無機材料の中には多光子吸収記録に対し比較的高感度である材料が多いことと、金属の酸化膜、窒化膜、硫化膜等は透明膜化が容易であること、等の理由からである。
しかし、無機材料は熱伝導率が高いため、無機材料にて形成された記録膜の場合、集光部の光吸収により発熱された熱が拡散して集光部での温度上昇が抑えられ、記録感度が上がりにくいという問題点がある。
また、無機材料は、図4に示したような光吸収記録に用いる金属化合物と比較して融点が高い、変形硬度が高い等の問題があり、多光子吸収によって記録膜が発熱しても記録膜での変化が起こりにくく、これも無機材料からなる記録膜の記録感度が上がりにくいことの理由となっていた。
このことは、次の比較で良く理解される。現在、半透明記録膜の記録材料としてよく用いられているTe金属化合物(例えば、Te60Ge20Sb10)の溶融温度は約230℃程度である。一方、多光子吸収記録材料として比較的高感度である無機質ガラスのTe酸化化合物において、例えば、20モル%のNa2CO3が含まれた酸化テルル(20molNa2CO3−80molTeO2)の溶融温度は500℃程度であり、Te金属化合物よりも融点が高い。この点から、無機材料を記録材料として用いた多光子吸収記録は、従来の半透明記録膜の光吸収による記録方式よりも感度が低くなる。
また、多光子吸収記録は、半透明記録膜の光吸収による記録のように、単純に光を吸収させて発熱し、その熱にて記録するのではないから、感度が悪いという問題もあった。一般に、光ディスク記録光源として用いられている半導体レーザでは出力光量不足であり、半導体レーザを用いて多光子記録をすることは不可能であった。従って、多光子吸収記録を行う場合、記録光源には、例えばYAGレーザ等の高出力レーザが必要であった。
前述のとおり、例えば記録材料に石英ガラスが用いられている場合、120フェムト秒で尖頭レーザ出力が1.33MWも必要とされ、チタンサファイアレーザでのみ記録可能であって、民生用途としてはほとんど不可能な記録方式であった。
以上をまとめると、多光子吸収記録の感度の悪さは、次の2つの問題点から発生していると考えられる。
第1の問題点は、多光子吸収の発熱効率が、従来の光吸収による発熱効率よりも悪いということである。
第2の問題点は、記録膜として透明性(例えば、フレネル反射を除いて85%程度以上)を必要とするから、金属酸化物や金属硫化物等を使用することになり、金属膜等の半透明記録膜に比べ熱変形温度が高い、記録膜の硬度が高く変形しにくい、記録膜の熱伝導率が高く温度上昇率が悪いということである。この問題点を解決するため、記録膜として融点が低く、変形しやすい有機樹脂材料について色々実験を行ったが、樹脂基板材料として広く用いられているポリカーボネートを記録膜に適用した場合でも、必要な尖頭レーザ出力は0.2MWであり、半導体レーザ適用可能な範囲まで記録感度を上げることはできなかった。
本発明の光情報記録担体は、基板と、前記基板上に設けられた少なくとも一つの記録膜とを含み、所定の波長λを有する記録光の照射により前記記録膜に情報が記録される光情報記録担体であって、前記記録膜は、発熱層と、前記発熱層に接して設けられた少なくとも一つの誘電体層とを含み、前記発熱層及び前記誘電体層は、前記波長λの光に対して実質的に透明であり、かつ、前記発熱層と前記誘電体層との界面で前記記録光の電界強度が最大となる所定の厚み及び所定の屈折率を有することを特徴している。なお、本明細書において実質的に透明とは、光透過率が90%以上、好ましくは95%以上のことである。
本発明の光情報記録担体においては、前記誘電体層が、前記発熱層の両面に、前記発熱層に接して設けられていてもよい。
本発明の光情報記録担体においては、前記記録光の前記発熱層内における波長をλ1とした場合、前記発熱層の厚みが(n1×λ1)/2であることが好ましい。ただし、n1は1以上の整数である。
本発明の光情報記録担体においては、前記記録光の前記誘電体層内における波長をλ2とした場合、前記誘電体層の厚みが(n2×λ2)/2であることが好ましい。ただし、n2は1以上の整数である。
本発明の光情報記録担体においては、前記記録膜が複数設けられており、互いに隣接する記録膜の間には、前記波長λの光に対して実質的に透明な記録膜分離層が配置されていてもよい。
本発明の光情報記録担体においては、前記発熱層が、酸化テルル、ニオブ酸リチウム、酸化亜鉛、酸化チタン及び酸化ビスマスから選ばれる少なくとも一つを含んでいてもよい。
本発明の光情報記録担体においては、前記誘電体層は樹脂にて形成されていてもよく、二酸化ケイ素、フッ化マグネシウム、フッ化カルシウム、酸化インジウム及び酸化スズから選択される少なくとも一つを含んでいてもよく、熱可塑性材料にて形成されていてもよい。
本発明の光情報記録担体においては、前記発熱層は、前記誘電体層との界面近傍において多光子吸収し、発熱することが好ましい。
本発明の光情報記録担体においては、前記発熱層と前記誘電体層とは、熱膨張係数が互いに異なる材料にて形成されていてもよい。こうすれば、発熱層と誘電体層との熱膨張係数の差に起因して生じる歪を記録信号形成に利用できる。
以下、本発明の実施の形態について、図面を参照しながら説明する。
図1は、本発明の光情報記録担体の一実施形態を示す断面図である。本実施の形態の光情報記録担体は、基板4上に3つの記録膜1が設けられており、さらに最上層に保護層2が設けられている。互いに隣接する記録膜1間には、記録膜分離層3が設けられている。この光情報記録担体には保護層2が設けられている面側から光が照射されるため、光情報記録担体に光を集光するための対物レンズ5は、光情報記録担体に対して保護層2側に配置されている。本実施の形態における記録膜1は、発熱層1aと、発熱層1aに対して対物レンズ側に配置された第1の誘電体層1bと、発熱層1aに対して対物レンズと反対側に配置された第2の誘電体層1cとを含んでいる。第1の誘電体層1b及び第2の誘電体層1cは、それぞれ発熱層1aに接して設けられる。なお、図中、6は平行光を示し、7は対物レンズ5にて集光された集束光を示し、8は集束光7の集光部を示している。
発熱層1aは、記録光に用いる波長λの光に対して実質的に透明であり、かつ、所定の電界強度で記録光が照射されると多光子吸収によってその記録光を吸収し発熱する。すなわち、発熱層1aは、多光子吸収材料として感度の高い材料にて形成されており、できるだけ屈折率の3次非線形定数が大きい材料が好ましく、例えば、酸化テルル、ニオブ酸リチウム、酸化亜鉛、酸化チタン、酸化ビスマス等を含む材料にて形成されている。
第1の誘電体層1b及び第2の誘電体層1cは、記録光に用いる波長λの光に対して実質的に透明であり、発熱層1aから伝わる熱により信号部が形成される。例えば熱変形により信号部を形成する場合、第1の誘電体層1b及び第2の誘電体層1cに熱可塑性材料を用いることができ、この場合はスチレン等が好適に用いられる。また、発熱層1aとの熱膨張係数の差に起因して生じる歪を利用して信号部を形成する場合は、例えば、二酸化ケイ素、フッ化マグネシウム、フッ化カルシウム、酸化インジウム、酸化スズ等を用いて、第1の誘電体層1b及び第2の誘電体層1cを形成してもよい。なお、歪を利用した信号部とは、例えば、発熱層1aとの界面においてずれにより生じる部分的な剥離、ひび割れ等である。
基板4は、例えばポリカーボネート等にて形成できる。保護層2及び記録膜分離層3は、記録光に対して実質的に透明である樹脂材料等により形成可能であり、例えば、紫外線硬化型樹脂を用いて形成してもよく、また、PMMA(ポリメチルメタクリレート)薄板を紫外線硬化型樹脂で接着して形成してもよい。
次に、図2を用いて、このような光情報記録担体の記録膜1に集束光7が照射された場合について具体的に説明する。なお、説明の容易さから、ここでは、第1の誘電体層1b及び第2の誘電体層1cの屈折率が記録膜分離層3の屈折率とほぼ等しい場合を例に説明する。記録膜分離層3に紫外線硬化型樹脂を用い、第1及び第2の誘電体層1b,1cとして蒸着にて形成された二酸化ケイ素膜を用いる場合、両者の屈折率は共に1.5を中心として調整可能であるため、このような構成は容易に実現できる。また、発熱層1aを構成する材料として酸化テルルを用いた場合、その屈折率は約2.2となる。そこで、ここでは、第1の誘電体層1b及び第2の誘電体層1cの屈折率が記録膜分離層3の屈折率とが約1.5であって、発熱層1aの屈折率が約2.2の場合を考える。
図2には、図1に示す光情報記録担体に設けられた3つの記録膜1のうち、真中に位置する記録膜1が拡大された断面図が示されている。さらに、図2には、この記録膜1に対物レンズ5で集光された集光束7が照射された場合の、光の電界強度分布も示されている。実際の光の電界強度は、このような膜構成で集束光7が照射される場合の照射光と、各界面で反射された反射光との合成を考えることで得ることができる。なお、図中、11は記録膜分離層3と第1の誘電体層1bとの界面、12は第1の誘電体層1bと発熱層1aとの界面、13は発熱層1aと第2の誘電体層1cと界面、14は第2の誘電体層1cと記録膜分離層3との界面を示している。この例では、記録膜分離層3と第1及び第2の誘電体層1b,1cの屈折率がほぼ同じであるため、界面11,14での光反射を考慮する必要はなく、界面12,13での光反射のみを考慮すればよい。
まず、界面13について考える。発熱層1aの屈折率は2.2であり、第2の誘電体層1cの屈折率は1.5であるから、この界面13で発生する反射光は入射光波面を界面13で折り返した形となる。
次に、界面12について考える。第1の誘電体層1b(屈折率1.5)から発熱層1a(屈折率2.2)へ記録光が入射するとき、界面12で発生する反射光の位相は、入射光に対し180度遅れた(もしくは進んだ)位相(逆位相)となる。発熱層1a内における記録光の波長がλ1である場合、発熱層1aの膜厚がλ1/2であれば、記録膜分離層3内では界面12からの反射光と界面13からの反射光とは完全に互いに打ち消し合う。
より詳しく説明すると、界面12から界面13での反射光を見た光の位相関係では、単純にλ1/2の一往復分、すなわち一波長だけずれて光源方向に戻る反射光が存在する。これとは別に、先ほど述べたように界面12では逆位相の反射が起こるから反射光は逆位相となり、記録膜分離層3内ではこれら二つの反射光が互いに打ち消し合う関係となる。
また、この時の二つの反射光の振幅は、第1及び第2の誘電体層1b,1cを構成する二酸化ケイ素の屈折率と、発熱層1aを構成する酸化テルルの屈折率との差に比例するから、互いに等振幅となる。従って、記録膜分離層3内では、これら二つの反射光は互いに打ち消し合う。一方、発熱層1a内では、入射光の波面と界面13での反射光の波面は、界面12からλ1/4だけ離れた位置で打ち消し合い位相となる。
以上の理由から、発熱層1aの厚みをλ1/2の整数(n1)倍とすることで、発熱層1aと第1及び第2の誘電体層1b,1cとの界面12,13で光の電界強度を最大とすることができる。また、記録光を照射した際、界面12の反射光と界面13の反射光が打ち消し合うため、この記録膜1からの反射光は存在しないことになる。このことから、記録光のパワーはすべて記録膜1で消費されることになるので、光の電界強度が最大となる界面12,13付近において発熱層1aが効率よく発熱する。この発熱した熱が接している第1及び第2の誘電体層1b,1cに伝わり、発熱層1aと第1及び第2の誘電体層1b,1cとの熱膨張係数の差に起因して起こる歪により部分的な剥離やひび割れ等を利用した信号部が形成される。
図2に示す構成では、発熱層1aの両面に互いに同じ厚みの誘電体層が配置されている例について説明したが、図3に示すように、第1の誘電体層1bが薄く、第2の誘電体層1cが厚い構成であってもよい。
図3に示す例では、界面12,13での発熱量は同じであるが、第2の誘電体層1cの厚さは第1の誘電体層1bよりも厚いので、第2の誘電体層1cは熱が加えられても感度が悪く、ほとんど情報が記録されない(信号部が形成されない。)。
従って、図3に示すように、第2の誘電体層1cの厚さを第1の誘電体層1bよりも厚くすると、信号部が形成される部分として機能するのは第1の誘電体層1bのみである。このため、信号記録品質は、図2に示す膜構成の場合よりも良好となる。
次に、記録膜分離層3と第1及び第2の誘電体層1b,1cとの間に屈折率差がある場合について説明する。
図4には、この場合の膜構成との光の電界強度分布とが示されている。この場合、記録膜分離層3と第1の誘電体層1bとの界面11、第2の誘電体層1cと記録膜分離層3との界面14とで、屈折率差による反射光が発生する。
第1及び第2の誘電体層1b,1c内での記録光の波長をλ2とすると、界面14で発生した反射光は、第2の誘電体層1cの厚さがλ2/2であり、第1の誘電体層1bの厚さがλ2/2である場合、界面12,13でたし合わされるから、界面12,13で光の電界強度が最大となる。また、界面11で発生した反射光は界面14で発生した反射光と打ち消し合うことになるから、この場合も記録膜分離層3内で記録光の反射光は存在しない。従って、第1及び第2の誘電体層1b,1cの厚みをλ2/2の整数(n2)倍とすることで、発熱層1aと第1及び第2の誘電体層1b,1cとの界面12,13で光の電界強度を最大とすることができる。
従って、記録光のパワーは無駄なく記録膜1で消費されることとなり、発熱層1aと第1及び第2の誘電体層1b,1cとの界面12,13で、効率よく発熱が行われる。
なお、この場合も第1の誘電体層1bと第2の誘電体層1cは厚みが同じである必要はなく、λ2/2の整数倍であれば同様の効果が得られる。
以上に説明したように、記録膜1が、多光子吸収として感度の高い材料にて形成される発熱層1aと、この発熱層1aに接して設けられる誘電体層1b,1cとで構成されることにより、発熱層1aと誘電体層1b,1cとの界面で効率良く発熱させ、この熱を利用して誘電体層1b,1cを変形させて信号部を形成できるので、記録感度を向上させることができる。
実施例を用いて、本発明をさらに具体的に説明する。
(実施例1)
信号記録用光源としては、YAGレーザ1065nmの2倍高調波波長532nmを用いた。光源からの光を光情報記録担体の記録膜上に絞り込むための対物レンズ5の開口数は0.8とした。発熱層1aは、記録光の波長(532nm)に対して実質的に透明で、かつ2光子吸収係数の大きい(多光子吸収材料として高感度の)二酸化テルルを用い、蒸着にて形成した。発熱層1aの膜厚は、この膜内において記録光の一波長相当になるように、0.24μmとした。第1の誘電体層1bは、同じく蒸着により、二酸化ケイ素にて形成した。第1の誘電体層1bの膜厚は、この膜内において記録光の1/2波長相当となる0.177μmとした。第2の誘電体層1cには、1mm厚のスライドガラスを用いた。記録膜分離層3は、紫外線硬化型樹脂(例えば、「ダイキュアクリア(商品名)」(大日本インキ化学工業(株)製))を用い、スピンコートにより作製した。記録膜分離層3の膜厚が10μmとなるように、樹脂粘性・スピンコート装置の回転数を調整した。
このように作製したサンプルに、上記光学条件で信号記録を行った。この結果、このサンプルの第1の誘電体層1bの界面12近傍に、良好な信号ピットを書き込むことができた。
信号ピットの大きさは約1μm程度であり、記録に必要なパワー(記録パワー)は、照射時間6nsecの場合でピークパワー約1Wであった。このように、従来よりも低い記録パワーで、2光子吸収を利用した記録が実現できた。この結果から、記録膜1を構成する発熱層1a及び誘電体層1b,1cの厚み、屈折率、材料等を最適化することにより、信号書き込みパワーを低減できる見通しも得られた。
また、比較のため、記録膜1が発熱層1aのみからなる(誘電体層が設けられていない)比較サンプルを用意した。記録膜を兼ねる発熱層1aが、二酸化テルルにて形成された比較サンプルと、二酸化ケイ素にて形成された比較サンプルとの二種類を作製し、それぞれの比較サンプルに対して、実施例サンプルの場合と同様の光学条件で書き込み感度を測定した。
発熱層1aを二酸化テルルにて形成した比較サンプルの場合は、発熱層1aの膜厚を0.24μmとした。記録膜分離層3は、実施例1と同様の方法及び同様の材料にて形成し、膜厚10μmとした。この比較サンプルに対し信号記録を行ったところ、信号ピットの大きさは約1μmであり、記録パワーは、照射時間6nsecの場合でピークパワー約250Wであった。
一方、発熱層1aを二酸化ケイ素にて形成した比較サンプルの場合は、発熱層1aの膜厚を0.177μmとした。記録膜分離層3は、実施例1と同様の方法及び同様の材料にて形成し、膜厚10μmとした。この比較サンプルに対し信号記録を行ったところ、信号ピットの大きさは約1μmであり、記録パワーは、照射時間6nsecの場合でピークパワー約37.5kWであった。
以上の結果から、本発明のように発熱層及び誘電体層にて記録膜を形成することにより、多光子吸収記録感度が向上することが確認できた。
(実施例2)
実施例2では、二酸化テルルに酸化タングステンを添加して、2元蒸着で発熱層1aを作製した(二酸化テルル:80重量%、酸化タングステン:20重量%)。信号記録用光源としては、GaNの半導体レーザ(発振波長405nm)を用いた。発熱層1aの膜厚は、この膜内において入射光の一波長相当になるように、0.2μmとした。第1の誘電体層1b及び第2の誘電体層1cは、二酸化ケイ素を用いてスパッタ装置により作製した。第1の誘電体層1b及び第2の誘電体層1cの膜厚は、これらの膜内において入射光の1/2波長相当となるように、0.16μmとした。記録膜分離層3は、実施例1と同様の方法及び同様の材料にて形成し、膜厚10μmとした。
以上のような記録膜1を、記録膜分離層3を介して20層積層させ、サンプルを作製した。このサンプルに対し、光源であるGaNの半導体レーザ(発振波長405nm)を用い、開口数0.85の対物レンズ5を用いて、信号記録を行った。
このサンプルの記録膜への信号の記録に必要なパワーを調べたところ、照射時間6nsecで100mWであることが判明した。また、このサンプルに含まれるどの記録膜(20層のうちどの記録膜)に対しても、この記録パワーで良好な書き込みができることが確認できた。
次に、光パワーを50mWまで低減し、記録された信号が読み取り可能かどうか調べた。この結果、C/N比約50dBと良好な再生信号が得られた。
以上のように、本発明の光情報記録担体によれば、多光子吸収記録の感度を従来よりも高めることができ、多光子吸収記録に用いる光源を大型のハイパワーレーザから小型の半導体レーザに置きかえることが可能となる。
本発明の光情報記録担体は、多光子吸収記録において従来の記録担体より感度を高めることができるので、例えば大型でハイパワーの光源を用いることができないときの多光子吸収記録用の記録担体としても適用可能である。
図1は、本発明の光情報記録担体の一実施形態を示す断面図である。 図2は、図1に示す光情報記録担体の記録膜の一例を拡大した断面図とその膜構成における光の電界強度分布図である。 図3は、図1に示す光情報記録担体の記録膜の他の例を拡大した断面図とその膜構成における光の電界強度分布図である。 図4は、図1に示す光情報記録担体の記録膜のさらに他の例を拡大した断面図とその膜構成における光の電界強度分布図である。 図5は、半透明記録膜が複数積層された従来の光情報記録担体を示す断面図である。 図6は、多光子吸収記録が可能な従来の光情報記録担体を示す断面図である。

Claims (11)

  1. 基板と、前記基板上に設けられた少なくとも一つの記録膜とを含み、所定の波長λを有する記録光の照射により前記記録膜に情報が記録される光情報記録担体であって、
    前記記録膜は、発熱層と、前記発熱層に接して設けられた少なくとも一つの誘電体層とを含み、
    前記発熱層及び前記誘電体層は、前記波長λの光に対して実質的に透明であり、かつ、前記発熱層と前記誘電体層との界面で前記記録光の電界強度が最大となる所定の厚み及び所定の屈折率を有することを特徴とする光情報記録担体。
  2. 前記誘電体層が、前記発熱層の両面に、前記発熱層に接して設けられている請求の範囲1に記載の光情報記録担体。
  3. 前記記録光の前記発熱層内における波長をλ1とした場合、前記発熱層の厚みが(n1×λ1)/2である請求の範囲1に記載の光情報記録担体。
    ただし、n1は1以上の整数である。
  4. 前記記録光の前記誘電体層内における波長をλ2とした場合、前記誘電体層の厚みが(n2×λ2)/2である請求の範囲1に記載の光情報記録担体。
    ただし、n2は1以上の整数である。
  5. 前記記録膜が複数設けられており、互いに隣接する記録膜の間には、前記波長λの光に対して実質的に透明な記録膜分離層が配置されている請求の範囲1に記載の光情報記録担体。
  6. 前記発熱層が、酸化テルル、ニオブ酸リチウム、酸化亜鉛、酸化チタン及び酸化ビスマスから選ばれる少なくとも一つを含む請求の範囲1に記載の光情報記録担体。
  7. 前記誘電体層は樹脂にて形成されている請求の範囲1に記載の光情報記録担体。
  8. 前記誘電体層は、二酸化ケイ素、フッ化マグネシウム、フッ化カルシウム、酸化インジウム及び酸化スズから選択される少なくとも一つを含む請求の範囲1に記載の光情報記録担体。
  9. 前記誘電体層は、熱可塑性材料にて形成される請求の範囲1に記載の光情報記録担体。
  10. 前記発熱層は、前記誘電体層との界面近傍において多光子吸収し、発熱する請求の範囲1に記載の光情報記録担体。
  11. 前記発熱層と前記誘電体層とは、熱膨張係数が互いに異なる請求の範囲1に記載の光情報記録担体。
JP2005502892A 2003-02-25 2004-02-25 光情報記録担体 Withdrawn JPWO2004077424A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003047299 2003-02-25
JP2003047299 2003-02-25
PCT/JP2004/002165 WO2004077424A1 (ja) 2003-02-25 2004-02-25 光情報記録担体

Publications (1)

Publication Number Publication Date
JPWO2004077424A1 true JPWO2004077424A1 (ja) 2006-06-08

Family

ID=32923263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005502892A Withdrawn JPWO2004077424A1 (ja) 2003-02-25 2004-02-25 光情報記録担体

Country Status (3)

Country Link
US (1) US20060120256A1 (ja)
JP (1) JPWO2004077424A1 (ja)
WO (1) WO2004077424A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2122618A1 (en) * 2006-12-04 2009-11-25 Mempile Inc. Data protection in an optical data carrier
JPWO2021193128A1 (ja) * 2020-03-27 2021-09-30

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275382A (ja) * 1990-03-27 1991-12-06 Fuji Photo Film Co Ltd 光記録媒体及び記録再生方法
US5268211A (en) * 1991-01-17 1993-12-07 Matsushita Electric Industrial Co., Ltd. Optical recording medium
JPH06282868A (ja) * 1993-03-26 1994-10-07 Fuji Xerox Co Ltd 光多層記録媒体
JP2961126B2 (ja) * 1995-02-13 1999-10-12 セントラル硝子株式会社 三次元光メモリーガラス素子からなる記録媒体及びその記録方法
JPH09198709A (ja) * 1996-01-23 1997-07-31 Sony Corp 多層光ディスク及び記録再生装置
JP3250989B2 (ja) * 1998-05-15 2002-01-28 松下電器産業株式会社 光学情報記録媒体、その記録再生方法、その製造法及び光学情報記録再生装置
JP2002050053A (ja) * 2000-08-01 2002-02-15 Tdk Corp 光情報媒体
AU2001292370A1 (en) * 2000-10-11 2002-04-22 Matsushita Electric Industrial Co., Ltd. Optical record medium, optical information processing apparatus, and optical recording/reproducing method
JP2002157785A (ja) * 2000-11-20 2002-05-31 Dainippon Printing Co Ltd 情報記録媒体
CN100392738C (zh) * 2002-04-08 2008-06-04 松下电器产业株式会社 信息记录媒体、其制造方法以及光信息记录再现装置
JPWO2004030919A1 (ja) * 2002-09-30 2006-02-02 松下電器産業株式会社 光情報記録担体およびそれを用いた記録再生装置
CN100407314C (zh) * 2002-10-16 2008-07-30 松下电器产业株式会社 信息记录介质及其制造方法和光学信息记录再现装置
WO2004104696A1 (ja) * 2003-05-26 2004-12-02 Matsushita Electric Industrial Co., Ltd. 情報記録媒体およびその記録再生方法、並びに情報記録再生装置
WO2004107040A1 (ja) * 2003-05-28 2004-12-09 Matsushita Electric Industrial Co., Ltd. 情報記録媒体およびその製造方法、並びに記録再生方法、光学情報記録再生装置
JP5100010B2 (ja) * 2003-12-04 2012-12-19 パナソニック株式会社 光学情報再生装置

Also Published As

Publication number Publication date
US20060120256A1 (en) 2006-06-08
WO2004077424A1 (ja) 2004-09-10

Similar Documents

Publication Publication Date Title
TWI304980B (ja)
TW200403664A (en) Optical recording medium and method for recording and reproducing data
JPWO2004030919A1 (ja) 光情報記録担体およびそれを用いた記録再生装置
TWI273589B (en) Two-layer phase-adjusting information recording medium and its recording and reproducing method
WO2002031825A1 (fr) Support d'enregistrement optique, appareil de traitement optique de l'information, et procede d'enregistrement et de reproduction optiques
US6404722B1 (en) Method of increasing recording density and capacity of a compact disc
JP4199731B2 (ja) 光記録媒体、光情報処理装置および光記録再生方法
JPWO2004077424A1 (ja) 光情報記録担体
JP4083745B2 (ja) 光記憶用新材料としての2層光転写レジストの利用
JP2005302264A (ja) 相変化型光情報記録媒体及び2層相変化型光情報記録媒体
JP2005022196A (ja) 光記録ディスク
JP4252482B2 (ja) 読み出し専用型多層型光情報記録媒体及びその製造方法
JP2005025842A (ja) 光記録ディスク
TW201222543A (en) Optical recording medium and optical recording method
EP1543505A1 (en) High density recording medium with super-resolution near-field structure manufactured using high-melting point metal oxide or silicon oxide mask layer
WO2007135827A1 (ja) 光学情報記録媒体、光学情報再生方法および光学情報再生装置
US20040228259A1 (en) Optical information recording medium and method for producing the same
JP4521282B2 (ja) 書き換え可能型光記録担体
JP4345246B2 (ja) 光学記録媒体
KR100763364B1 (ko) 상변화형 광디스크
KR20080067173A (ko) 초해상 광기록 매체
JP2006247855A (ja) 多層相変化型光記録媒体
JP3653254B2 (ja) 光学的情報記録媒体
JP2005322276A (ja) 光記録媒体
JP2005004950A (ja) 光情報記録媒体及びその製造方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501